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1. Introduction

This paper considers the question of whether or not hyperbolic discounting adds enough
flexibility to an otherwise standard growth model for the saving rate to exhibit non-monotonic
dynamics. It is well known that the standard neoclassical growth model with Cobb-Douglas
technology and isoelastic preferences — one of the most frequently used frameworks in
macroeconomics — exhibits a monotone transition path of the saving rate. For a reasonable
calibration, it exhibits a monotonously declining transition path as an economy develops. This
property, however, is counterfactual. As discussed in Section 2, ample empirical evidence
suggests two regularities: an increase in the saving rate as an economy experiences growth of

per capita income; a non-monotone transition path, typically featuring a hump.

The standard growth model’s counterfactual prediction of a monotone declining transitional
path of the saving rate is unappealing. Often, analyses of the effects of tax shocks are
concerned with effects on transitional paths. Or to think of another example, the analysis of
development policy typically focuses on transitional dynamics. Therefore, a growth

framework should be flexible enough to allow for a non-monotonic saving rate dynamics.

The problem of the standard growth model’s counterfactual prediction of transitional
dynamics has been addressed in the literature. Gémez (2008), among others, provides a
solution by allowing for a more flexible CES technology. In this paper, we provide a different
solution in that we allow preferences to exhibit hyperbolic discounting. Both approaches add
enough flexibility to the otherwise standard growth model for the saving rate to exhibit non-

monotonic dynamics.

In the standard neoclassical growth model, preferences are independent of time. Empirically,
however, there is abundant evidence for the pure rate of time preference to decline over time,
i.e., for hyperbolic discounting (cf., e.g., Ainslie 1992, and Laibson 1997). Discount rates are
time sensitive, exhibiting a “present bias”: people tend to put especially high weight on a
given gain/loss delayed in the near future as opposed to the same gain/loss delayed in the
more distant future. In this paper, we investigate the effects of hyperbolic discounting on
transitional paths of the saving rate in three frameworks. The first one is a “standard”

framework in which sophisticated households fully commit to their initial intertemporal



consumption plans in spite of hyperbolic discounting. In the second framework, along the
lines of Caliendo and Aadland (2007) as well as Findley and Caliendo (2011), naive
households, who are not aware of their future impatience, are revising their initial
intertemporal consumption plans at every instant in time. In the third framework, we
reconsider Barro’s (1999) Cournot-Nash equilibrium without commitment. Employing these

frameworks, our analysis gives rise to the following results.

First, in most cases, hyperbolic discounting adds enough flexibility to the otherwise standard
growth model (with Cobb-Douglas technology) for the saving rate to exhibit non-monotonic
dynamics. In some cases, however, hyperbolic discounting is observationally equivalent to
exponential discounting, so that the saving rate dynamics is monotone. Second, observational
equivalence occurs in two cases: in the framework with naive households when utility is log-
linear and the discounting function belongs to the class of regular discounting functions (see
below); in the Cournot-Nash framework when utility is log-linear and the rate of interest is
constant over time. Third, we introduce the class of regular discounting functions. This class
captures cases in which the second order growth rate of the discount rate is a constant
multiple of the first-order growth rate. Most discounting specifications employed in the prior
literature are special cases of the regular discount function, notably exponential discounting
(i.e., the discount rate is constant), less-than-exponential discounting, classical hyperbolic

discounting (Ainslie 1992), or zero discounting.

This paper is related to several previous studies on saving rate dynamics. Gomez (2008) and
Smetters (2003) introduce a CES production technology with elasticities of substitution
differing from one. They show that a CES between capital and labor below (above) unity
might imply a hump shaped (inverse-hump shaped) transitional path of the saving rate.
Gobmez (2008) provides a more general analysis than Smetters (2003) in the presence of CES
technology. Litina and Palivos (2010) introduce endogenous technical progress. Both Gdmez
(2008) and Litina and Palivos (2010) show conditions under which there is overshooting
(undershooting) behavior of the transition paths of the saving rate. Antras (2001) shows that
the introduction of a minimum consumption level (Stone-Geary preferences) may also imply
a hump shaped savings profile. In his model, the intertemporal elasticity of substitution (IES)
rises over time, which first weakens the substitution effect and later on, the substitution effect

dominates the income effect, thereby generating a hump shaped transitional path. He also
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provides econometric evidence in support of the non-monotonic transitional path of the saving

rate both in OECD countries and in a larger cross-section of countries.

The previous literature demonstrates that the saving rate may exhibit a non-monotonic
transition path in a neoclassical growth model with CES technology. In our paper, we
maintain Cobb-Douglas technology. However, in contrast to the prior literature, we allow
preferences to exhibit hyperbolic discounting. We contribute to the existing literature by
showing that the introduction of hyperbolic discounting is an alternative explanation for an
increasing or non-monotonic transition path of the saving rate. The main mechanism works
via the Euler equation. Hyperbolic discounting adds a discounting effect to the substitution
and income effects. As the pure rate of time preference declines over time, the difference
between the rate of interest and the rate of time preference increases which, ceteris paribus,
raises the return on savings. Unless observational equivalence occurs, the discount rate effect
gives rise to an increasing saving rate or to non-monotonic dynamics of the saving rate — even

with Cobb-Douglas production technology.

Section 2 provides empirical evidence supporting two stylized facts: as an economy grows, its
saving rate tends to rise; the transitional path of a country’s saving rate behaves non-
monotonically over time. In addition, Section 2 briefly discusses the theoretical argument
behind the non-monotonic dynamics of the saving rate in the presence of a discounting effect.
Section 3 presents the benchmark model with hyperbolic discounting under full commitment.
Transitional paths of the saving-rate are shown to be non-monotonic, even in the case of
logarithmic utility. In addition, we introduce a generalized class of hyperbolic discounting
functions that we term regular discounting functions. In Section 4, we focus on a model with
naive consumers having a short planning horizon — in the absence of commitment. We also
briefly review Barro’s (1999) Cournot-Nash equilibrium. In both frameworks the saving rate
may exhibit non-monotonic transition paths, but we also identify cases in which hyperbolic
discounting is observationally equivalent to exponential discounting. Section 5 concludes, and

the Appendix contains a number of derivations and proofs of propositions.



2. Empirical evidence of the behavior of the saving rate, and the theoretical argument

2.1 Empirical evidence

Data on gross national saving rates suggest two regularities: as a country develops, its saving
rate tends to increase, at least over some range; and, over time, saving rates may behave non-
monotonically (hump-shaped). Neither of these regularities can be explained by a (reasonably
calibrated) standard neoclassical growth model with Cobb-Douglas production, as shown by
Barro and Sala-i-Martin (2004, p.135 ff.).

Stylized Fact 1. As a country develops, its saving rate tends to increase.

Maddison (1992) provides evidence for 11 countries whose savings account for about half of
world savings. He finds that over the last hundred-twenty years, the saving rates of all but one
country (U.S.A.) increased substantially over time. Table 1, which is based on Barro and Sala-

i-Martin (2004), provides empirical evidence for national saving rates.

Table 1. Gross national saving rates (percent)

Period Australia  Canada France India Japan Korea U.K. U.S.A.
1870-89 11.2 9.1 12.8 - - - 139 191
1890-09 12.2 11.5 14.9 - 120 - 13.1 184
1910-29 13.6 16.0 - 6.4 171 24 9.6 189
1930-49 13.0 15.6 - 7.7 19.8 - 48 141
1950-69 24.0 22.3 22.8 122 321 59 17.7 19.6
1970-89 22.9 22.1 23.4 194 337 262 194 185

Source: Barro, Sala-i-Martin (2004, p.15)

In all countries, except for the United States, present saving rates are significantly above their
levels in late nineteenth century. Similar evidence is seen in East Asia for the last half
century. With the exception of the Philippines, gross national saving rates have increased in

the Asian “Tiger-countries” over the last fifty years, as shown in Table 2.



Table 2. Gross national saving rates in East Asian countries (percent)

Period Hong Kong Taipei Singapore Malaysia  Thailand Indonesia Philippines

1960’s 31 14 8 25 22 7 17
1970’s 32 27 35 29 26 19 21
1980’s 34 31 42 33 26 33 20
1993 37 28 50 41 35 34 14

Source: Leipziger and Thomas (1997)

Along the same lines, Loayza et al. (2000) show for 98 countries that private saving rates rise

with the level of real per capita income. We now turn to:

Stylized Fact 2. The transitional path of a country’s saving rate behaves non-monotonically.

For most countries, the respective transitional path exhibits a marked hump.

That the gross saving rates are lower in the eighties than earlier is a well documented
regularity (cf. Shafer et al. 1992). Schmidt-Hebbel and Servén (1999) as well as Antras (2001)
demonstrate that for most of 24 OECD countries, as well as for the OECD as a whole, the
transitional paths of the saving rates exhibit a hump when considering the last half century.
Maddison (1992) shows that in many countries, after World War 11, the saving rate exhibits
overshooting. Similar trends are reported by Bosworth et al. (1991), Christiano (1989), Chari
et al. (1996), and Tease et al. (1991).

Below, we show that when preferences exhibit hyperbolic discounting, a neoclassical growth
model with Cobb-Douglas technology is, in many cases, consistent with those stylized facts.

2.2 The theoretical argument, in brief

As a country develops, the real rate of interest declines, giving rise to both a substitution and
an income effect. As the return on saving declines, ceteris paribus households tend to lower
the saving rate over time, $<0 (substitution effect). On the other hand, the desire for
consumption smoothing requires a household in an economy distant from the steady state to
consume more relative to actual income. As the economy develops, however, consumption

relative to income declines. As a consequence, this income effect tends to raise the saving rate
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over time, $>0. In general, these two effects may give rise to a complicated dynamics of the
saving rate. With Cobb-Douglas production, however, it has been demonstrated by Barro and
Sala-i-Martin (2004) that the dynamics of the saving rate is always monotonic — a

counterfactual prediction, as shown in Section 2.

The consideration of hyperbolic discounting in the standard framework adds a third effect that
we term discounting effect. Over time, as the pure rate of time preference declines, the
difference between the rate of interest and the rate of time preference increases, ceteris
paribus. This causes the “return on savings” to increase, which lowers the substitution effect
and tends to increase the saving rate. Taking the discounting effect into account, in addition to
the substitution and income effects, may give rise to an increasing saving rate or to non-

monotonic dynamics of the saving rate — even with Cobb-Douglas production technology.

This argument, while reasonable, holds true only in the absence of observational equivalence.
In some cases, as analyzed below, a growth model with hyperbolic discounting is
observationally equivalent to the corresponding standard growth model with a constant rate of
time preference. That is, for every pattern of the hyperbolic discount function, there exists a
constant rate of time preference that gives rise to exactly the same transitional dynamics of
the saving rate (and those of the other variables of the model). In these cases, hyperbolic
discounting does not affect the saving rate dynamics — specifically, hyperbolic discounting

does not imply a non-monotonic saving rate dynamics.

3. The neoclassical growth model with hyperbolic discounting

We modify the standard neoclassical growth model in that we allow the pure rate of time
preference to depend on time. Time is considered a continuous variable in our model.” The
most prominent example of a time-dependent rate of time preference occurs with hyperbolic
discounting. Psychologists and behavioral economists argue that an individual discounts the
near future at a greater rate than the distant future (cf. Ainslie 1992 or Laibson 1997). We

argue below that, in the presence of commitment technologies, the resulting model is not

2 For simplicity of notation, we let subscript t denote time.
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observationally equivalent to the standard neoclassical growth model (see also Gong et al.,

2007). In the subsequent section, we extend the analysis to a framework without commitment.

3.1 The benchmark model

3.1.1 Production

Let the aggregate production function be
Y, =KZ(AL)"™, O<a<1, (1)
where Y, is (date t-) output, L, labor input, K, capital input, and A an index of labor-

augmenting productivity that evolves through exogenous disembodied technical change:

A=¢", y>0. )
We consider a closed economy so that national income accounting implies
Y, =C +1,, 3)

where C, is aggregate consumption. The capital stock develops according to
K, =Y,-C,—3K,, >0, (4)

where ¢ is the rate of depreciation of capital.

We now embed the described technology into a market economy with perfect competition.

The representative firm chooses inputs so as to maximize the profit for a given real wage, w, ,
and capital rental rate, R,. Given equilibrium in the factor markets, the rental rate must satisfy
R =aY, /K., and the following no-arbitrage condition holds: r, =R —&, where r, is the rate

of return on the market for loans.

The dynamics of the production sector is best described by the ratios of output to capital and

consumption to capital. We denote the transformed variables by z =Y, /K, and x, =C,/K,.*

In the following, dating of variables is suppressed unless when needed for clarity. Let g,

® The transformation of variables allows for expressing the dynamic system as well as the phase diagrams in the

Appendix in a simple way: growth rates become linear functions of (x, z). However, we continue to work with

untransformed variables in the further frameworks below.
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denote the growth rate of some variable y. Then the capital accumulation equation becomes
g« =Z—x—9. Furthermore, the growth rate of output equals g, =g, +(1—a)(¥+n), with

n>0 being the population growth rate. Combining both growth expressions, the dynamics of

the production sector is given by

9, =9 — 9 =(@-D(z—-x=3)+{1-a)(y+n). (®)
3.1.2 A representative household

The representative household has L, =e™ members, each inelastically supplying one unit of
labor per unit of time. We allow the pure rate of time preference, p,, to depend on time.
Function p, has the following properties. At t=0, p,=p. Following the literature on
hyperbolic discounting, we allow p, to decline over time: p, <0, and lim,__ p, = p, Where

p =0 represents a lower bound on the instantaneous discount rate. Specifically, p>p, > p.

t
- Ipsds

We define a household’s discount factor by D,=e ° , implying that the absolute

. . . D
instantaneous rate of time preference at date t is given by p, = _Et'

t

A household’s preferences are described by an instantaneous CRRA utility function with
absolute elasticity of marginal utility of consumption equal to . Facing given market prices

and equipped with perfect foresight the sophisticated household chooses a consumption plan

C, ., S0asto

°°C1—9_1
— t
max Uo_jl LD dt

0

s.t. K, =rK +wL -cL, K,given,

—jrsds
Ke?°® =20,

Iimt—>oo t
where c, is per capita consumption, and the inequality is the No-Ponzi-Game condition. To

ensure boundedness of the utility integral, we impose the following parameter restriction:



@-0)y+n—Ilim__p =1-68)y+n-p<0. (6)

Define the Hamiltonian by

1-0

C
H(c,, K, #4.1) :1:9 LD, + 4 (RK, +wL —cLy).

Households are impatient but not shortsighted. They are aware of the fact that they are more
impatient in the near than in the distant future (sophisticated households). In this section,
households are considered to be able to fully commit to their optimal consumption plans over
time. Below, we discuss commitment and analyze different frameworks without commitment.

An interior solution satisfies the Keynes-Ramsey rule,

ﬂ:ﬁ—Pt:aZt—5—Pt (7
C, 0 0
—]rsds
and the transversality condition lim,_,_ Ke ¢ =0.

3.1.3 Dynamics of the economy

Notice that g, =g, +n—g, . We can therefore describe the dynamics of the economy by two

differential equations in the endogenous variables x and z:

i~ | @ -0 )@ -x -5 x

Z, = (a—l)(Zt % —0)+([L-a)(y +n) Z,

: (8)

where x, is a jump variable, and z, is a predetermined variable.

Figure 1 shows the x=0-and z=0 lines in (z,x) space. The decline of the instantaneous
discount rate makes the x =0 line shift downwards over time. The figure also shows a steady

state. A (non-trivial) steady state (SS) of the system is a point (z",x"), with both coordinates
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strictly positive, such that x(z*,x") =2(z",x) =0, where an asterisk marks steady state values

of variables. If parameter restriction (6) holds, there exists a nontrivial steady state with:

2 X =(5+7/¢9+p’5+7/H+p_(n+7+5)j' ©)
(24

(24

Figure 1. x=0-and z=0 lines in (z,x) space, t, <t <t

In Figure 1, points A and B do not represent steady state equilibria. As the x =0 line shifts
over time (and becomes stationary only asymptotically), the dynamical system exhibits an
asymptotic steady state, SS, which is a saddle point and is saddle point stable by the fact that

a <1." Figure 1 also shows that, both x_and z, decline along the transition paths, as a

growing economy develops.
3.2. Behavior of the saving rate under commitment

At date t, the (gross) saving rate equals s, =1—-x,/z,. As an economy develops, whether the

saving rate increases or decreases (possibly non-monotonically) along the transition path

depends on whether z, declines by more or by less than x, > Generally, the behavior of the

saving rate is complicated along the transition path as a substitution effect opposes an income

* The determinant of the Jacobian of the dynamical system at the steady state equals —a(1-a)xz" /0 <0.
® Due to strict concavity of the production function, as K, increases, z, =Y, / K, decreases.
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effect. As an economy develops, z, declines and so does the rate of interest. This substitution
effect lowers the return on savings and tends to lower the saving rate. At the same time, as z,

declines, the difference between current and permanent income decreases. That is, relative to

income, consumption declines. This income effect tends to raise the saving rate.

For a model with Cobb-Douglas production and without hyperbolic discounting ( p, = p), itis
well known that, as an economy develops, the saving rate monotonically decreases (increases)
if 0>s =1-x"/2 (if 0'<s =1-x"/2") (Barro, Sala-i-Martin 2004, p.135 ff.). For a
reasonable calibration,® if 6<17 — which is considered plausible’ — the saving rate
monotonically declines as an economy develops. This implication, however, is counterfactual
in the sense that more developed economies often exhibit a higher saving rate than less

developed economies, as shown in Section 2.

Moreover, the discounting effect opposes the substitution effect, giving rise to non-monotonic

behavior of the saving rate.

Proposition 1. Consider the neoclassical growth model with Cobb-Douglas production and

exponential discounting ( 5, =0). Then the transition path of the saving rate is monotone.
In the case of hyperbolic discounting (6, <0) with full commitment, however, the transition

path of the saving rate can also exhibit non-monotone transition paths. Specifically, along the

transition path, the saving rate may overshoot or undershoot towards its steady state level.

Proof. See Appendix A.

As shown in Appendix A, the sign of §

., depends on the sign of

. =(5+p, +70) | (ab)—(n+y+35) . Specifically,

sgn s, =sgn(-y,) . (10)

® Barro and Sala-i-Martin (2004) suggest « = 0.3, =0.02,6 =0.05, p = 0.02,n =0.01.

" Hall (1988) favors a value of 0 =5.
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Notice that i/, = p, / («8) . Consider the case of exponential discounting: v, = p, / (a6) =0.
In this case, the sign of i, does not change over time, and the saving rate is either

monotonically decreasing or monotonically increasing over time.

In case of hyperbolic discounting, v/, = o, / (a8) <0, several possibilities emerge. First, p >0
is large enough so that i, is positive for all t. In this case, the saving rate monotonically

declines, as was the case without hyperbolic discounting.?

Second, i, >0 initially (for large p,), and y, <0 as time proceeds and p, declines. In this

case, the saving rate initially declines but then increases towards its steady state level (see
Appendix A, Figure Al). Intuitively, while the lower interest rate provides the household with
an incentive to reduce its saving rate, this incentive is outweighed by a larger incentive to save
as the pure time preference rate declines, thus resulting in a higher saving rate ceteris paribus.
Thus, households reduce savings by less as compared to the situation with a constant discount
rate. Over time, the weight of the substitution effect declines, and the income effect takes

over, eventually. At this point, the saving rate starts to increase towards its steady state value.

Third, if the stable arm, in a phase diagram, shifts downward over time, but still has a positive
slope in steady state, the saving rate first increases but starts to decrease as of a specific date

(see Appendix A, Figure A2).

In this framework, hyperbolic discounting is never observationally equivalent to exponential
discounting. That is, given a hyperbolic discount function, there does not exist a constant rate
of time preference that gives rise to exactly the same transitional dynamics of the saving rate.
To see this, we employ standard methods to derive per capita consumption.® To simplify the

exposition, we assume y=n=0, L =1, #=1. Let R(t,O)zﬁrSds. Then, per capita

consumption becomes:

& Similarly, if p, is so small that w, is negative from the beginning, the saving rate monotonically rises over

time. This possibility, however, requires an unrealistically high value of .
® See Appendix B for a similar derivation.
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[ko + fwr g RO dr}eR“‘O)
C = D..

t fDTdr t

(11)

The denominator of (11) equals some constant in both cases, exponential- and hyperbolic

discounting. Observational equivalence requires the factor D, in case of exponential

t
discounting to equal a constant (&) times the discount factor in case of hyperbolic
discounting for all t>0:

et =¢ g e , t>0. (12)
Requirement (12), however, is satisfied if and only if p, = p for all t>0." That is, under

hyperbolic discounting, when p declines over time, the condition for observational

equivalence, (12), is never satisfied. As a consequence, the saving rate may exhibit non-

monotonic transition paths.

Observe that the results of Proposition 1 presume that the representative agent has access to
commitment technologies and fully commits to his decisions. In Section 4 below, we discuss

the significance of this assumption, and we consider a framework without commitment.
3.3 Regular discounting

In the following, we specify a rather general class of discounting functions that encompasses
many special cases employed in the previous literature. Following the concepts employed by

Groth et al. (2010), we call this class the class of regular discounting functions.

The first-order growth rate of the discount factor is given by g, =D, /D, =-p, <0. The
second-order growth rate of the discount factor is given by g, , =9, /9, =0,/ o, . Following

Groth et al. (2010), we call discount functions regular, if

1% Take the natural logarithm on both sides: —pt + J; p.ds = Ing = constant. Taking the derivative with respect

to time yields: p = p, .
14



90 =80s B=0, (13)

where the constant S is called the dampening coefficient. Given D, =1 and p,=p>0, the

second order differential equation (13) has the unique solution

D, =(+pB) ™", p = 1+f—7 3 (14)
The regular discount functions (14) encompass a number of special cases, depending on the
specific value of the dampening parameter. First, if =0, p,=p. This is the case of
conventional exponential discounting. Second, if £ >0, the discount rate declines in t. This is

the case of hyperbolic discounting. If =1, D, =(1+pt)™". This is the case of classical

hyperbolic discounting.'’ As the dampening parameter rises, the rate of decline of the
discount rate becomes larger, and as the dampening parameter approaches infinity, the

discount rate declines to zero instantly. Table 3 summarizes regular discount functions.

Table 3. Regular discount functions

B P D,
Regular discounting (general) pl 1+ ppt L+ ppt)™*
Exponential discounting £=0 P e
Classical hyperbolic discounting p=1 pl 1+ pt 1/ 1+ pt
No-discounting f— o 0 1

Figure 2 shows time paths of the discount rate for various values of the dampening
coefficient. The figure illustrates that regular discount functions capture the whole spectrum

In the original, classical psychological literature, hyperbolic discount functions like 1/t or (1+pt)™" were
used (Ainslie, 1992).
15



of discount functions between exponential discounting, less-than-exponential (that is,

hyperbolic) discounting, and no discounting at all.*?

Pt

0.030
=0
0.025 k
0.020 F
0.015 F B=1
0.010 F
0.005 F =10
B-oo
2 \A » 1 » » » 1 » » 2 ] 2 » 2 ] » 2 2 1 t
0 20 40 60 80 100

Figure 2. Time paths of the discount rate with p, = p =0.03.

With regular discounting, the growth rate of the saving rate becomes:

az,—o—pl 1+ ppt
7

g,=a z,-X% -0 +(l-a)y—an- (15)

With this notation at hand, we are now prepared to study numerical simulations for transition

paths of the saving rate.*®

3.4 Numerical simulations of the saving rate for regular discounting functions

To assess the impact of hyperbolic discounting on the transition path of savings, we consider

an adverse shock on the predetermined state variable z. At time zero, starting from an initial

298 g>o0, lim__ p, =0 for regular discounting functions. For the more general framework discussed above,

the limit, denoted by o , was allowed to take on a positive value as well.

3 Regular discounting satisfies Farzin’s (2006) condition for Weitzman’s “stationary equivalence” property to
hold also under a time-declining discount rate function (cf. Farzin 2006, p.528). Thus, there does exist a
permanently sustaining constant consumption (utility) path under a time-declining discount rate. This does not,

however, imply observational equivalence, as discussed for (11) above.
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steady state, we increase the value of the predetermined variable, z, by 50%.** The resulting
time paths show the non-linearized transitions of the saving rate (and other variables of
interest) from far away from the steady state to the steady state equilibrium. These transition
paths are interpreted as showing the development of the saving rate (and other variables) as a

country develops, i.e., as its stock of capital increases (z decreases).™

Table 4. Baseline values of background parameters

Preference parameters p=0.03, 0=3
Production parameters a=0.3, y=0.02, 6=0.05
Population growth n=0.01

Note. The time unit is one year; the dampening coefficient, S, varies across simulations.

Figure 3, presents transition paths of the saving rates for the baseline values of background

parameters and for various values of £ . The calculations of the transition paths are based on

the Relaxation Algorithm (Trimborn et al., 2008).

20 40 60 80 100 120 140

“With « =0.3, this shock corresponds to a decline in the capital stock by 71%. As the capital stock increases, z
decreases because of the concavity of the production function.

> We employ the Mathematica implementation of the Relaxation Algorithm (Trimborn et al., 2008) to produce
the numerical results documented in this paper. The code is available from the authors upon request. Notice that
the shock is introduced on the state variable, not on a specific parameter. All parameters take on the same values
before and after the shock. That is, the shock is introduced only to allow the Relaxation Algorithm to calculate
transition paths.
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Figure 3. Time paths of the saving rates with different values of the dampening factor.

The steady state value of the saving rate depends on the value of the dampening factor. If

B =0, lim__ p =p,and the associated steady state saving rate is denoted by s™ (= 0.17). If,
however, #>0, lim,__ p, =0, and the associated (higher) level of the steady state saving

rate is denoted by s~ (=0.22) . The baseline value of the elasticity of marginal utility is 6 = 3.

Hence, with exponential discounting (8= p, =0), the saving rate monotonically decreases

along the transition path towards s”.

With hyperbolic discounting, however, transitional paths exhibit a non-monotonic pattern.
Whether the saving rate over- or undershoots depends on the value of the dampening
coefficient. Intuitively, if the dampening coefficient is “low,” the rate of interest declines at a
higher rate than the discount rate. In this case, the optimal consumption growth rate, as given
by (7), declines over time. That is, the household shifts consumption from the future to the
present, thereby lowering the saving rate initially. Over time however, as the consumption
growth rate declines, the saving rate increases towards its steady state level. In contrast, if the
dampening coefficient is “high,” the rate of discount declines at a higher rate than the interest
rate, i.e., the optimal consumption growth rate, rises over time, and the household shifts
consumption from the present to the future. So, initially, the saving rate is increased. Over
time however, as the consumption growth rate rises, the saving rate decreases towards its

steady state level.

The key feature of this model with full commitment — allowing for nonmonotonic saving

behavior — consists in the fact that the (effective) discount rate, p,, declines over time. As

discussed below, this feature may also occur in frameworks without commitment.

Two more points are worth emphasizing. First, hyperbolic (regular) discounting generally
implies a non-monotonic transition path of the saving rate, as observed empirically. Second,
with a “low” value of the dampening coefficient, the saving rate increases over (most of the)
time as per capita income grows. This is true for realistic parameter values, as given in Table
2 (specifically € =3). However, with a “high” value of the dampening coefficient, the saving

rate exhibits a hump, as is consistent with Stylized Fact 2.
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Corollary 1. Consider the neoclassical growth model with Cobb-Douglas production and

logarithmic utility with hyperbolic discounting (5, <0) under full commitment. The saving

rate regularly exhibits non-monotonic transition paths.

It is important to emphasize that the result of non-monotonic transition paths of the saving
rate is not due to the fact that 4 =3. As long as the representative agent commits to her
decisions, non-monotonicity of the transitional paths of savings is also present for a log-linear
utility function. Figure 3A displays the transitional paths of the saving rate — parallel to those
of Figure 3 — but with @ =1 rather than 6 =3.

St

0'35 \
—_—
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0.25
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Figure 3A. Time paths of the saving rate with different values of the dampening factor under

log-linear utility.

4. Behavior of the saving rate under hyperbolic discounting without commitment

In the previous section, households are assumed to commit to their decisions. Partial or full
commitment is a more convincing case than one is inclined to think at first consideration.
There is an abundance of commitment technologies. These include all illiquid assets. "All of
the illiquid assets ... have the same property as the goose that laid golden eggs. The asset
promises to generate substantial benefits in the long run, but these benefits are difficult, if not
impossible, to realize immediately." (Laibson 1997, p.445) Specific illiquid assets include

retirement plans, or assets that are associated with a steady stream of benefits but are hard to
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sell, like houses. As emphasized by Laibson (1997, p.445), in the FED publication Balance
Sheets for the U.S. Economy 1945-1995, two thirds of domestic household assets are
considered illiquid — not even taking into account social security wealth or human capital.

Notwithstanding these arguments, we consider the case of no commitment in the following.
The proceeding sections are concerned, respectively, with sequential planning of households
with short planning horizons, and with Cournot-Nash equilibria, both in the absence of

commitment.
4.1 No commitment and short-term planning

In the previous section, we argue that in a model with hyperbolic discounting and full
commitment, it is the time-dependency of the discount rate that yields non-monotonic saving
paths. In the prior literature, it is argued that under hyperbolic discounting — in the absence of
commitment — one ends up with a constant effective discount rate so that the model is
observationally equivalent to the respective model without hyperbolic discounting (Findley
and Caliendo 2011). Here, we argue that this, while quite possible, is for the most part not the

case.

In this subsection, we consider a framework with a naive household who is not aware of its
time-inconsistent preferences, that is, of its future impatience. The household, endowed with a
short planning horizon, h, re-optimizes at all t > t,, thereby altering its original (time-t=t,)
intertemporal consumption plan. Will we still encounter non-monotonic transition paths of the
saving rate? The answer depends on whether or not the discounting function is regular and
utility is log-linear. As shown by Findley and Caliendo (2011), short-term planning perfectly

offsets hyperbolic discounting in case of log-linear utility.

In the following, the exponential discount function is characterized by*®

I

18I the previous section, we denoted the discount factor by D = e """ Here we generalize this notation to
allow for any initial t : D(7,t).
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~["pas + _ehe
p=p, Dr,)=e k" gt th(r,t)dr=1 ; , (16)

while regular hyperbolic discount functions are characterized by

B 2] _ —j':psds _ —( VB
Ps = 1+ﬁﬂ(s—t)' D(T,t) € 1+ﬂp(f t) ) (17)
("D tydr =2 hpp) ™77
(-1+p)p

D(z,t) represents the discount factor at date 7 as seen from date t.

Every household only plans for some period of finite length, h, and we allow a household to
re-optimize at every date t. The procedure applied follows Caliendo and Aadland (2007), and

Findley and Caliendo (2011). In order to simplify notation, we consider n=0=y.

At every point t, a household solves a short-horizon (fixed-endpoint) control problem:

to+h _1-0 _1

max f 1 7 D(z,t,)dz, 7€t t,+h]

C

ty
stk =rk +w —c,, k_given, 7e[t;t,+h] (18)
kt0+h =0.

In (18), D(z,t,) is a general discounting function, where discounting is pursued from the
viewpoint of t,. The solution to (18) is planned consumption from the perspective of t,. The
(fixed-endpoint) terminal condition Kyon =0 indicates that the household is concerned only

with the “next” h periods. It does not imply that wealth (capital) is actually equal to zero at

t, +h, as the household’s planning horizon is continuously sliding forward. As the planning

horizon is sliding forward, previous consumption plans are invalidated, and the household re-

optimizes and updates its consumption plan at every t. That is, although a household plans to
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exhaust its resources within h periods, it never actually exhausts its resources in finite time, as

it keeps re-planning its consumption plans.*’

As demonstrated in the Appendix, application of the Maximum principle to (18) yields

+h
K, +[ w_ e RN dr
c = ,

t 1-6
["DEtyres s (19)

k. =rk +w, —c., k_given.

IS

S

Equation (19) presents optimal consumption of a short-sighted household with hyperbolic

discounting, as captured by the denominator. In (19), c, is derived as the envelope of

infinitely many initial values from a continuum of planned time paths (cf. Appendix).

The important insight from (19) consists in the fact that the denominator accounts for the
propensity to consume out of total wealth. The denominator, however, does not necessarily
depend on the shape of the discounting function. Consider & =1. Then, the propensity to
consume depends on the integral, that is, on the area below the discounting function. In other
words, if the integrals of different discounting functions — for example an exponential- and a
hyperbolic discounting function — yield the same values then these discounting functions are

observationally equivalent.

Proposition 2. Consider a naive household with a short planning horizon, hel] _, , and with

logarithmic utility, & =1. Then, every framework with regular hyperbolic discounting, under

D(z,t| p), is observationally equivalent to a corresponding framework with exponential
discounting, under E(z,t|p), for some pe 0,p,. ., Where p<p. As a consequence, the

saving rate follows a monotone transition path in spite of hyperbolic discounting.

7 Suppose the discount rate is constant in time. Then, only in case h approaches infinity, the transversality
condition induces the household to pick the optimal consumption path. As h approaches infinity, the short-term
planning model approaches the neoclassical standard model. Once h is finite, however, the short-term

consumption plans differ from the standard optimal neoclassical consumption plan.
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Proof. Let E(z,t|p) denote the exponential discount function, and let D(z,t|p) be the

regular hyperbolic discount function with > 0. The upper bound p, .. is implicitly defined
by f+hD(‘r,t|1)dz'= _[HhE(r,t|pmaX)dr. Figure 4 provides intuition for the proof that is

analytically given in the Appendix. ||

The idea of the proof is depicted in Figure 4. For p=0, [ D(z,)dz= [ E(z,t)dr=h.

For pe(01] and #>0, [ D(r.t| p)dz> [E(,t|p)dz. In Figure 4, it can easily be

seen that for all pe 0,1, there exists pe 0, p,,, for which the condition for observational

equivalence holds. Specifically, for 8 =1,

("Dt p)dr = ["E@ ] p)dr, t20. (20)

+h
f D(r,t)dr
t

h = exponential discounting
regular discounting (8>0)

equivalence

Figure 4. Observational equivalence of exponential and regular hyperbolic discounting under

log-linear utility.

It follows from Proposition 2 that under hyperbolic discounting, there always exists a constant
discount rate — independent of calendar time — for which consumption and saving rate
dynamics are equal to the ones in a model with exponential discounting. As a consequence,
under the conditions of Proposition 2, a model with regular hyperbolic discounting does not

exhibit a non-monotonic saving rate dynamics. This result is in stark contrast to Proposition 1
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and Corollary 1, where it is shown that under full commitment and an infinite planning

horizon, the saving rate dynamics may be non-monotonic — even with logarithmic utility.

A special case of Proposition 2 refers to classical hyperbolic discounting (4 =1) and was

previously discussed already by Findley and Caliendo (2011).

Corollary 2. (Classical hyperbolic discounting)

Consider a naive household with a short planning horizon, hell and with logarithmic

++7

utility, € =1. Then, classical hyperbolic discounting is observationally equivalent to
exponential discounting. As a consequence, the saving rate follows a monotone transition

path.

As argued by Findley and Caliendo (2011), under the conditions of Corollary 2, short period
planning perfectly offsets the effects of classical hyperbolic discounting.

Proposition 2 does not capture that case of non-regular hyperbolic discount functions.
Remember, following Groth et al. (2010), we call a hyperbolic discount function regular, if
the second order growth rate of the discount rate is a constant multiple of the first-order
growth rate. In contrast, we consider a hyperbolic discount function to be non-regular, if the
second order growth rate of the discount function is a time-dependent multiple of the first-

order growth rate. That is,

2—_B p. B =P forsome t,t'>0. (21)

t

Corollary 3. Consider a naive household with a short planning horizon, hel] and with

++ !

logarithmic utility, @ =1. Then, non-regular hyperbolic discounting is not observationally
equivalent to exponential discounting. As a consequence, the saving rate may follow a non-

monotonic transition path.

With a general path of 4, (20) is not satisfied, as .[”h D(z,t| p)dz depends on calendar time,

while r+hE(r,t|p)dr does not. Therefore, with non-regular hyperbolic discounting,
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according to (19), the propensity to consume out of total wealth is time-varying, and so is the

saving rate.

It is not that clear, though, whether or not the case of non-regular hyperbolic discounting — in
a short planning horizon framework — is a natural case. In a model with cohorts, however, one

may argue that g, differs among, say, younger and older households.

Proposition 3. Consider a naive household with a short planning horizon, hell _ and with

6 = 1. If the rate of interest is not constant over time, no regular or non-regular hyperbolic
discounting function allows for observational equivalence with exponential discounting. As a

consequence, the saving rate may'® follow a non-monotonic transition path.

Proof. With a constant rate of interest, considering (19), an equivalence condition similar to

(20) can be formulated, namely:
("Dt dr= ["E@H"dr, t20.

This condition can be satisfied for regular discount functions. Once the rate of interest

becomes time-dependent, however, the corresponding equivalence,

+h L e +h B
["oEtye Vde=[TE@e Vdr, (22)

is not generally satisfied for all t>0. Both the left hand side and the right hand side integrals

become time-dependent. As, over the planning horizon, different profiles D(z,t)" and

1-0

E(z,t)Y? are multiplied by the same time-dependent factor e ¢ R(T't), (22) is generally not

satisfied for all t. ||

'8 For specific parameter constellations, the saving rate may still follow a monotone transition path. Therefore we

are careful to state “...the saving rate may follow...”.
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To summarize, with full commitment, hyperbolic discounting always leads to the possibility
of a non-monotonic saving rate dynamics. This result does not generally carry over to a model
of naive consumers with a short planning horizon. In the latter case, regular discounting with
logarithmic utility or with a constant rate of interest rules out the case of a non-monotonic

saving rate dynamics — due to observational equivalence.
4.2 No commitment and Nash equilibrium

In this section, we focus on a Nash equilibrium involving a sophisticated representative
consumer. Each date-t-self decides how much to consume and how much to save so that
neither the present nor any future self will have an incentive to deviate from the equilibrium
path. We employ the perturbation method developed in Barro (1999). We consider the same
setup and utility integral as with full commitment, above. For the sake of simplicity, we

assume a constant population, n=0, L, =1. In order to simplify notation, we employ three
discount factors: P(t,7)= J:p(s) ds; R(t,7)= J:r(s) ds; A(t,7)= '[l(s)ds. For regular
discounting,  P(t,z)=p4"In 1+Bp(t—7),  with lim, ,P(t,7)=p(t-7), and

D(t,z)=e""?,

C1~9 _1 te Cl—g _1 Cl—g _l
U =| 2—ef™dt= | 2t—e™™dt+ | 21— "tdt. 23
=l 1-0 I 1-0 J.. 1-0 @)
For asmall &, we approximate'®
c’-1 c’-1
U ~eg= + ¢ e "It 24
10 [.. 1-0 (24)

Next, we consider the growth rate of (per capita) consumption:

9 Between 7 and 7 + &, we consider consumption constant, and the discount factor equal to one. Below, we are

interested in the limit, as & approaches zero.
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G_h-A (25)

where we call 4 the effective discount rate (to be calculated). Due to hyperbolic discounting,
4 is generally different from the discount rate p,. If A varies over time, the transition path
of the saving rate may exhibit a non-monotonic pattern. In contrast, if it turns out that A, is

constant over time, then the transitional path of the saving rate follows a monotone pattern,
and the model with hyperbolic discounting becomes observationally equivalent to a model
without hyperbolic discounting. In the proceeding analysis, we follow Barro (1999) to derive

4 in a Cournot-Nash equilibrium.

Taking into account (25), we re-write (24) as:

1-0 1-6
—R(t,7+e)-——A(t,7+¢
3 ( ) 2 ( )

C179 _1 C179 _1 b
U ~eg-t + e e PIdt | 26
[ = (26)

Atany r, for a given path of A, consumption is chosen so as to maximize (26). The resulting

optimality condition becomes

1-6 1
fe 7 R(t,7) gA(ty )I:eA(t,r)—P(t,r) _1:| dt=0, (27)

where the derivation is given in the Appendix. We employ (27) to derive a more instructive

(but still implicit) path of A4 from the optimality condition (27). A quick look at the
optimality condition shows that without hyperbolic discounting — P(t,7) = p(t —7) — for (27)
to hold, the term in square brackets must be equal to zero, that is, 4 =A=p. This is the

conventional case of the neoclassical standard model with exponential discounting.

Differentiating (27) with respect to z (see Appendix) yields:

f o(t,7)P'(t,7) dt 10 B tr)-ALe) ~P(0r)
A= , o(t,r)=e? . (28)
f o(t,7) dt
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The effective discount rate turns out to be a weighted average of all future discount rates,

P’(t,7). As demonstrated in Barro (1999), the weights w(t,z) reflect the sensitivity of c. with

respect to a marginal increase in k_,_. This result leads directly to

Proposition 4. Consider the neoclassical growth model with Cobb-Douglas production and
hyperbolic discounting. Under no commitment, for the Cournot-Nash equilibrium,

(i) observational equivalence occurs ifand only if =1 or r, =r;

(i1) the transition path of the saving rate may exhibit a non-monotonic pattern if ¢ =1 and

L#r.

Proof. Statement (i) of Proposition 4 states the conditions for observational equivalence. In
this framework, by observational equivalence we mean a situation with a constant effective

discount rate: 4 =A4. In this case, the standard neoclassical growth model — with a constant
discount rate equal to p — can perfectly mimic the model with hyperbolic discounting, with a
constant A (probably different from o). Under conditions (i), A is independent of time, as
P(t,z) only depends on the difference (t—7), but not on calendar time. Similarly, if 6 #1
and r_=r, all discount factors in (28) depend on the difference (t—z), but no discount factor
depends on calendar time. Therefore, under conditions (i), A is independent of time, and

observational equivalence occurs.
Statement (ii) presents necessary requirements for the saving rate to exhibit non-monotonic

transition paths. The weights w(t,z) depend on calendar time (not only on the difference

(t—7)) if and only if both conditions in (ii) are met, in which case, A_ is time-dependent. ||

Proposition 4 suggests several results. In the absence of commitment technologies, hyperbolic
discounting does not necessarily lead to non-monotone transition paths of the saving rate. For
example, if either the rate of interest is constant or the IES equals one, the Cournot-Nash
effective discount rate is time-invariant. In this case, the transition path of the saving rate is

monotone, in spite of hyperbolic discounting.
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For the saving rate to exhibit a non-monotonic transition pattern, in addition to hyperbolic
discounting, an IES different from one and a time-varying rate of interest are needed. Suppose

0 >1 (as is empirically supported, cf. Footnote 7), then w(t,z) declines with r,. As P'(t,7)
also declines over time, the effective rate of time preference, 4, declines over time. The fact

that households effectively become more patient over time (discounting effect) gives rise to a

non-monotonic transition path of the saving rate.

To summarize, with full commitment, the effective discount rate is time dependent, and so the
transition path of the saving rate may be non-monotonic. With no commitment, a Cournot-
Nash equilibrium implies a time-dependent effective discount rate only if utility is not log-
linear and the rate of interest is not stationary.

5. Conclusions

The standard neoclassical growth model with Cobb-Douglas technology exhibits — for a
reasonable calibration — a monotonously declining transition path of the saving rate, as an
economy develops. This property is counterfactual and therefore unappealing for the analysis
of policy shocks on transitional dynamics of an economy.

In this paper, we consider the question whether or not hyperbolic discounting adds enough
flexibility to the otherwise standard growth model for the saving rate to exhibit non-
monotonic dynamics. The answer depends on the specific framework used as well as on
whether or not commitment technologies are available. The answer is “yes” for the standard
framework under full commitment. For the other two investigated frameworks — naive
consumers with short planning horizons, and the Cournot-Nash equilibrium — the answer is
“yes”, unless utility is log-linear and the rate of interest is constant. In the latter case,
hyperbolic discounting is observationally equivalent to exponential discounting and does not

affect the transitional dynamics of the saving rate.

We also present a functionally specified generalized discounting function (regular
discounting) that nests many cases employed in the prior literature as special cases. By

varying a single parameter, the uncountable collection of resulting discounting functions
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includes the cases of no discounting, exponential discounting, and classical hyperbolic

discounting.

The prior literature shows that the saving rate exhibits a non-monotonic dynamics in a
neoclassical growth model with CES technology. In our paper, we show that the introduction
of hyperbolic discounting — by adding a discounting effect to the substitution- and income
effects — is also able to explain a non-monotonic transition path of the saving rate, even in a

framework with Cobb-Douglas production technology.

Several questions are open for future research. The propositions provide necessary, not
sufficient conditions for the saving rate to exhibit non-monotonic dynamics. As seen in the
figures depicting the numerical simulations, there exist parameter constellations for which
transitional paths are monotone, in spite of the absence of observational equivalence. One
research task then is the derivation of necessary and sufficient conditions for the saving rate to
exhibit non-monotonic transition paths. Another open research question refers to partial
commitment. If we allow for the more appealing case of partial rather than full commitment
in the standard framework of Section 3, will the saving rate still exhibit non-monotonic
transitional behavior? Notwithstanding those open questions, we still hope to have shed some
light on the impact of hyperbolic discounting on saving rate dynamics in the neoclassical

growth model.
6. Appendix

A. Proposition 1.
In the following, time indexes are suppressed, unless needed for clarity. Define k = K / (AL),
¢=(cL)/(AL)=C/(AL), Y=Y /(AL). Clearly, x/z=C/Y =¢/y. Considering the

A

production function, y=k“. Finally, s=1-x/z=1-¢/y . We express the dynamic system
in the two variables k*“,x/z . Development is considered as the case in which k (thereby
Rl"’) increases over time. Consequently, we are interested in whether the saddle path

X fig L ,
Z k¥ increases or decreases in k'™ . In the former (latter) case, the saving rate decreases
z

(increases) as an economy develops. In order to consider this relationship, we express the
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dynamical system in the variables k™% ,x/z in a phase diagram. Consider first the

developments of x/z and K over time:

d x/z
dt

= [9’1(0&“’1 —5-p)+n—a(k“t—(x/ Z)k“* —5)—(1—a)(y+n)](x/ z), (29)

%:R“—(x/z)ﬁ“—ﬁ(nwmy (30)

Solve both differential equationsat d x/z /dt=0, and dk /dt =0 for (x/2):

X

7 d(x/2)/dt=0— (1_1/‘9)““/4‘21_0[ ; (31)
X -
~oraco =1-K (07 +0), (32)

where i/, = [Mp—t;ye—(n+}/+5)]
o

In (I?l““,x/z) space, X is downward sloping, as (n+y+3J)>0. At the same time,

7 ‘ d (K)/dt=0

X

7 14(/2)/d=0

is upward (downward) sloping if iy, >0 (if v, <0). It can easily be verified that

in (IZl’“,x/ z) space, the stable arm has a positive (a negative) slope if iy, >0 (if v, < 0).%

Consider the case of exponential discounting (o, = p). If v, >0 (if v, <0), as an economy
develops, (x/z) monotonically increases (decreases), and the saving rate monotonically
decreases (increases). Now, consider the case of hyperbolic discounting that introduces two
complexities. First, y, is not constant over time, and its sign may switch from positive to
negative. For this reason, (x/z) may rise for some period, followed by a decline, that is, the

saving rate declines for some period and then increases towards its steady state (see Figure
Al).

% See Barro, Sala-i-Martin (2004), p.108.
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Figure Al. A decline followed by an increase of the saving rate

Second, with i, <0, the stable arm changes its location from one date to another. That is, the

movement of (x/z) intime not only depends on the slope of the stable arms, but also on their
respective shifts over time. This presents a second reason for non-monotone behavior of the
saving rate over time. Suppose, i, >0 —i.e., the slope of the stable time-t-arm is increasing —
but the next date’s stable arm (with lower slope) intersects with the time-t-arm at a lower
value of k'™ (see Figure A2). Then, although the slope of the stable arms is positive, (x/z)
declines and the saving rates increase over time. This situation is depicted as a move from
point A to point B in Figure A2. Furthermore, if y, >0 still holds in the steady state, then
(x/z) eventually increases towards its steady state. In such a situation, the saving rate first

increases but starts to decrease towards its steady state level as of a specific date. ||

X/z

'
’,’l" stable arm (t=0)
” S e

S e

stable arm (t=

d(x/2)/dt=0],-;

Al-a

Figure A2. An increase followed by a decline of the saving rate
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B. Short-term planning
B.1 Derivation of (19).
The procedure follows Findley and Caliendo (2011). Considering (18), we set up the

Hamiltonian:

& ;1D(t,t0)+yt rk +w —c, , teft,t, +h].

The first order condition with respect to ¢, yields: ¢, = 4 "’D(t,t,)"’. As ji /| 1t =,

11

= —R(t,ty)
¢ =u e D). (33)

Considering (33) in the equation of motion of k, yields

) TS
kt - rtkt =W _Iutoeee D(tvto)lm )
which can be solved as:

(7

11
)
k, =k, e + j[wr —,%e% D(z,t,)" " dr

0

Considering the above equation at t=t,+h together with the terminal condition Kyon =0,

and solving for the costate variable yields:

+h
k. + I° w. e " dr
0 0

m = ) o, ' (34)
ot 10, 9 (7.)
L D(z,t,)"% dr

Considering (34) in (33) yields an expression for planned consumption as seen from t,:
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+h
kto+f0 w, e R dr
0

ER(t,to)
C(t|t0)= 1-0 €
o+h 16 TR(T,'(O)
f D(z,t,)"% dz

0

D(t,t,)"" .

The household follows this consumption plan only at t =t,. So, we consider the envelope, by

setting all t=t,. In the resulting expression, we then replace t, by t, which directly yields

(29):

+h
k, + f w, e "V dr
Ct =

+h L e '
f D(r,t)?e ¢ dr

B.2 Proof of Proposition 2.

(i) In the proof, we employ the following lemma.

Lemma. Let acll . Then e* >1+a(l+a/2).

To show the Lemma, notice that both functions, e* and 1+a(l+a/2) are strictly
monotonically increasing in a. For a=0, €’ =1+0(1+0/2)=1. To prove the lemma, we
need to show that the slope of e® exceeds the slope of 1+a(l+a/2) forall acl] . Thatis,

e* >1+a forall acll . Consider the difference e* —(1+a). As a[e"" -+ a)]/aa:ea -1,

the difference is strictly increasing in a. That is, e increases more strongly in a than

1+a(@+a/?2) does, which proves the lemma.
(i) With exponential discounting, rhE(r,t)dr:(l—e‘p“)/p. Regular hyperbolic

~1+@+h g p)+"*
=1+8)p

only depend on the planning horizon, but they are independent of calendar time t .

discounting, according to (17), leads to fh D(r|t)d7 = . Both integrals

(i)  Both integrals have the same limit, as p  approaches zero:

lim rh D(r,t)dz = lim rhE(T,t)dr:h. Both integrals decline in p.

p—0 p—0

(iv) For any given p>0, with >0, f+hD(r,t|p)dr> '[“hE(r,t|p)dr. To show this

+h
inequality, first, we notice that f D(r,t)dz is strictly monotonically increasing in /.
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Graphically, this is seen as the area above the discounting curves in Figure 2. We take a first-

order approximation about £ =0 to evaluate

pe [eh" — 1+hp(@A+hp/2 ]
5 .

+h +h
f D(r,t|p)dr—l‘ E(z,t| p)dr ~

By the Lemma, taking a = hp, the right hand side is strictly positive for any given p>0,
showing that f+hD(r,t|p)dr> f+hE(T,t|p)dT in fact holds. Therefore the discounting
curves can be drawn as depicted in Figure 4.

(v) As a consequence, there exists p<p for which '[‘+hD(r,t|,5)d2'= '[HhE(T,t|p)d2'.

Observational equivalence follows immediately from considering (19). In spite of hyperbolic
discounting, consumption and saving follow the same path as under exponential discounting.
As a consequence, Barro and Sala-i-Martin’s (2004, p.135 ff.) result applies, i.e., the

dynamics of the saving rate always is monotonic. ||

C. Cournot-Nash: Derivation of conditions (27) and (28).
Following Barro (1999), we first approximate

K..~K (@+er)+ew —ec_, (35)

0K, 1

implying that ~ —& . Next, we employ the intertemporal budget constraint

T

T+e !

f ce Rt™dt =k, +h
+& (36)
h,, = f we "¢t

where h_ denotes the present (date-z) value of human capital. Taking the consumption

growth rate (25) into account, we are able to re-express (36) as:
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ﬂR(t,r+5)—1/\(t,r+s)
c..[ e’ o dt=k, +h,, . (37)
+&

T+& T+&

=A(r+¢)

From (37), we infer that ;iﬂ =A(r+¢&)". Next, consider

T+&

ac., = dc,,, k.. ~—¢&A(r +&) ™. The first-order condition of (26) with respect to c_ yields:

dc, dk_,, dc.

T+&

T+&

1-6 1-6
_ _ —R(t,r+e)-—A(t,r+e)
—.’A(r+&)+c’ f e’ 0 e "tIdt =0,
+&

where we divided by ¢ and multiplied by A(z +¢) . We next take the limit as & approaches

zero, and divide by c_’:

1-60 1
fe7R(t'r)_5A(t'T) [ 1 ]dt =0,

which corresponds to (27). ||

1-6 1
: N . “IR(LA)-ZA(LT)
In order to derive (28), we note that (27) is identically true. Define v(t,7)=e ¢ Rt :

0 tr) -0 At r)-Pt,7)

and o(t,7)=e’ 0 . Then (27) becomes jw(t,r)dt = Iu(t,r)dt. Differentiating

T

with respect to 7 yields:

f[-%rﬁ¥/@ +P'(t,r)}a)(t,r)dt=[—%rr+%/17} fu(t,r)dt

1-6 1
:{—7rf +5&} fa)(t,r)dt,

which, upon simplifying, becomes:
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(acrmabon 3] fonon
f -1, +P'(t,7) o(t,7)dt =0 <

P'(t,7) o(t, 7)dt
j = f ) o(t,7) i
fa)(t,r)dt
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