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Abstract

Many aspects of social welfare are intrinsically multidimensional. Composite indices at-
tempting to reduce this complexity to a unique measure abound in many areas of economics
and public policy. Comparisons based on such measures depend, sometimes critically, on
how the different dimensions of performance are weighted. Thus, a policy maker maker may
wish to take into account imprecision over composite index weights in a systematic manner.
In this paper, such weight imprecision is parameterized via the e-contamination framework
of Bayesian statistics. Subsequently, combining results from polyhedral geometry, social
choice, and theoretical computer science, an analytical procedure is presented that yields a
provably robust ranking of the relevant alternatives in the presence of weight imprecision.
The main idea is to consider a vector of weights as a voter and a continuum of weights as an
electorate. The procedure is illustrated on recent versions of the Rule of Law and Human

Development indices.

Keywords: multidimensional welfare, composite index, e-contamination, polyhedral ge-
ometry, social choice, approximation algorithms
JEL classifications: C02, C61, D04, D71, 131

1 Introduction

Many aspects of social wellbeing are inherently multidimensional. Development, poverty, in-
equality, the rule of law, education: these are all concepts that depend on a number of different
criteria that cannot be captured by simple quantitative measures. Yet, there is still a need
to compare and eventually order possible alternatives on the basis of such multidimensional
information. Composite indices attempt to accomplish this task by integrating the various di-

mensions into a single, one-dimensional measure. This is achieved by assigning weights to the
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different dimensions and aggregating over them. This aggregation is usually either additive or
geometric.

It should be intuitively clear that the chosen weights can have a major effect on composite
scores and therefore on the final ranking of the various alternatives. This means that weights
need to be assigned in a systematic, transparent, and judicious fashion. Many different methods
for doing so have been proposed by academics and practitioners, including principal component
and factor analyses, data envelopment, public opinion polls, budget allocation, analytic hierar-
chy processes, and expert consultation, among others. The interested reader is referred to [9, 21]
for a comprehensive survey.

Despite the wealth of available techniques to determine composite index weights, their
determination often remains controversial. Indeed, there is frequently no one “right” way to
set them and we are often justified, if not compelled to, consider the effect of many different
weights at once. Such an analysis would serve two goals: (a) to examine how robust a given
ranking of alternatives is to changes in weights, and (b) to determine a compromise ranking
that is in some sense “optimal” in the presence of weight imprecision.

Earlier work in assessing the robustness of composite indices with respect to the choice of
weights primarily focused on Monte Carlo simulation (Saisana et al. [24], OECD and JRC [21]).
These computational approaches assessed the importance of weights in the context of a broader
uncertainty and sensitivity analysis of given indices. Practically oriented, they did not propose
a systematic theoretical framework to model weight imprecision and its effects. Of greater rele-
vance to the work I will present, Foster et al. [11, 12] adopted a parametric structure for weight
imprecision based on the e-contamination model of Bayesian analysis (Hodges and Lehmann [13],
Berger [7]).! In their setting, Foster et al [11] defined a pairwise comparison between alternatives
to be robust with respect to a given level of weight imprecision if all of the weight vectors cor-
responding to it (i.e., this level of weight imprecision) produce composite scores that maintain
the same relative ranking. Numerical examples applying their model to study the robustness
of various indices were presented in [12]. Permanyer [22] generalized the approach of Foster
et al. [11] by considering (i) alternative ways of parameterizing weight imprecision beyond e-
contamination, and (ii) the proportion of weights favoring one alternative over another given
a level of weight imprecision. Permanyer’s contribution is mostly conceptual, as he does not
discuss how one can actually calculate the proportions in question. Moreover, beyond formal
completeness, it is not clear what is gained by the discussion of alternative parameterizations
of weight imprecision beyond e-contamination?, which itself is intuitive, theoretically grounded,
and computationally tractable. Finally, both Foster et al. [11, 12] and Permanyer [22] are fo-
cused on providing rigorous methods for assessing the robustness of a given ranking to changes

in weights, and are not directly concerned with proposing an optimal “compromise” ranking

!The e-contamination model has also been studied in the economics and decision theoretic literature ( [20, 15],
among many others) on Knightian uncertainty, which however places more emphasis on the normative foundations

and behavioral implications of such belief imprecision.
2No theoretical arguments or empirical illustrations are provided in the paper.



given weight imprecision.

My paper makes three contributions to the literature. First, I adopt the e-contamination
setting of Foster et al. [11]3, and use results from polyhedral geometry (Lawrence [17]) to
efficiently compute the results of pairwise comparisons between alternatives. That is, given
two alternatives a; and as and a set of weights adhering to the parametric structure of e-
contamination, I adapt the insights of Lawrence [17] to present a closed-form formula for the
proportion of those weights ranking a; above as and vice-versa. Moreover, I am able to prove
that these proportions are monotonic in €, the magnitude of weight imprecision. I implement
Lawrence’s formula computationally in the context of the applied exercises of Section 5.

The second contribution of the paper is to use the theory of social choice to propose a
“good” compromise ranking of the alternatives given weight imprecision. Viewing each vector
of weights as a “voter” who expresses his/her preferences over alternatives via the composite
score, the previous polyhedral analysis provides the results for all pairwise contests between
alternatives over an “electorate” of weights defined by the e-contamination structure. With this
interpretation in mind, I propose the Kemeny aggregation procedure (Kemeny [14]) as a way
of computing a compromise ranking, given the preferences of this electorate of weight vectors.
Well-established in the social choice literature, Kemeny aggregation produces a ranking (referred
to as “Kemeny-optimal”) that minimizes the sum of pairwise rank disagreements with respect
to stated voter preferences. In an important paper, Young and Levenglick [27] validated its
intuitive attractiveness by showing that it rests on strong axiomatic foundations. Subsequently,
Young [26] showed that Kemeny aggregation provides the maximum likelihood estimate (in the
statistical sense of the term) of the true societal ranking of the alternatives. The intuitive,
normative, and statistical appeal of Kemeny aggregation make it a very (if not the most)
desirable aggregation procedure (Moulin [18]).

The paper’s third contribution centers on the computational implementation of the above
ideas. This is because, despite its many virtues, Kemeny aggregation suffers from one very
serious drawback: the computation of a Kemeny-optimal ranking is NP-hard [6], even when the
number of alternatives is just four [10]. In practical terms this means that we cannot hope to
devise a fast algorithm to implement Kemeny aggregation. Thus, to deal with this difficulty,
when the Kemeny-optimal ranking cannot be readily identified by first principles, I implement
the best-known approximation algorithm available from the theoretical computer science liter-
ature to compute a provably-good approximation of it. This algorithm, due to Van Zuylen and
Williamson [28], efficiently produces a compromise ranking whose sum of pairwise disagreements
is guaranteed to be no greater than 4/3 times the minimum.* To my knowledge, this is the first
paper in the economics and social science literature to apply rigorous approximation algorithms

in the determination of Kemeny-optimal rankings. I proceed to illustrate the proposed method-

3This choice is not crucial, and the methods of the paper could extend to alternative parametric structures,

albeit at a potentially higher computational cost.
4Using first principles and a “local Kemenization” procedure discussed in Dwork et al. [10], I am often able

to improve this performance guarantee even further (see Sections 4.3 and 5.2).



ology to two well-known composite indices: the World Justice Project’s Rule of Law Index [1],
and the United Nations Human Development Index [25]. In both cases, my procedure correctly

identifies Kemeny-optimal rankings under varying levels of weight imprecision.

Paper outline. The structure of the paper is as follows. Section 2 introduces the formal model
and e-contamination framework. Section 3 focuses on pairwise comparisons between alternatives
and shows how to adapt the results of Lawrence [17] to my setting. Section 4 draws connections
with social choice theory and Kemeny aggregation in particular, and presents a procedure
for computing a provably-robust ranking given weight imprecision. Section 5 implements the
proposed procedure to the Rule of Law and Human Development Indices, while Section 6
provides concluding remarks. All mathematical proofs, tables, and figures are collected in the

Appendix.

2 Model Description

Consider a set of alternatives A indexed by a = 1,2, ..., A and a set of indicators Z indexed by ¢ =
1,2,...,I. Let £, € R denote alternative a’s value of indicator i, and &, € R! its “achievement”
vector collecting all such information (all vectors are taken to be column vectors). The composite
score corresponding to alternative a is computed through a weighted average of the components
of its achievement vector, x4. For clarity I focus on standard linear aggregation, though the
analysis easily extends to the generalized weighted means discussed in Permanyer [22].> The
employed vector of weights is given by a vector w belonging in AT=! = {w e R : w >
0, Zfil w; = 1}, the (I — 1)-dimensional simplex. Here, w; represents the weight given to
indicator .

Clearly, the choice of weights w is very important in determining composite scores on the
basis of which alternatives are ranked. Thus it is important to have a sense of how robust
a ranking is with respect to changes in w. Suppose we are given an initial vector of weights
w € A~1. Now suppose that we are willing to consider weights deviating from @ that belong

in the set W¢(w), where®
I
W o) =W =(1-ew+eA"! = {w eR': w>(1-ew, > wi= 1}. (1)
=1

Here, the parameter € € [0,1] measures the imprecision associated with the initial vector of
weights . If € = 0, then we are completely confident in our choice of w, while if € = 1 we assign
no special status to w and consider all possible weight vectors equally valid. Originally proposed
by Hodges and Lehmann [13] in Bayesian analysis, this way of parameterizing probabilistic

imprecision is referred to as e-contamination. From a statistical point of view, the parameter

®Indeed, see Section 5.2 for an application of our model to the geometric aggregation framework of the HDI.
5To avoid cumbersome notation, from now on I suppress dependence of W¢(16) on .



e may be interpreted as the amount of error attached to a prior w.” The e-contamination
parametric structure has also been studied in the economics and decision theoretic literature
on Knightian uncertainty ([20, 15], among many others), which however places more emphasis

on the normative foundations and behavioral implications of such belief imprecision.

3 Pairwise comparisons over a continuum of weights

Let us consider two alternatives aj,as € A and their I-dimensional achievement vectors xq,
and x4,. Suppose, further, that we are given an initial vector of weights w € A’~! and a value
of € € [0, 1], capturing the degree of imprecision associated with w. How are we to decide which
of the two alternatives fares “better” given the set of weights W€ implied by Eq. (1)?

If € = 0 the answer to the above question is simple: just see which alternative’s composite
score is higher under weights 10, the unique element of set W°. That is, we need only compare
W'z, and W'y, (the prime sign denotes the transpose operator). When we are dealing with
€ > 0 and a non-singleton set W€, the situation is more complex. Nonetheless we may ask
an analogous question, namely: What proportion of weights belonging to W*€ lead to a higher
composite score for a; than as?

Some additional notation would be useful. Let W¢ _ denote the intersection of W€ with

aiaz

the I-dimensional halfspace {w eRl: wrg, > w’wa2}. Introducing the difference vector

d = Tq, — Tq,, the polytope Wy . is equal to
I
W;lw—{we%[: w > (1—€)w, Zwizl, d'wZO}. (2)
i=1
The proportion we are interested in, denoted by V.., is defined as the ratio of the volumes of
polytopes W, ., and W€ (Vol denotes volume):
Jwe,., du Vol (we
Viray = — o — = (W) € [0,1]. (3)
142 Jyye du Vol(We)
When d'@ = 0 and € = 0, I set V7 ,, = 1/2. Now, basic geometric reasoning allows us to

establish an unambiguous monotonicity property of V¢ _ with respect to the level of imprecision

aiaz

€. In addition to its theoretical appeal, this property, summarized in Theorem 1, may be of
considerable practical use (see Section 5.1).

Theorem 1 (i) Suppose d'w # 0. Then, VS

w10y s monotonic in €. It is increasing (decreas-
ing) in € if
d'w < (>)0.
(i) Suppose d'w = 0. Then, Vil = Vi3, for all e1,ea € (0,1]. There will in general be a

discontinuity at € = 0.

"The interested reader may consult Chapter 4 in the survey by Berger [7] for many additional references on

e-contamination.



Proof. See Appendix. |

Thus, when d'w # 0 and a; and as do not yield identical composite scores under the
initial vector of weights w, Theorem 1 establishes that the proportion of weights favoring one
alternative over another varies monotonically in the imprecision € attached to w. The direction
of the relationship depends on the comparison of alternatives a; and as under weights w. It
is decreasing if a; initially dominates a2 and increasing otherwise. Conversely, when the initial

weights yield identical composite scores for a1 and ao, the situation is different. For any two

levels of imprecision €; and ez above 0, we will have V1, = V2 ., while at ¢ = 0 we will have
(by definition) V), = 1/2. Thus, V¢ is constant when € € (0,1] and will generally have a

discontinuity at 0.

Define the function
1
D(e) = ——d'w, (4)
€

and suppose that there exists at least one indicator i* € Z such that d;« > D(e). If such an
i* does not exist, then we may immediately conclude that V ,, = 0 (see proof of Theorem 1).
Without loss of generality (upon possible relabeling) suppose that i* = I and define w* € R/~!
and d* € R1~1 as the restriction of vectors w and d to variables Z\{i*} = {1,2,..,] — 1} = I*.

Consider the following polytope Wy g, (here e denotes a vector of all ones of dimension I — 1)

-1
Wer, = {w* eRT w0, ) wi <1, (dF —dre)w* +d > D(e)} : (5)
=1

Polytope W4, is obtained upon performing a sequence of simple affine transformations to

polytope W¢

1ay> Ultimately reducing its dimension by 1 (see the proof of Theorems 1 and 2).

Using basic results from linear algebra (Lang [16]) we arrive at the following Theorem.

Theorem 2 Consider polytope Wqla, given by (5). The quantity Viia, defined in Eq. (3)
satisfies

Ve, = (I =D Vol (WEE).

aia2 aija2

Proof. See Appendix. |
In light of Theorem 2, the main challenge now lies in calculating the volume of polytope

Wala,- We make the following assumption.
Assumption 1 There does not exist i € T such that d; = D(e).

Assumption 1 ensures that polytope Wy s, is simple, i.e., that all of its vertices are nondegen-
erate. Primal nondegeneracy is a desirable property in linear programming as it facilitates the

application of the simplex method (see Chapter 2 in Bertsimas and Tsitsiklis [5]).

Proposition 1 Suppose Assumption 1 holds. Then the polytope Wya, is simple. Moreover it
has O (I1%) vertices and O (I®) edges that can be readily identified (Egs. (V1)-(V4) and (E1)-
(E8) in Appendiz). Using this information we can construct a vector ¢ € RI=1 such that the

function f(w*) = cw* is non-constant on each edge of Wyla, (Eq. (19) in Appendiz). As a



result, the volume of polytope Wl a, can be computed efficiently using the formula in Theorem

1 of Lawrence [17] (Eq. (20) in Appendiz).

Proof. See Appendix. |

Thus, by Proposition 3 we have an efficient method of computing V. for any two alter-

aiaz

natives a; and ag and € € [0,1]. We conclude by performing the following transformation on

Ve  for all pairs a1, as € A:

aias
Ve Ve 4+ 1— (Valaz + Va2a1) L VE Ve 4 1 - (Va1a2 + Vazal) ) (6)

a1az aiaz 2 azai a2a1 2

This transformation provides a fair tie-breaking rule for vectors of weights yielding identical

composite scores. It ensures that the volume of the polytope

I
{w eRl: w>(1—e)w, Zwi =1, wx,, = w'a:az}
i=1
is equally divided between alternatives a; and ag so that V¢ can be interpreted as the pro-

a1a2

portion of weights strictly favoring a; over ay. Moreover, it implies that

€ €
Va1 az + Va2a1

=1, Vai,as € A.

In practice, these adjustments may often turn out to be negligible.

Remark 1. Assumption 1 is not strictly necessary for the implications of Proposition 3 to
hold. As Lawrence himself notes in his paper’s conclusion [17], his method can be extended to
non-simple polytopes using standard linear programming techniques (see Bueler et al. [8] for
an application). I choose to impose Assumption 1 because it can be always easily satisfied by

a slight perturbation of w or €, while simplifying computations significantly.

Example 1. One of the strengths of the proposed framework is that it sheds light on subtle,
but important differences among alternatives. This is illustrated by the following example:
_ 1111y
La; = (17 27 374),a Lay = (47 37 27 1'5)/7 w = <4a Za Zv 4) .
Looking at just the ordinal dimension of the indicator data, we see that both a; and as dom-
inate in exactly two dimensions. Moreover, the difference in the composite scores under zero
imprecision is quite small: 2.5 for a; and 2.625 for ag. This may lead us to think that the two
alternatives are roughly equal, and remain all the more so when we take weight imprecision into
account. However, this is not true. Indeed, we see that in reality as fares significantly better
than a; if we allow for weight imprecision (and our model makes quantitatively precise to what

degree this is so0), especially if we only wish to consider small levels of e:

VOl —0.090, V02 =0.312, V% =0.408, V! =0.458.

ai1a2 aija2 aija2 aija2



Example 2. I provide an example of the discontinuity discussed in part (ii) of Theorem 1.

Consider:

Ta, = (1,2,3.5,4, 5),7 Ta, = (3.5,4,5,1, 2),7 w

55555

Il

N

—t

—_

—_

[S—y

—
~_
<

These data yield
VO =050, V¢, =0.478, VYee (0,1].

a1a2 ai1a2

4 Weight imprecision and social choice theory

4.1 Weight vectors as voters

In Section 2 I discussed how an initial vector of weights @ and a value of e imply, via the
e-contamination framework, the set of weights W€ of Eq. (1). Subsequently, in Section 3 I
demonstrated how, given a pair of alternatives aj,as € A and a value € € [0,1] we can use
Lawrence’s formula [17] to efficiently compute the proportion of weights within W€ whose com-
posite score for a; is at least as high as for ag. After performing the transformation (6) for all
pairs of alternatives in A, this information can be summarized by a matrix V¢ = [Vael a2} a1.a5EA
(whose diagonal entries are set to zero by definition, i.e., V¢, = 0 for all a).

Suppose now that we think of a vector of weights w € W€ as a voter belonging to an
electorate W€ (the greater € is, the larger the electorate). With this interpretation in mind, the
quantity V; ,, defines the percentage of voters within the electorate W€ preferring alternative
a1 to ag. Thus, all information on the pairwise preferences of the electorate W€ over the set of
alternatives A is succinctly summarized by the matrix V¢.

How can we use this information to compare and order alternatives? Given that the entries
of matrix V¢ will generally fall strictly between 0 and 1, there will not be a ranking of A that
is consistent with the preferences of all weights belonging to W¢€. Thus, the question arises:

In view of this inconclusiveness, what would be a “good” compromise ranking that takes into

account the results of pairwise comparisons across the electorate W€?

4.2 Kemeny aggregation

Given a set of individual ranked preferences that may conflict with each other, what procedure
(i.e., rule) should society use to determine a consensus ranking? What properties should a
compromise solution aspire to satisfy?

These fundamental questions have concerned philosophers and social scientists since the
work of Condorcet and Borda in the 18th century. In a seminal paper, Arrow [4] famously
proved that there does not exist an aggregation procedure® simultaneously satisfying a set of
four plausible axioms: unrestricted domain, non-dictatorship, efficiency, and independence of

alternative alternatives. Despite this negative result, a multitude of reasonable aggregation

8In the literature, the terms “voting rule” and “aggregation procedure” (and combinations thereof) are used

interchangeably.



procedures have been proposed, and formal characterizations of such methods on the basis of
desirable properties that they do or do not satisfy abound in the social theoretic literature
(see Moulin [18]). For the purposes of this paper I focus on a particularly compelling property
known as the Condorcet criterion (originally proposed in the 18th century by the Marquis
de Condorcet). The Condorcet winner of an election is an alternative that, when compared
with every other, is preferred by a majority of voters. An aggregation procedure satisfies the
Condorcet criterion if it ranks the Condorcet winner first, whenever one exists. In turn, a
ranking is referred to as Condorcet if it is consistent with the Condorcet criterion.

One well-known problem with Condorcet winners is that it is easy to construct examples
of the so-called Condorcet paradox (originally noted by the Marquis himself), in which voters’
ranked preferences preclude their existence [18]. In such instances, the Condorcet criterion is
clearly of no help in choosing between different rankings. To deal with this issue, Kemeny [14]
introduced an aggregation procedure satisfying a generalization of the Condorcet criterion,
referred to in the literature as Kemeny optimality. Given a set of individual rankings, Kemeny
aggregation produces a ranking (referred to as “Kemeny-optimal”) that minimizes the sum of
its pairwise disagreements with respect to voter preferences. As a corollary, when a Condorcet
ranking exists, Kemeny’s rule is guaranteed to choose it.? In an important article Young and
Levenglick [27] confirmed the intuitive appeal of Kemeny aggregation by proving that it rests on
solid axiomatic foundations. Moreover, Young [26] showed that, from a statistical standpoint,
Kemeny aggregation can be viewed as a providing the maximum likelihood estimate of the
“true” societal ranking of the alternatives.

The intuitive, normative, and statistical appeal of Kemeny aggregation make it a very
desirable voting rule. Indeed, Moulin [18] goes so far as to state that it is the “correct method”
for ranking alternatives. Unfortunately, however, Kemeny aggregation suffers from one very
serious drawback: the computation of a Kemeny-optimal ranking is NP-hard [6], even when
the number of alternatives is just four [10]. In practical terms this means that we cannot hope
to devise a fast algorithm to implement Kemeny aggregation. Nevertheless, spurred by the
applicability of rank aggregation methods for internet search, various fast heuristics have been
proposed in the computer science literature (e.g. Dwork et al. [10]).

In recent years, a burgeoning theoretical computer science literature has emerged that pro-
poses provably-good approximation algorithms for Kemeny aggregation. An intelligent synopsis
of these contributions is beyond the scope of this work and the interested reader is encouraged
to refer to Section 1 in Van Zuylen and Williamson [28] for more information. For the purposes
of this paper, I draw particular attention to the work of Van Zuylen and Williamson [28]. Their
algorithm (DerandFASLP-Pivot in Figure 1 of [28]) employs a polynomial-time recursive proce-
dure to produce a ranking whose sum of pairwise disagreements is within 4/3 of the minimum,
the best approximation guarantee currently available. Its running time is primarily constrained

by the solution of the linear programming relaxation of Kemeny aggregation. The output rank-

9Indeed, Kemeny-optimal rankings satisfy a stronger version of the Condorcet criterion known as the extended

Condorcet criterion [10].



ing of this algorithm can be potentially improved by applying to it a procedure known as “local
Kemenization” (Dwork et al. [10]). Local Kemenization successively examines all adjacent pairs
of alternatives in a ranking and flips them if they result in an improved Kemeny performance.
It may be efficiently implemented in polynomial time and it is guaranteed to produce a unique

ranking that satisfies an extended version of the Condorcet criterion [10].

4.3 Application to composite index rankings

I now proceed to apply the above concepts to composite index rankings under weight impreci-
sion. Recall the set of alternatives A. A ranking R is a bijective map from A to {1,2,..., A},
where R(a) is interpreted as the rank of alternative a. Let R 4 denote the set of all rankings of
A. The Kendall-7 distance between two rankings R; and Ra, denoted by 7(R1, R2), is defined as
the number of pairs (a;, a;) such that Ri(a;) > Ri(a;j) and Ra(a;) < Ra(aj). Hence, 7(R1, R2)
counts the number of (pairwise) relative rank disagreements between R; and Ry. Given a set of
rankings S, a ranking K is Kemeny-optimal if it minimizes the function ) ¢ s 7(:,S) over the
set of rankings R 4. In the usual formulation of the problem, the set § is finite so the above sum
is well-defined. However, in our context each weight vector in W€ corresponds to a different
ranking, implying that S is uncountable. Thus, to make sure the Kemeny-optimal ranking is

well-defined we normalize by |, s du and write:
K = arg min { (R, 5) dS} :
rera s [sdu

To apply the preceding formula to our context, we need to identify the appropriate set of

rankings &, which would entail associating a ranking for every vector of weights belonging to W*.
This task is already demanding when the set of voters is finite, let alone when it is uncountable.
Fortunately, however, I am able to sidestep this concern. This is because, to calculate a Kemeny-
optimal ranking we only need the results of all pairwise comparisons between elements in A,
given by matrix V¢, which can be efficiently computed using the methods in Section 3. Thus,
letting (a1, a2) € A x A denote ordered pairs of alternatives in A, and K¢ the Kemeny optimal

ranking given the set of weights W€, we may write
K¢ = argmin Z {R(a1) < R(a2)}Vy a,- (7)
RERA (a1,a2)€EAXA

Integrating the above discussion with that of Sections 2 and 3, I propose the following
procedure to address minimization problem (7) and provide a robust compromise ranking of

the alternatives given weight imprecision.
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Procedure 1 (Input: x, for all a € A, ¢,w.)

(a) Use the method outlined in Proposition 3 of Section 3 to compute the matrix V€. Perform

transformation (6) on the elements of V*.
(b) Given V¢, attempt to explicitly find Kemeny-optimal ranking K€ by first principles.

(c) If (b) is not possible, apply Van Zuylen-Williamson [28] algorithm to matrix V¢ to compute
a 4/3-Kemeny optimal ranking K#W-,

(d) Perform local Kemenization [10] on K#"¢ to, if possible, decrease its objective function
Rowe

value. Denote the final ranking by

Procedure 1’s performance guarantee. When Step (b) of Procedure 1 cannot be accom-

plished, it is important to know how close to Kemeny-optimal the output ranking KZWe will

be. To wit, given a ranking R and € € [0, 1] define the function
k(Rye)= Y 1{R(a1) < R(az)}Via,
(a1,02)€AXA

and consider the output ranking produced by the Van Zuylen-Williamson algorithm before local

Kemenization, denoted by K#W<. Its 4/3 performance guarantee implies that

4 4
ZW,e < = € - = : )
k(K7€) < 3/1(K ,€) 31%11617134/41(]%,6) (8)

Now, consider the ranking produced by the Van Zuylen-Williamson algorithm after local Kem-

enization, denoted by KZ Wi and define the constant o > 1 such that
m(KZW’e,e) :ae-ﬁ<IA(ZW’€,e). 9)
Conversely, by first principles we may immediately establish the following lower bound:

. 1 - e €\ — e
RIQ%IAHJ(R, €) > 5 Z min {Vy 4, Ve, } = 15 (10)
(a1,a2)EAXA

With bound (10) in mind, define the constant 3¢ > 1 such that
K (I?ZW6,6> — gLl (11)

Putting Eqs. (8)-(9)-(10)-(11) together, we may deduce the following guarantee on the perfor-

mance of KZWe:

K (I?ZW’E, e) < min {BE,

4 4
3@6} ./@(Ke,e):min{ﬁe, 3@6} -Rr%i{lA/{(R,e). (12)

Thus, we see that, depending on the values of a¢ and 3¢, the 4/3 performance guarantee of Van

Zuylen and Williamson can potentially be tightened.

11



Note. I end this section by noting that the application of Kemeny aggregation to composite
indices has been previously pursued by Munda and Nardo [19]. However, their work differs
from mine in substantive ways. First, Munda and Nardo simply consider each indicator as a
voter, and do not introduce a systematic parametric structure for weight imprecision such as
e-contamination. Hence, their “electorate” is simply the set of I weight vectors assigning full
weight to the different dimensions. As a result, calculating the proportion of voters favoring one
alternative over another reduces to simply counting the indicators resulting in a higher value
for it and cardinal information on the magnitude of this pairwise dominance is lost. Second,
even within this restricted setting, Munda and Nardo present a largely qualitative picture that,
beyond mentioning the existence of heuristics, does not propose a method for computing a

Kemeny-optimal ranking nor a provably-good approximation for it.

5 Applications

In this section, I apply Procedure 1 to two popular composite indices: (a) the World Justice
Project’s 2012 Rule of Law Index [1] and (b) the United Nations 2013 Human Development
Index (HDI) [25]. In both cases, I am able to explicitly identify Kemeny-optimal rankings under
different levels of weight imprecision. My analysis shows that the rankings of the Rule of Law
Index are completely robust to departures from equal-weight aggregation, whereas the situation
with respect to the HDI is a little more complex. Both Lawrence’s method for obtaining
the matrix V¢ and van Zuylen and Williamson’s approximation algorithm are implemented in

Matlab.t0

5.1 2012 Rule of Law Index

The World Justice Project (WJP) is a multi-national, multi-disciplinary US-based organization.
It produces an important multi-dimensional measure of the rule of law, the Rule of Law Index,
that encompasses issues from government power and corruption to fundamental rights and civil
justice. The WJP measures nine main dimensions of the rule of law: (1) limited government
powers, (2) absence of corruption, (3) order and security, (4) fundamental rights, (5) open
government, (6) regulatory enforcement (7) civil justice, (8) criminal justice and (9) informal
justice. The 2012 version of the index covers 97 countries, which are ranked along dimensions
(1)-(8) above.!'! An aggregation of these 8 dimensions into one single composite measure was
not attempted by the authors of the 2012 report, presumably because there was no consensus
on whether and how such an aggregation should be performed.

For the purposes of this paper, I focus on the 21 European Union countries for which the
Rule of Law index has data. Table 1 summarizes the (normalized) data for this set of countries

(countries are ordered alphabetically). For an initial vector of weights, I consider equal weights

10Programs available upon request.
"Data on dimension (9) was gathered but not used by the authors of the 2012 Index, as it was deemed too

preliminary.
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across all indicators, i.e., w = (1/8,1/8, ....,1/8)". The second-to-last column of Table 1 presents
the ranking of the 21 countries on the basis of their composite scores for w, that is when ¢ = 0.
Using the notation of Section 4, I denote it by K°. Conversely, the last column of Table 1
shows that this same ranking will be Kemeny-optimal for any value of € € (0,1]. This strong
conclusion is arrived at solely by focusing on € = 1 and inspecting the matrix V! in Table 2.
Doing a simple check on the latter table, we see that there does not exist a pair of countries
(a1,a2) such that K%(a;) < K%ap) and V,',, < .5. By Theorem 1 this implies that no such
pairs exist for any V¢ where € < 1 either. Hence, the original ranking K° based on equal weights
w will satisfy
k(K% €) =15 Vee0,1],

where [ are the lower bounds defined in Eq. (10). As a result, we can unequivocally conclude
that K° will be the unique Kemeny-optimal ranking for all possible levels of imprecision € €

[0,1].

5.2 2013 United Nations Human Development Index

The United Nations Human Development Index (HDI) is a prominent composite index of de-
velopment. The HDI focuses on three main dimensions of development: (1) life expectancy,
measured at birth (2) education, measured by mean years of schooling and expected years of
schooling (3) GNI per capita measured in US dollars by purchasing power parity. Each dimen-
sion constitutes its own subindex and the data are normalized to lie between 0 and 1. In its
most recent versions, the HDI is the geometric mean of the three dimension scores, where each
dimension is assigned equal weight. In light of its importance in international policy circles,
testing the robustness of the HDI rankings with respect to changes in weights has been pursued

in a number of alternative ways (e.g., Anderson et al. [3], Foster et al. [12], Pinar et al. [23]).

I proceed to apply Procedure 1 to the most recent version of the HDI published in 2013.
That the HDI is not a linear but a multiplicative composite does not complicate the use of my
methodology. Indeed, since achievement vectors are non-negative and the natural logarithm is
a strictly increasing function, the following relation holds

3 3 3 3
(Ban)™  log (H <>) > log (n <>) 3 g (@ars) = > wrlog (Tans)
i=1 i=1

i=1 i=1

3
[[@a" =

3
i=1 i=

1
which implies that I can safely apply Procedure 1 to a linear composite index utilizing the
natural logarithms of the HDI data.

Table 3 summarizes 2012 data for the three dimensions of the HDI for the countries having
the 20 highest HDI scores under equal weights w = (1/3,1/3,1/3)’ (this ranking appears as K°
in the Table’s fourth column). The last four columns of Table 3 present the rankings obtained
by applying Procedure 1 (to the natural logarithm of the data) for e € {1/4,1/2,3/4,1}.

How close are these rankings to the Kemeny-optimal ones? To answer this question I
refer to quantities a¢ and (¢ defined in Egs. (9)-(11). Table 4, in combination with in-
equality (12), immediately establishes that Procedure 1 yields a Kemeny-optimal ranking for
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e € {1/4,1/2,3/4}. When € = 1, the performance guarantee given by bound (12) is slightly
above 1 (i.e., min{1.279,1.001} = 1.001) and I cannot immediately establish the Kemeny op-
timality of KZW1, Instead, it is necessary to examine the ranking KZW.1 in more detail. To
account for the value of B! > 1, I search for pairs of countries ay, as simultaneously satisfying
V)4, <.band KZW(ay) < KZW(ay). With regard to these pairwise comparisons KZ%:! goes

against the wishes of a majority of weights. We find two such pairs. They are

1) Singapore-France (a; = 17,a3 = 6). Here we have =0. ut Hay) =17 <
Si F 17 6). H h Vi 0.498 but K4W:1 7

alag
KZW(ag) = 20.

(2) Switzerland-Japan (a1 = 19,as = 12). Here we have V!, = 0.484 but K*"'!(a;) = 8 <

a1ag
KZWl(ag) = 11.

Such issues turn out to be inevitable. This is because we find ourselves in an instance of the
Condorcet paradox discussed in Section 4.2. Indeed, the electorate associated with the set of
weights W1 produces what are known as Condorcet cycles [18], implying that there exists no
ordering of the countries that is able to respect majority rule for all pairwise comparisons.
Consulting the matrix V! computed in step (a) of Procedure 1 we identify two groups of

countries that form such Condorcet cycles:

(1) Singapore-Austria-Belgium-France (ay = 17,a2 = 2,a3 = 3,a4 = 6). Here we have
V3, =0507, VL, =0513, VL, =0663 and V., =0.502.

(2) Switzerland-Iceland-Canada-Japan (a; = 19,a2 = 10,a3 = 4,a4 = 12). Here we have
vI =0511, V! =0.563, VI =0.549, and V! = 0.516.

ai1a2 aza3 a3za4 aaay

Focusing on the above two cycles, we may deduce by inspection that KZW1 pegolves them in
a way that minimizes the total amount of pairwise disagreements. Thus, we conclude that,
similarly to our results for ¢ € {.25,.50,.75} , KZW1 will be Kemeny-optimal. Given that

B =1.001 ~ 1, this does not come as much of a surprise.

6 Conclusion

Judgments based on composite indices depend, sometimes critically, on how different dimensions
of performance are weighted. As there is frequently no single “right” way to assign such weights,
it is important to take this imprecision into account in a systematic way. In this paper I have
presented a procedure for determining a provably-robust ranking of the relevant alternatives,
given a well-established parametric structure for weight imprecision. My procedure is based
on a combination of results from polyhedral geometry, social choice, and theoretical computer
science, and pays special attention to issues of practicality and computational tractability. Its
applicability was illustrated through numerical examples based on recent versions of the Rule
of Law and Human Development indices.

Interesting future avenues for research would include adding further structure to the basic e-

contamination framework (e.g., to reflect normative concerns and/or operational constraints), as
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well as pursuing more complex empirical applications (e.g., the poverty measurement framework
of [2]). Broader connections with decision-theoretic models of Knightian uncertainty could also

be explored.

Appendix

A1l: Proofs

Theorem 1. Let us first concentrate on the denominator of (3). We perform the following two
operations on the elements of W*¢: (a) we translate them by —(1 — €)w, and then (b) multiply
them by 1/e. The resulting polytope is A’~!, the standard (I — 1)-simplex. The volume of the
standard simplex A’~! (which has a side length of v/2) is given by

VoY) B |
(I—1)W2l1  (I-1r

Vol (A1) =

Basic linear algebra (see Lang [16]) implies that

1
el\f

Vol(W¢) = Ve2lVol (AT = T—1 (13)
Now let us focus on the numerator. Recall the difference vector d = x4, — T4, and the function
D(e) = —1=“d'w, defined in Eq. (4). Performing the same affine transformation as before,
namely w < M, the polytope Wy, ,, is transformed into
- I
WE o = {«Beé}ef: W>0, Y @ =1, d’@zp(e)}, (14)
i=1
which in turn implies
Vol (Weya,) = €'Vol (W, ) (15)
Putting Egs. (13)-(15) together, we obtain
Vol (W)  (I—1) =
ay = aa2) _ (W) - 1
Va1a2 VOl (WG) \/j VO Wa1a2 ( 6)

Eqs (4)-(14) imply that the volume of W(fl@ is increasing in € if d'w < 0, decreasing if d'w = 0,
and constant if d'@w = 0. The result now follows from Eq. (16). When d'@w = 0 and € = 0 the
quantity D(e) is not well-defined, leading to the potential stated discontinuity. [ |

Theorem 2. Consider the polytope Wy s, of Eq. (5), obtained by eliminating variable I from
polytope we:

aiaz

I-1
We* = {'w* eRT w20, Y wi <1, (dF —dre)w* +d > D(e)} .
=1

The affine transformation f which maps polytope Wya, to We s given by f : RI-1T - R,

aiaz

satisfying f(w*) =T - w* + (0,0, ...,0, 1], where T is an I x (I — 1) matrix equal to:
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10 ] (21 1 1]
0 12 1 1
Tr=| : =7 .7 =
0 0 - 1 11 - 2 1
1 -1 -1 - -1 11 1 - 2

Thus we have det [T” - T] = I. Once again, basic linear algebra [16] implies that
Vol (ng) = /et [T"-T] - Vol (W&%,) = VI - Vol (WES.) . (17)
Egs. (16)-(17) together imply

Ve =T =D Vol (W) .

aiaz aiaz

Proposition 3. We first identify the vertices of polytope Ws4,. In doing so, we divide the
set of indicators Z* = {1, 2, ..., — 1} into Z} and Z3, such that

I7={ieZI*: df>D(e)}, Io ={i€Z": di <D(e)}.

Assumption 1 ensures that {Z},Z;5} is a partition of Z*. It will be useful to express polytope

Weala, in the following way:

Weia, = {w* € R gpw™ < b}, (18)
where the (I — 1)-dimensional vectors yg, k = 1,2,...,1 + 1, and b satisfy (a) yp = —ex'? and

bp=0for k=1,..,1—1, (b) yr =[1,1,1,...,1) and by = 1, and (c) yr41 = —d* + dre and
brr1 =—D(e) +dj.

With representation (18) in mind, a vector v is a vertex of Wys, if it satisfies I — 1
linearly independent inequality constraints with equality [5]. The structure of vectors yy, for k =
1,2,...,1+1 and b imply that a vertex of Wy %, can have at most 2 nonzero entries. Furthermore,
Assumption 1 ensures primal nondegeneracy so that every vertex v will corresponds to a unique
basis matrix B,, i.e., a unique set of linearly independent constraints satisfied with equality.

We may distinguish between four kinds of vertices and their corresponding bases:
(V1) v9=0. By={y, : k=1,2,..,1 -1}
(V2) v; =e; for all i € Z}. Here B; ={y}, :k=1,...,i —1,i+1,..,1 — 1,1}, for all ¢ € Z}.
(V3) vj =7 e;, where j = Z(;f):df’, for all j € Z5. Here Bj ={y}, : k=1,....,5—1,j+1,..,1—
1,141}, for all j € Z5.

D(e)—d*
(V4) Vij = Tij€; + (1 — m-j)ej, where Tij = %, for all ¢ € If and j € I;. Here Bij = {y;c :
i~ %

k=1,..i—1i+1,..j—1,j+1,.,I,T+1} forallie T} and j € I}.

2Here ey, denotes the corresponding standard basis vector in R~
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Two vertices are connected by an edge if they share I — 2 common linearly independent active
constraints [5]. An examination of the preceding expressions for the vertices W* of and their

bases, implies that we may identify the following eight kinds of undirected edges:

(E1) (vo,v;), for all i € Z}.

(E2) (vo,vj), for all j € T3.

(E3) (v;,vg) for all pairs (i, k) where i,k € Z7.

(E4) (vj,vg) for all pairs (j, k) where j,k € Z5.

(E5) (v4,v45) for all pairs (i,7) where i € Z{ and j € Z3.

(E6) (vj,v4;) for all pairs (i,7) where i € Z{ and j € Z3.

(E7) (v45,v4x) for all triplets (4, j, k) where i € I} and j,k € Z5.

(E8) (v4j,vi;) for all triplets (7,7, k) where i,k € Z} and j € Z5.

Recall that we wish to exhibit a vector ¢ € R/~! such that the function f(w*) = cw* is
non-constant on each edge of Wy ,. To wit, recall the vertices of W5, enumerated above and

the defined values of 7; for j € Z; and m;; for all i € Z7 and j € Z3. Define the following four

quantities

1. 61 = min {|m; — m| : m; # 7w }. If undefined, set 6; = 1.
k€T

2. 0o = _min _ {|my; — my| s mi; # mik . If undefined, set 6o = 1.
i€TY, JkETS
3. 03 = min Tii — Tki| @ w5 # wpi . If undefined, set d3 = 1.
3 i ke, jeI;{‘ ij kil : mij # T} 3

4. 64 = min {
€Ly, JETS

mij — ;| mi; # 7} If undefined, set 64 = 1.

Consequently let 6 = min{d;, d2,d3,04} and define C' = %. Finally recalling sets Z} =
{i1,i2, .. iy } and I3 = {41, j2, ..., jr; } We define the vector ¢ satisfying
C + % i € I}
ﬁ (23 € I2 .
With this choice of ¢ we can check all eight kinds of edges E1-E8 and verify that ¢'v # cu
for all pairs of adjacent vertices (v,u). Thus the function f(w*) = ¢/w* is non-constant on
each edge of Wy)5,. Hence, in conjunction with Assumption 1, we may apply Theorem 1 in

Lawrence [17] to conclude

Vol (We* ) = (o) 20
0( a1a2) - Z -1 ( )
ST (1= 1)tdet (B,)] TT [(By) ™ c]i
=1
[ |
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A2: Tables and Figures

Dimension Rankings
Country 1 2 3 4 5 6 7 8 | KO K€ (Vee(0,1])
1. Austria 823 773 885 .820 802 .845 .735 .748| S )
2. Belgium 781 782 837 .813 .668 .698 .67Y0 .716 | 10 10
3. Bulgaria b15 457 739 681 .B31 500 .557 387 | 21 21
4. Croatia .611 .547 768 .672 .529 484 .503 .527 | 20 20
5. Czech Republic 711 618 810 .785 491 .592 .638 .696 | 13 13
6. Denmark 928 953 913 909 .824 846 .778 872 | 2 2
7. Estonia 795 7730 823 78T .T13 728 698 748 | 9 9
8. Finland 891 931 917 900 .838 .821 .780 .867 | 3 3
9. France 797 802 .841 786 .751 .762 .677 .688 | 8 8
10. Germany 821 .820 .863 .804 .729 732 791 .760 | 6 6
11. Greece 641 563 732 719 508 .540 .605 .503 | 19 19
12. Hungary 629 722 830 .716 .518 .596 .b42 .639 | 16 16
13. Ttaly 671 624 765 723 487 556 .550 .673 | 17 17
14. Netherlands 858 931 .859 .837 .903 .827 .795 .801 | 4 4
15. Poland 784 718 809 .847 .594 611 .620 .733 | 12 12
16. Portugal 2713 .679 744 750 616 572 .607 .625 | 14 14
17. Romania 580 500 .802 730 .509 .538 .5Y7T .598 | 18 18
18. Slovenia 642 621 802 .775 .635 .586 .586 .592 | 15 15
19. Spain 753 801 .788 .857 .614 .674 .637 .692 | 11 11
20. Sweden 916 956 .889 929 935 .893 .770 .823
21. United Kingdom | .785 .798 .843 .783 .782 .790 .716 .755 | 7 7

Table 1: 2012 Rule of Law Index: Data and rankings for 21 EU countries.

18




=12 3 2 X S =

= S % =

=8 8 S 2 X % %
w0 2 z2.%8¢2
Hﬁv—iool\.v—iHHv—(v—iOn‘_‘v—iql\.OOHﬂH
~ S 28 S =

o <t — © -

N O A o 0
H—i—IOOQHn—(v—(HMONO‘—tn—(OO‘C\!—(n—(v—(
1 2 & 2 2 g S =
= = 2 =
0 sz 2 2Rz
Hﬁv—iO.O.HHHHHHO.OQOHHQO-OQHﬂv—(
o~ 8 2 N Q 5% 8 8
- 22 25 3
H—i—ioo.c?—i—(—(v—(ﬂomcn'—tn—tn—(@—t—(—(—(
s |® 3 = 2. g

S s 2 = = = K
—
o — =)
> S = = 5 2
—
) D o0
OO ©O O O O O O P o OO o O ¥ o o o o o wo
< < N~
z 8 2o g
Lov—<V—i©©©v—||—<|—<v—<V—|Q‘_:C>V—c|—(m.C>0!|—(|—<v—<
2 > S 2
2 228
mv—<V—t©®.v—<H|—<v—4v—<V—t®.®®-V—4|—<|—<v—<V—<‘—4|—<v—<
8 - 8 S 2 -8
=N & = S
O 4 N »m» <HF 0o © b~ 0o o O -
— N M o © I~ 0 O~ = o = = = = = = — N

19

Table 2: Matrix V! for 2012 Rule of Law Index for 21 EU countries of Table 1



Dimension Rankings

Country 1 2 3 | KO KZWa RZWs RZWG K7W
1. Australia 981 978 871 | 2 3 3 3 3
2. Austria .859 962 .871 | 18 18 18 19 18
3. Belgium .890 .947 858 | 17 17 17 18 19
4. Canada 908 .964 .866 | 11 11 11 10 10
5. Denmark 920 930 .858 | 15 15 15 15 15
6. France 871 973 843 | 20 20 20 20 20*
7. Germany 944 955 867 | 5 5 5 5 5
8. Hong Kong 831 994 904 | 13 13 12 12 12
9. Iceland 912 977 838 | 14 14 14 14 14
10. Ireland 964 958 835 | 8 8 8 8 9
11. Israel 912 976 .822 | 16 16 16 16 16
12. Japan .888 1 .854 | 10 9 9 11 11°
13. South Korea | .942 .958 .833 | 12 12 13 13 13
14. Netherlands 934 960 .874 | 4 4 4 4 4
15. New Zealand 1 959 811

16. Norway 990 .966 .913

17. Singapore 804 966 .925 | 19 19 19 17 17*
18. Sweden 913 971 870 | 7 7 7 7 6
19. Switzerland 873 985 886 | 9 10 10 9 8°
20. United States | .994 .926 .897 | 3 2 2 2 2

Table 3: 2013 HD Report data (recall that Procedure 1 will be applied to natural logarithms
of these data) and rankings. For e = 1, the % and o signs identify the pairs of countries that

eventually lead to Condorcet cycles.

c af B¢
.25 1.021 1.000
.50 1.002 1.000
.75 1.011 1.000
1 1.028 1.001

Table 4: Performance guarantee of Procedure 1 for rankings shown in Table 3.
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