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Abstract

I analyze optimal natural resource use in an intergenerational model

with the risk of a catastrophe. Each generation maximizes a weighted sum

of discounted utility (positive) and the probability that a catastrophe will

occur at any point in the future (negative). The model generates time-

inconsistency as generations disagree on the relative weights on utility

and catastrophe prevention. As a consequence, future generations emit

too much from the current generation’s perspective and a dynamic game

ensues. I consider a sequence of models. When the environmental problem

is related to a scarce exhaustible resource, early generations have an in-

centive to reduce emissions in Markov equilibrium in order to enhance the

ecosystem’s resilience to future emissions. When the pollutant is expected

to become obsolete in the near future, early generations may however in-

crease their emissions if this reduces future emissions. When polluting

inputs are abundant and expected to remain essential, the catastrophe

becomes a self-fulfilling prophecy and the degree of concern for catastro-

phe prevention has limited or even no effect on equilibrium behaviour.
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1 Introduction

Many important ecosystems are subject to threshold dynamics: they can rapidly

and irreversibly deteriorate when their vitality drops below a critical value.

Shallow lakes switch from a clear to a turbid state when the concentration of

algae reaches a tipping point (Scheffer, 1997). Droughts, forest fires and logging

may fuel a self-reinforcing replacement of tropical rainforest by grasslands in

the Amazon (Nepstad et al., 2008). Ecologists hypothesize that species support

ecosystem stability like rivets support a complex machine: initial component

extractions do not affect the system’s performance, but even a small number of

further removals can trigger a sudden collapse (Ehrlich and Ehrlich, 1981). On a

global scale, the climate system is subject to positive feedback mechanisms: the

melting of polar ice caps will increase solar radiation absorption and permafrost

melting in the Arctic could cause large methane releases (Lenton et al., 2008).

The threshold locations that govern these ’catastrophes’ are highly uncer-

tain, because of our limited knowledge of ecosystem behaviour and since current

levels of environmental stress are without precedent (Muradian, 2001). This un-

certainty poses an important economic tradeoff. Increasing our natural resource

use yields temporary (using a piece of tropical wood in construction or burning

a unit of fossil fuel) and/or permanent (bringing virgin land into production)

economic benefits if we stay below the catastrophe thresholds, but incurs large

and long-lasting damages if we do not. The consequences of temperature rises

in the high single digits and upwards for example are likely to include large per-

manent loss of biodiversity, sea level rise and increased prevalence of extreme

weather events. Because of their largely irreversible nature, the possibility of en-

vironmental catastrophes has important implications for intergenerational wel-

fare analysis (for climate change, see e.g. Keller et al. (2004); Weitzman (2009,

2010)). This paper asks how concerns for catastrophe prevention affect the

long-run concentration of pollutants and the allocation of natural resource use

across generations.

To answer this question, I use a welfare criterion that balances both present

and far-distant future outcomes.1 The welfare of generation t is a weighted sum

of expected discounted utility and the probability that an irreversible catastro-

1Chichilnisky (1996), Alvarez-Cuadrado and Long (2009) and Long and Martinet (2012)

propose related welfare functions. Chichilnisky (1996) discusses a criterion that consists

of a weighted sum of discounted utility and lim-inf utility. Alvarez-Cuadrado and Long

(2009) advocate a weighted sum of discounted utility and a Rawlsian maxi-min criterion;

Long and Martinet (2012) propose a weighted sum of discounted utility and an endogenous

set of minimum rights to be guaranteed to all generations.
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phe will occur at any point in the future

W (t) =

∫ ∞

t

Eu (s) e
−δ(s−t)ds− ξP [τ <∞]

where τ is the occurrence time of the catastrophe. The welfare function gen-

erates a time-inconsistency: the current generation would like to sacrifice their

descendants’ consumption for the long-run objective, but the descendants them-

selves are not as willing to make these sacrifices once they inherit the economy.

When the current generation recognizes that future generations have different

preferences, its response depends on the nature of the environmental problem.

If the pollutant that causes the catastrophe risk is expected to become obsolete

in the near future or if the risk is related to emissions from a scarce exhaustible

resource, the current generation may reduce its consumption in an attempt re-

duce the maximum pressure on the ecosystem and hence avert a catastrophe.

If the pollutant is abundant and expected to remain essential, the catastrophe

becomes a self-fulfilling belief.

The literature on optimal control in environmental problems under time-

inconsistent preferences is scarce. Li and Löfgren (2000) look at renewable re-

source management with similar preferences as in the present paper, but restrict

themselves to full commitment and thus assume away the time-inconsistency

problem. Karp (2005) and Gerlagh and Liski (2012) study Markov-perfect cli-

mate mitigation strategies when regulators use hyperbolic discounting. An im-

portant difference with the present paper is that generations with hyperbolic

preferences do not explicitly care about the distant future; they merely place

a higher weight on their own felicity. This feature causes hyperbolic regulators

with full commitment power to stabilize emission stocks at a lower level, but

start off with higher emission flows than in Markov equilibrium (Karp, 2005).

This ranking between the commitment and Markov solutions does not always

hold with the preferences in the present paper - specifically, it breaks down in

a model that is close to Karp (2005).

Karp and Tsur (2011) consider catastrophic climate change under hyper-

bolic preferences in a discrete-choice setting. Mitigation decisions are strate-

gic complements across generations, and perpetual stabilization and perpetual

business-as-usual can both be Markov equilibria. Different from the present pa-

per, the catastrophe hazard in Karp and Tsur (2011) persists even when emis-

sions cease perpetually: emissions irreversibly increase the hazard in all future

periods, but do not affect not the catastrophe hazard in the current period. The

range of equilibria is sensitive to the functional form of the hazard rate. In equi-

librium, generations can only cease emissions at concentration levels at which
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additional emissions increase the hazard sufficiently strongly, because large in-

creases in the hazard deter future generations from reneging on the current

generation’s plan to stabilize the carbon concentration.2

It is difficult to infer long-term preferences for environmental goods from

market data. There is a dearth of investment assets with very long horizons,

and extrapolating preferences from shorter-term decisions requires contentious

assumptions. Nordhaus (1994) argues that revealed preferences in the capital

market indicate a high degree of impatience. He calibrates a Ramsey discount

rate of an infinitely-lived agent that uses exponential discounting, and finds a

pure rate of time preference of 3% - implying negligible welfare weights beyond

a 50-year horizon. His result is sensitive to both the infinitely-lived agent and

the exponential discounting assumptions. Observed saving decisions are consis-

tent with concerns for the medium or distant future if we consider a different

preference structure, for example that individuals discount consumption within

their own lifetime but not across generations (Dasgupta, 2012) or hyperbolic

discounting (Gerlagh and Liski, 2012).

Stated-preference studies circumvent this problem and find that people care

about long-term environmental outcomes, consonant with my welfare criterion.

Layton and Levine (2003) calibrate an exponential discounting model and es-

timate a 0.7% median discount rate for climate mitigation measures, whereas

Layton and Brown (2000) find no appreciable difference in willingness to pay

for environmental damages that occur in 60 or 150 years. Gattig and Hendrickx

(2007) survey evidence that non-monetary indicators of the perceived severity

of environmental risks, such as the willingness to engage in pro-environmental

behaviours, are unresponsive to the temporal delay of environmental impacts.

The catastrophe term in my welfare function also captures the nonuse value

of natural assets, which may constitute more than half of their total economic

value (Greenley et al., 1981; Kaoru, 1993; Langford et al., 1998; Wattage and Mardle,

2008). A large part of the value people attach to preserving the environment

is not related to current or future use, but to simply knowing that a species

or pristine area exists. When the value of e.g. species protection does not de-

pend on current and future use, the welfare loss from future extinctions is likely

independent of the time of occurrence.

My welfare criterion also addresses deontological motives. The Lockean pro-

viso states that appropriating natural resources for current use is justified only

if ’enough and as good’ is left for the future. Within a purely consequential-

2For stationary optimal control under catastrophic risk, see e.g. Cropper (1979); Reed

(1984); Tsur and Zemel (1996, 2008); Polasky et al. (2011).
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ist framework, the risk of a future catastrophe can be offset by an increase in

current consumption. Even if future generations are compensated, they cannot

consent to any compensation. The second term in the welfare function reflects

the difficulty of compensating future generations for the loss of vital ecosys-

tems, and the uncertainty whether they would be willing to accept an increase

in man-made goods in return. Lastly, the catastrophe term captures an intrinsic

aversion to the idea that the human community, encompassing both current and

future generations, will at some point cause an environmental catastrophe.

The widely-used utilitarian criterion (Nordhaus, 1994; Stern, 2007) results in

either a ’dictatorship of the present’ or a ’dictatorship of the future’ (Chichilnisky,

1996). With a zero discount rate, the utilitarian approach is insensitive to near-

term outcomes, because the generations that are alive today are vastly out-

numbered by their far-future counterparts. With a positive discount rate, the

utilitarianist attaches near-zero weight to the distant future, as its importance

is diminished by compounded discounting.3 These properties also apply to hy-

perbolic preferences, depending on whether the long-term discount rate is zero

or not.

Under the proposed criterion with an explicit concern for catastrophe pre-

vention, I demonstrate how optimal resource use depends on the nature of the

environmental problem. I consider a sequence of models with a common frame-

work. A series of non-overlapping generations derive utility from an emission-

intensive consumption good. Emissions from production add to a pollution

stock. In each period, a constant fraction of the stock decays naturally.4 A

catastrophe occurs when the pollution stock exceeds an unknown threshold.

The risk can be eliminated by keeping the stock at its current level, which is

known to be ’safe’.5 Importantly, each generation’s intrinsic welfare loss from

a catastrophe does not depend on the time of occurrence.6 Table 1 illustrates

the inconsistency: the current generation discounts future utility relative to its

3Weitzman (2009) shows that the present value of expected losses from future catastrophes

may be infinitely large even with a positive discount rate, but his assumptions have been

subject to much critique (Millner, 2013). Most prominently, his result requires the utility

function to be unbounded from below. See Buchholz and Schymura (2012) for an elaborate

discussion.
4In a broader interpretation, we may think of the emission flows as the one-off benefits of

bringing additional natural resources under cultivation (e.g. cutting down a forest), and the

natural decay as the flow of benefits that cultivated resources can sustainably provide (such

as agricultural products).
5This type of catastrophe risk is also studied in Tsur and Zemel (1994, 1996); Nævdal

(2006).
6I explicitly allow for the possibility that the catastrophe also has a direct effect on utility.
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Table 1: Time inconsistent welfare weights

current utility future utility catastrophe

current generation 1 ρ < 1 ξ

future generation 1 ξ

intrinsic welfare loss from a catastrophe, but future generations do not discount

their own utility relative to the catastrophe loss. As a consequence, future gen-

erations emit too much from the current generation’s perspective and a dynamic

game ensues. Generations have a strategic motive to distort their emissions in

order to influence future emissions. I compare emissions and the probability of a

catastrophe in three cases: (a) when the first generation can commit all current

and future emissions (the commitment solution), (b) when current generations

do not anticipate that future generations have different preferences (the naive

solution) and (c) when current generations take into account the reaction of

future generations (the Markov equilibrium).

I firstly introduce a two-period model. This model represents a setting in

which the catastrophe risk is expected to recede in the near future, for ex-

ample because technological change will make the polluting resource obsolete.

The first generation may be more or less cautious under commitment than in

Markov equilibrium, depending on the utility and threshold distribution func-

tions. Because the number of future generations that can affect the catastrophe

risk is small, the current generation has a direct influence on future decisions.

When current and future emissions are strategic substitutes, today’s generation

can pass on the costs of catastrophe prevention to the future by increasing its

emissions. I derive unambiguous results for two functional forms.

Secondly, I consider an infinite-horizon model with an abundant pollutant.

This model is informative when the pollutant is plentifully available and will

remain essential for a long period. Reserves of coal are sufficient to last another

200 years and pose a serious threat to the global climate unless we develop

a substitute. We may also interpret the pollution stock as the total amount

of deforested land: the pressure to convert rainforests for agricultural use is

unlikely to let up any time soon. In Markov equilibrium, the catastrophe be-

comes a self-fulfilling prophecy. The steady-state pollution stock depends on

beliefs. Given consistent beliefs, individual generations cannot influence the

steady state, and will conclude that mitigation efforts are futile. There even ex-

ists an equilibrium in which the degree of catastrophe aversion has no effect on
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equilibrium behaviour, that is, generations act as if they do not care about the

long-run future. As opposed to under hyperbolic preferences as in Karp (2005)

and Gerlagh and Liski (2012), who also employ infinite-horizon models with

abundant pollutants, not only steady-state emission stocks but also emission

flows are higher in Markov equilibrium than under commitment. Naive policies

also lead to high pollution stocks eventually, but degrade the environment less

rapaciously. Because naive generations mistakenly believe that pollution con-

centrations can be stabilized at a low level, they choose lower emissions than

under full rationality.

Lastly, I propose an infinite-horizon model with a scarce pollutant, which is

relevant for local pollution problems related to exhaustible resource extraction.

The pollution stock first increases, but later declines when reserves of the re-

source become depleted. When the initial resource reserve is sufficiently small,

future generations have limited ability to increase the pollution stock. Early

generations then have an incentive to reduce emissions in Markov equilibrium

that is not present under commitment. By reducing their own resource use,

early generations smooth the time path of emissions, allowing natural decay to

reduce the maximum pollution stock and hence the probability of a catastrophe.

I provide a numerical example in which initial emissions in Markov equilibrium

are lower than under commitment.

The results from the infinite-horizon model with an abundant pollutant offer

an explanation why climate change mitigation efforts are far below the level

necessary to limit temperature increases to two degrees. The embodied carbon

in global reserves of coal and unconventional oil and gas exceeds cumulative

historical emissions by a multiple (Kharecha and Hansen, 2008), and natural

carbon sinks are insufficient to stabilize the concentration in the atmosphere

unless emissions decrease significantly. Dangerous climate change will not be

averted because of fossil fuel scarcity or carbon dissipation; only by deliberate

and costly reductions in fossil fuel consumption. Rational policymakers who are

not willing to foot the bill for the long-term objective of limiting climate change

recognize that their successors are also unwilling to pay. Because the objective

of stabilization at relatively low concentration levels is out of reach, inaction

becomes an equilibrium.

2 Two-period model

Consider a model with two generations, living in periods t = 1, 2. A represen-

tative agent in each generation derives utility ut (zt) from an emission-intensive
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consumption good z, the economy’s single commodity (hereafter: emissions).

The utility functions satisfy u′t ≥ 0, u′′t ≤ 0, ∃ ūt : ut (z) < ūt ∀ z. Emissions

zt contribute to a pollution stock Dt. Natural decay is relatively unimportant

when the number of time periods is small, so I abstract from it in this model. I

normalize D0 = 0.

Dt = Dt−1 + zt, D0 = 0

A catastrophe occurs when the stock reaches an unknown threshold D̂. The

threshold is randomly distributed on the interval
[
0, D̄

]
. I express the proba-

bility of a catastrophe as a function of cumulative emissions through pdf f (D)

and cdf F (D).

Each generation’s (ex ante) welfare wt is given by a weighted sum of dis-

counted utility (positive) and the probability that a catastrophe will occur in

either period (negative). The first generation discounts utility of the second

generation by a factor ρ < 1, but its welfare loss from a catastrophe does not

depend on the time of occurrence. I distinguish between three cases. If the

threshold is never breached (D2 < D̂), we disregard the catastrophe term in the

welfare functions and ex post welfare Wt is

W1 = u1 (z1) + ρu2 (z2)

W2 = u2 (z2)

If the threshold is breached in the second period (D1 < D̂ < D2), both genera-

tions suffer an intrinsic catastrophe welfare loss ξ:

W1 = u1 (z1) + ρu2 (z2)− ξ

W2 = u2 (z2)− ξ

When the threshold is breached in the first period (D1 > D̂), the second gen-

eration receives utility u, to capture the impacts of a catastrophe on material

well-being.7

W1 = u1 (z1) + ρu− ξ

W2 = u− ξ

7In the remainder of this paper, I assume u > −∞ to be sufficiently small such that

the catastrophe is also undesirable from a point of view of utility maximization. This is

not necessary for the formal analysis however. If the catastrophe does not affect utility, all

post-catastrophe generations choose zt arbitrarily large and u = ūt.

8



The welfare functions for the two generations read

w1 = u1 (z1) + (1− F (z1)) ρu2 (z2) + F (z1) ρu− ξF (z1 + z2) (1a)

w2 =

{

u2 (z2)− ξ F (z1+z2)−F (z1)
1−F (z1)

if z1 < D̂

u− ξ if z1 ≥ D̂
(1b)

The second generation observes whether the first generation’s emissions have

triggered the catastrophe or not,8 so it evaluates catastrophe risk using the con-

ditional cdf F (z1+z2)−F (z1)
1−F (z1)

.9 The discount factor generates time-inconsistency

in the preference structure: the second generation places a higher weight on

second-period utility u2 (z2) relative to the probability of a catastrophe F (D2)

than the first generation does.

I distinguish between three solutions. Firstly, the commitment solution (su-

perscript C), in which the first generation commits all current and future emis-

sions. Secondly, the ’naive’ solution (superscript N), in which the first genera-

tion does not anticipate that future generations will make a different trade-off

between u2 (z2) and F (D2). Lastly, I consider the Markov solution (superscript

M), in which the first generation foresees the preference reversal of the second

generation and selects z1 by backward induction, maximizing its welfare given

the optimal response of the second generation.

2.1 Commitment solution

When the first generation can commit second-period emissions conditional on

whether the threshold is breached in the first period, zC1 and zC2 immediately

follow from (1a) in case of an interior solution

u′1
(
zC1
)

︸ ︷︷ ︸

I

− ρf
(
zC1
) [
u2
(
zC2
)
− u
]

︸ ︷︷ ︸

II

− ξf
(
zC1 + zC2

)

︸ ︷︷ ︸

III

= 0 (2a)

ρu′2
(
zC2
)
− ξ

f
(
zC1 + zC2

)

1− F
(
zC1
) = 0 if zC1 < D̂ (2b)

The first generation equates discounted marginal utility in both periods with

the marginal welfare loss from catastrophe risk. The three components of (2a)

represent the first generation’s considerations. The first term is the first gen-

eration’s marginal utility. The second term indicates that higher first-period

8When the catastrophe is only observed at the end of the second period, the second gener-

ation chooses a higher z2 because there is a probability that the first generation has already

triggered the catastrophe, in which case second-period mitigation is fruitless.
9When the first generation is ambiguity-averse, this Bayesian updating would also be a

source of time inconsistency.
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emissions increase the probability of reducing second-period utility to u. The

third term reflects the first generation’s intrinsic desire to prevent a catastrophe.

When the welfare weight on catastrophe prevention is sufficiently low, we may

have a corner solution and
(
zC1 , z

C
2

)
→ (∞,∞).

2.2 Naive solution

In the naive solution, the first generation behaves as if it could commit both

z1 and z2. The second generation however selects zN2 to maximize (1b) rather

than (1a), yielding

u′1
(
zN1
)
− ρf

(
zN1
) [
u2
(
zC2
)
− u
]
− ξf

(
zN1 + zC2

)
= 0 (3a)

u′2
(
zN2
)
− ξ

f
(
zN1 + zN2

)

1− F
(
zN1
) = 0 if zN1 < D̂ (3b)

By definition, z1 is the same in the naive solution as in the commitment solu-

tion. Substituting zN1 = zC1 in (3b) and comparing with (2a), zN2 > zC2 : the

second generation chooses higher second-period emissions than the first gener-

ation would have under commitment.10

2.3 Markov solution

In the Markov solution, the first generation correctly anticipates the second

generation’s reaction. Condition (3b) implicitly defines the second generation’s

reaction function r (z1)

u′2
(
r
(
zM1
))

= ξ
f
(
zM1 + r

(
zM1
))

1− F
(
zM1
) (4)

To avoid clutter, I omit the superscript M in the derivation of the reaction

function. Differentiating with respect to z1, I obtain

u′′2 (r (z1)) r
′ (z1) = ξ

(

f ′ (z1 + r (z1)) [1− F (z1)] + f (z1) f (z1 + r (z1))

[1− F (z1)]
2 +

r′ (z1)
f ′ (z1 + r (z1))

1− F (z1)

)

⇔ r′ (z1) = ξ
f ′ (z1 + r (z1)) [1− F (z1)] + f (z1) f (z1 + r (z1))

[1− F (z1)] [u′′2 (r (z1)) [1− F (z1)]− ξf ′ (z1 + r (z1))]

(5)

10In addition to a corner solution in both periods, we may now also have a corner solution

in the second period only.
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The condition for the numerator in (5) to be positive is similar to f having an

increasing hazard function. The sign of the denominator depends on the curva-

ture of f . A sufficient condition for the second generation’s reaction function to

be downward-sloping is f ′ (z1 + r (z1)) ≥ 0. When f ′ (z1 + r (z1)) is sufficiently

negative, an increase in z1 lowers the marginal probability of a catastrophe to

such an extent that it becomes attractive for the second generation to choose a

higher emission level.

The first-order condition for the first generation is

u′1 (z1)− ρf (z1)u2 (r (z1)) + ρ [1− F (z1)]u
′
2 (r (z1)) r

′ (z1) + ρf (z1)u−

ξf (z1 + r (z1)) (1 + r′ (z1)) = 0

⇔ u′1 (z1)
︸ ︷︷ ︸

I

− ρf (z1) [u2 (r (z1))− u]
︸ ︷︷ ︸

II

−ξ (1− ρ) f (z1 + r (z1)) r
′ (z1)

︸ ︷︷ ︸

IV

−ξ f (z1 + r (z1))
︸ ︷︷ ︸

III

= 0

(6)

Terms I, II and III are also present in the commitment FOC and have the same

interpretation. However, as I discussed in section 2.2, r
(
zC1
)
> zC2 . The points

at which terms II and III are evaluated are different than in the commitment

solution. Holding z1 constant, term II is unambiguously larger in the Markov

solution: because the second generation chooses higher emissions, the utility

loss to the second generation u2 (z2) − u in case of a first-period catastrophe

is larger than under commitment. This effect makes the first generation more

cautious. Whether term III makes the first generation more conservationist in

Markov equilibrium depends on the local curvature of the threshold pdf. The

Markov FOC also contains an additional term IV that is not present in the

commitment FOC. This is the strategic motive to influence the second genera-

tion’s emissions through the second-period catastrophe hazard. When r′ (z1) is

negative (positive), the first generation can reduce z2 by increasing (decreasing)

its own emissions.

Comparing (6) and (2a), it is not possible to say whether first-period emis-

sions are higher in the Markov or in the commitment solution without assuming

functional forms for ut and F . The Appendix contains two examples with dif-

ferent rankings of zC1 and zM1 .

When catastrophe risk is expected to recede in the medium term, current de-

cision makers can directly influence their successors’ actions and the probability

of a catastrophe. Interestingly, the desire to reduce perceived ’overconsump-

tion’ by future generations can lead current decision makers to increase their

own emissions, even if they so increase the probability of a catastrophe. The

results from this section are less relevant when catastrophe risk persists over
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long horizons, for example because the pollutant remains essential into the far

future: the current generation has limited ability to affect the policies of distant

generations. The infinite-horizon models in the next two sections deal with more

persistent risks.

3 Infinite horizon, abundant pollutant

Consider an infinite-horizon model with a continuum of non-overlapping gener-

ations and an abundant pollutant. As in the previous section, each generation

derives utility from its own emissions u (z (t)) and cares about future utility

(discounted at rate δ) as well as the possibility of a catastrophe occurring at

some point the future. A constant fraction α of the pollution stock decays in

each period, so that

Ḋ = z − αD (7)

Utility is concave and bounded. The pollution stock only has a direct effect

on utility when a catastrophe occurs. The hazard rate ψ (D) ≡ f(D)
1−F (D) is

increasing.

Assumption 1. u (D, z) = u (z) , u′ (z) > 0, u′′ (z) < 0 ∀z and limz→∞ u (z) =

ū.

Assumption 2. ψ′ (D) ≥ 0.

When the catastrophe occurs, all subsequent generations receive utility u <

ū. As in section 2, a catastrophe is immediately observable, and generations

condition their strategy on whether the catastrophe has occurred already. Be-

cause the post-catastrophe game is trivial, I focus on pre-catastrophe strategies.

Throughout, I assume existence of optimal solutions and that D (t) is non-

decreasing along the optimal path.11 The intuition for this assumption is as

follows. Keeping the stock constant already eliminates the catastrophe hazard.

A trajectory in which the stock is V-shaped or declining during an interval of

time results in lower discounted utility than an alternative path that keeps the

stock constant over the same interval, without reducing the probability of a

catastrophe.

Define η (t) ≡ ψ (D (t)) (z (t)− αD (t)) as the catastrophe hazard at time t

and H (t) ≡
∫ t

0
η (s) ds as its primitive, and let τ denote the occurrence time

of the catastrophe. For the remainder of this paper, W denotes a generation’s

11Tsur and Zemel (1996) prove these properties for ξ = 0.
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welfare given a future emissions path, and V denote welfares at this genera-

tion’s optimal decision. For a given admissible trajectory z (s), the welfare of

generation t is12

W t (D (t)) =E

(∫ ∞

t

(u (z (s))1τ>s + u1τ≤s) e
−δ(s−t)ds

)

− ξ
P [τ ∈ [t,∞)]

1− P [τ ∈ [0, t)]

s.t. Ḋ = z − αD, D (t) = Dt

=

∫ ∞

t

(u (z (s)) [1− (H (s)−H (t))] + u [H (s)−H (t)]) e−δ(s−t)ds

− ξ
P [τ ∈ [t,∞)]

1− P [τ ∈ [0, t)]

s.t. Ḋ = z − αD, D (t) = Dt, Ḣ = ψ (D) (z − αD) (8)

In Appendix J, I outline the necessary conditions for stationary dynamic opti-

mization problems with uncertain thresholds, as derived in Nævdal (2006).

3.1 Commitment solution

If the first generation can commit all current and future emissions, it maximizes

(8) for t = 0. Its problem is

max
z

{

WC (D (0)) =

∫ ∞

0

(u (z (s)) [1−H (s)] + uH (s)) e−δsds− ξ P [τ ∈ [0,∞)]

s.t. Ḋ = z − αD, D (0) = D0, Ḣ = ψ (D) (z − αD)

}

(9)

I may rewrite the problem by including the intrinsic welfare loss from a catas-

trophe in the integral of utility.

max
z

{

WC (D (0)) =

∫ ∞

0

(
u (z (s)) [1−H (s)] + uH (s)− η (s) ξeδs

)
e−δsds

s.t. Ḋ = z − αD, D (0) = D0, Ḣ = ψ (D) (z − αD)

}

(10)

As time passes, it becomes prohibitively costly from the first generation’s point

of view to risk a catastrophe, because the utility discount rate diminishes the

benefits of future emissions relative to the intrinsic catastrophe loss. The first

generation therefore stabilizes the emissions stock at some finite date t′ such that

the marginal benefit of increasing the pollution stock (higher current utility and

higher steady-state utility if the threshold is not breached) equals the expected

12τ is distributed as a Poisson process, as described in the Appendix. For brevity, I omit

the distribution of τ in the main text.
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marginal cost (a permanent decrease in utility and the intrinsic welfare loss

evaluated at τ = t′ if the catastrophe does occur).

Proposition 1. The commitment solution is characterized by a steady-state

pollution stock DC . There exists a t′ <∞ such that DC (t′) = DC and zC (t) =

αDC ∀ t ≥ t′. DC and t′ satisfy

u′
(
αDC

)
=
ψ
(
DC
)

δ + α

[

u
(
αDC

)
− u+ δξeδt

′

]

(11)

A formal analysis of the comparative statics of the steady state is complicated

by the presence of two endogenous variables in (11), DC and t′. In the next

subsections, I derive comparative statics for the naive and Markov steady states

and discuss the intuition behind them.

3.2 Naive solution

In the naive solution, each generation t solves a problem that is similar to (10),

with the initial pollution stock determined by previous generations.

max
z

{

W t,N (D (t)) =

∫ ∞

t

(u (z (s)) [1− (H (s)−H (t))] + u [H (s)−H (t)]

−η (s) ξeδ(s−t)
)

e−δ(s−t)ds

s.t. Ḋ = z − αD, D (t) = Dt, Ḣ = ψ (D) (z − αD)

}

(12)

Each generation t envisions a preferred steady-state stock Dt,N , but as every

subsequent generation places a higher weight on its own utility, and thus a lower

relative weight on catastrophe prevention, the stock targets Dt,N increase over

time. The targets converge to a unique level DN that even the most distant

generations do not want to exceed, as the marginal welfare gain of higher steady-

state utility falls short of the permanent utility reduction and the welfare loss

associated with a catastrophe.

Proposition 2. The solution to generation t’s problem is characterized by a

steady-state stock Dt,N . Let DN be given by

u′
(
αDN

)
=
ψ
(
DN

)

δ + α

[
u
(
αDN

)
− u+ δξ

]
(13)

Then

(i) Dt,N < DN ∀ t and limt→∞Dt,N = DN

(ii) ∂DN

∂α
R 0 iff

(α+ δ)
2
DNu′′

(
αDN

)
−(α+ δ)DNψ

(
DN

)
u′
(
αDN

)
+ψ

(
DN

) (
u
(
αDN

)
− u+ δξ

)
R 0
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(iii) ∂DN

∂δ
R 0 iff u

(
αDN

)
− u− αξ R 0

The left and right hand side of (13) represent the marginal benefit and cost

of increasing the steady-state stock, respectively. Because of Assumptions 1

and 2, the left hand side is decreasing and the right hand side is increasing.

Therefore, it cannot be optimal for any generation t that inherits stock DN to

choose zt,N (t) > αDN . As a consequence, the pollution stock never exceeds

DN .

The net effect of the pollution decay rate α on the steady-state stock DN

is ambiguous. When α increases, a given stock level allows for higher emissions

without risking a catastrophe. However, holding DN constant, marginal utility

u′ (αD) decreases and the utility loss from a catastrophe u
(
αDN

)
−u increases.

A higher discount rate δ also has two opposing effects. On one hand, it increases

the relative weight of the current gain of increasing the stock u′ (αD) compared

to the stream of possible future utility reductions (u (αD)− u) /δ. This effect

encourages higher steady-state stocks. On the other hand, it also increases the

relative importance of the intrinsic catastrophe loss ξ compared to the stream

of future utility gains if no catastrophe occurs. This consideration decreases

DN . The net effect depends on the relative magnitudes. If the utility loss from

a catastrophe is small, the latter effect is more important. If the weight of the

intrinsic catastrophe loss is small, the former effect dominates.

Corollary 1. DC ≤ DN

The steady-state stock is higher in the naive solution than in the commitment

solution. Future generations have higher relative welfare weights on their own

utility, and thus reoptimize towards higher steady-state pollution stocks.

3.3 Markov solution

The Markov equilibrium is defined by a policy function ζM (D) such that zM (t) =

ζM (D (t)) ∀ t. In Proposition 3, I show that there exists a continuum of Markov

equilibria which can be ranked by their steady-state pollution stocks. Early

generations’ emissions depend on their beliefs about future emissions. When

generation t believes that future generations will increase the stock up to a cer-

tain level DM , its choice of zM (t) has no effect on the maximum pollution stock.

Each generation thus maximizes expected discounted utility subject to the stock

not exceeding the perceived maximum. The range of equilibria is bounded by

two considerations. The equilibrium steady-state stock cannot exceed the level

that maximizes expected discounted utility (the first component of (8)) disre-

garding the intrinsic loss. When the perceived steady-state stock is below the

15



naive steady-state DN , far-future generations will want to further increase the

stock.

Proposition 3. Let DM
1 = DN given by (13) and DM

2 be given by

u′
(
αDM

2

)
=
ψ
(
DM

2

)

δ + α

(
u
(
αDM

2

)
− u
)

(14)

Define

WM (D) =

∫ ∞

t

(u (z (s)) [1− (H (s)−H (t))] + u [H (s)−H (t)]) e−δ(s−t)ds

s.t. Ḋ = z − αD, D (t) = Dt, D (s) ≤ DM ∀ s ≥ t, Ḣ = ψ (D) (z − αD)

(15)

There exists a continuum of Markov equilibria indexed by DM ∈
[
DM

1 , DM
2

]

such that

ζM (D) =







argmaxz(t)W
M (D) if D < DM

αD if D ≥ DM
(16)

When generations have consistent beliefs about the steady-state stock, the

beliefs become self-fulfilling, even if they result in an inefficient equilibrium

DM > DN . The upper bound of the equilibrium range DM
2 may either in-

crease or decrease in α, as in the naive solution. As opposed to DM
1 , the

upper bound unambiguously increases in δ: DM
2 does not depend on ξ, so the

only effect of a higher discount rate is to increase the weight of current utility

gains from increasing the stock compared to the stream of possible utility losses
(
u
(
αDM

2

)
− u
)
/δ. The DM = DN equilibrium yields the highest welfare for

all generations as it comes closest to internalizing the intrinsic welfare loss from

a catastrophe. When DM = DM
2 , each regulator behaves as if he does not care

about the long-run future (ξ = 0). By contrast, in the naive solution each gen-

eration believes it decides the steady-state stock. Since it is in no generation’s

interest to exceed DN , D (t) > DN is ruled out.

Corollary 2. The first generation’s welfare in the naive solution is lower than

in the Markov solution when DM = DN .

The naive solution suffers from a different inefficiency. Generation t mis-

takenly perceives the steady-state stock to be Dt,N < DN , so its emissions do

not maximize expected discounted utility under the correct belief DN . In the

Markov solution with DM = DN , all generations have consistent beliefs, so the

emissions path does maximize
∫∞

t
(u (z (s)) [1− (H (s)−H (t))] + u [H (s)−H (t)]) e−δ(s−t)ds

16



subject to D (s) ≤ DN ∀ s ≥ t. Figure 1 illustrates emissions and stocks in the

three scenarios. Emissions in the naive solution are initially close to those in

the commitment solution, but increasingly diverge as future generations put

more weight on their own utility than their predecessors. The Markov solution

converges to the same maximum stock as the naive solution, but the maximum

is attained much earlier, resulting in higher welfare for early generations than

in the naive solution.
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Figure 1: Emission flows (left) and stocks (right) in commitment, naive and

Markov solutions

Proposition 4. DC (t) ≤ DN (t) ≤ DM (t) ∀ t > 0.

Regulators in the commitment and naive solutions maximize a weighted

sum of expected utility and catastrophe risk, so the optimal path is the same

as in a constrained optimization problem in which the regulator maximizes

expected discounted utility subject to the stock not exceeding an exogenous

ceiling DC or Dt,N at any point in time (see Chakravorty et al. (2006, 2008)).

By Proposition 3, Markovian regulators also solve a constrained optimization

problem in equilibrium. The ’carbon budget’ is larger in the naive and Markov

solutions, so conditional on the stock D the emission flows are higher than in

the commitment solution. Because emissions can be ranked for any given stock,

the stocks can also be ranked unambiguously at each point in time.

The progress on prominent objectives such as biodiversity preservation and

limiting climate change has so far not been encouraging. Current policymakers

care less about future consumption than future policymakers do, so the environ-
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ment is best served when the current generation has full commitment power. In

the absence of commitment, a catastrophe becomes more likely because future

generations are unwilling to comply with current plans of ’pollute now, clean

up later’. Fully rational policies lead to the fastest degradation: because ra-

tional decision makers realize that their successors are not more willing to pay

for the environment than they are, the long-term objective of limiting catastro-

phe risk to acceptable levels is out of reach and it is optimal to continue under

business-as-usual.

The dismal results in this model rely on a large number of generations having

an unlimited ability to pollute. Section 2 varied the number of generations; the

next section considers pollutant scarcity.

4 Infinite horizon, scarce pollutant

In this section, I analyze optimal emissions when the pollutant is scarce. Cu-

mulative emissions (i.e. pollutant consumption) cannot exceed a resource sup-

ply S. Unless otherwise noted, I preserve the notation from section 3. Let

Dmax (t) ≡ maxs<tD (s) denote the maximum stock that has been reached

until time t and τ ≡ argmint

{

Dmax (t) ≥ D̂
}

be the occurrence time of the

catastrophe. For simplicity, and because the resource constraint already limits

post-catastrophe utility, I abstract from direct utility reductions after a catas-

trophe. Generation t’s welfare is

W t (S (t) , D (t) , Dmax (t)) =

∫ ∞

t

u (z (s)) e−δ(s−t)ds− ξ
P [τ ∈ [t,∞)]

1− P [τ ∈ [0, t)]

s.t. Ṡ = −z, Ḋ = z − αD, Ḋmax = 1{D=Dmax} (z − αD) , S,D,Dmax ≥ 0

(17)

When the remaining resource supply is sufficiently small compared to the cur-

rent pollution stock, the Hotelling extraction path that maximizes discounted

utility can be followed without catastrophe risk. Optimal extraction falls quickly

enough over time so that the current ’safe’ pollution stock is never exceeded.

Because catastrophe risk is the only source of time inconsistency, this result

applies to the commitment, naive and Markov solutions. I formalize this result

in the next Lemma, after introducing some notation. Let

B ≡

{

(S,D) : argmax
z(t)

{∫ ∞

t

u (z (s)) e−δsds s.t. Ṡ = −z

}

= αD

}

denote the combinations of S and D for which the emissions z (t) that maximize

discounted utility (disregarding catastrophe risk) equal the natural decay of the
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current stock αD. Define SB : R+ → R+ as {S : (D,S) ∈ B}. Given a pollution

stock D, SB is the level of resource supply such that the combination (S,D)

is in the set B. SB is an increasing function: the higher the pollution stock

D, the higher the remaining resource supply for which the discounted-utility

maximizing z(t) equals αD.

Lemma 1. If generation t inherits (S,D) :≤ SB (D), the commitment, naive

and Markov solutions to (17) are equal to that of a standard Hotelling problem

max
z

{

WH (S) =

∫ ∞

t

u (z (s)) e−δsds s.t. Ṡ = −z

}

(18)

I assume that the pollution stock is non-decreasing before the terminal phase

in which extraction follows a Hotelling path and the catastrophe hazard is zero.

The intuition behind this assumption is similar to section 3. If it is worthwhile

to increase the stock and risk a catastrophe at time t, it can only be optimal to

reduce the stock at t′ > t if it is necessitated by a dwindling resource supply.

Lemma 2 shows that the terminal phase is preceded by a non-degenerate interval

in which the pollution stock is constant. This result too applies to all three

(commitment, naive and the Markov) solutions. The marginal cost of emissions

is discontinuous at z = αD when D = Dmax in all three solutions. When the

system is close to the terminal phase, the benefit of increasing the stock is small.

As a result, even far-future generations are hesitant to risk a catastrophe.

Lemma 2. Suppose that D = Dmax and S = SB (D)+ ǫ, ǫ small. Let W (S,D)

be the welfare function when D = Dmax. Then argmaxzW (S,D) = αD.

Lemmas 1 and 2, together with the assumption that the stock is non-

decreasing before the terminal phase, divide the time horizon into three regimes

for all (commitment, naive and Markov) solutions: a first regime with an in-

creasing pollution stock, a second with a constant stock and a third with a

declining stock. Lemma 2 characterizes the boundary between the second and

third regime; I now turn to the boundary between the first and second regime,

i.e. the maximum value of S for which the pollution stock is kept constant for a

given D. Unlike the minimum value of S for which z = αD for a given D from

Lemma 2, the maximum is not equal across the commitment, naive and Markov

solutions: the shadow cost of pollution plays an important role in the decision

when to stabilize the stock, and this cost is higher in the commitment solution

than in the naive and Markov solutions. Again, I introduce some auxiliary no-

tation. Define W̃ k (S,D) , k ∈ {{C, t′} , N,M} : {(S,D) : S > SB (D)} → R+
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as

W̃C,t′ (S (t) , D (t)) =

∫ ∞

t

(

u (z (s)) [1−H (s)] + uH (s)− η (s) ξeδt
′

)

e−δ(s−t)ds

s.t. Ṡ = −z, Ḋ = z − αD, Ḣ = ψ (D) (z − αD) , S,D ≥ 0

z (s′)− αD (s′)
>

≤ 0 ∀ s′
<

≥ t′

W̃N (S (t) , D (t)) =

∫ ∞

t

(u (z (s)) [1−H (s)] + uH (s)− η (s) ξ) e−δ(s−t)ds

s.t. Ṡ = −z, Ḋ = z − αD, Ḣ = ψ (D) (z − αD) , S,D ≥ 0

W̃M (S,D) =

∫ ∞

t

(u (z (s)) [1−H (s)] + uH (s)− η (s) ξ) e−δ(s−t)ds

s.t. Ṡ = −z, Ḋ = z − αD, Ḣ = ψ (D) (z − αD) , S,D ≥ 0

z (s) = ζM (S (s) , D (s)) ∀ s > t

If the initial generation commits to stabilizing the stock exactly at time t′,

the welfare of a fictitious generation t ≤ t′ that shares the initial generation’s

preference for catastrophe prevention is equal to W̃C,t′ . If generation t is the

first generation that keeps the stock constant in the naive or Markov solution,

its welfare is equal to W̃N or W̃M , respectively. Similar to the model with

an abundant pollutant, the initial generation simultaneously decides on the

triplet (t′, S (t′) , D (t′)) at which it will stabilize the stock in the commitment

solution, but the combinations (S,D) at which the stock can be stabilized in

the naive and Markov solutions do not depend on time. Now I can define the

combinations (S,D) that mark the boundary between the values of (S,D) for

which the pollution stock increases, and for which it remains constant. Let

Ai ≡

{

(S,D) : S = argmax
S′

{

argmax
z(t)

W̃ k (S′, D) = αD

}}

, k ∈ {{C, t′} , N,M}

and define SAk : R+ → R+ as
{
S : (D,S) ∈ Ak

}
, k ∈ {{C, t′} , N,M} as the

value of S for which (S,D) is in Ak for a given D.

Lemma 3. SAC,t′ (D) > SAN (D) ≥ SAM (D)

The literal interpretation of Lemma 313 is of limited direct interest, but the

Lemma is useful for a graphical intuition of the extraction paths in the com-

mitment, naive and Markov solutions. Figure 2 shows the movement through

13If the initial generation were to stabilize the pollution stock at some D under commitment,

it will have a larger resource supply remaining when reaching this D than naive or Markovian

generations would have if they were to stabilize pollution at the same level of D.
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the state space along the optimal path in the commitment solution (the (S,D)

combinations that are in the sets B and Ak are on increasing but not neces-

sarily straight lines). Starting from the initial condition, the pollution stock

increases and the resource supply declines, resulting in a northwest movement

in the (S,D) plane until the state reaches a point on the rightmost solid line.

From then on, the pollution stock remains constant and the resource supply de-

clines, giving rise to a westward movement until the state is in the set B. In the

last phase, the pollution stock and resource supply both decline. In the naive

and Markov solutions, the first phase (in which the pollution stock increases)

continues until the state reaches a point on the dashed line, which is strictly to

the northwest of the line that marks the transition to the second regime in the

commitment solution.

S

D

(S, D) ∈ B

(S, D) ∈ AN ,AM

(S, D) ∈ At′,C

0 S0

0

Figure 2: Movement through the state space along the optimal path

An analytical comparison of the commitment, naive and Markov paths is

beyond the scope of this paper. In section 3, the commitment and Markov

paths were similar in the sense that they both maximized expected discounted

utility subject to the stock remaining below an exogenous ceiling - the only dif-

ference being the value of this exogenous ceiling. Also with a scarce pollutant,

the commitment path looks like the solution of a time-consistent constrained

optimization problem, with the value of the ceiling depending on the initial

generation’s choice of (t′, S (t′) , D (t′)). The Markov solution will look differ-

ent however. The intuition is that there is a unique point in AM that can
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be approached from the initial state as the solution to a time-consistent con-

strained optimization problem.14 From the initial generation’s perspective, the

pollution stock at this point is too high.15 If the initial generation believes that

subsequent generations will behave as if they solve a time-consistent constrained

optimization problem, it can profitably deviate by decreasing its resource use,

which results in a lower maximum pollution stock. Though the resource supply

is still exhausted eventually, emissions are spread more evenly over time. This

allows the natural decay to reduce the maximum carbon stock, and hence the

probability of a catastrophe. Hence, the maximum stock is higher in Markov

equilibrium than under commitment, but the maximum is approached in a com-

paratively slower fashion.

The results in section 3 (in which the pollutant is abundant) are a limiting

case of the model with a scarce pollutant. When the initial resource supply is

sufficiently large, the actions of early generations will be similar to section 3.

I perform a simulation to illustrate emissions in the commitment and Markov

solutions when the resource supply is limited. I use a quadratic utility function

and a discrete grid for (S,D,Dmax). Figure 3 depicts the results. In this exam-

ple, initial emissions are lower in Markov equilibrium than under commitment,

because of the first generation’s incentive to reduce emissions outlined at the

end of the previous paragraph.

5 Conclusion

It is well known that discounted utilitarianism can recommend environmental

degradation as optimal policy. This paper shows that welfare criteria that ex-

plicitly value the long-run future may also not prevent a catastrophe when the

environmental problem is long-lived and caused by abundant pollutants. Future

generations will not reduce their consumption to stabilize pollution concentra-

tions at the current generation’s preferred level. As a result, rational policy-

makers conclude that mitigation is futile, and equilibrium behaviour may look

as if each policymaker has no intrinsic desire for catastrophe prevention. Given

the large reserves of coal and unconventional oil, this is a worrying message for

limiting climate change. My results suggest that if today’s generation wants to

14The (S,D) combinations in Ak are positively correlated, whereas the (S,D) combinations

such that the pollution stock reaches the exogenous ceiling D in a time-consistent constrained

optimization problem when the remaining resource supply equals S are negatively correlated.
15The pollution stock is higher than the level at which the stock is stabilized under commit-

ment, and the remaining resource supply at the moment of stabilization is lower than under

commitment.
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Figure 3: Emission flows (left) and stocks (right) in commitment and Markov

solutions

enact its preferences and if commitments through policy rules are not possible,

its best chance is to develop a technological commitment device such as a sub-

stitute for these abundant fossil fuels - rather than reducing consumption and

hoping that future generations will do the same.

The paper also suggests that instrumental and intrinsic catastrophe aversion

have different implications for equilibrium policies. Generations are more likely

to preserve the environment if they value its contribution to their descendants’

utility, for example because ecosystem services are valuable in production and

consumption, than if they care for the environment for its own sake. Environ-

mental amenities that have no economic value are more likely to be sacrificed

by future generations that care more about their own consumption, which in

turn makes preservation by the current generation less worthwhile.

A Two-period model: ranking z
C
1 and z

M
1

Lemma 4 provides unambiguous rankings of zC1 and zM1 for iso-elastic and

quadratic utility when the catastrophe threshold follows a uniform distribution.

When D̂ is uniformly distributed, the terms III in the first-order conditions (6)

and (2a) are equal. We are thus left with the terms II, which make the first

generation more conservationist in Markov equilibrium, and the strategic term

IV . The sufficient condition f ′ (z1 + r (z1)) ≥ 0 for the second generation’s re-

action function to be downward sloping is satisfied for a uniformly distributed
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catastrophe threshold. The strategic effect thus encourages the first generation

to emit more. This typically raises cumulative emissions,16 but changes the ratio

between first- and second-period marginal utilities to the first generation’s ben-

efit. For iso-elastic utility, the strategic effect dominates the effect from term II,

and emissions are higher in Markov equilibrium than under commitment. For

quadratic utility, the converse applies and the first generation is more prudent

in the Markov solution. The intuition is that with quadratic utility, the second

generation’s utility is more concave in prices than the quantity demanded (i.e.

the reaction function) is, compared to under iso-elastic utility. Increasing first-

period emissions, which raises the effective price of second-period consumption,

therefore strongly affects the second generation’s utility but not so much the

quantity demanded in case of quadratic utility. This makes it less attractive

to increase first-period consumption in Markov equilibrium than in the case of

iso-elastic utility.

Lemma 4. Let D̂ be uniformly distributed (F (D) = D/D̄ and f(D) = 1/D̄) and

ξ sufficiently large so that zC1 < ∞, zM1 < ∞. For iso-elastic utility ut (zt) =
z
1−η
t

1−η
, zM1 > zC1 . For quadratic utility ut (zt) = azt −

1
2bz

2
t , z

M
1 < zC1 .

Proof. First, consider iso-elastic utility ut (zt) =
z
1−η
t

1−η
. If the catastrophe has

not occurred by the start of the second period, we have

wM
2 =

(
zM2
)1−η

1− η
− ξ

zM1 + zM2
D̄ − zM1

⇔
(
zM2
)−η

=
ξ

D̄ − zM1
⇔ r (z1) =

(
D̄ − z1
ξ

) 1

η

Substituting in (1a), I obtain

wM
1 =

(
zM1
)1−η

1− η
+ ρ

(
D̄−z1

ξ

) 1−η
η

1− η

(

1−
zM1
D̄

)

+
zM1 ρ u

D̄
− ξ

zM1 +
(

D̄−zM
1

ξ

) 1

η

D̄

The associated first-order condition is

(
zM1
)−η

−
ρ

D̄







(
D̄−zM

1

ξ

) 1−η
η

1− η
− u







+
1− ρ

ηD̄

(
D̄ − zM1

ξ

) 1−η
η

−
ξ

D̄
= 0 (19)

Conversely, in the commitment outcome second-period emissions satisfy

wC
2 = ρ

(
zC2
)1−η

1− η
− ξ

zC1 + zC2
D̄ − zC1

⇔ ρ
(
zC2
)−η

=
ξ

D̄ − zC1
⇔ zC2 =

(

ρ
(
D̄ − zC1

)

ξ

) 1

η

16The proof contains functional forms for the reaction functions, from which one can derive

conditions for |r′ (z1)| < 1
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This gives us

wC
1 =

(
zC1
)1−η

1− η
+ ρ

(
ρ(D̄−zC

1 )
ξ

) 1−η
η

1− η

(

1−
zC1
D̄

)

+
zC1 ρ u

D̄
− ξ

zC1 +

(
ρ(D̄−zC

1 )
ξ

) 1

η

D̄

and FOC

(
zC1
)−η

−
ρ

D̄








(
ρ(D̄−zC

1 )
ξ

) 1−η
η

1− η
− u








−
ξ

D̄
= 0 (20)

It can be shown that the left-hand side of (19) is larger than the left-hand side

of (20) for all z1 and ρ ∈ (0, 1). Therefore, zM1 > zC1 .

Now consider quadratic utility ut (zt) = azt −
1
2bz

2
t . If the catastrophe has

not occurred by the start of the second period, the second generation’s welfare

is

wM
2 = azM2 −

1

2
b
(
zM2
)2

− ξ

zM
2

D̄

1−
zM
1

D̄

⇔ a− bzM2 −
ξ

D̄
(

1−
zM
1

D̄

) = 0 ⇔ r (z1) =
a
(
D̄ − z1

)
− ξ

b
(
D̄ − z1

)

Substituting in (1a), I obtain

wM
1 =azM1 −

1

2
b
(
zM1
)2

+ ρ



a

(

a
(
D̄ − z1

)
− ξ

b
(
D̄ − z1

)

)

−
1

2
b

(

a
(
D̄ − z1

)
− ξ

b
(
D̄ − z1

)

)2




(

1−
zM1
D̄

)

+
zM1 ρu

D̄
− ξ

z1 +
a(D̄−z1)−ξ

b(D̄−z1)

D̄

The first-order condition is

a− bzM1 −
1

2
ρ

(
a2 − 2bu

) (
D̄ − zM1

)2
− ξ2

bD̄
(
D̄ − zM1

)2 +
ξ2 (1− ρ)

bD̄
(
D̄ − zM1

)2 −
ξ

D̄
= 0

In the commitment outcome, the first generation chooses zC2 to maximize

wC
2 = ρ

(

azC2 −
1

2
b
(
zC2
)2
)

− ξ

zC
2

D̄

1−
zC
1

D̄

⇔ ρ
(
a− bzC2

)
−

ξ

D̄
(

1−
zC
1

D̄

) = 0 ⇔ zC2 =
ρa
(
D̄ − zC1

)
− ξ

ρb
(
D̄ − zC1

)

The first generation’s welfare is then

wC
1 =azC1 −

1

2
b
(
zC1
)2

+ ρ



a

(

ρa
(
D̄ − zC1

)
− ξ

ρb
(
D̄ − zC1

)

)

−
1

2
b

(

ρa
(
D̄ − zC1

)
− ξ

ρb
(
D̄ − zC1

)

)2




(

1−
zC1
D̄

)

+
zC1 ρu

D̄
− ξ

zC1 +
ρa(D̄−zC

1 )−ξ

ρb(D̄−zC
1 )

D̄
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giving rise to the following first-order condition

a− bzC1 −
1

2

(
D̄ − zC1

)2 (
a2 − 2bu

)
ρ2 − ξ2

ρbD̄
(
D̄ − zC1

)2 = 0 (21)

Letting zC1 = zM1 = z1, we have

∂wC
1

∂z1
−
∂wM

1

∂z1
=

1

2

ξ2 (1− ρ)
2

ρbD̄
(
D̄ − z1

)2 > 0

Therefore, for quadratic utility zC1 > zM1 .

B Proof of Proposition 1

Proof. I omit the superscript C except to indicate the steady state. From (10)

it is apparent that if z (t) = αD (t) for some t, we must also have z (s) =

αD (s) ∀ s > t. Otherwise, the first generation could improve its welfare by

choosing z (t) > αD (t), as the current value cost of triggering a catastrophe

is lower at t than at s. Moreover, the pollution stock must stabilize at some

finite level because limz→∞ u′ (z) = 0, limD→∞ ψ (D) >> 0 and since D (s) is

monotonic along the optimal path. Combining the above observations, there

exists some t′ such that D (t′) = DC and z (t) = αDC ∀ t ≥ t′.

Now consider the alternative problem

max
z

{

W̃C (D (t)) =

∫ ∞

t

(

u (z (s)) [1− (H (s)−H (t))] + u [H (s)−H (t)]− η (s) ξeδt
′

)

e−δsds

s.t. Ḋ = z − αD, D (t) = Dt, Ḣ = ψ (D) (z − αD)

=

∫ ∞

t

(

u (z (s)) [1− (H (s)−H (t))] +
(

u− δξeδt
′

)

[H (s)−H (t)]
)

e−δsds

s.t. Ḋ = z − αD, D (t) = Dt, Ḣ = ψ (D) (z − αD)

}

(22)

The above problem has the same solution as (10) evaluated at D (t) = D (t′),

but (22) is stationary whereas (10) is not. The derivatives of WC (D (t′)) and

W̃C (D (t′)) with respect to z (t′) have the same sign. Because (22) is stationary,

I can analyze its steady state, assuming it is approached by a path in whichD (s)

is non-decreasing. t′ and D (t′) = DC satisfy the conditions in the proposition

text if and only if z = αDC is the optimal steady-state policy in (22). Let

ṽ and µ̃ denote the costate variables for Ṽ (D (t)) = maxz W̃ (D (t)) and D,
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respectively. From Appendix J, the steady-state conditions are

Ḋ = z − αD = 0 (23a)

˙̃µ = (δ + a) µ̃+ ψ (D) (z − αD) µ̃− ψ (D)α
(

ṽ −
u

δ
+ ξeδt

′

)

= 0 (23b)

˙̃v = δṽ − u (z) + ψ (D) (z − αD)
(

ṽ −
u

δ
+ ξeδt

′

)

= 0 (23c)

u′ (z) + µ̃− ψ (D)
(

ṽ −
u

δ
+ ξeδt

′

)

= 0 (23d)

Solving (23) for D, µ̃, ṽ and z yields

u′ (αD) =
ψ (D)

δ + α

[

u (αD)− u+ δξeδt
′

]

Therefore, t′ and DC must satisfy (11).

C Proof of Proposition 2

Proof. By the argument in the main text, the steady-state stock cannot exceed

DN . Consider a generation t that inherits stock D (t) < DN . Let Dt,N (t′) and

zt,N (t′) denote the stock and emissions respectively at time t′ > t in generation

t’s preferred path. Suppose thatDt,N = DN andDt,N (t′) = Dt,N .17 Analogous

to the proof of Proposition 1, it can only be optimal to choose zt,N (t′) = αDN

iff

u′
(
αDN

)
=
ψ
(
DN

)

δ + α

[

u
(
αDN

)
− u+ δξeδ(t

′−t)
]

(24)

If (13) holds at DN , the right hand side of (24) exceeds the left hand side at

Dt,N = DN since t′ > t. By Assumptions 1 and 2, we must therefore have

Dt,N < DN .

I complete the proof of limt→∞Dt,N = DN by noting that whenever Dt,N <

DN and Dt,N (t′) = Dt,N , generation t′ > t prefers Dt′,N > Dt,N . Dt,N (t′) =

Dt,N implies

u′
(
αDt,N

)
=
ψ
(
Dt,N

)

δ + α

[

u
(
αDt,N

)
− u+ δξeδ(t

′−t)
]

(25)

If Dt′,N = Dt,N , we must also have

u′
(
αDt,N

)
=
ψ
(
Dt,N

)

δ + α

[
u
(
αDt,N

)
− u+ δξ

]
(26)

17If Dt,N = DN but D (t) does not reach DN in finite time, a modified version of the below

argument still applies: for t′ arbitrarily large and ǫ arbitrarily small, the left hand side of (24)

evaluated at DN − ǫ is larger than the right hand side.
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Clearly, (25) and (26) cannot hold simultaneously. When (25) holds, the left

hand side of (26) is larger than the right hand side at Dt,N . Generation t′ will

therefore choose Dt′,N > Dt,N , so zt
′,N (t′) > αDt,N . As the stock approaches

DN , the target levels Dt,N must also approach DN . The comparative statics in

the proposition texts follow by total differentiation. For α,

(

α
∂DN

∂α

)

u′′
(
αDN

)
=

∂DN

∂α
ψ′
(
DN

)
(α+ δ)− ψ

(
DN

)

(δ + α)
2

[
u
(
αDN

)
− u+ δξ

]

+
ψ
(
DN

)

δ + α

[

α
∂DN

∂α
u′
(
αDN

)
]

After some rearranging, I obtain

∂DN

∂α
=

− (α+ δ)
2
DNu′′

(
αDN

)
+ (α+ δ)DNψ

(
DN

)
u′
(
αDN

)
− ψ

(
DN

) (
u
(
αDN

)
− u+ δξ

)

(α+ δ) [α (α+ δ)u′′ (αDN )− αψ (DN )u′ (αDN )− ψ′ (DN ) (u (αDN )− u+ δξ)]

(27)

All terms in the denominator are negative by Assumptions 1 and 2. The total

effect depends on the sign of the numerator. For δ,

α
∂DN

∂δ
u′′
(
αDN

)
=

∂DN

∂δ
ψ′
(
DN

)
(α+ δ)− ψ

(
DN

)

(δ + α)
2

[
u
(
αDN

)
− u+ δξ

]

+
ψ
(
DN

)

δ + α

[

α
∂DN

∂δ
u′
(
αDN

)
+ ξ

]

Rearranging gives

∂DN

∂δ
=

ψ
(
DN

) [
−u
(
αDN

)
+ u+ αξ

]

(α+ δ) [α (α+ δ)u′′ (αDN )− αψ (DN )u′ (αDN )− ψ′ (DN ) (u (αDN )− u+ δξ)]

(28)

The denominator is the same as in (27). The sign of ∂DN

∂δ
is thus determined

by the sign of the numerator.

D Proof of Corollary 1

Suppose that DC is reached for the first time at time t′ > 0. Then it can only

be optimal to choose zC (t′) = αDC iff

u′
(
αDC

)
=
ψ
(
DC
)

δ + α

[

u
(
αDC

)
− u+ δξeδt

′

]

If (13) holds at DN , the right hand side of the above equation exceeds the left

hand side at DC = DN . By Assumptions 1 and 2, we must therefore have

DC < DN .
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E Proof of Proposition 3

Proof. Recall that DM
1 and DM

2 are unique by Proposition 2. I verify that the

equilibria in the proposition text satisfy the equilibrium conditions. Let t be

sufficiently large and suppose that generation t believes that future generations

will follow (16) and D ≥ DM . Then generation t believes that if it increases the

stock, future generations will keep the stock constant.

First, consider the case in which DM < DN . By Proposition 2, generation

t would prefer to reach a higher steady-state stock in the naive solution, that

is if it could commit all emissions from t onward. I show that this implies that

in the Markov solution, generation t will choose z > αD. When t is sufficiently

large, Dt,N is arbitrarily close to DN . Furthermore, in generation t’s preferred

path zt,N (s), Dt,N is reached in finite time. This means there is exists a t′ > t

such that

(1− α)Dt,N (t′) + zt,N (t′) = Dt,N

and

∂W t,N
(
Dt,N (t′)

)

∂zt,N (t′)

∣
∣
∣
∣
zt,N (t′)=Dt,N−(1−α)Dt,N (t′)

= 0 (29)

The interpretation of (29) is that, at t′ > t and Dt,N (t′) > D (t), generation t

would choose to increase the pollution stock by Dt,N − (1− α)Dt,N (t′) if the

stock would remain constant in all subsequent periods. But then by Assump-

tion 1 and Assumption 2, it must be welfare-improving to increase the stock

by the same amount at D (t), given that future generations keep the stock con-

stant at the new level: the marginal utility of consumption is higher, the hazard

rate is lower and the current-value cost of a catastrophe is lower. Therefore,

DM < DN cannot be an equilibrium.

Now turn to the decisions of early generations that inherit a stock D (t) <

DM . If generation t believes that subsequent generations will follow (16), it

realizes that its actions will not affect the maximum stock DM . When all future

generations also believe the maximum stock equals DM , the preferences of all

generations that inherit D (t) < DM are no longer time-inconsistent. Then

the problem of generation t reduces to maximizing the integral of expected

discounted utility subject to D (s) ≤ DM , i.e.

max
z

∫ ∞

t

(u (z (s)) [1− (H (s)−H (t))] + u [H (s)−H (t)]) e−δsds

s.t. Ḋ = z − αD, D (t) = Dt, Ḣ = ψ (D) (z − αD) , D (s) ≤ DM ∀ s (30)
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The solution to this optimal control problem coincides with the Markov solution.

Analogous to Proposition 1, the steady state of the unconstrained version of (30)

satisfies

u′ (αD) =
ψ (D)

δ + α
(u (αD)− u)

Therefore, stocks larger than DM
2 are never visited in equilibrium.

F Proof of Proposition 4

Proof. Using the results from Propositions 1, 2 and 3, I can rewrite (10), (12)

and (15) as constrained optimization problems

max
z

{

W k (D (t)) =

∫ ∞

t

(u (z (s)) [1− (H (s)−H (t))] + u [H (s)−H (t)]) e−δsds

s.t. Ḋ = z − αD, D (t) = Dt, Ḣ = ψ (D) (z − αD) , D (s) ≤ Dk ∀ s

}

, k ∈ {C, {t,N} ,M}

(31)

where DC < Dt,N < DM for 0 < t < ∞. I can represent the optimal strategy

in each solution as z = ζk (D) = ζ
(
D;Dk

)
, k ∈ {C, {t,N} ,M}, where ζC (D)

and ζt,N (D) are only optimal along the equilibrium path. DC < Dt,N <

DM implies ζC (D) < ζt,N (D) < ζM (D) if and only if
∂ζ(D;Dk)

∂Dk > 0. Let

V
(
D;Dk

)
≡ maxzW

k (D) be the value of continuing optimally from stock D

subject to D (s) ≤ Dk ∀ s. Writing V = V
(
D;Dk

)
, the HJB equation and the

first order condition from the Hamiltonian stipulate

δV = max
z

{

u (z) + VD (z − αD)− ψ (D) (z − αD)
(

V −
u

δ

)}

(32)

u′ (z) + VD − ψ (D)
(

V −
u

δ

)

= 0 (33)

By (32), along the optimal path

VD =
δV − u (z)

z − αD
+ ψ (D)

(

V −
u

δ

)

(34)

Substituting (34) in (33), I obtain

u′ (z) +
δV − u (z)

z − αD
= 0

⇔ (z − αD)u′ (z) + δV − u (z) = 0

⇔ z̃u′ (z̃ + αD) + δV − u (z̃ + αD) = 0
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where z̃ = z − αD. Totally differentiate with respect to Dk

∂z̃

∂Dk
u′ (z̃ + αD) + z̃

∂z̃

Dk
u′′ (z̃ + αD) + δ

∂V

∂Dk
−

∂z̃

∂Dk
u′ (z̃ + αD) = 0

⇔
∂z̃

∂Dk
z̃u′′ (z̃ + αD)
︸ ︷︷ ︸

<0

+ δ
∂V

∂Dk
︸ ︷︷ ︸

>0 ∀ Dk<DM
2

= 0

By the above, we must have ∂z̃
∂Dk > 0. Having established ζC (D) < ζt,N (D) <

ζM (D) ∀ D, it automatically follows that DC (t) < DN (t) < DM (t).

G Proof of Lemma 1

Proof. I focus on the case S = SB (D); the proof for S < SB (D) is analogous. It

is sufficient to show that for z (s) = argmaxz

{∫∞

t
u (z (s)) e−δsds s.t. Ṡ = −z

}

,

P
[

τ <∞|D̂ ≤ D (t)
]

= 0. Suppose z (s) < αD (s) for some s ≥ t. Then

by continuity of D, S and z, there exists a neighborhood (s, s′) such that

z (σ) ≤ αD (σ) ∀σ ∈ (s, s′). Conversely, when z (s) = αD (s), there exists

a neighborhood (s, s′′) such that z (σ) < αD (σ) ∀ σ ∈ (s, s′′) since ż < 0 in the

solution to (18). Combining these two observations, z ≤ αD throughout. Then

D (s) ≤ D (t) ∀ s ≥ t, so P
[

τ <∞|D̂ ≤ D (t)
]

= 0.

H Proof of Lemma 2

Proof. Denote V (S,D) as maxzW (S,D). When D = Dmax, the marginal

cost of resource consumption is at least VS − VD + ξψ (D) for z > αD. I

guess and verify that ∂VS

∂S

∣
∣
(D,S)∈B

< 0. Since VD = 0 and u′ (αD) = VS at

(S,D) = (SB (Dmax) , Dmax) by Lemma 1 by continuity of VD in S, we must

have

u′ (αD) > VS

u′ (αD) < VS − VD + ξψ (D)

for S in a neighborhood to the right of SB (D). This implies z = αD. But then

there indeed exists a ∂VS

∂S

∣
∣
(D,S)∈B

< 0 such that z = αD satisfies the first order

conditions for S ∈ (SB (D) , SB (D) + ǫ) and the Hotelling path is optimal for

S ≤ SB (D).

31



I Proof of Lemma 3

Proof. Let Ṽ k (S,D) ≡ maxz W̃
k (S,D) , k ∈ {{C, t′} , N,M} and

V̄
(
S, D̄

)
= max

z

{∫ ∞

0

u (z (s)) e−δsds s.t. Ḋ = z − αD, D (0) = D̄, D ≤ D̄, Ṡ = −z

}

(35)

be the maximum value of discounted utility disregarding catastrophe risk, sub-

ject to the constraint that the pollution stock never exceeds the current level.18

Without loss, let t′ be the first moment at which the pollution stock is kept

constant (t′ may be different between the commitment, naive and Markov

solutions). Suppose there exists a (S∗, D∗) such that (S∗, D∗) ∈ Ak, k ∈

{{C, t′} , N,M}. Since the regulator in charge of emissions at t′ (the initial gen-

eration in the commitment solution, and generation t′ in the naive and Markov

solutions) is indifferent whether or not to increase the stock, we must have

u′ (αD∗) = Ṽ C,t′

S (S∗, D∗)− Ṽ C,t′

D (S∗, D∗) + ψ (D∗)
(

ξeδt
′

+ Ṽ C,t′ (S∗, D∗)− V H (S∗)
)

u′ (αD∗) = Ṽ N
S (S∗, D∗)− Ṽ N

D (S∗, D∗) + ψ (D∗)
(

ξ + Ṽ N (S∗, D∗)− V H (S∗)
)

u′ (αD∗) = ṼM
S (S∗, D∗)− ṼM

D (S∗, D∗) + ψ (D∗)
(

ξ + ṼM (S∗, D∗)− V H (S∗)
)

(36)

In the commitment and naive solutions, and when ζMS (S,D) ≤ 0 in the Markov

solution, the regulator in charge at t′ knows that future regulators will not

further increase the stock. Therefore, the catastrophe hazard is zero in all

future periods, so

Ṽ C,t′ (S∗, D∗) = Ṽ N (S∗, D∗) = ṼM (S∗, D∗) = V̄ (S∗, D∗) (37)

The marginal value of the resource is equal to that in a setting without catas-

trophe risk in which the pollution stock is constrained below the current level:

Ṽ k
S (S,D) |(S,D)∈Ak = V̄S (S,D) , k ∈ {{C, t′} , N,M} (38)

Similarly, the value of increasing the stock by one unit without causing a catas-

trophe (Ṽ k
D, k ∈ {{C, t′} , N,M}) equals the increase in discounted utility from

marginally increasing the exogenous ceiling in (35):

Ṽ k
D (S,D) |(S,D)∈Ak = V̄D (S,D) , k ∈ {{C, t′} , N,M} (39)

18The characteristics of this problem are discussed in Chakravorty et al. (2006, 2008).
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By (37), (38) and (39), when the second and third equations in (36) hold, we

have

u′ (αD∗) < Ṽ C,t′

S (S∗, D∗)− Ṽ C,t′

D (S∗, D∗) + ψ (D∗)
(

ξeδt
′

+ Ṽ C,t′ − V H (S∗)
)

Hence, there cannot exist a (S∗, D∗) such that (S∗, D∗) ∈ Ak, k ∈ {{C, t′} , N,M}.

Because Ṽ C,t′

SS < 0, Ṽ C,t′

DS > 0 and Ṽ C,t′

S − V H
S < 0, there exists a S∗∗ > S∗ such

that

u′ (αD∗) = Ṽ C,t′

S (S∗∗, D∗)−Ṽ C,t′

D (S∗∗, D∗)+ψ (D∗)
(

ξeδt
′

+ Ṽ C,t′ (S∗∗, D∗)− V H (S∗∗)
)

and hence (S∗∗, D∗) ∈ At′,C . This establishes SAC,t′ (D) > SAN (D). SAM (D) =

SAN (D) fulfills the condition of an equilibrium: in Markov equilibrium, gen-

eration t′ will not increase the stock if it would not increase the stock in its

first-best and if it expects future generations also not to increase the stock.

However, if it does expect future generations to increase the stock, it may be

optimal to choose z > αD, so that SAN (D) > SAM (D).

J Piecewise deterministic optimal control

Consider a random variable ε with probability density function f (ε) defined

on [0,∞) and cumulative density function F (ε). Denote the actual value of ε

by ε̃. The hazard rate of ε is ψ (ε) ≡ f(ε)
1−

∫
ε

0
f(η)dη

. Let x ∈ X ⊆ R
n denote

the vector of state variables and define a threshold function Φ (x, ε) = 0. The

catastrophe occurs when Φ (x, ε̃) = 0. I assume ∂Φ
∂xi

≥ 0, i = 1, ..., n and
∂Φ
∂ε

≤ 0: higher values of the state variables bring the system ’closer’ to the

threshold, and higher values of ε̃ imply a higher threshold. Define φ : X → R+

as {ε : Φ (x, ε) = 0, x ∈ X}. φ (x) is the value of ε such that the threshold is

reached when the state variables take on value x. Because of the assumptions

on the partial derivatives of Φ, φ′ (x) ≥ 0.

Definition 1. Let x : R+ → X be continuous and differentiable almost every-

where. x (t) is monotonically increasing with respect to Φ(x (t) , ε) = 0 and ε if

and only if for any t0 and t1 such that t0 < t1 it holds that

Φ(x (t0) , ε0) = Φ (x (t1) , ε1) ⇔ ε0 ≤ ε1

For trajectories of the state variables x (t) that are monotonically increasing

with respect to Φ (x (t) , ε) = 0, φ (x (t)) increases over time. From here on,

I restrict attention to such trajectories, as trajectories with decreasing state
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variables will not be optimal. Then the occurrence time of the catastrophe τ is

a Poisson process:

τ ∼ f (ϕ (x (τ)))ϕ′ (x (τ))x′ (τ)

Nævdal (2006) models the catastrophe as a discrete jump in the state variables.

He argues that this approach is more general than a discrete jump in instan-

taneous utility, the approach I take in this paper. The latter can always be

modeled as the former, but not the other way around. When the catastrophe

occurs at time τ , the jump in the state variables is given by

x
(
τ+
)
= Q

(
x
(
τ−
))

= x
(
τ−
)
+ q

(
x
(
τ+
))

(40)

where x (τ−) = limt↑τ x (t) and x (τ
+) = limt↓τ x (t). Nævdal (2006) shows that

expected discounted utility is maximized by solving the following problem

Ṽ (t, x (t)) = max
z

E

(∫ ∞

0

f (x, z) e−δtdt

)

s.t. ẋ = g (x, z) , x (0) = x0

x
(
τ+
)
= x

(
τ−
)
+ q

(
x
(
τ−
))

τ ∼ ψ (x (τ) , z (τ)) g (x (τ) , z (τ)) exp

(

−

∫ τ

0

ψ (x (s)) g (x (s) , z (s)) ds

)

(41)

where we write g (x, z) for x′ (t). The risk-augmented Hamiltonian for this

problem is

H (x, µ, z) = u (x, z) + µg (x, z) + ψ (φ (x))φ′ (x) g (x, z)

×
[

Ṽ (t, x+ q (x) |τ = t)− Ṽ (t, x)
]

(42)

where

Ṽ (t, x|τ = t) = max
z

∫ ∞

t

u (y, z) e−δ(s−t)ds s.t. ẏ = g (y, z) , y (t) = x (43)

is the value of continuing optimally when the catastrophe occurs at time t and

results in state x. For brevity, I write (.|τ) as shorthand for (.|τ = t). The post-

catastrophe problem is a standard deterministic control problem with costate

variables µ (s, t|τ). Note that ∂
∂x
Ṽ (t, x|τ) = µ (t, t|τ) and ∂

∂x
Ṽ (t, x+ q (x) |τ) =

(In + q′ (x))µ (t, t|τ), where In is the n-dimensional identity matrix and q′ (x)

is the Jacobian of q (x). Lastly, J (t, x) in (42) is

Ṽ (t, x) = max
z

E

(∫ ∞

t

u (y, z) e−δ(s−t)ds

)

s.t. ẋ = g (y, z) , y (0) = x

x
(
τ+
)
= x

(
τ−
)
+ q

(
x
(
τ−
))

τ ∼ ψ (x (τ) , z (τ)) g (x (τ) , z (τ)) exp

(

−

∫ τ

0

ψ (x (s)) g (x (s) , z (s)) ds

)

(44)
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The differential equation for ṽ = Ṽ (t, x (t)) is then (see the Appendix in Nævdal

(2006))

˙̃v = δṽ − u (x, z) + ψ (φ (x))φ′ (x) g (x, z)
(

ṽ − Ṽ (t, x+ q (x) |τ)
)

(45)

The Hamiltonian (42) gives rise to the following conditions

u = argmax
υ

H (x, µ, υ) (46)

µ̇ = δµ−
∂

∂x
f (x, z)− µ

∂

∂x
g (x, z)− λ (x) (µ (t|t, x+ q (x)) (In + q′ (x))− µ)

− λ′ (x)
(

Ṽ (t, x+ q (x) |τ)− ṽ
)

(47)

where λ (x) = ψ (φ (x))φ′ (x) g (x, z). Lastly, define the transversality condi-

tions. If x is the optimal path, then for all admissible y and ẏ = g (y, u), we

must have

lim
t→∞

µe−δt (y (t)− x (t)) ≥ 0 lim
t→∞

z (t) e−δt = 0 (48)

Problem (22) has a single state variable: x = D. The growth rate g (z,D) of

the pollution stock is z − αD and the catastrophe hazard is ψ (φ (D)) = ψ (D).

The stock does not affect utility directly, so µ (t|t, x+ q (x)) = 0. Because the

optimal z post-catastrophe is arbitrarily large and the first generation conditions

its strategy on catastrophe occurrence, the jump in the state variable q (D) at

time τ is ū − u + δξeδt
′

, where ū = limz→∞ u (z). This ensures that post-

catastrophe generations receive utility u and ṽ− Ṽ (t, x+ q (x) |τ = t) = ṽ− u

δ
+

ξeδt
′

. Equations (23) follow by substituting in (45) and (46).
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