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Abstract

Since no stable matching mechanism can induce truth-telling as a dominant strategy for all par-

ticipants, there is often room in matching markets for strategic misrepresentation (Roth [25]). In this

paper we study a natural form of strategic misrepresentation: reporting a truncation of one’s true

preference list. Roth and Rothblum [28] prove an important but abstract result: in certain symmetric,

incomplete information settings, agents on one side of the market (“the women”) optimally submit

some truncation of their true preference lists. In this paper we put structure on this truncation, both

in symmetric and general settings, when agents must submit preference lists to the Men-Proposing

Deferred Acceptance Algorithm.

We first characterize each woman’s truncation payoffs in an incomplete information setting in terms

of the distribution of her achievable mates. The optimal degree of truncation can be substantial: we

prove that in a uniform setting, the optimal degree of truncation for an individual woman goes to

100% of her list as the market size grows large, when other women are truthful. In this setting, we

demonstrate the existence of an equilibrium where all agents use truncation strategies. Compared to

truthful reporting, in any equilibrium in truncation strategies, welfare diverges for men and women:

women prefer the truncation equilibrium, while men would prefer that participants truthfully report.

In a general environment, we show that the less risk averse a player, the greater the degree of her

optimal truncation. Finally, when correlation in preferences increases, players should truncate less.

While several recent papers have focused on the limits of strategic manipulation, our results serve as

a reminder that without the pre-conditions ensuring truthful reporting, even in settings where agents

have little information, the potential for manipulation can be significant.

1 Introduction

One of the great success stories in economic theory is the application of matching theory to two-sided

markets. A classic example is the National Resident Matching Program (NRMP), in which medical school

students are matched to residency positions in hospitals. Rather than hospitals pursuing students via a

decentralized series of offers, refusals and acceptances, matching occurs via a centralized mechanism. In
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this mechanism, each student ranks the hospital programs, and each hospital ranks the students. They

submit these lists to an algorithm, which determines which students will be matched to which programs.

Such a centralized process has a number of advantages. First and foremost, the algorithm on which

this and many similar centralized processes are based produces an outcome that is stable with respect to

reported preferences.1 In a stable matching, no two agents mutually prefer each other to their assigned

match, nor does any matched participant prefer to be unmatched. A second advantage is that eliminating

a decentralized offer process may save time and other resources. Finally, as Roth and Xing [29] have

shown, a centralized mechanism can successfully halt the unraveling of a market.2 Centralized matching

mechanisms also power a variety of other markets, including the public school systems in New York,

Boston, Singapore and other cities, as well as numerous specialized medical fellowships.

These centralized markets all employ versions of an algorithm proposed by Gale and Shapley [10]. The

algorithm, which in one-to-one markets is often referred to as the Men-Proposing Deferred Acceptance

Algorithm (MP-DA), takes as its inputs preference lists reported by agents, and outputs a stable matching.

When agents are asked to report preference lists for submission to MP-DA, this begs the question: Do all

agents have an incentive to report truthfully? Dubins and Freedman [5] and Roth [25] provide the answer:

they do not. In fact, Roth showed that no mechanism that produces stable matchings will induce truth-

telling as a dominant strategy for all agents. However, in the preference list submission game induced by

MP-DA, for all participants on one side of the market, the “men,” truth-telling is a dominant strategy.3

But this leaves open the question of how participants on the other side of the market, the “women,” might

benefit by strategically misrepresenting their preferences.

Recent work has examined conditions under which gains to strategic manipulation are limited for all

participants in the market, not just those on one side. One approach in the literature concerns large

markets. Roth and Peranson [27] observe that in the data from the NRMP, very few participants could

have improved their outcomes by reporting different preferences. They show via simulations that when

the length of preference lists is held fixed and the number of participants grows, the size of the set of stable

matching shrinks (a property they term “core convergence”), so that opportunities for manipulation are

reduced. Immorlica and Mahdian [12] demonstrate this result theoretically, finding that in large marriage

markets where preference list length is bounded, nearly all players have an incentive to truthfully report

preferences. Kojima and Pathak [15] generalize this result, showing that in many-to-one markets, pref-

erence list manipulation, as well as other modes of strategic manipulation such as non-truthful reporting

of capacities (see also Sönmez [30]), are again limited. Lee [18] considers one-to-one matching markets

where agent utilities are drawn from distributions with bounded support that have both a common and an

1In 1998, the algorithm used in the NRMP was altered to accommodate student couples and allow for specialized hospital

positions, so that the outcome is “close to” a stable matching (see Roth and Peranson [27]).
2Before the NRMP was introduced in the 1950s, offers and interviews were made as early as the fall of students’ third

year in medical school, which was undesirable for a number of reasons. The willingness of both hospitals and students to

participate argues strongly in favor of the program’s effectiveness. The NRMP enjoys participation rates of close to 100%

of eligible students, with over 38,000 students participating in the March 2012 match.
3This is true in one-to-one, or “marriage” markets, where each agent has the capacity to match with at most one other

agent. In many-to-one settings, e. g. students matching to hospitals, truth-telling is no longer a dominant strategy when, in

the Deferred Acceptance Algorithm, the “hospitals” side makes the offers (see [26]).
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independent component. He shows that when all agents report truthfully, the proportion of participants

who can achieve a significant utility gain from manipulation vanishes as the market grows large.4

Our approach takes a different tack. We do not require preference lists to be short, and ask: in markets

that do not satisfy non-manipulability conditions, how should players optimally misrepresent preferences?

How “far” could optimal behavior be from truthfulness? We wish to study optimal manipulation, along

with payoffs and market-wide welfare effects, and ask how strategic behavior and outcomes change as we

vary market conditions.

The particular form of strategic misrepresentation we focus on is preference list truncation; that is,

listing in order the first several partners from one’s true preference list, and identifying all other partners

as unacceptable. Truncation has an intuitive logic: by listing less-preferred partners as unacceptable,

the probability of being matched with these partners drops to zero. Agents using this strategy might

hope that correspondingly, the likelihood of being matched to a partner who remains on the truncated

list will go up. In the context of MP-DA, this intuition is confirmed: submitting a truncated preference

list weakly increases the likelihood of being matched to some agent on the truncated list, regardless of

beliefs about the lists other agents submit. But submitting a truncated preference list is a risky strategy.

Limiting acceptable partners also increases the likelihood of ending up with no match. Analysis of this

tradeoff is the crux of the results in this paper.

While always a method for weakly increasing the likelihood of matching with better-ranked opponents,

in some uncertain settings, truncation is optimal: Roth and Rothblum [28] show that when agents’ beliefs

satisfy a form of symmetry termed “M-symmetry,” they can do no better than to truncate.

Whether optimal or not, we analyze truncation, both in symmetric and general settings. We ask: to

what degree should players truncate, if at all? (Note that submitting one’s true preference list is also a

form of truncation.) Can a participant realistically gain from truncation when she is extremely uncertain

about what opponents might report? If players anticipate that others may be truncating, how does this

affect their behavior? Do participants truncate in equilibrium? What are the welfare implications in a

truncation equilibrium?

To evaluate the consequences of truncation, we first characterize the payoff from truncation for a

woman with general beliefs over the preference lists other agents will submit in terms of the distributions

of her most and least preferred achievable mates. When a woman believes submitted preferences of

others are uniformly chosen from the set of all full-length preference lists, she may safely truncate a large

fraction of her list with low risk of becoming unmatched. Further, as there is a large gap between the

expected rank of the mate she receives from truthful revelation and her most preferred achievable mate

([22] shows these asymptote to N/ logN and logN respectively, where N is the number of agents on each

side of the market), truncation can lead to gains. The optimal degree of truncation can be significant.

We demonstrate that in large, uniform markets the optimal level of truncation approaches 100%. That

is, when there are many agents in the market, a woman optimally submits an extremely short list relative

to her full preference list – in the limit, the fraction of men that she leaves on her list goes to zero.

4In a very different approach, Featherstone and Mayefsky [9] run lab experiments in 5 × 5 marriage markets, and find

that participants have trouble learning to find beneficial deviations under MP-DA, even if there are potential gains (though

participants have more success in finding successful manipulation when facing “priority” mechanisms).
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The two sides of the market diverge in their tastes for truncation equilibria. Compared to the outcome

from truthful reporting, women prefer any equilibrium in which they all use truncation strategies; for

men the opposite is true. Furthermore, if there are two truncation equilibria that can be compared in the

degree of truncation, women prefer the equilibrium in which they truncate more, while men prefer the

equilibrium in which women truncate less. Under uniform preferences, we demonstrate the existence of a

symmetric equilibrium where all women use the same truncation strategy. However, even under uniform

preferences, asymmetric equilibria, where women vary in their degrees of truncation, may also exist. In

such equilibria, and in contrast to the across-equilibria results, the women who truncate least are best

off. Intuitively, while women benefit from truncation by other women, they would prefer not to bear the

risk of truncation themselves.

Relaxing the uniform preferences assumption and returning to the environment where players have

arbitrary beliefs, we examine comparative statics. We find that optimal truncation levels vary with risk

preference: regardless of beliefs over reported opponent preferences, the less risk-averse a player, the more

she should truncate.

We then turn to correlation in players’ preferences. The correlated preferences we consider are meant

to capture the notion that in many settings, agents largely agree in their preferences over partners on the

other side of the market, but that an individual’s preferences may idiosyncratically depart from common

opinion. We find that the higher the likelihood a participant places on opponents having preferences

similar to her own, the less she should truncate. Our findings largely corroborate the simulation results

of Roth and Peranson [27], who find that when preferences are correlated, the set of stable matchings is

small, and therefore the set of submitted preference lists that could lead to gains is minimal. An impor-

tant difference between our correlation setting and Roth and Peranson’s is that we consider incomplete

information, where realized matchings may be unstable with respect to true preferences (even while stable

with respect to reported preferences).

To place this analysis in context, several comments are in order. While, for the reasons stated earlier,

we believe truncating the bottom of one’s list is an intuitive manipulation in the preference list submission

problem, in different environments eliminating better-ranked members from one’s preference list might

be a reasonable strategy. For example, in the job market for economists, departments may choose not to

interview certain highly-accomplished candidates, reasoning that these candidates will receive offers they

prefer more (see Coles et al. [3]). In efforts to best use costly and scarce interview slots, departments may

effectively “top-truncate” their preferences lists, focusing instead on candidates more likely to ultimately

accept an offer. In general, it is when market frictions generate costs that this behavior arises. Lee and

Schwarz [17] consider a setting where information acquisition is costly, so that firms prefer to interview

workers who have a high likelihood of accepting (and likelihood is based on the number and identity of

other firms interviewing a worker). Coles, Kushnir and Niederle [4] consider a setting where workers can

signal their preferences to firms, so that firms may choose not to make offers to better-ranked candidates,

and instead make offers to candidates who have indicated likeliness to accept. In our paper, the analysis

is performed after any costly information gathering has taken place, so these considerations do not arise.

The rest of the paper is organized as follows: Section 2 lays out the stable marriage setting and

illustrates the fundamental tradeoff associated with truncation. In Section 3 we characterize the return
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to truncation, first for general beliefs, then in a uniform setting. In Section 4, we prove the existence of

a truncation equilibrium in symmetric settings, and explore equilibrium welfare implications. Based on

this existence result, we provide simulation evidence for a signficant degree of truncation in equilibrium.

Section 5 and Section 6 examine how truncation behavior relates to risk preferences and correlation of

agent preferences, respectively. Section 7 concludes.

2 Matching Markets Background

We begin by setting out the basic model of matching. In contrast to some of the well-known matching

papers, we approach the notion of preferences of participants from a cardinal rather than an ordinal

perspective, which allows us to discuss choice under uncertainty.5 Note, however, that standard matching

results involving ordinal preferences also apply as we may infer preference orderings from cardinal utilities.

2.1 Marriage Markets and Stability

A marriage market of size N consists of a triplet (M,W, u), where M is the set of men, W is the set of

women, |M| = |W| = N , and u =
∏

i∈M∪W
ui is the profile of preferences for men and women.

Preferences um : W ∪ {m} → R for man m ∈ M are given by a von Neumann-Morgenstern utility

function in which m derives utility um(w) from matching with woman w and um(m) from remaining

single. For simplicity, we assume that um is one-to-one, so that m is never indifferent between any two

certain options. Preferences uw for woman w ∈ W are defined similarly on M∪ {w}.
As um is one-to-one, m’s preferences um induce a strict preference ordering Pm over W ∪ {m}. We

refer to Pm as m’s preference list. For example, if N = 3, um(w1) > um(w3) > um(w2) > um(m) yields

preference list (w1, w3, w2,m), meaning m prefers woman w1 to w3 to w2 to being single. Note that men

may prefer bachelorhood over some of the women. For example, (w1, w3,m,w2) indicates that m prefers

w1 to w3 to remaining single to w2. We say that man m finds w acceptable if m prefers w to remaining

single. When convenient, we list only a man’s acceptable women. Preference lists for women are defined

similarly, and we let P denote the profile of preference lists.

A matching is a pairing of men and women, so that each woman is assigned at most one man and

each man at most one woman. Formally, a matching µ is a mapping from M ∪ W to M ∪ W such

that for every m ∈ M, µ(m) ∈ W ∪ {m}, and for every w ∈ W, µ(w) ∈ M ∪ {w}, and also for every

m,w ∈M∪W, µ(m) = w if and only if µ(w) = m. When µ(x) = x, agent x is single or unmatched under

matching µ. For agents that are not single, we refer to µ(m) as m’s wife and µ(w) as w’s husband. The

terms partner and mate are also used. In a matching, each agent cares only about his or her partner,

and not about the partners of other agents, so that we may discuss agent preferences over matchings.

Given preferences, a matching is stable if no agent desires to leave his or her mate to remain single,

and no pair of agents mutually desire to leave their mates and pair with each other. Formally, given a

5Some matching papers do manage to study choice under uncertainty even when agents have only ordinal preferences.

For example, [8] and [28] use the related concepts of “Ordinal Bayesian Nash Equilibrium” and “Pw-stochastic dominance,”

respectively.
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matching µ, we say that it is blocked by (m,w) if m prefers w to µ(m) and w prefers m to µ(w). A

matching µ is individually rational if for each x ∈ M ∪W with µ(x) 6= x, x finds µ(x) acceptable. A

matching µ is stable if it is individually rational and is not blocked. In general, more than one stable

matching may exist for given preferences.

Given preferences, a woman w is achievable for m if there is some stable matching µ in which

w = µ(m). Achievable mates of women are defined similarly.

2.2 The Men-Proposing Deferred Acceptance Algorithm

In their seminal 1962 paper, Gale and Shapley prove that in any marriage market there exists a sta-

ble matching. To demonstrate this result, they propose an algorithm – the Men-Proposing Deferred

Acceptance Algorithm (MP-DA) – to generate a stable matching given any profile of preferences lists.

MP-DA takes as its input a preference list profile P for agentsM∪W, and the output is a matching

µM [P ]. When P is clear from the context, we write µM to denote µM [P ].6 The algorithm works iteratively

as follows:

• Step 1. Each man proposes to the first woman on his preference list. Each woman then considers

her offers, rejects all men deemed unacceptable, and if any others remain, rejects all but her most

preferred mate.

• Step k . Each man who was rejected in step k−1 makes an offer to the next woman on his preference

list. If his preference list is exhausted, or if he prefers bachelorhood to the next woman on his list,

he makes no offer. Each woman behaves as in step 1, considering offers in hand (including any man

she has retained from the previous step) and rejects all but her most preferred acceptable suitor.

• Termination. If in any step k, no man makes an offer, the algorithm terminates. Each woman is

paired with her current mate and this matching is final.

Gale and Shapley show that this algorithm must terminate in finite time, and they provide a remark-

able characteristic of the resulting outcome.

Theorem. (Gale-Shapley) The matching µM resulting from MP-DA is stable. Furthermore, for any

other stable matching µ, every man weakly prefers µM to µ and every woman weakly prefers µ to µM .

The stability of the matching produced by MP-DA offers numerous advantages, as outlined in the

introduction. But men are particularly satisfied with this outcome. For the men, the algorithm produces

the optimal stable matching, based on reported preferences. For the women, however, this is not the

case. As we will see, this feature may mean some women prefer to strategically misreport preferences,

causing the algorithm to produce a different matching.

6In one-to-one markets, the women-proposing version of the algorithm (WP-DA) has identical but reversed properties,

with output denoted by µW [P ].
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2.3 The Preference List Submission Problem for Men

We now turn to the incentive properties of MP-DA. That is, in a setting where agents are asked to submit

preference lists to the algorithm, we ask if they have an incentive to report something other than the

truth. We will see that women may, while men do not.

Consider a set of agents M∪W. Agent i ∈ M ∪W with preferences ui must submit a preference

list P̂i to MP-DA, where P̂i is chosen from the set of i ’s possible preference lists Pi. The agent’s beliefs

about what preference lists others will report are represented by the random variable P̃−i, which takes

as its range P−i, the set of all possible preference list profiles for others. Note that since ui is a von

Neumann-Morgenstern utility function, agent i may compare outcomes in this incomplete information

setting.

Agent i solves the Preference List Submission Problem:

max
P̂i∈Pi

E[ui(µ
M [P̂i, P̃−i](i))].

Dubins and Freedman [5] and Roth [25] have shown that for any man m with preferences um and

beliefs P̃−m, it is optimal for m to submit his true preference list Pm (which corresponds to um).

Theorem. (Dubins and Freedman; Roth) In the Preference List Submission Problem,

Pm ∈ arg max
P̂m∈Pm

E[um(µM [P̂m, P̃−m](m))].

2.4 The Preference List Submission Problem for Women

For women submitting preference lists to MP-DA, truth-telling may not be optimal. One way a woman

w might misrepresent preferences is by submitting a truncation of her true preference list; that is, listing

in order the first several men from her true preference list and declaring all other men unacceptable.

Truncation generates a tradeoff: it may cause a woman to match with the better-ranked men she leaves

on her list, but may also cause her to be left unmatched. In this section we demonstrate this tradeoff,

pose the problem of optimal truncation, and describe conditions so that in the Preference List Submission

Problem, among all possible preference list submission strategies, truncation is optimal.

The following example demonstrates the tradeoff at hand.

Example 1. Strategic Truncation. Suppose men and women have the following preference lists:

m1 m2 m3 w1 w2 w3

w3 w2 w1 m1 m1 m1

w1 w1 w2 m2 m3 m2

w2 w3 w3 m3 m2 m3

.

We consider the strategic incentives of woman 1, assuming all other agents report truthfully. First,

suppose w1 submits her true preference list. In this case, MP-DA stops after one step and w1 is matched

to m3, her least preferred mate. The stable matching is indicated above in bold.

7



Now suppose that w1 misrepresents her preferences and submits the truncated list (m1,m2). In this

case, she will reject man m3’s first round offer in the MP-DA. Man m3 must then make an offer to w2 in

the next round. Woman w2 will accept m3 over m2, who made her an offer in the previous round. Man

m2 then finds himself single, and must make an offer to w1. Woman w1 accepts m2’s offer, and MP-DA

terminates, yielding the matching in bold below:

m1 m2 m3 w1 w2 w3

w3 w2 w1 m1 m1 m1

w1 w1 w2 m2 m3 m2

w2 w3 w3 m2 m3

.

Therefore, by truncating her list, w1 improves her outcome.

To see how truncation can be dangerous, suppose w1 truncates her list even more and submits (m1)

only. In this case, the algorithm will leave her unmatched, as shown in bold below:

m1 m2 m3 w1 w2 w3

w3 w2 w1 m1 m1 m1

w1 w1 w2 m3 m2

w2 w3 w3 m2 m3

.

Proposition 1 characterizes woman w’s match when she submits a truncated version of her preference

list, demonstrating generally how truncation can lead to the three outcomes in our example. For k ∈
{0, . . . , N}, we denote by P kw the preference list which includes in order only w’s k most preferred men,

and call this the k-truncation of her true preference list Pw. If fewer than k men are acceptable to w,

then P kw ≡ Pw.

Proposition 1. Let P be the preference list profile of all agents inM∪W. Then µM [P kw, P−w](w) is w’s

least preferred achievable mate under P with rank ≤ k. Should no such mate exist, µM [P kw, P−w](w) = w.

The example illustrates a general principle; given the preference lists submitted by others, truncation

by woman w can have one of three consequences:

1. No effect. Woman w has truncated below her least preferred achievable mate

2. Improvement. Woman w truncates above her least preferred mate, and is matched with her least

preferred achievable mate above the point of truncation.

3. Unmatched. Woman w has over-truncated, truncating above her most preferred achievable mate.

If woman w is certain of the preference lists P−w others are submitting, her truncation decision is simple:

she calculates her most preferred achievable mate under P = (Pw, P−w) and truncates her list to just

include him. If instead w believes her opponents will submit preference lists according to some probability

distribution, then truncating her list at k generates a lottery over outcomes in which either her partner will

be among her k most preferred men, or else she will be unmatched. This tradeoff, between improvement

and becoming unmatched, will guide our analysis in this paper.
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2.4.1 Optimality of Truncation

Truncation is not the only possible misrepresentation of preferences. A woman could reverse two men in

her preference list, list men as acceptable who are in fact unacceptable, drop men from the middle of her

list, or use some combination of these. However, under some conditions, truncation is optimal.

The next proposition states that under certainty, women can do no better than to truncate.

Proposition 2. Suppose woman w has preferences uw and knows others will report preference lists P−w

to MP-DA. Then truncating such that µW (w) is the last acceptable partner on her list is an optimal

strategy for w.

Perhaps surprisingly, when a woman has very little information about the preference lists others might

report, she again can do no better than to truncate. In order to gain from non-truncation misrepresen-

tations, such as swapping the positions of two men in her reported preference list, a woman must have

very specific information about the preference lists others report. Without such information, it is best

to leave the men in their correct order. Roth and Rothblum [28] demonstrate this principle using the

following framework.

Let woman w’s beliefs about reported preference lists of others be represented by P̃−w, a random

variable taking on values in P−w. If P−w is a preference list profile for agents −w, define Pm↔m
′

−w to be

the preference list profile in which m and m′ swap preference lists, and all women swap the positions

of m and m′ in their lists. We say that woman w’s beliefs are (m,m′)-symmetric if Pr(P̃−w = P−w) =

Pr(P̃−w = Pm↔m
′

−w ) for all P−w ∈ P−w. For a subset M′ ⊆ M, beliefs P̃−w are M′-symmetric if they

are (m,m′)-symmetric for all m,m′ ∈M′.

Theorem. (Roth and Rothblum) Suppose w’s beliefs about reported preference lists of others are M-

symmetric. Then any preference list P̂w she might submit to MP-DA is weakly Pw-stochastically dominated

by some truncation of her true preference list.7

Hence, when w is certain about reported preference lists of her opponents, or when she has extreme,

symmetric uncertainty, truncation is optimal.

2.4.2 The Truncation Problem

Even when truncation is not optimal, we may sometimes wish to restrict the choice set for women to

truncations of her true preference list. We define the Truncation Problem for woman w with preferences

uw and beliefs P̃−w on others’ submitted preference lists as

max
k∈{0,...,N}

E[uw(µM [P kw, P̃−w](w))].

For convenience, whenever we consider the Truncation Problem for a woman w, we will relabel men so

that w has uw(m1) > uw(m2) > . . . > uw(mN ).

7P̂w is Pw-stochastically dominated by P̂ ′w iff for any vNM utility function that corresponds to Pw, the expected utility

from submitting P̂ ′w is at least as great as the expected utility from submitting P̂w.
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3 Characterizing Truncation Payoffs

In this section we explore a woman’s payoff from submitting a truncation of her true preference list. We

first derive a formula for her payoff from truncating at any point in her list in terms of the distribution

of her most and least preferred achievable mates. When a woman believes that reported preference lists

of her opponents are distributed symmetrically over the set of all preference lists, we can say more about

her gains from truncation: conditional on truncation yielding an improvement, w ’s expected partner rank

will be exactly half of (1 + her point of truncation). Further, in uniform markets, it is highly likely that

for an individual woman, some degree of truncation will yield an improvement, and that, in fact, she may

safely and beneficially truncate a large fraction of her list. We demonstrate that as the market grows

large, the length of a woman’s optimal reported list, as a fraction of her full preference list length, goes to

zero. Hence, even in a setting where agents possess very little information about opponent preferences,

there is room for significant strategic misrepresentation.

3.1 Truncation in Two Stages: Match, then Divorce

To aid us in our analysis, we show that when woman w submits a k -truncation of her preference list

to MP-DA, the outcome is identical to that from a two stage Divorcing Algorithm. In the first stage of

the algorithm, agents submit preference lists to MP-DA. In the second stage, w ‘divorces’ her mate and

declares all men with rank ≥ k unacceptable. This sets off a chain of new offers and proposals, ending in

a new match.8

The Divorcing Algorithm takes as its input a set P of preference lists, a woman w, and a truncation

point k ∈ {0, . . . , N}, and generates a matching µDIV [P, k, w].

The Divorcing Algorithm

• Step 0. Initialization. Run MP-DA to find the men-optimal matching µM [P ]. If w is single or if

w’s mate has rank ≤ k in Pw, terminate. Otherwise, divorce w from her mate. Declare candidates

with rank ≥ k unacceptable for w.

Iteration over steps 1 and 2:

• Step 1. Pick an arbitrary single man who has not exhausted his preference list. If no such man

exists, terminate.

• Step 2. The man chosen in the previous step makes an offer to the most preferred woman on his

preference list who has not already rejected him. If this woman finds the man acceptable and she

prefers him to her current mate (or is single), she divorces (if necessary) and holds the new man’s

offer. Return to step 1.

The Divorcing Algorithm yields a matching identical to the output from w’s submission of a k -truncated

list to MP-DA:
8Our Divorcing Algorithm is closely related to the techniques used in [19], where a “breakmarriage” operation is used to

generate all the stable matchings for a given marriage market.
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Proposition 3. For all k ∈ {0, . . . , N}, P ∈P and w ∈ W, we have µDIV [P, k, w] = µM [P kw, P−w].

With this equivalence in hand, when we consider the submission of a truncated preference list, we

can think of it as a two stage process, focusing on the chain of offers (if there is one) in the Divorcing

Algorithm. We will be interested in whether a chain will end with i) a new acceptable man proposing

to woman w, or with ii) a single man making an acceptable offer to a single woman in W \w, or else

exhausting his list. These outcomes correspond to truncation yielding an improvement over truthful

reporting, and truncation leaving w unmatched, respectively. Knowing that following a “divorce,” w

will receive at most one more offer will enable us to calculate the returns to truncation, conditional on

truncation yielding an improvement.

3.2 Truncation under General Beliefs

In this section, we characterize woman w’s payoff from submitting a truncated version of her true prefer-

ence list in terms of the distributions of her most and least preferred achievable mates. The results build

on Proposition 1, which illustrates how in settings of certainty, a woman may gain, lose or see no change

from truncation.

We consider the Truncation Problem for woman w with preferences uw and beliefs P̃−w about reports

of other agents. Throughout the section, uw (and hence, Pw) is fixed, so we can denote w’s payoff from

k-truncation when others submit preference lists P−w as

v(k, P−w) ≡ uw(µM [P kw, P−w](w)).

Note that v(N,P−w) gives w’s payoff if she reports truthfully, and v(k, P−w) = uw(w) if k-truncation

leaves w unmatched. The Truncation Problem then becomes

max
k∈{0,...,N}

E[v(k, P̃−w)].

To evaluate E[v(k, P̃−w)], we condition on the three possible effects of truncation: no effect, improvement,

and causing w to become unmatched.

Define kl(P−w) and kh(P−w) to be w’s rank of her mate under µM [P ] and µW [P ], respectively. That

is, kl(P−w) (kh(P−w)) gives the rank of w’s least (most) preferred achievable mate when −w report

preference lists P−w. Set kl(P−w) = kh(P−w) = N + 1 when w has no achievable mate. Let f(·) be the

probability mass function of the random variable kl(P̃−w) so that

f(x) = Pr(kl(P̃−w) = x)

for x ∈ {1, . . . , N + 1}. Let F (·) be the associated cumulative distribution function. Similarly, let g(·) be

the probability mass function and G(·) be the cumulative distribution function of the random variable

kh(P̃−w).

Using F (·), G(·), and Proposition 1, we can express w’s expected payoff from k-truncating her list by

using the law of conditional expectations:

E[v(k, P̃−w)] = F (k) ·
∑k

i=1
f(i)
F (k)uw(mi)

+ [G(k)− F (k)] · E[v(k, P̃−w) | P̃−w ∈P2(k)]

+ [1−G(k)] · uw(w),

(3.2.1)
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where the set P2(k) ≡ {P−w | v(k, P−w) > v(N,P−w)} gives the cases when truncation yields an im-

provement, compared to truthful reporting. When truncation causes w to be unmatched, her payoff is

clearly uw(w), and when truncation has no effect, the likelihood of being matched with x is f(x)/F (x).9

In the next two sections, we will focus on the middle term of the sum in 3.2.1; that is, the cases

where truncation yields improvement. We will first see that when there are gains, the improvement can

be significant. We will see later that in large markets, these gains may outweigh the risk of being left

unmatched.

3.3 Truncation under M-Symmetric Beliefs

In this section, we examine the Truncation Problem when woman w has M-symmetric beliefs. We show

that conditional on w’s truncation yielding an improvement compared to truthful reporting, her mate

is equally likely to be any man she lists as acceptable. This is somewhat surprising, because when w

has unconditional M-symmetric beliefs and submits preferences in the MP-DA, we would certainly not

expect w’s mate to be uniformly distributed; because of the stability requirement, she is far more likely

to be matched with her more preferred mates.

Lemma. (Truncation under M-Symmetric Beliefs) Suppose woman w’s beliefs P̃−w about the reported

preference lists of her opponents are M-symmetric. Then according to her beliefs,

Pr
{
µM [P kw, P̃−w](w) = mi

∣∣∣P̃−w ∈P2(k)
}

= Pr
{
µM [P kw, P̃−w](w) = mj

∣∣∣P̃−w ∈P2(k)
}

for all k ∈ {1, . . . , N}, i, j ∈ {1, . . . , k}. Hence,

E[v(k, P̃−w) | P̃−w ∈P2(k)] =

∑k
i=1 uw(mi)

k
.

The intuition in this result comes from the Divorcing Algorithm. Consider the settings where k -

truncation will yield an improvement for w (P−w ∈ P2(k)). By first reporting her true preferences and

then divorcing her mate, we know that there will ensue a chain of offers. This chain ends when exactly

one man – ranked better than her former mate – will make an offer to w. By the symmetry of w’s beliefs,

this is equally likely to be any of these men.

Crucial to the reasoning is that since we know truncation will yield an improvement, this corresponds

to an algorithmic outcome where exactly one new superior offer is made to w. In MP-DA generally,

multiple offers may be made to w, making it difficult to pinpoint the distribution of her mate’s rank.10

With our Lemma in hand, we can now express w’s expected payoff from truncation at k as

9If F (k) = 0, the first term in the sum is zero.
10This result is related to the Principle of Deferred Decisions (“don’t do today what you can put off until tomorrow”),

which was applied to the stable marriage problem in [13]. We may think of woman w as deferring her views on her preferences

over men {1, . . . , k} until she actually receives an offer from one of them. When the first one arrives, only then does she

assign the man a rank, which in expectation will be 1+k
2

.
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E[v(k, P̃−w)] = F (k) ·
∑k

i=1
f(i)
F (k)uw(mi)

+ [G(k)− F (k)] ·
∑k
i=1 uw(mi)

k

+ [1−G(k)] · uw(w).

(3.3.1)

3.4 Optimal Truncation in Large Markets

We now investigate optimal truncation for women when the market size grows large. We will focus on

the special case of uniform beliefs. That is, when facing the Truncation Problem, w believes reported

preference lists P−w of her opponents to be chosen uniformly and randomly from the set of all possible

full preference list profiles P−w (where a full preference list profile is a profile in which each agent prefers

any possible mate to being unmatched). Uniform beliefs are a special case of M-symmetric beliefs.11

Hence, under uniform beliefs, we can be sure that truncation is optimal.

The stable marriage problem under uniform beliefs has received attention, especially in the mathe-

matics and computer science literature, in large part because this setting facilitates average and worst

case analyses (see [6], [13], and [22]). But for our purposes, uniform beliefs offer a tractable incomplete

information setting where agents know little about the preferences of others.

Suppose that woman w has preferences uw(·) linear in the rank of her match (where being unmatched

is treated as rank N + 1), or else has any strictly increasing, convex transformation of such preferences.

Suppose further that w has uniform beliefs. Define k∗(N) ≡ max

(
arg max
k∈{0,...,N}

E[uw(µM [P kw, P̃−w](w))]

)
.

For a market of size N, k∗(N) describes woman w ’s optimal point of truncation, given that the other

women submit their true preference lists. If there are multiple optima, we conservatively select that which

involves the least truncation. We now have the following theorem.

Theorem 1. Let woman w have uniform beliefs and preferences linear in rank (or any strictly increasing,

convex transformation of such preferences). Then lim
N→∞

k∗(N)
N = 0.

Theorem 1 states that as the market size grows large, the fraction of the list that an individual woman

optimally truncates goes to 100%. The intuition behind this theorem can be gleaned from statistical facts

about the most and least preferred achievable mates for women. In large markets where preferences are

uniform, the expected rank of the most preferred achievable mate of a woman (which is the same as the

expected rank of her mate under WP-DA) is very low relative to the length of her list; it asymptotes to

logN [22]. This suggests that a woman may safely truncate a large fraction of her list with little risk of

becoming unmatched. Furthermore, the expected rank of a woman’s match under MP-DA is significantly

worse, asymptoting to N
logN [22]. In fact, for large markets, [23] proved that the worst-off wife will be

matched with a husband at the bottom of her list with probability approaching 1. This large gap in a

woman’s expected most and least preferred achievable mates suggests that not only is it safe to truncate

11But uniformity is not equivalent to M-symmetry. Under M-symmetric beliefs, a woman may have specific knowledge

about how the men rank her. For example, she may know that all the men prefer her to w2. With uniform beliefs, such

knowledge is ruled out.
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a large fraction of one’s list in large markets, but that a woman will also generate gains from such a

truncation. See the proof in the Appendix for details.

Note that under uniform beliefs, Roth and Rothblum’s optimality theorem applies. Hence, the ag-

gressive truncation strategies described in the theorem are the best overall strategies, not just the optimal

truncation strategies.

To get a sense of the impact of truncation and to see examples of optimal truncation levels, we simulate

markets of size N = 10, 100, 1, 000, and 10, 000 (Figure 1). In each market, we randomly generate a full

preference list for each agent, and calculate an individual woman’s payoff from truncating at each point

in {0, . . . , N}, where a woman’s payoff is given by (N + 1)− her partner’s rank. We then iterate 100,000

times and average her payoffs.12
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Figure 1: Simulation Results for Truncation Payoffs. The graphs display (N + 1)−
an individual woman’s expected partner rank from truncating her list at each point k ∈
{0, . . . , N} and submitting these preferences to MP-DA. Preference lists of the other agents

are uniformly random, selected from the set of all possible full length preference list profiles,

and payoffs are averaged over 100,000 draws. Markets are of size 10, 100, 1,000 and 10,000.

12Formally, we are estimating E[v(k, P̃−w)], the expectation of a random variable, by averaging many independent draws

of v(k, P̃−w). With 100,000 draws, the 95% confidence intervals around each estimate of E[v(k, P̃−w)] are so small that they

are imperceptible when drawn on the graphs. For example, when N = 1, 000 and k = 500, the estimate of E[v(500, P̃−w)] is

874.5, and the 95% confidence interval is (873.8, 875.2).
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Observe that under truthful reporting, w ’s payoff (given by the right hand side intercepts) is very

close to N
logN , the asymptotic limit found in [22]. Even in the largest market we simulated, N = 10, 000,

w ’s payoff at the peak is roughly 10% higher than her payoff from truthful reporting. Note further that

in each market, peak utility is lower than N + 1 − logN , the asymptotic expected rank of a woman’s

most preferred achievable mate. A woman will never be able to do better than this, even with perfect

information about reported preferences of others.

In each of the graphs in Figure 1, and especially when N = 1, 000 and N = 10, 000, there is a flat

area on the right hand side. These lower levels of truncation are unlikely to have any impact on payoffs

– indeed establishing this is a crucial step in the proof of Theorem 1. Additional truncation can generate

better mates, but still bears little risk of over-truncation. Finally, for extreme levels of truncation there

is a high probability of over-truncation, leading to a steep dropoff in payoffs. As N grows larger, the

“safe range” increases: we obtain larger flat zones and peaks moving to the left.

4 Truncation Equilibria and Welfare

In this section we consider the Bayesian game in which agents must submit preference lists to MP-DA. We

demonstrate that in equilibria in truncation strategies, compared to outcomes from truthful preference

list reporting, welfare for men is lower, welfare for women is greater, and the expected number of matches

is lower. When there are multiple equilibria that can be compared in degree of truncation, women prefer

the equilibrium where they truncate most, while men prefer the equilibrium where they truncate least.

In uniform markets, we demonstrate the existence of a symmetric equilibrium in truncation strategies,

but asymmetric equilibria may also exist. In a truncation equilibrium where some women truncate more

than others, the women who truncate less receive higher payoffs. That is, while across equilibria women

prefer to see higher degrees of truncation, within an equilibrium, they prefer not to be the ones bearing

the risk of truncating.

4.1 Equilibria under General Preferences

Define the Preference List Submission Game as follows: Let U be a finite subset of the set of all possible

utility profiles for I = M∪W and φ(·) be a distribution over U . Let the message space of any agent

i ∈ I be Pi, the set of all possible strict preference lists for player i, with P =
∏
i

Pi. Recall that µM [P ]

gives the MP-DA matching for reported preference lists P . The Preference List Submission Game is the

Bayesian game described by 〈
I,P, µM [·], U, φ(·)

〉
.

A pure strategy for agent i is a mapping si : Ui → Pi, and a mixed strategy for i is a mapping

σi : Ui → ∆(Pi) which describes a randomization over submitted preference lists for each possible type.

Define a truncation strategy for woman w as a strategy in which w mixes over truncations of her true

preference list. For any two truncation strategies σw and σ′w for a woman w, we say that σw involves

more truncation than σ′w if the distribution over truncation points induced by σw first order stochastically

dominates the distribution induced by σ′w.
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We will restrict attention to equilibria where men report preferences truthfully, an assumption mo-

tivated by the dominant-strategy result of [5] and [25].13 Define a Bayesian Nash equilibrium σ =

(σm1 , . . . , σmN , σw1 , . . . , σwN ) in which men report truthfully and women mix over truncation strategies

as an equilibrium in truncation strategies. The following theorem describes welfare in such equilibria.

Theorem 2. Let σ and σ′ be equilibria in truncation strategies in which each woman truncates more

under σ than under σ′. Then compared to the outcomes in σ′, under σ,

i) welfare for women is weakly greater

ii) welfare for men is weakly lower

iii) the expected number of matches is weakly lower.

Furthermore, under both σ and σ′, i), ii) and iii) hold in comparison to the outcomes from truthful

reporting of preferences to MP-DA.

The results of Theorem 2 can be obtained by considering the effect of incremental truncations in light

of Proposition 3. An incremental truncation by a woman w can only negatively affect the welfare of men:

a “divorced” man will receive a worse mate, and the chain of offers that follows can only lead to worse

mates for the other men as well. Since the chain will end in an offer accepted by some woman, or else

in no match, the incremental truncation weakly decreases the number of matches. This logic underpins

results ii) and iii). At the same time, incremental truncation by a woman has a (weakly) positive spillover

on the welfare of other women: rejection of a man can only lead to more offers for other women. The

spillover from the truncation of other women, together with her best response requirement, imply that

each woman weakly prefers the equilibrium with more truncation, and that any truncation equilibrium

is preferred to truthful reporting.

Theorem 2 is similar in spirit to [14] and [16] who show that in games of capacity manipulation

in hospital-intern markets, every hospital prefers a Nash equilibrium to any reported profile of larger

capacities. Theorem 2 also brings to mind the welfare result in [4], in which signaling equilibria with

varying cutoffs are compared. In each of these settings, actions by one side of the market – signaling

by women in [4], capacity reduction in [14] and [16], and truncation in this paper – serve to “shift the

balance of power.” When there are equilibria with varying degrees of action, the sides of the market are

at odds over which equilibrium is preferred, and whether any action is desirable at all.14

4.2 Equilibria in Uniform Markets

Let a uniform market be the setting in which each agent is equally likely to have any full preference

list. Additionally, agent utility depends on partner rank, agents identically value a match with their rth

ranked choice ∀ r ∈ {1, . . . , N}, and have identical value to being unmatched.

13If we ignore this requirement, there is always a trivial equilibrium in which all players submit an empty list.
14Another paper that bears mention is [1], which considers “group manipulations in truncation strategies” by women in

the MP-DA. Such manipulations weakly benefit other women and harm other men. The results in [1] differ from ours, as

we focus on equilibria and on incomplete information.

16



Theorem 3. In uniform markets, there exists a symmetric equilibrium ((σm)N , (σw)N ) where men each

use the strategy σm of truthful reporting and women each use the strategy σw, which is a mixture over

truncation strategies.

Proof. We begin by constructing an auxiliary game. In this game, the set of players is the same as in

the original game, the set of pure strategies for each woman is {0, 1, ..., N}, and men all have one

strategy, {N}. States of the world are profiles of preferences, which are realized with the same

probability distribution as in the original game, but now players learn neither the preferences of others,

nor their own preferences. Payoffs are defined according to the same utility function as in the original

game, where each player receives the payoff from being matched to his stable partner under the profiles

truncated at levels corresponding to the pure strategies chosen.

A standard argument due to Nash [21] shows that the auxiliary game has an equilibrium, symmetric

with respect to women. It is easy to see that this remains an equilibrium in the game where players

observe their own preferences (but not the preferences of others) before choosing an action (truncation).

Finally, returning to the unrestricted game, we recall Roth and Rothblum’s optimality of truncation

theorem from Section 2.4.1. Since men are playing dominant strategies, and since the strategies yield

M-symmetric beliefs, we conclude that the profile of strategies that we found is an equilibrium in the

game where strategies are unrestricted. If it were not, then some woman could do strictly better by

using a non-truncation strategy. But since each woman w’s beliefs in this setting are M-symmetric, a

truncation strategy weakly dominates this non-mixed strategy, which yields a contradiction.15 �

In addition to symmetric equilibria, asymmetric equilibria may exist. The following example illustrates

this.

Example 2. Consider a 2×2 uniform market. Suppose each woman derives utility 10 from being matched

to her top choice, 1 from being matched to her second choice, and 0 otherwise. We first calculate the

probability of three events:

A = {There is a unique stable matching, and in this matching w1 is matched to her top choice} .
B = {There is a unique stable matching, and in this matching w1 is matched to her second choice} .
C = (A ∪B)c = {There are two stable matchings} .
A simple calculation shows that P (A) = 5

8 , P (B) = 2
8 and P (C) = 1

8 .

Now suppose agents report preferences to MP-DA. If the other agents are truthful, w1 should truncate

her list to include only her most preferred man (thus earning 6
8×10 > 5

8×10+ 3
8×1). But if w1 truncates

her list in this manner, w2 has no incentive to truncate at all. Even if it turns out there was room for

beneficial truncation (event C ), w1 has already done the “hard work” of truncating. She bears the risk

15Using the same proof technique and following [7], we can also prove that in uniform matching markets that use an

anonymous mechanism satisfying positive association, individual rationality, and independence of truncations, there exists a

non-trivial equilibrium in which all men play the same truncation strategy and all women play the same truncation strategy.

This class of mechanisms includes all priority mechanisms and all linear programming mechanisms introduced in British

entry-level medical markets and in public school choice in some American cities.
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of becoming unmatched, but also shifts the outcome from one matching to the other, improving payoffs

for both women. �

Several observations can be made from this example. First, payoffs are higher in this equilibrium

than under truthful reporting, as predicted by Theorem 2. Second, when w1 truncates more, w2 prefers

to truncate less. While we don’t have a result that truncation under uniform preferences is a case of

strategic substitutes, this example (and simulation evidence in Figure 3) stand in contrast to the complete

information world where truncation strategies are strategic complements. There, when some woman wi

truncates, this can only improve (or leave unchanged) the most preferred achievable mate for each wj .

Under complete information, this translates to a (weakly) greater optimal degree of truncation.

Another observation from the example is that w2’s utility is 6
8 × 10 + 2

8 × 1, which is greater than the

utility of w1, which is 6
8 ×10. That is, the agent who truncates less has greater utility than the agent who

truncates more. In uniform markets, this result generalizes: within asymmetric truncation equilibria, we

have a crisp preference among women against truncation. Theorem 4 encapsulates this.

Theorem 4. Consider any asymmetric equilibrium in a uniform market where w1 truncates more than

w2 (in the sense of first order stochastic dominance). Then i) if w1 and w2 swap strategies, the resulting

profile will also be an equilibrium and ii) w2 prefers the original equilibrium, in which she truncates less.

Intuitively, w1 and w2 face the same opposition except for one feature: each woman “competes” with

the other, but not with herself. Woman 2, who truncates less, benefits from facing competition in which

the other woman truncates more. Given that w1 is willing to take the risk of this truncation, w2 no longer

feels compelled to do so herself.16

4.3 Simulations: Finding a Symmetric Equilibrium

In this section we run simulations to explore equilibria in a uniform market. We assume that agents care

about the rank of their partners (as in Figure 1, graphed as N + 1−rank, so that the graphs display

maxima rather than minima), and we examine a market with N = 30. The simulations suggest that

under these assumptions, there is a pure strategy symmetric equilibrium with a common truncation point

that involves a non-trivial degree of truncation.

We first examine how returns to truncation for w change when other women also truncate their lists.

In Figure 2 we examine the effect on w’s payoffs when women W \{w} all truncate at a common point

j, where j takes on various values. For lower j, curves for w are higher. This follows from the positive

spillover of truncation: when W \{w} truncate their lists, this benefits woman w.

In Figure 2 it is also apparent that as w’s opponents truncate more, e.g., from j = 30 to j = 25 to

j = 15, etc., w should truncate less: as j increases, peaks move to the right. As in Example 2, this stands

in contrast to the complete information result where truncation strategies are strategic complements.

Note that at the extreme, when j = 1, w can never benefit from truncation. Since truncation still bears

risk, her optimal degree of truncation in this case is N = 30.

16A more general version of Theorem 4 also holds. For any Preference Submission Game with two “symmetric” women, i)

and ii) remain valid.
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Figure 2: Woman w’s expected payoff in a uniform market as a function of her truncation

point when women W \{w} truncate at j. N = 30. Iterations = 1,000,000.

Observe also that when W \{w} submit very short lists, e.g., j ∈ {1, 5, 10}, w’s optimal truncation

point is hard to observe because her payoff curve becomes very flat. The reasons for this flatness are

two-fold: When other women submit very short lists, the expected number of stable matchings is known

to be small (see [12]). Hence, there are minimal opportunities for beneficial truncation. At the same

time, when other women truncate, the expected partner rank for w is very low (favorable). This leaves

little danger that moderate levels of truncation will leave w unmatched. The minimal rewards and risks

to truncation lead to the flatness of payoff curves.

By running a very large number of iterations, we identify the peaks of the curves in Figure 2. This

exercise corroborates the hypothesis that under uniform preferences, truncation is a case of strategic

substitutes. As illustrated in Figure 3, the optimal truncation point for w is inversely related to j, the

common truncation point of womenW \{w}. Of course, due to the flatness of the expected payoff graph,

optimal truncation points for small j are “just barely” optimal.

By overlaying the 45◦ line, we identify the point of truncation in a pure strategy symmetric equilibrium

to be 14, more than a 50 percent truncation of the entire list.17 When all women truncate at this common

point, no single woman sees significant gains from truncation compared to truthful reporting. However,

since truncation has a positive externality on other women, the equilibrium payoff is non-trivially greater

than the payoff should all women report truthfully (see Figure 2).

This equilibrium potentially leads to ex-post instability with respect to true preferences. Some women

17To test whether this is indeed a symmetric equilibirum, we “guess and verify.” We repeatedly sample w’s payoffs under

(k, j) where k is w’s truncation point and j is the common truncation point of W \{w}, and establish that w ’s payoffs under

(14, 14) are sufficiently distant from those under (15, 14), (13, 14), and other profiles. To do this, we construct confidence

intervals around (14,14) and, using different draws, around other profiles. We observe that these intervals have an empty

intersection.
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Figure 3: Optimal truncation point of woman w in a uniform market as a function of the

common truncation point j of women W \{w}. N = 30. Iterations = 10,000,000.

might over-truncate and be left unmatched. More subtly, when other women truncate, woman w may be

paired with a mate that is not achievable under the true preferences.

These instabilities suggest a possible application of these results: the impact of strategic behavior on

a post-market“scramble” for positions. Since truncation can lead to unmatched participants following the

match, a second, organized match might be helpful to find partners for these agents. Indeed, post-market

scrambles have been organized in both the market for medical residents as well as in the job market for

new economists.18

At first observation, an organized scramble would reduce the downside to remaining unmatched in the

primary match. But this might induce additional risk-taking behavior (more truncation) by participants.

Such behavior would increase the pool size in the second match, raising the value of being unmatched,

inducing even more truncation. A secondary match might ultimately enjoy high participation levels,

but only because it has drawn participants away from the primary match, complicating overall welfare

analysis.

5 Truncation and Risk Aversion

While gains to truncation can be significant, truncation is nevertheless a risky strategy. When w’s

opponents truncate, truncation for w is particularly risky: compared to truthful reporting, optimal

truncation offers minimal benefit, and over-truncating can lead to large losses. One might expect agents

18The NRMP offers the “Supplemental Offer and Acceptance Program” (SOAP), which replaced a somewhat less orderly

scramble (see http://www.nrmp.org/2012springmeeting.pdf). The American Economic Association organizes the“Scramble”

in which candidates seeking jobs and employers with positions open late in the job market can announce their availability

on the AEA website (see http://www.aeaweb.org/joe/scramble).
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with more conservative attitudes toward risk to shy away from this proposition. In this section, we ask

how a woman’s truncation behavior varies as we vary her attitude towards risk.

We consider a general setting, with arbitrary preferences for woman w and beliefs about reported

preferences of others. Let ψ(·) be any strictly increasing, concave transformation. We will show that for

any beliefs about others, woman w with preferences uw(·) will truncate more than a woman wψ who has

identical beliefs, but preferences given by ψ(uw(·)).
Recall that when we fix w′s preferences to be uw(·), we defined shorthand

v(k, P−w) ≡ uw(µM [P kw, P−w](w)),

her payoff from submitting truncated preference list P kw. Now define

vψ(k, P−w) ≡ ψ(uw(µM [P kw, P−w](w)),

the payoff from submitting truncated preference list P kw for a woman wψ with preferences ψ(uw(·)).
The following theorem states that if w prefers truncating less to more, then wψ definitely prefers

truncating less to more.

Theorem 5. Let P̃−w be any random variable distributed over P−w. Then ∀k ∈ {1, . . . , N − 1}, ∀t ∈
{1, . . . , N − k} we have

E
[
v(k, P̃−w)

]
≤ E

[
v(k + t, P̃−w)

]
⇒

E
[
vψ(k, P̃−w)

]
≤ E

[
vψ(k + t, P̃−w)

]
.

Furthermore, if i) ψ(·) is strictly concave, and ii) under P̃−w, each man is achievable for w with positive

probability, then the second inequality is strict.

The constructive proof nicely illustrates incremental truncation analysis, so we provide it in-text.

Proof. We begin with the proof for t = 1. An analagous argument works for all other t in the given

range, with necessary proof adjustments described at the end. Our technique focuses on two lotteries over

outcomes. Let Qk+1 be the lottery over mates for w when she truncates at k+1, and let Qk be the lottery

when she truncates at k. Our goal is now to show that if Qk is mean-decreasing as compared to Qk+1

from w’s perspective (in terms of her von Neumann-Morgenstern utility), then it will be mean-decreasing

from wψ’s perspective as well.

Distributions Qk+1 and Qk are shown in Figure 4. Recalling Proposition 3, k-truncating is equivalent

to (k + 1)-truncating followed by k-truncating. That is, lottery Qk is equivalent to starting with lottery

Qk+1, then rolling the die again if w receives her (k + 1) ranked choice. Hence,

qki ≥ qk+1
i ∀i ∈ {1, .., k} ∪ {w}.

Let shorthand ui(Q), i ∈ {w,wψ} describe i’s expected utility from lottery Q. Suppose first that

uw(Qk) = uw(Qk+1), that is, E
[
v(k, P̃−w)

]
= E

[
v(k + 1, P̃−w)

]
, so that from w’s perspective, Qk is a

mean-preserving spread of Qk+1. Then by Jensen’s inequality, uwψ(Qk) ≤ uwψ(Qk+1) . If ψ(·) is strictly

concave and Qk 6= Qk+1 (which follows from ii) ), then uwψ(Qk) < uwψ(Qk+1).

Now suppose that uw(Qk) < uw(Qk+1), so that from w’s perspective, Qk is mean-decreasing as

compared to Qk+1. We will now construct an intermediate lottery Q′ such that
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Figure 4: k-truncation is equivalent to (k + 1)-truncation followed by an extra gamble:

divorcing man k + 1.

1. Qk+1 Pw-stochastically dominates Q′ and

2. From w’s perspective, Qk is a mean preserving spread of Q′.

Define lottery Q′ so that Q′ is identical to Qk+1, except that we replace outcome k+1 (w’s (k+1) ranked

choice) with lottery α(k + 1) + (1− α)w. Choose α ∈ [0, 1] such that w has uw(Q′) = uw(Qk). Such an

α must exist: when α = 1, Q′ = Qk+1, and when α = 0, uw(Q′) ≤ uw(Qk). Our desired α follows from

the Intermediate Value Theorem.

By construction, Qk+1 Pw-stochastically dominates Q′. With respect to w’s utility, we also have that

Qk is second order stochastically dominated by Q′. To see this, observe that Q′ was constructed to have

the same mean as Qk, and that compared to Q′, Qk shifts probability mass to the extremes: qkj ≥ q′j for

j ∈ {1, .., k} ∪ {w}.
Since Pw = Pwψ , by Pw-stochastic dominance, wψ also strictly prefers Qk+1 to Q′. By Jensen’s

inequality, wψ weakly prefers Q′ to Qk. Hence,

uwψ(Qk) < uwψ(Qk+1),

so the theorem is proved for t = 1.

When t > 1, we may again construct an intermediate lottery Q′ , this time that transfers weight from

{k + 1, k + 2, . . . , k + t} to the unmatched option w. Just as before, we can construct Q′ to ensure that

Qk+1 Pw-stochastically dominates Q′ , and that from w’s perspective, Qk is a mean preserving spread

of Q′. The key insight is that truncation transfers probability mass to the extremes: the most preferred

mates, as well as the unmatched option. �

We can now use Theorem 5 to sort optimal truncation points based on degree of concavity.
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Corollary 1. Let kli be the minimum optimal truncation point (by rank) and let khi be the maximum

optimal truncation point for woman i ∈ {w,wψ}. Then klw ≤ klwψ and khw ≤ khwψ . Furthermore, if

conditions i) and ii) from Theorem 5 hold, then khw ≤ klwψ .

Proof. If klw is w’s minimum optimal truncation point, then w strictly prefers truncation at klw to

truncation at any k < klw. Following the reasoning of Theorem 5, wψ must then prefer truncation at klw
to truncation at any k < klw. Hence, klw ≤ klwψ . A similar argument can be used to show khw ≤ khwψ .

If khw is w’s maximum optimal truncation point, then w (weakly) prefers truncation at khw to truncation

at any k < khw. If conditions i) and ii) hold, then wψ must strictly prefer truncation at khw to truncation

at any k < khw. Hence, khw ≤ klwψ . �

Thus, when facing the same environment, players who are more risk averse truncate less, with the set

of optimal truncation points overlapping at the very most at one point.

The key insight in the analysis is the interpretation of truncation as a risky lottery, and then mapping

the additional risk associated with incremental truncation to an extra lottery a woman must face. If a

woman doesn’t like to face the extra lottery, then certainly a woman with more concave preferences will

not want to face it.

Note that despite pertaining to risk aversion, the results in this section do not restrict the structure

of uw(·) in any way. For example, we do not require uw(·) to be “concave.” Rather, it is the relative

concavity that is crucial. For example, if we restrict ourselves to the class of functions that are s-shaped

in rank, we know that within this class, concave transformations induce less truncation.

In a general sense, this result can be taken as advice to participants. Players can observe the patterns

of behavior of others, size up their own attitudes toward risk, and truncate more or less accordingly. In

markets where there is a steep dropoff in utility from a woman’s most preferred partner to her second

choice, a smaller dropoff from choice two to three, and so forth, we may anticipate more aggresive

truncation. On the other hand, if participants are largely content with any of the available choices, but

see great disutility from being unmatched, truncation is not advisable.

This result can also offer advice to a market designer. If an objective is to maximize the number

of matches, a market designer may wish to choose the less risk averse side to be the “proposers” in the

Deferred Acceptance Algorithm. If the two sides of the market are identical in all regards except for their

risk preferences, the more risk averse side will be less likely to truncate, even if manipulations increase

their expected partner rank. Lower levels of truncation will increase the number of realized matches, and

consequently, reduce the number of participants left unmatched. However, in making this choice, the

market designer should take other market features into consideration as well, as we demonstrate in the

next section.

6 Correlated Preferences

In the Preference List Submission Problem for Women, we now let woman w believe other women in the

market have preferences similar to hers. We consider how woman w should vary her degree of truncation
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as the degree of similarity varies. We provide evidence, both theoretical and simulation-based, that the

greater the similarity in the preferences of other women to her own, the less woman w should truncate.

6.1 Perfectly Correlated Preferences

We consider first the case of perfectly correlated preferences on the women’s side of the market.

Remark. When women have identical preferences, there is a unique stable matching.

To see this, note that the top-ranked man, as agreed upon by all women, must be matched with his

most preferred partner in any stable matching, or else these two would constitute a blocking pair. The

second-ranked man must then be matched to his most preferred remaining woman, and so on. MP-DA

reduces to a serial dictatorship, determined by the common ranking of the men.

Since there is a unique stable matching in this setting, an individual woman’s misrepresentation of her

preference list can never improve her match. In fact, if a woman is certain that other women share her

preferences (and are reporting truthfully), but is uncertain about what men will submit to the algorithm,

truncation can very well lower her outcome by leaving her unmatched.

6.2 Partially Correlated Preferences

In this section, we introduce a notion of partial correlation of preferences indexed by a single parameter

α. We will show that the greater the degree of correlation, the less a woman should truncate.

Consider the Preference List Submission Problem for woman w with preferences uw and beliefs P̃−w

about reported preference lists of opponents. Let p(·, ·) be the probability mass function for w’s beliefs.

That is,

p(PM, PW \{w})

gives the likelihood that the men will report preference lists PM and womenW \{w} will report preference

lists PW \{w}. Define the marginal probability over mens’ preference profiles by pM (·).
Given p(·, ·), define beliefs pC(·, ·) by

pC(PM, PW \{w}) ≡

{
pM (PM) if Pŵ = Pw ∀ŵ ∈ W \{w}

0 otherwise
.

pC(·, ·) is the distribution that preserves the marginal distribution over men’s preferences pM (·), but

where the other women share the preferences of w.

Define beliefs pα(·) by

pα(P−w) ≡ (1− α)p(P−w) + αpC(P−w).

Hence, as α varies from 0 to 1, pα ranges from p to pC . The marginal distribution over men’s preferences

remains fixed, while the correlation of women’s preferences steadily increases (the distribution remains

constant if p = pC).

The set of optimal truncation points for woman w with preferences uw and beliefs indexed by α is

given by

k∗(α, p, uw) ≡ arg max
k∈{0,...,N}

Epα [v(k, P̃−w)].
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Notice that since the choice set is finite, k∗(·, ·) will be non-empty.

Let kh(α, p, uw) = max[k∗(α, p, uw)] and kl(α, p, uw) = min[k∗(α, p, uw)], the optimal choices involving

the least and most truncation respectively.

The following proposition states that for any preferences uw and beliefs p, as we increase the degree

of correlation α, woman w should truncate less.

Proposition 4. Let α, α′ ∈ [0, 1] with α′ > α. Then kl(α′, p, uw) ≥ kl(α, p, uw) and kh(α′, p, uw) ≥
kh(α, p, uw).

The proof relies on the fact that when there is a unique stable matching, it can never hurt to submit

a full list. Using this fact, we can show that if under low correlation, w prefers truncating less to more,

then under high correlation w definitely prefers truncating less to more. This is enough to sort optimal

truncation points.

Intuition for this result is related to the size of the set of stable matchings. Truncation can yield

improvement only when there are multiple stable matchings. The greater the degree of correlation, the

smaller this set, and the lower the likelihood that a window for gain from truncation exists.

The anticipated level of correlation in the environment might influence the advice a market designer

offers participants. If correlation is high, the designer can safely advise participants to report truthfully,

and it is in their best interest to do so. With low correlation (sufficiently heterogenous preferences),

players may anticipate gains from truncation, which if acted on, could lead to unstable matchings.

6.3 Noisy Preferences

In Section 6.2, a woman believes it is possible that opponents have preference lists identical to hers. In

this section, woman w believes women have preference lists similar to hers, but not necessarily identical.

We model such beliefs for women by generating noisy deviations from a common preference list. By

performing simulations, we corroborate the theoretical results in Section 6.2; more correlation means a

woman should truncate less.

We generate correlated preferences as follows. Each man mi is assigned a random number ri ∼ U [0, 1],

and this value is agreed upon by all women. For each man mi, each woman wj also assigns an idiosyncratic

(noise) component, qij ∼ U [0, 1]. Woman wj ’s rankings over men are then determined by the sum

α · ri + (1−α)qij , where α ∈ [0, 1] is a parameter that we will vary. Observe that from the perspective of

any woman w, the preferences of other women are noisy versions of her own rankings. Values of α close

to one imply low noise, so α measures the degree of correlation. Men are assumed to have uniformly

random rankings over the women.19

The process just described is used only to determine preference orderings. We further assume that

w ’s payoff is given by (N + 1− partner rank), and being unmatched is just worse than being matched to

her least preferred man, so we can compare outcomes to those depicted in Figure 1.

19The common starting point for preferences might be an aggregate ranking based on available data, like the US News

and World Report’s annual ranking of universities. Caldarelli and Capocci [2] simulate preferences in a one-to-one model

similarly. In their model, the common component ri is a man’s “beauty,” which in their view, evidently, is not in the eye of

the beholder.
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Figure 5 graphs the return to truncation for various values of α. For each value, we randomly generated

100,000 preference list profiles and for each k, we graph woman w ’s average payoff from k-truncation,

when other agents are truthful.
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Figure 5: The graphs display (N + 1)− an individual woman’s expected partner rank from

truncating her list at each point k ∈ {0, . . . , N} and submitting these preferences to MP-DA.

Preference lists of men are uniformly random, and lists for women are randomly generated

using the procedure described in the text. Payoffs are averaged over 100,000 draws.

When α = 0 (the top curve), this corresponds to uniform beliefs for w, the case studied in Section

3.4. When α = 1, all women rank men the same way, the stable matching will be unique, and truncation

cannot be helpful (as in Section 6.1).

From Figure 5, we make two key observations. First, woman w dislikes correlation. This fact is easy

to explain. If all women agree on who the top men are, they “compete” for them as mates. The lower

the correlation, the less the competition, and the better the expected mate for w. Second, w’s optimal

truncation point increases as correlation increases. This corroborates the result in Section 6.2: when

there is more correlation, w should truncate less.

7 Discussion and Conclusion

In this paper, we study optimal strategic behavior in one-to-one matching markets that are based on the

Deferred Acceptance Algorithm, when agents have incomplete information about the preferences of others.

We focus on truncation strategies. Among classes of strategies for preference list misrepresentation,

truncation is an attractive option because it is guaranteed to weakly increase the likelihood of matching
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with one’s more preferred partners. By contrast, more complicated strategies, such as swapping the order

of agents in a preference list, may require detailed information about the preferences reported by others,

and their outcomes are more difficult to predict.

Recent work by [12], [15] and others demonstrate that in large markets where agents submit short

preference lists, opportunities for manipulation are limited. Lee [18] presents a random utility model

and shows that, in some sense, gains from manipulation become small in large markets.20 In light of

these findings one may ask whether agents – especially agents with little detailed information – can ever

substantially gain from manipulation. Our paper answers in the affirmative. When agents view reported

preference lists of others as being drawn uniformly from the set of all possible full length preference lists,

they may truncate their lists with little risk of being unmatched, but with the potential to see large gains

in terms of the expected partner rank. Importantly, we show that while according to Lee [18], utility gain

from manipulation may be small, the optimal truncation may still be substantial. This finding provides

an essential qualification to his results.

For many of the settings in which the Deferred Acceptance Algorithm has been successfully applied,

notably in the NRMP and in the Boston and New York school systems, the markets do reflect large

numbers and short preference lists. But the high levels of optimal truncation demonstrated in this paper

raise a key issue: in large markets where agents submit short preference lists, can we be sure that the

short lists were not simply the result of optimization? Costliness of information discovery often places

natural limits on the length of submitted preference lists. Flyouts are costly for medical students; perhaps

somewhat less so for hospitals. Nevertheless, this paper illustrates the theoretical possibility that even

with full information about one’s own preferences, substantial truncation (submission of short lists) may

simply be utility-maximizing strategic behavior.

8 Appendix: Proofs of Propositions

Proof of Proposition 1. Observe first that any matching that is stable with respect to
(
P kw, P−w

)
and

matches woman w to a man must be stable with respect to P , and that any matching µ̃ that is stable

with respect to P with µ̃(w) ranked ≤ k must be stable with respect to
(
P kw, P−w

)
. Hence, setting

M1 =
{
m ∈M | m achievable for w under

(
P kw, P−w

)}
and

M2 = {m ∈M | m achievable for w under P and m ranked ≤ k in w’s list}

we have M1 =M2. By the Gale-Shapley result, µM [P kw, P−w](w) is w ’s least preferred element of M1,

and hence of M2. Should both sets be empty, then µM [P kw, P−w](w) = w. �

Proof of Proposition 2. By Proposition 1, by truncating just after µW (w), w is matched with µW (w).

Now suppose that some reported preferences P ′w did better; that is, led to a matching µ′ with µ′(w)

20Lee’s model is more general than ours, in many respects. Note, however that his model requires agent utilities to be

bounded, while our model does not exclude unbounded functions.
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preferred by w to µW (w). But Proposition 1 again tells us that truncating her true preferences Pw just

after µ′(w) must also yield mate µ′(w) for w, as µ′ will also be stable with respect to these preferences.

But then µ′(w) must also be achievable with respect to P , contradicting the optimality of µW (w). �

Proof of Proposition 3. We introduce Algorithm 1 below and prove that given the same input,

Algorithm 1 and the Divorcing Algorithm generate the same output, which in each case is the MP-DA

outcome described in the statement of the proposition.

Like the Divorcing Algorithm, Algorithm 1 takes as its input a profile P of preference lists, a woman

w, and a truncation point k ∈ {1, . . . , N}, and outputs a matching. Algorithm 1 is adapted from an

algorithm due to McVitie and Wilson, which differs from MP-DA in that the men make offers one at a

time instead of in rounds, but is nevertheless outcome equivalent [20]. Algorithm 1 is identical to McVitie

and Wilson’s, except that we explicitly delay selecting man µM [P ] until absolutely necessary. By [20],

the algorithm plainly produces µM [P kw, P−w], the MP-DA outcome when w k-truncates her preference

list.

Algorithm 1

• Step 0. Initialization. Identify the least preferred achievable mate for woman w under (Pw, P−w)

and call this man ml. For example, we may identify this man by running MP-DA, setting ml =

µM [Pw, P−w](w).

Iteration over steps 1 and 2. Preferences in these steps are given by (P kw, P−w) .

• Step 1. Pick any single man other than ml who has not exhausted his preference list. If no such

man exists, pick ml. If we have picked ml, and ml is not single, or if ml has exhausted his preference

list, terminate.

• Step 2. The man chosen in the previous step makes an offer to the most preferred woman on

his preference list who has not already rejected him. If this woman finds the man acceptable and

prefers him to her current mate (or if she is single), she holds his offer and divorces her previous

mate (if necessary). Return to step 1.

Let µ1(P, k, w) be the output of Algorithm 1 and recall that µDIV (P, k, w) is the output of the divorcing

algorithm.

To establish outcome equivalence of the algorithms, begin by letting l be the rank of w’s least preferred

achievable mate ml under P.

• If k ≥ l, both algorithms clearly produce µM , the men-optimal matching under P.

• If k < l, then the algorithms will reach a point where they coincide. That is, there will be a point

where the sequences of single men chosen coincide, as do the temporary matchings and preference

lists.
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In Algorithm 1, we claim that (1) at some point, ml will make an offer to w, which will be rejected.

(2) From this point forward, the algorithm coincides with the Divorcing Algorithm, just after its

initialization step.

1. Under MP-DA, when w k-truncates her list, men are (weakly) worse off than if she reports

truthfully (see [11]). This means that in µM [P kw, P−w], ml must be matched with a candidate

worse than w, or possibly with no woman at all. Hence, in Algorithm 1, ml must have made

an offer to w (since he makes offers from his list in order of preference), and this offer must

have been rejected.

2. When in Algorithm 1, ml makes his offer to w, no better ranked man has yet done so. Oth-

erwise, let m′ be the first man ranked higher than ml to make an offer to w and backtrack to

the point in the algorithm where this offer is made. Note that up to this point, the path of

the algorithm is consistent with w having l-truncated her preferences, since she has not faced

any man ranked k through l. But this implies that if w l-truncated her list, she would receive

a mate at least as good as m′, not ml. This contradicts Proposition 1.

By the choice-of-proposer rule in the algorithm, we know that when ml proposes to w, he must

be the only single man who has not yet exhausted his list. If w accepted ml’s offer, the path

of the algorithm would be consistent with w having l-truncated her list, and the algorithm

would terminate with matching µM . Hence, by instead rejecting ml, we arrive at exactly the

position of the Divorcing Algorithm, following step 0.

Thereafter, the algorithms coincide, thus yielding identical outcomes. �

Proof of Proposition 3.3. For each i and k, define

P i
2(k) ≡

{
P−w

∣∣∣ P−w ∈P2(k), µM [P kw, P−w](w) = mi

}
.

We wish to show that w finds P i
2(k) and Pj

2(k) equally probable, for all k and all i, j ≤ k. We proceed

by finding a bijection from P i
2(k) to Pj

2(k) which is probability preserving with respect to w’s beliefs.

For i, j ∈ {1, . . . , k}, we define a mapping fijk : P2(k) → P2(k). Let fijk(P−w) ≡ P ′−w be given by

the following:

1. Switch mi and mj everywhere. Switch the positions of mi and mj in each woman’s list, and swap

mi and mj ’s preference lists (this is like relabeling).

2. Switch back mi and mj in w’s list.

Notice that this is equivalent to swapping mi and mj in w’s list only, and then relabeling i and j.21

Suppose P−w ∈ P i
2(k). The fact that w finds P−w and P ′−w equally probable follows directly from

the definition of M-symmetry. We will show that P ′−w ∈ Pj
2(k). Note that it is not immediately clear

that we even have P ′−w ∈P2(k), that is, that under P ′−w, k-truncation still yields an improvement for w.

21For the trivial case, i = j, we use the identity mapping.
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We think of the matching as arising from MP-DA. Since P−w ∈P2(k), if w does not truncate, she will

be matched with a man worse than mk. Hence, during the process of the algorithm, she will not receive

an offer from any man m1, . . . ,mk. Hence, rearranging these men in w’s list will not affect the outcome,

and in particular, swapping mi and mj will not affect the outcome (the stable matching). Furthermore,

since P−w ∈P i
2(k) we know that under P−w, k-truncation leaves w matched with mi. Using proposition

3, we know that during the chain of proposals following an “ex-post” k-truncation by w, the first man to

make an offer to w will be mi. Hence, this will still be true if w swaps the position of mi and mj in her

list.

Thus, we have that if w switches mi and mj in her list, k-truncation will yield an improvement and

she will again be matched with mi. But now relabeling mi and mj (so that w’s list is (m1,m2,m3, . . .)),

we have that P ′−w ∈Pj
2(k).

Hence, fijk(·) is a bijection from P i
2(k) to Pj

2(k), which is probability preserving with respect to w’s

beliefs. This is sufficient to prove the proposition. �

To prove Theorem 1, we begin with a lemma demonstrating that even upon submitting a vanishingly

small truncation of one’s list (relative to the length of one’s full preference list), we still see gains

relative to truthful reporting. We examine the case where a woman’s payoff is given by her partner

rank, and being unmatched is treated as rank N + 1. At the end of the proof, we show that the result

also holds for the more general preferences described in the statement of the Theorem 1.22

Lemma 1. There exists N∗ such that for every N > N∗, the gain to woman w from truncating at 7 log2N

relative to truthful reporting is strictly greater than zero. Furthermore, the expected rank of w’s mate is

lower than (better than) her expected mate rank from truthful reporting by at least 1+N
2+logN − 7 log2N − 2.

Proof of Lemma 1. First, in the case of no truncation, we know from Pittel p. 545 [22] that the

expected rank of w ’s husband, Rw(µm) satisfies:

E [Rw] ≥ 1 +N

1 +HN
≥ 1 +N

2 + logN
,

where HN = 1
1 + 1

2 + . . . + 1
N , the N th harmonic number. Let D be the highest (worst) rank some

woman gets under WP-DA when all agents report their preferences truthfully. Using Theorem 6.1 from

[23], we observe that for N large enough,

Pr(D ≤ 7 log2N) ≥ 1− 1

N
.

Therefore, truncating at 7 log2N ensures an expected rank of at most 7 log2N×
(
1− 1

N

)
+ 1
N ×(N+1).

Hence, the expected gain (in rank) from truncation, ∆, satisfies:

22Throughout the proofs of Lemma 1, Lemma 2, and Theorem 1, for any fractional x ∈ R+, we treat x -truncation as

bxc-truncation.
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∆ ≥ 1 +N

2 + logN
− 7 log2N − 2.

The right hand side approaches infinity as N grows to infinity, so for N large enough, ∆ > 0. �

In Lemma 1 we have established that truncating at 7 log2N ensures a gain (in terms of expected partner

rank) relative to truthful revelation that grows arbitrarily large as N → ∞. Note that this gain is an

absolute measure. As measured as a fraction of the expected payoff from truthful revelation, the gains

from truncation go to zero.23

It remains to establish that as a fraction of the market size N, the degree of optimal truncation goes to

0. To do this, we will first show that any truncation of a constant fraction of one’s list is (asymptotically)

outperformed by the level of truncation found in Lemma 1.

Lemma 2. For any fraction α ∈ (0, 1),

i) there exists N(α) such that for every N > N(α), a woman’s payoff from truncating at αN is lower

than that from truncating at 7 log2N ;

ii) there exists N∗(α) such that for every N > N∗(α), a woman’s payoff from truncating at xN is

lower than that from truncating at 7 log2N for every x ∈ [α, 1].

Proof of Lemma 2. We begin by proving i) for the case of α = 1− 1
e .

Let ∆̄ be the expected difference between the rank of the mate under truncation at αN and the rank of

the mate under truthful revelation. Let ε > 0 be a small number. Let AN be the event {w gets fewer

than (1− ε) logN offers, or else more than (1 + ε) logN , before MP-DA stops}. Let PN = P (AN ). We

then have:

∆̄ ≤ PN ×N + (1− PN )× Pr
{

Rank
(
µM (w)

)
>
(
1− 1

e

)
N | ¬AN

}
× N

≤ PN ×N + Pr
{

Rank
(
µM (w)

)
>
(
1− 1

e

)
N | ¬AN

}
× N

≤ PN ×N +
(
1
e

)(1−ε) logN ×N. (8.0.1)

Note that truncation may only matter in the event
{

Rank (µM (w)) >
(
1− 1

e

)
N
}

, which is included

in the event B =
{{

Rank (µM (w)) >
(
1− 1

e

)
N
}
∩ ¬AN

}
∪AN . In the first inequality, we have replaced

the conditional benefits from truncation, be they positive or negative, with N, and considered the event

B. In the last inequality, we treat offers w receives as independent draws (and invoke the Principle

of Deferred Decisions), when in fact the draws are “without replacement,” which would yield a lower

probability. These substitutions are all acceptable as we are finding an upper bound on ∆̄.

Using Equation 2.16 from [24], we know that there exists some c > 0 such that for N large enough,

PN ≤ exp
(
−c · log

1
3N
)

. Hence,

∆̄ ≤ exp
(
−c · log

1
3N
)
×N +

(
1
e

)(1−ε) logN ×N
= N

exp
(
c·log

1
3 N

) +N ε.
(8.0.2)

23Recall that as a fraction of N, the expected partner rank for women (as well as for men) converges to 0 as N grows large.
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We now must show that for large N, N

exp
(
c·log

1
3 N

) +N ε ≤ 1+N
2+logN − 7 log2N − 2, which by Lemma 1

will imply ∆ ≥ ∆̄.

We have N

exp
(
c·log

1
3 N

) + N ε ≤ 2N

exp
(
c·log

1
3 N

) for N large enough, since N ε ≤ N

exp
(
c·log

1
3N
) ⇐⇒ 1 ≤

N1−ε

exp
(
c·log

1
3N
) ⇐⇒ c · log

1
3N ≤ (1− ε) logN , which clearly holds for large N.

Hence, it is sufficient to prove that:

2N

exp
(
c · log

1
3 N
) ≤ 1 +N

2 + logN
− 7 log2N − 2.

Since for large N, 7 log2N + 2 < N ε, it suffices to show that 3N

exp
(
c·log

1
3 N

) ≤ 1+N
2+logN , which is implied

by 3N+3

exp
(
c·log

1
3 N

) ≤ 1+N
2+logN ⇐⇒ 3 ≤

exp
(
c·log

1
3 N

)
2+logN .

Observe that

lim
N→∞

exp
(
c·log

1
3 N

)
2+logN = lim

x→∞
exp(c·x)
2+x3

=∞

since c is greater than 0. This completes the proof for the case of (1− 1
e )N .

To show that i) holds, we now consider general α ∈ (0, 1). Let r ≡ 1
1−α >1, so that 1 − 1

r = α.

An analagous proof holds with truncation at
(
1− 1

r

)
N . Probability PN will remain unchanged, and

in Equation 8.0.1, instead of
(
1
e

)(1−ε) logN
we have

(
1
r

)(1−ε) logN
=
(
1
e

)log r·(1−ε) logN
=
(
1
N

)(1−ε) log r
=

( 1
N )δ(α), where δ(α) ≡ (1 − ε) log r = (1 − ε) log 1

1−α > 0. We may then replace N ε with N1−δ(α) in

Equation 8.0.2, and the remaining argument will hold.

To show that ii) holds, observe that the critical appearance of α is in the inequality N1−δ(α) ≤
N

exp
(
c·log

1
3N
) . For every x > α, we have N1−δ(x) ≤ N1−δ(α). Hence, for any N large enough so that

N1−δ(α) ≤ N

exp
(
c·log

1
3N
) , we have that N1−δ(x) ≤ N

exp
(
c·log

1
3N
) holds as well, demonstrating ii). �

Proof of Theorem 1. By way of contradiction, assume that lim
N→∞

k∗(N)
N = 0 does not hold. This implies

that there exists a subsequence {Nj} such that lim
j→∞

k∗(Nj)
Nj

= b > 0, so for Nj large enough,
k∗(Nj)
Nj

> b/2.

By Lemma 2 ii), we know that for large enough Nj , truncating at 7 log2Nj outperforms truncating at

xNj for any x ≥ b/2. But this contradicts the optimality of the truncations at k∗(Nj), and so concludes

the proof for the case when payoffs are given by partner rank. By applying Corollary 1, we see that the

result also holds for any strictly increasing, convex transformation of such preferences. �

To prove Theorems 2 and 4, we show that the following lemma holds:

Lemma 3. Let τ be a profile of strategies where each man reports truthfully and women play truncation

strategies. Let σ∗ be an equilibrium in truncation strategies, such that every woman in W \{w} truncates

more at any state of the world (in the sense of FOSD) and men report truthfully. Then woman w is

weakly better off under σ∗ than under τ .
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Proof of Lemma 3. Since other women truncate more under σ∗, it is clear that the payoff to w from

the profile
(
τw, σ

∗
−w
)

is weakly higher than her payoff under τ . Moreover, since σ∗w is a best response to

σ∗−w, the payoff to w from
(
σ∗w, σ

∗
−w
)
. is weakly higher than that under

(
τw, σ

∗
−w
)
. �

Proof of Theorem 2. i) is a direct consequence of Lemma 3. Proofs for ii) and iii) were given in-text.

Proof of Theorem 4. i) follows from symmetry. ii) is a direct consequence of Lemma 3.

Proof of Proposition 4. To prove the proposition, we first show that if under low correlation, we

prefer truncating less to more, than under high correlation we definitely prefer truncating less to more.

First, observe that

Epα′ [v(k, P̃−w)] =
∑
P−w

pα
′
(P−w)v(k, P−w)

=
∑
P−w

[
(1− α′)p(P−w) + α′pC(P−w)

]
v(k, P−w)

=
∑
P−w

[
(1− α′)p(P−w) + α

1− α′

1− α
pC(P−w) +

α′ − α
1− α

pC(P−w)

]
v(k, P−w)

=

(
1− α′

1− α

)
Epα [v(k, P̃−w)] +

(
α′ − α
1− α

)
EpC [v(k, P̃−w)].

Now suppose that for k1, k2 ∈ {1, . . . , N} with k2 > k1, we have

Epα [v(k2, P̃−w)] ≥ Epα [v(k1, P̃−w)]. (8.0.3)

Then since

EpC [v(k2, P̃−w)] ≥ EpC [v(k1, P̃−w)],

we must have

Epα′ [v(k2, P̃−w)] ≥ Epα′ [v(k1, P̃−w)]. (8.0.4)

If the inequality in (8.0.3) is strict, then so too is the inequality in (8.0.4).

We can now use this payoff comparative static to sort optimal truncation points as follows.

By definition, kl(α, p, uw) satisfies

Epα [v(kl(α, p, uw), P̃−w)] > Epα [v(k, P̃−w)] ∀ k < kl(α, p, uw).

From (8.0.4), we must then have

Epα′ [v(kl(α, p, uw), P̃−w)] > Epα′ [v(k, P̃−w)] ∀ k < kl(α, p, uw),

so that kl(α
′, p, uw) ≥ kl(α, p, uw).

Similarly, kh(α, p, uw) satisfies

Epα [v(kh(α, p, uw), P̃−w)] ≥ Epα [v(k, P̃−w)] ∀ k < kh(α, p, uw).

From (8.0.4), we must then have

Epα′ [v(kh(α, p, uw), P̃−w)] ≥ Epα′ [v(k, P̃−w)] ∀ k < kh(α, p, uw),

so that kh(α′, p, uw) ≥ kh(α, p, uw). �
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duction à l’analyse mathematique des algorithmes. Les Presses de l’Université de Montréal, 1976.
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