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Abstract

The cross-sectional dynamics of the U.S. business cycle is examined through the lens
of quantile regression models. Conditioning the quantiles of firm-level growth to different
measures of technological change highlights a deep connection between counter-cyclical skew-
ness and the transmission of aggregate disturbances. Asymmetry reversals emerge as the
dominant source of cyclical variation in the probability density, generating a powerful am-
plification of aggregate shocks to firm technology. Designing and validating heterogeneous
firm business cycle models should necessarily account for this empirical finding.
JEL classification: C21; E32.
Keywords: Corporate Growth, Conditional Quantiles, Business Cycles, Asymmetry Re-

versals.

1 Introduction

Over the last two decades increasing interest has been devoted to understanding how microeco-
nomic decisions affect the macroeconomy. Caballero (1992) has argued that probability theory
imposes strong restrictions on the joint behavior of a large number of units that are less than
fully synchronized. In line with this insight, a number of authors have recognized the importance
of tracking the business cycle behavior of firm-level dispersion over several dimensions, such as
investment, output growth, productivity and price-setting. Complementing the study of major
macroeconomic aggregates with the analysis of the business cycle from the cross section has
proven to be an important disciplining device for heterogeneous firm models (see, e.g., Bach-
mann and Bayer, 2011). This paper examines time-variation in the distribution of firm growth
and its implications for business cycle dynamics. We estimate the quantiles of U.S. quoted
companies’growth rates of real sales, conditioning them on both firm-specific characteristics
and alternative measures of technological change. Unlike the approach followed so far —which
focuses on a restricted subset of empirical moments —we characterize the cyclical behavior of
the entire density of firm growth, as well as its response to aggregate shocks that are commonly
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regarded as important drivers of the business cycle. A key result is that skewness in the den-
sity of firm growth should be carefully accounted for when imposing empirical restrictions on
heterogeneous firm models. In fact, counter-cyclical asymmetry emerges as a powerful amplifier
of technology shocks, implying substantial reallocation of probability mass from one side of the
distribution to the other. As a result, shifts and contortions in the density of firm growth play
a crucial role in shaping macroeconomic fluctuations, making a strong case for business cycle
models that emphasize the importance of microeconomic adjustment for aggregate dynamics
(e.g., Caballero et al., 1995, Caballero and Engel, 1999, Bachmann et al., 2013).

Historically, a great deal of attention in the literature on industrial demography has been
devoted to exploring the static properties of the distributions of firm size and growth. A number
of theoretical and empirical contributions have focused on the assessment of the theoretical
proposition known as Gibrat’s law (Gibrat, 1931), which predicts randomness of firm growth
rates. Up to early 90s the general consensus seemed to be in line with this prediction, along
with indicating that the distribution of firm size was a member of the log-normal family whose
variance becomes asymptotically infinite (Gibrat’s law in strong form). More recent evidence
has put this conventional wisdom into question, as the tendency towards larger firms in the
economy has been reversed and several studies find evidence of a negative relationship between
growth rates and firm size.1 Altogether, these results have spurred a renewed interest in the
study of firm size distribution (see, e.g., Machado and Mata, 2000 and Cabral and Mata, 2003),
while little attention has been received by firm growth and its drivers. The present study
represents an important attempt to bridge the industrial dynamics tradition with the business
cycle literature. In this respect, the importance of allowing for asymmetric time-variation in the
density of company growth rates is warranted by recent findings of Holly, Petrella, and Santoro
(2013). According to this study systematic changes in the density display leading properties
with respect to the business cycle, so that shifts in the probability mass may propagate and
amplify macroeconomic fluctuations, as originally hinted by Caballero (1992) and Caballero and
Engel (1992, 1993). We build on these findings and add some important insights to this line of
inquiry.

Conditional quantiles show that changes in the asymmetry of the distribution are the dom-
inant source of business cycle variation in the cross-section of firm growth, while changes in the
degree of dispersion are of second order importance for propagating and amplifying macroeco-
nomic fluctuations. The business cycle induces an inversion in the asymmetry of the distribu-
tion of firm growth, generating counter-cyclical skewness. In addition, lower quantiles display
stronger co-movement with respect to aggregate fluctuations, as compared with the right tail
of the density, thus signalling that dispersion tends to increase during contractionary episodes.
Both features have been widely documented by Higson et al. (2002, 2004) and Holly, Petrella,
and Santoro (2013). However, these facts do not help us interpret how aggregate disturbances
transmit throughout the entire spectrum of firm growth and how this reflects into fluctuations at
the macroeconomic level. To dig deeper into the cross-sectional dynamics underlying the busi-
ness cycle we condition the distribution quantiles to different measures of technological change.
We highlight a deep connection between systematic asymmetry reversals and the amplification

1See Hall (1987), Evans(1987a,b), Dunne, Roberts, and Samuelson (1989). Consistent with the assumption of
decreasing returns to scale, these works show that small firms tend to grow faster than large ones. This implies
a mean reversion effect on firm size, which introduces an overall limit on the variance of the size distribution, as
firm size converges in the long run towards an optimal level.
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of shocks to the aggregate economy. An aggregate technology disturbance induces a substantial
reallocation of probability mass over the domain of firm growth, reflecting into marked changes
in the skewness of the density. Along with this effect, asymmetries in the response of the tails of
the density reflect location and scale shifts that have little or no role in amplifying the response
of real GDP to aggregate disturbances.

A large body of theoretical and empirical literature is expanding around the analysis of
the business cycle from the cross section.2 In this respect, the importance of the results in
this study traces back to their core implications for designing and validating heterogeneous
firm business cycle models. From an empirical viewpoint, we show that resorting to methods
that go “beyond the mean”may unveil relevant information when firm-level heterogeneity is
pervasive and matters for the transmission of aggregate disturbances. We demonstrate that
neither spread preserving shifts nor scale shifts in the density of firm growth play a major role
in the transmission of technology shocks. By contrast, asymmetry reversals are the key to
uncover the cross-sectional dimension of macroeconomic fluctuations. Formulating models that
emphasize the role of heterogeneity in amplifying and propagating aggregate technology shocks
should necessarily start from these considerations.

The remainder of the paper is laid out as follows: Section 2 describes the data and presents
a preliminary exploration; Section 3 introduces the quantile regression framework and presents
some evidence on the dynamics of the density of firm growth at both business cycle and secular
frequencies; Section 4 explores the transmission of alternative measures of technological change
on the cross-section of firm growth and the associated aggregate dynamics; Section 5 discusses
the implications of our results for the theoretical literature on heterogeneous firm business cycle
models; Section 6 concludes.

2 Data and Preliminary Evidence

We employ annual accounting COMPUSTAT data over the 1950-2010 period. Nominal sales
are deflated by the GDP deflator. The resulting measure of real sales is taken as a proxy for firm
size, which is denoted by sit.3 We then compute annual growth rates as git = log sit− log sit−1.4

Holly, Petrella, and Santoro (2013) have extensively shown that the empirical distribution
of growth rates in the US displays shifts and contortions that are correlated with the business
cycle.5 To account for cross-sectional cyclical variations, Table 1 investigates the co-movement
between the sample moments computed from the quantiles of the distribution of firm growth
and the rate of growth of real GDP.6 In the first two columns we report measures of static and
dynamic correlation (Croux et al., 2001) between each of the moments and real GDP growth.

2See Bachmann and Bayer (2011), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012) and Bach-
mann, Caballero, and Engel (2013), among others.

3Various measures — including the value of assets of a firm, employment and sales —have been traditionally
used to proxy firm size. Where data have been available for the various measures the results have generally been
invariant to the measure of size (see Evans, 1987a and Hall, 1987).

4We remove firms growing (declining) beyond a 100% rate. Appendix A reports some descriptive statistics
of the resulting sample. Replicating the analysis under alternative cut-off intervals confirms that our results are
not qualitatively affected by extreme observations.

5The p-values of the Kolmogorov-Smirnov, Cramer-von Mises and Kuiper tests all agree on indicating that
the distribution is not time invariant.

6Quantile-based statistics are typically seen as more robust than sample moments in the presence of outliers
(see, e.g., Pearson, 1895). The estimation of conditional quantiles is detailed in the next section.
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The third column reports pairwise measures of business cycle concordance that capture the
proportion of time the cycles of two given series spend in the same phase (Harding and Pagan,
1999, 2002).7 All measures of co-movement show that standard deviation and skewness behave
counter-cyclically, while kurtosis follows a marked pro-cyclical pattern. These features have
been originally documented by Higson et al. (2002, 2004)8 and may be usefully summarized in
Figure 1, where we sketch the typical shape of the density during contractions and expansions
in economic activity. As shown by Holly, Petrella, and Santoro (2013), an economic slowdown
generally translates into a density that shifts to the left and a relative increase in the probability
mass on the left-hand side of the mode (LHS henceforth). From a visual viewpoint the right-hand
side of the resulting density (RHS henceforth) assumes a characteristic tent shape —which is
typical of Laplace benchmark —while the LHS is more bell-shaped —thus resembling a Gaussian.
This picture reverses during expansions, though we appreciate lower dispersion about the modal
rate of growth, as compared with contractions.

Insert Table 1 here
Insert Figure 1 here

Figure 2 graphs the time series of distribution quantiles. These display different degrees of co-
movement with the business cycle, with lower quantiles showing stronger correlation than higher
ones. This is at odds with the view that the business cycle reflects into a spread preserving shift
in the mean of the distribution, which would instead imply that all quantiles display analogous
reactiveness to sources of exogenous perturbation. Overall, the density has become more sparse
over time, as formerly documented by Comin and Philippon (2006) and Comin and Mulani
(2006), among others. However, the conditional quantiles allow us to appreciate a key aspect:
increasing dispersion emerges as a phenomenon that primarily hinges on the evolution of firms
in the tails of the distribution, while the interquantile range displays very moderate trending
behavior. This emphasizes the importance of employing quantile-based techniques to deal with
the cross-sectional dynamics of firm growth, so as disentangle the heterogeneous behavior of
different parts of the density.

Insert Figure 2 here

3 Quantile Regression Analysis

The ultimate scope of our study is to understand whether changes in the density may propagate
and amplify macroeconomic shocks. To address this task, estimation methods that “go beyond
the mean”have to be used. In fact, there is no reason to anticipate that the marginal effects of
the covariates on the shape of the density are invariant over the spectrum of growth. To this
end, conditional quantile regressions have become increasingly popular and may usefully serve
our purpose (Koenker and Bassett, 1978 and Koenker, 2005). Quantile regressions are especially
useful whenever the heterogeneity of conditional distributions is not just captured by location

7For each series different cyclical phases are identified by applying the Bry and Boschan (1971) algorithm.
McDermott and Scott (2000) show that concordance is symmetric around 0.5. Therefore, a concordance of one
(zero) between two given series indicates they systematically experience the same (opposite) cyclical phase.

8DeVeirman and Levin (2011) report analogous evidence on the relationship between firm growth volatility
and the business cycle.
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shifts, but also by scale shifts and/or asymmetry reversals. In technical terms this may be stated
as saying the distribution of firm growth conditional on certain covariates does not belong to
a location family. In this setting, one should expect to observe significant discrepancies in the
estimated ‘slopes’at different quantiles (Machado and Mata, 2000).

Let τ ∈ (0, 1). The τ th quantile of the distribution of a generic variable y, given a vector of
covariates x, is:

Qτ (y|x) = inf {y|F (y|x) ≥ τ} , (1)

where F (y|x) denotes the conditional distribution function. A least squares estimator of the
mean regression model would be concerned with the dependence of the conditional mean of
y on the covariates. The quantile regression estimator tackles this issue at each quantile of
the conditional distribution. In other words, instead of assuming that covariates shift only the
location or the scale of the conditional distribution, quantile regression looks at the potential
effects on the whole shape of the distribution. The statistical model we opt for specifies the τ th

conditional quantile of firms’growth rate as a linear function of the vector of covariates, xit, as
well as time effects, γt,τ :

9

Qτ
(
git|γt,τ ,xit

)
= γt,τ + x′itβτ , τ ∈ (0, 1) . (2)

As discussed by Koenker (2005), the marginal change in the τ th quantile due to the marginal
change in the jth element of x does not imply that a subject in the τ th quantile of one conditional
distribution would still be there, had the corresponding value of its xj changed. Moreover,
quantile estimation is influenced only by the local behavior of the conditional distribution of
the response near the specified quantile. Therefore, no parametric form of the error distribution
is assumed. Estimates depend on the signs of the residuals: outliers in the values of the
response variables influence the model’s fit to the extent that they are above or below the fitted
hyperplane.

3.1 Size, Age and Business Cycle Co-movement

We consider alternative specifications of the quantile regression framework. The first model
includes firm-level (lagged) size and age in the vector of covariates. We also consider time
effects, which aim at controlling for the evolution of the distribution over time.10 The resulting
framework generalizes the first order Galton—Markov model that has often been used to explore
the relationship between firm size and growth:

git = βsit−1 + uit, (3)

where uit is an error term, which is assumed to be i.i.d. across firms and over time. Note that
β < 0 implies that small firms grow faster than bigger ones, while for β > 0 the opposite holds
true. Gibrat’s Law holds instead if the estimated parameter β̂ is not significantly different from

9 Ideally, one would prefer to implement quantile panel regressions, allowing for both firm-specific and time
effects (see, e.g., Powell, 2010). However, this is computationally demanding, even in the presence of a limited
number of covariates. Appendix B shows that our estimates are robust to the exclusion of firm-specific effects,
comparing Powell’s panel estimates with those from a quantile regression with pooled data. We conclude that
alternative assumptions about the error structure are of second order importance in the present context.
10 In the pooled data setting time effects are estimated by including time dummies.
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zero, so that growth turns out to be stochastic and independent of size. As remarked in the
introduction, linear frameworks have delivered mixed evidence on Gibrat’s Law.11 Explicit tests
started in the 1950s and have generally found that Gibrat’s law serves as a good approximation
of the relationship between firm size and growth (see, e.g., Hart and Oulton, 1996). But earlier
studies (Samuels, 1965; Singh and Whittington, 1975) found a tendency for large firms to grow
faster than small ones, while later studies (Hall, 1987; Evans, 1987a,b; Dunne et al., 1989)
found a tendency for small firms to grow faster. Our estimates add important insights to this
large body of evidence. Figure 3 plots the quantile treatment effects (QTE) associated with
each quantile. The QTE of firm size is an affi ne transformation of the control distribution and
crosses the zero axis at zero. In other words, size acts as a scale shifter that exerts positive
(negative) effects on LHS (RHS) of the median rate of growth. This is consistent with a
pattern of competitive convergence, as reported by Fama and French (2000) with respect to firm
profitability. Firms that grow below the median growth rate tend to a have a comparatively
better performance the larger they are, whereas size represents an obstacle to fast growing
firms. This result emphasizes the potential dangers of neglecting heterogeneity in the influence
of firm size on firm growth for companies that grow at different speeds. Analogous observations
apply when considering the role of firm age. Throughout the entire spectrum of firm growth
the QTE is always negative. This is in line with Evans (1987a), who finds that firm age is also
important for the variability of firm growth and the probability of dissolution. Therefore, age is
never advantageous, and more so for quantiles above the median rate of growth. Notably, this
relationship is broadly consistent with the predictions of Jovanovic (1982), whose theory of firm
growth is based on entrepreneurs learning about their abilities over time.

Insert Figure 3 here

We now move to a second specification that accounts for two distinctive features we have
detailed in the preliminary analysis, namely strong cyclicality of some moments of the distri-
bution and increasing dispersion over time. To this end we include, along with firm-specific
(lagged) size and age, a business cycle indicator (∆yt) and a time trend (t). This amounts to
set γt,τ = ατ∆yt + δτ t, thus parameterizing the time effects in (2) so as to disentangle business
cycle variation from secular patterns in the distribution. The resulting estimates are graphed in
Figure 4. The cross-sectional impact of firm size and age is robust to alternative specifications,
even those that allow for sector-specific determinants of growth.12 Therefore, in the remainder
of this section we will focus on the role of time effects.

Insert Figure 4 here

The QTE associated with the time trend is symmetric, though it is not centered at zero.
This pattern is typical of a location and scale shift of the distribution. According to this,
not only dispersion increases over time, but also the median growth rate does, though at a
very small pace. This finding may be seen as providing indirect support to Davis and Kahn
(2008) and Davis, Faberman, Haltiwanger, Jarmin, and Miranda (2010), according to whom

11See Sutton (1997) for a comprehensive review of the literature.
12Distante, Petrella, and Santoro (2013) focus on the impact of size and age on firm growth, reporting additional

evidence at the sectoral level. In line with the estimates presented here, firm size generally acts as a scale shifter
of the distribution, while age emerges as a location and scale shifter.
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upward trending dispersion in the distribution of public companies might be driven by a marked
shift in the selection of publicly traded firms occurred in the early 1980s. In fact, the secular
pattern of the median growth rate is compatible with including in the sample relatively small
but rapidly-growing companies.

Some important aspects emerge from inspecting the QTE of GDP growth. This function
attains its minimum at about one — above the median rate of growth — implying that GDP
growth displays near perfect co-movement with firms that grow above the median rate, a feature
that is compatible with a location shift of the distribution. Most importantly, the QTE displays
a marked U-shaped pattern, indicating that skewness is negatively correlated with the cycle. In
addition, lower quantiles denote stronger co-movement with respect to aggregate fluctuations,
as compared with the right tail of the density, thus signalling that dispersion tends to increase
during contractionary episodes. Both features have been widely documented by Higson et
al. (2002, 2004) and Holly, Petrella, and Santoro (2013), as exemplified in Figure 1. The
novel element we retrieve from this picture is that the cyclical behavior of the firm growth
density primarily reflects into asymmetry reversals. In turn, counter-cyclical scale shifts are the
manifestation of changes in the skewness being themselves asymmetric between contractions
and expansions. These aspects certainly deserve closer attention. In fact, the literature on
heterogeneous firm models has fundamentally underestimated the role of higher moments in
the transmission of aggregate disturbances, while focusing on the cyclical behavior of dispersion
over several dimensions of firm-level activity. To dig deeper on these aspects, the next section
explores the reaction of different growth quantiles to aggregate shocks that have been classically
considered as potential drivers of macroeconomic fluctuations.

4 Transmission of Technology Shocks

The analysis so far has revealed varying degrees of co-movement between different parts of the
distribution of firm growth and the business cycle. As it stands this evidence does not tell
us much as to whether changes in the density may influence aggregate dynamics, or whether
such movements are to be seen as simple cross-sectional projections of the business cycle. The
next step addresses these issues by exploring the transmission of structural shocks onto the
cross-section of firm growth and, in turn, aggregate dynamics. To this end, we make use of local
projections along the lines of Jorda (2005). This represents a very convenient methodology in our
setting, as it does not require specifying a model and extrapolating responses from increasingly
distant horizons. The main idea behind this approach is that impulse response functions can
be generally thought as the difference between two conditional forecasts:

IRFτ (t, h, d) = E [Qτ (git+h|xit, vt = d)]−E [Qτ (git+h|xit, vt = 0)] , τ ∈ (0, 1) , (4)

where Qτ (git+h|xit, vt) denotes time t + h quantile estimate, conditional on a generic set of
covariates, xit,13 as well as the shock of interest, vt. Moreover, d denotes a generic one-standard
deviation shock. For each horizon h we compute a direct forecast by means of the following
quantile regression:

Qτ (git+h|xt, vt) = x′itβ
h
τ + φhτ vt, τ ∈ (0, 1) , h = 0, 1, ...,H, (5)

13This includes firm size, age and a time trend.
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so that for each h we can compute the impulse response function to the shock as IRFτ (t, h, d) =

φhτd.
We consider alternative measures of technological change as computed by Fernald (2012).14

Technology shocks are retrieved from adjusting the Total Factor Productivity (TFP hence-
forth) for factor utilization, as indicated by Basu, Fernald, and Kimball (2006). The series are
then decomposed into utilization-adjusted TFP series for equipment investment, denoted by
TFP It , and consumption (intended as everything other than equipment investment and con-
sumer durables), which is denoted by TFPCt . Figure 5 reports the QTE at each period after
the shock has occurred. The upper panel graphs the responses to a TFPCt shock. Overall,
we detect strong cross-sectional heterogeneity. A first striking finding is that, on impact (i.e.,
h = 0), the QTE is negative for the first few quantiles, while the others only display moderately
positive responses, with the 40th quantile denoting the strongest reaction. The reaction of lower
quantiles gradually increases after the initial shock, implying that the response at the lower end
of the distribution of firm growth takes some time to build up. Therefore, on impact good per-
formers benefit from the positive technology shock, while bad ones are left further behind. As
time goes by, lower quantiles are the ones benefiting the most from the technological advance.
These developments reflect into an initial scale shift of the distribution, while at h = 2 the QTE
displays an asymmetry reversal. It is in this period that the shock exerts the strongest effects,
with the tails denoting much stronger reactiveness, as compared with the median growth rate,
which responds on a one-to-one basis. Over the last two periods the lower end is still the most
reactive, but the shock gradually absorbs, and so the dispersion does, as signalled by the fact
that the QTE mostly lies in the negative quadrant.

The responses to TFP It , which are reported in the bottom panel of Figure 5, share some
similarities with those to TFPCt . We still detect an initial (asymmetric) scale shift, which tends
to absorb in the last two periods. However, in this case "good performers" are the ones that over
time benefit the most from the technological impulse, reflecting the existence of implementation
lags and costs entailed by capital goods investment. To see this, note that at both h = 2 and
h = 3 the QTE implies an asymmetry reversal. However, while in the first case the maximum
response is attained at the lower end of the density, in the next period the same quantiles
display much stronger responsiveness. This signals that relatively worse performers take much
longer to pick up an investment-specific technological advance, while they are more responsive
to shocks that do not entail major adjustments in the rate of capital utilization.

Insert Figure 5 here

4.1 Asymmetry Reversals and Aggregate Dynamics

Section 3 has shown that the business cycle acts as a treatment capable of inverting the asym-
metry of the distribution of firm growth. Also technology shocks induce asymmetry reversals
and, importantly, they do so when the overall cross-sectional response reaches its peak after the
initial impulse has occurred. In light of this, it seems relevant to pose the following question:
do asymmetry reversals have any implication for aggregate dynamics? To address this point,
we need to compute the average response to a generic aggregate shock vt = d:

14The time series of these shocks span over the same time-window under investigation.
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IRF (t, h, d) =

∫
IRF (t, h, d) f (gt+h) dgt+h. (6)

The average response can be conveniently obtained from the QTE graphed in Figure 5:

N−1
N∑
τ=1

φhτd, (7)

where N denotes the number of bins between the 5th and the 95th quantile. In turn, if we
denote with φh50 the treatment effect associated with the median quantile, we can decompose
(7) into N−1d

(∑N
τ=1,τ 6=50 φ

h
τ + φh50

)
. Thus, it is immediate to derive the following condition:

IRF50 (t, h, d) R IRF (t, h, d)⇔ φh50 R φ̄
h
−50, (8)

where IRF50 (t, h, d) is the impulse response function associated with the median, while φ̄h−50 ≡
(N − 1)−1

∑N
τ=1,τ 6=50 φ

h
τ . According to (8) the mean response is greater than the median one

whenever φh50 is smaller than the average of all other QTE.
Both φ̄h−50 and φ

h
50 are reported in each panel of Figure 5: importantly, in the first few periods

after the shock has occurred the inequality φ̄h−50 > φh50 consistently holds true. In particular,
the median response tends to lie well below φ̄

h
−50 when the QTE implies an asymmetry reversal,

due to the tails of the density displaying much greater responsiveness. Figure 6 confirms that
treatment effects that are capable of altering the asymmetry of the distribution imply a powerful
amplification of the mean response, as compared with the median one. It must be stressed that
scale shifts are not crucial to this result. In fact, amplification of the mean response could also
be observed with a symmetric QTE, as long as (8) is met. Note also that greater swings of
the mean growth rate in the presence of asymmetry reversals are necessarily compatible with
the mean lying at the right (left) of the median during contractions (expansions). In fact, the
rule of thumb according to which positive (negative) skewness implies a mean lying at the right
(left) of the median is often violated in the case under scrutiny. This is due to the skewed part
of the density being highly leptokurtic, as compared with its counterpart on the other side of
the mode.15 These features are compatible with the analysis of Holly, Petrella, and Santoro
(2013) and the representation of Figure 1.

Insert Figure 6 here

A word is due on the connection between the average growth rate and the rate of growth
of real GDP, so as to develop some intuition on how asymmetry reversals may play a role in
amplifying the response of aggregate dynamics to aggregate disturbances. To this end, assume
there are N firms in the economy. Real GDP at t− 1 can be defined as Yt−1 =

∑
Sit−1, so that

its growth rate equals:
gGDPt = ḡt + gRt , (9)

where gGDPt ≡ ∆Yt/Yt−1, ḡt ≡ N−1
∑

i git and g
R
t ≡

∑
i

(
Sit−1/Yt−1 −N−1

)
git.

In a world of small firms with initial size N−1, gRt would be zero, and so the GDP growth
rate would equal the average growth in the economy. In this case φ̄h−50 > φh50 would ensure that

15von Hippel (2005) reviews cases in which skewness and unimodality need not imply a particular ordering of
measures of location, presenting situations that are compatible with the evidence we report.
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the aggregate response is also greater than the median one. By contrast, in a world where the
size distribution of firms is suffi ciently fat tailed —as in Gabaix (2011) —gRt 6= 0 whenever the
effects of a given economy-wide shock on some relatively bigger firms do not wash out in the
aggregate. In this case the position of large firms in the domain of firm growth may have a role
in the transmission of exogenous shocks. On a priori grounds there is no reason to expect that
∂gRt+h/∂vt is necessarily positive, as this depends on the aggregation of large firms’responses.
However, Figure 3 has shown that size acts as centripetal force over the growth domain, exerting
a near symmetric impact on either side of the median rate of growth. Thus, aggregating the
growth rates of large firms should have limited impact on gRt , so that the response of real
GDP growth should be predominantly driven by composition effects stemming from asymmetry
reversals, as captured by ḡt.

5 Discussion

Over the last two decades the business cycle literature has been seeking for alternative forms of
non-linear micro adjustment that, combined with micro-level heterogeneity, may be relevant to
aggregate outcomes. The basic premise of these contributions is that firm-level heterogeneity
in terms of output, employment and investment implies a large, continuous pace of reallocation
of real activity across production sites. In turn, such an adjustment process may involve sub-
stantial frictions, so that the ultimate impact of an aggregate shock depends on the location
of individual firms with respect to their adjustment thresholds, which determines time-varying
elasticities of macroeconomic aggregates to aggregate shocks (King and Thomas, 2006). Un-
der such circumstances representative agent frameworks necessarily suffer from a “fallacy of
composition”, as they do not distinguish between statements that are valid at the individual
level and those that only apply to the aggregate (Caballero, 1992). Heterogeneous firm mod-
els have emerged to address these issues. Nevertheless, a clear consensus on the relevance of
microeconomic decisions for the aggregate economy is far from being reached. To give a quick
account of how the debate has evolved around these issues, we find instructive to focus on firm-
level investment. After a first generation of partial equilibrium models that have supported
the importance of lumpy investment for the macroeconomy (Caballero et al., 1995, Caballero
and Engel, 1999), Thomas (2002), Veracierto (2002) and Kahn and Thomas (2003, 2008) have
shown that, in a general equilibrium setting, investment lumpiness is irrelevant to the cyclical
properties of aggregate dynamics. More recently, this view has been questioned by Bachmann,
Caballero, and Engel (2013) upon methodological grounds that mark the distinction between
partial and general equilibrium components of the impact of aggregate shocks on aggregate
endogenous variables (investment, in the specific case under scrutiny).

Regardless of the specific structure of the model economy, our study makes a strong case
for business cycle frameworks that emphasize the importance of microeconomic adjustment for
aggregate dynamics. We go even further, indicating that non-convexities and lumpy adjustment
at different margins of firm-level decisions should be tailored on some specific cross-sectional
criteria. In fact, our evidence suggests that technological change should not simply induce a
spread preserving shift in the mean of the distribution, nor do scale shifts play a major role in
propagating and amplifying technology shocks. By contrast, mechanisms that are capable of
inducing asymmetry reversals are to be seen as promising avenues to impose sound empirical
restrictions on heterogeneous firm models. So far plant-level dispersion over several domains
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of firm activity has represented a key disciplining device. However, replicating the cyclical
behavior of firm growth volatility —mostly in the form of counter-cyclical scale shifts —does not
ensure per se a powerful propagation and amplification of technology shocks. Furthermore, we
should stress that asymmetry reversals are likely to enhance the capacity of heterogeneous firm
models embedding non-convexities along different margins of plant-level activity to generate
counter-cyclical volatility of gross production (see, e.g., Šustek, 2011). This should be seen as
a promising avenue to reproduce non-trivial business cycle asymmetries (see, among others,
Neftci, 1984; Hamilton, 1989; Sichel, 1993; Morley and Piger, 2012).

A final word is due on the interaction of aggregate shocks with the moments of the cross-
sectional distribution. In this respect, Caballero and Engel (1993) have formulated increasing-
hazard models where larger variance leads to larger responses of aggregate employment to
aggregate shocks, due to direct interaction. The intuition behind this result is that more weight
on the tails of the distribution reflects higher average hazard, so that the fraction of firms
that hire workers is proportionally larger (and so the one that fire workers) when the shock
is large. There is a close connection between this property of partial adjustment frameworks
and the behavior of conditional quantiles. Asymmetry reversals imply higher responsiveness of
the tails, regardless of the size of the shock. Therefore, more weight on the tails of the density
means greater reallocation of probability mass following an aggregate technology shock, due to
a non-zero net flow of production units from one hand of the distribution to the other.

6 Concluding Remarks

Recent years have borne witness to the development of various heterogeneous agent frameworks
whose main goal is to understand whether the dynamics of major macroeconomic aggregates
is non-trivially affected by the decisions of different microeconomic actors. At the firm-level,
a number of researchers have regarded higher moments of company growth rates as important
elements to discipline and validate business cycle models. This paper has shown by means of
quantile regression techniques that shifts and contortions in the density of firm growth of real
sales matter for the transmission of aggregate disturbances. In fact, changes in the asymmetry
of the distribution are the dominant source of cross-sectional dynamics at the business cycle
frequency. Projection methods allow us to extrapolate the responses of each quantile to different
sources of technological change, so as to characterize the behavior of the entire distribution
of firm growth. The analysis highlights a deep connection between systematic asymmetry
reversals and the amplification of aggregate disturbances. The formulation of heterogeneous
firm models that aim at describing business cycle dynamics should account for these facts,
identifying mechanisms that are capable of inducing asymmetry reversals over the domain of
firm growth, so as to generate non-trivial propagation and amplification of aggregate technology
shocks.
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Figures and Tables

FIGURE 1. FIRM GROWTH DENSITIES
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Notes: Figure 1 sketches the density of firm growth during contractions (LHS panel) and expansions (RHS

panel). Contractions are generally characterized by positive skewness and higher dispersion about the modal rate

of growth, while expansions tend to translate into positive skewness and lower cross-sectional dispersion.
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FIGURE 3. QUANTILE TREATMENT EFFECTS (Size and Age)
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Notes: Figure 3 graphs the estimated QTE associated with firm-specific lagged real sales (left panel) and age

(right panel), together with the 95% confidence interval.

18



FIGURE 4. QUANTILE TREATMENT EFFECTS (GDP Growth and Time Trend)
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Notes: Figure 4 graphs the estimated QTE associated with real GDP growth (left panel) and a time trend (right

panel), together with the 95% confidence interval.

19



F
IG
U
R
E
5.
Q
U
A
N
T
IL
E
T
R
E
A
T
M
E
N
T
E
F
F
E
C
T
S
(I
m
pu
ls
e
R
es
p
on
se
F
un
ct
io
ns
)

h=
0

TFP
C

20
40

60
80

­101234

h=
1

20
40

60
80

­101234

h=
2

20
40

60
80

­101234

h=
3

20
40

60
80

­101234

h=
4

20
40

60
80

­101234

h=
5

20
40

60
80

­101234
TFP

I

20
40

60
80

­1
.5­1

­0
.50

0.
51

1.
52

2.
53

3.
5

20
40

60
80

­1
.5­1

­0
.50

0.
51

1.
52

2.
53

3.
5

20
40

60
80

­1
.5­1

­0
.50

0.
51

1.
52

2.
53

3.
5

20
40

60
80

­1
.5­1

­0
.50

0.
51

1.
52

2.
53

3.
5

20
40

60
80

­1
.5­1

­0
.50

0.
51

1.
52

2.
53

3.
5

20
40

60
80

­1
.5­1

­0
.50

0.
51

1.
52

2.
53

3.
5

N
ot
es
:
F
ig
ur
e
5
gr
ap
hs
th
e
es
ti
m
at
ed
Q
T
E
as
so
ci
at
ed
w
it
h
th
e
re
sp
on
se
s
to
a
T
F
P
sh
oc
k,
to
ge
th
er
w
it
h
th
e
95
%
co
nfi
de
nc
e
in
te
rv
al
.
T
he
up
p
er
pa
ne
l
co
ns
id
er
s
a
T
F
P
se
ri
es

fo
r
co
ns
um
pt
io
n,
w
hi
le
th
e
b
ot
to
m
on
e
co
ns
id
er
s
a
T
F
P
se
ri
es
fo
r
eq
ui
pm
en
t
in
ve
st
m
en
t.
T
he
da
sh
ed
(d
ot
te
d)
lin
e
de
no
te
s
th
e
m
ea
n
(m
ed
ia
n)
re
sp
on
se
.

20



FIGURE 6. MEDIAN AND MEAN RESPONSE TO A TECHNOLOGY SHOCK

TF
PC

0 1 2 3 4 5
­1

­0.5

0

0.5

1

1.5

2

TF
PI

0 1 2 3 4 5
­1

­0.5

0

0.5

1

1.5

2

Notes: Figure 6 graphs the median QTE associated with a TFP shock (continuous line) and the mean response

to the same disturbance (dashed line). The left hand panel graphs the responses to a TFP consumption shock,

while the right hand panel considers a TFP series for equipment investment.
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TABLE 1. SUMMARY STATISTICS

Corr. Dyn. Corr. Conc.

Location Q0.50 0.6508 0.7023 0.5423

Scale (Q0.75−Q0.25)/(Q0.75+Q0.25) −0.6954 −0.7138 0.3898

Skewness (Q0.75+Q0.25−2Q0.50)/(Q0.25−Q0.75) −0.7019 −0.6885 0.3220

Kurtosis (Q0.90−Q0.10)/(Q0.75−Q0.25) 0.7824 0.8131 0.6271

Notes: Corr. is the correlation of the moment with the real GDP growth rate. Dyn. Corr. is a measure of

dynamic correlation (Croux et al., 2001), which accounts for correlation at a specific frequency band: in the

present case we choose the business cycle frequency in the range [π/4, 3π/4], which corresponds to a cycle of

6− 32 quarters. Conc. stands for the business cycle concordance indicator of Harding and Pagan (1999): this

is bounded between 0 and 1 and indicates independence between two given series whenever it equals 0.5.
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Appendix

Appendix A: Statistical Evidence

TABLE A1. COMPUSTAT DESCRIPTIVES

Variable Mean SD Min Q0.25 Q0.50 Q0.75 Max

Real sales s (mln $) 1,298.66 5,814.29 0.001 31.75 141.61 602.64 267,265.90

Growth rate g 0.059 0.229 -1.00 -0.040 0.053 0.155 1.00

Age 15.70 11.66 2 7 12 21 61

Note: 216,282 observations for 10,478 firms over 60 years between 1951 and 2010. We kept only observations

for which the growth rate of real sales was included in the interval (−1, 1), dropping about 5,500 observations.

TABLE A2. SECTORAL REPRESENTATION

Sector Frequency Percent

Agriculture 718 0.33

Mining 8,294 3.83

Construction 2,303 1.07

Manufacturing (durables) 36,284 16.78

Manufacturing (nondurables) 62,370 28.84

Transportation 29,032 13.42

Trade 22,857 10.57

Financial and Other Services 54,424 25.16

TOTAL 216,282 100.00
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TABLE A3. COMPUSTAT DESCRIPTIVES BY SECTOR

Agriculture Mining

Variable Mean SD Min Max Variable Mean SD Min Max

Real Sales 342.54 787.21 1.67 7,313.79 Real Sales 698.61 2241.36 0.003 32,044.04

Growth 0.051 0.239 -0.882 0.991 Growth 0.063 0.310 -0.997 1.00

Age 14.15 0.4002 2 50 Age 14.64 10.55 2 61

Construction Manufacturing (durables)

Variable Mean SD Min Max Variable Mean SD Min Max

Real Sales 733.25 1372.09 0.002 13,718.21 Real Sales 2,032.68 8,542.48 0.001 267,265.90

Growth 0.043 0.289 -0.984 0.994 Growth 0.053 0.208 -0.998 0.998

Age 15.54 11.09 2 61 Age 17.01 12.60 2 61

Manufacturing (nondurables) Transportation

Variable Mean SD Min Max Variable Mean SD Min Max

Real Sales 1,050.65 5,445.49 0.001 149,939.4 Real Sales 1,555.49 4,432.01 0.003 78,068.14

Growth 0.053 0.242 -1.00 1.00 Growth 0.059 0.175 -0.997 0.998

Age 15.97 11.69 2 61 Age 19.40 14.07 2 61

Trade Financial and Other Services

Variable Mean SD Min Max Variable Mean SD Min Max

Real Sales 1,648.62 7,104.13 0.003 253,339.4 Real Sales 937.54 4296.52 0.001 111,911.2

Growth 0.062 0.200 -0.995 0.996 Growth 0.068 0.248 -1.00 1.00

Age 14.71 10.87 2 61 Age 13.17 9.14 2 61
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Appendix B: Pooling vs. Panel Estimates

FIGURE B1. QUANTILE TREATMENT EFFECTS (Size): PANEL VS. POOLED ESTIMATES
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Notes: Figure B1 graphs the estimated QTE associated with lagged firm-level real sales.
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