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Abstract

The present paper investigates the functioning of an Emission Trading
System (ETS) and its impact on the diffusion of environmental-friendly
technological innovation in the presence of firms’ strategic behaviours and
sanctions to non-compliant firms. For this purpose, we study an evolu-
tionary game model with random matching, namely, a context in which
a population of firms interact through pairwise random matchings. We
assume that each firm has to decide whether to adopt a new clean technol-
ogy or keep on using the old technology that requires pollution permits
to operate and that the strategy whose expected payoff is greater than
the average payoff spreads within the population at the expense of the
alternative strategy (the so-called replicator dynamics).

We investigate the technological dynamics and the stationary states
that emerge from the model. From the analysis of the model, we show that
by properly modifying the penalty on non-compliant firms, it is possible to
shift from one dynamic regime to another and that an increase in permits
trade can promote the diffusion of innovative pollution-free technologies.

1 Introduction

Emission trading has gained increasing importance in the last years as policy
instrument to reduce several different environmental problems.

While the theoretical foundations of the instrument are due to the seminal
contributions by several authors in the ’60s (e.g. Coase 1960, Dales 1968, Mont-
gomery 1972), the first examples of applications of Emission Trading Systems
(henceforth ETS) date back to 1995 when they were succesfully implemented
in the context of the US Acid Rain Programme to cut NOx and SO2 emissions
(Coniff, 2009). More recent applications include water tradable permits to lower
pollution and consumption of hydric resources, with different results in different
countries and hydrological basins (see Borghesi, 2008).

Among recent applications of ETS, a particularly important role is played by
the European Emission Trading Scheme (EU-ETS) for the reduction of carbon
dioxide emissions. As Ellerman (2009) has argued, this scheme, that is the first
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world’s multinational cap-and-trade system for greenhouse gases (GHG) and
has created the largest emissions trading market, represents a benchmark for
the global GHG emissions trading system that is currently proposed as the main
policy instrument to combact climate change in the future (Aldy and Stavins,
2008).

Given the crucial role that the ETS is likely to play in the future interna-
tional policy agenda, several works have recently investigated its functioning
and implications from different perspectives (e.g. Grull and Taschini, 2011;
Convery, 2009; Clò, 2008; Carraro et al., 2010; Ellerman and Buchner, 2007;
Ellerman and Joskov, 2008; Ellerman, 2009; Ellerman et al., 2010; Costantini et
al., 2011). In particular, among these studies a few contributions (e.g. Rogge et
al. 2011; Moreno-Bromberg and Taschini, 2011; Brauneis et al., 2011; Borghesi
et al., 2012; Calel and Dechezlepretre, 2012) have examined whether and to what
extent the ETS contributes to induce technological innovation and diffusion in
the regulated sectors. Several authors have analysed the possible existence of
strategic behaviours in the emission trading market (e.g. Hahn, 1984, Hagem
and Westkog, 1998, Smith and Swierzbinski, 2007, Wirl, 2009), while others
have pointed out the possible emerging of moral hazard behaviours generated
from the sanction system in the EU-ETS context (see e.g. Borghesi, 2011) or
the optimal environmental policy when firms are not compliant (see e.g. Ino,
2011).

The present paper aims at contributing to the increasing literature on this
issue by investigating the functioning of an ETS and its impact on the diffusion
of environmental-friendly technological innovations in the presence of strategic
behaviours of firms, bounded rationality and sanctions to non-compliant firms.

Differently from all previous contributions in the EU-ETS literature, the
present paper adopts a random matching model to analyse the issue described
before. The random matching framework is increasingly adopted in game theory
to model markets in which frictions and bounded rationality prevent instanta-
neous adjustment of the level of economic activity. In particular, following
the seminal contribution by Maynard Smith (1982) (see Hofbauer and Sigmund
1988, Weibull 1995, Samuelson 1997 for an introduction to evolutionary game
theory), several papers have adopted evolutionary game models in which in-
dividuals interact with each other during pair wise random matchings. Such a
framework seems to fit and has therefore been applied to many different eco-
nomic contexts and fields, such as: labor economics (to describe the matching
of unemployed workers and firms’ vacancies), social economics (e.g. to examine
the formation of marriages from unmatched individuals), monetary economics
(e.g. to analyse the allocation of loans from banks to entrepreneurs, or the role
of money in facilitating sales when sellers and buyers meet), and so on. In the
present context, the random matching structure of the game will be employed
to describe the potential emission trading between heterogeneous firms that can
decide whether to adopt a clean technology or keep on using an old polluting
technology. The former firms can sell their own permits to the latter, who need
them to keep on producing to meet the requirements of the ETS and thus avoid
the penalty to non-compliant firms.
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Differently from other studies in the ETS literature, moreover, we show
that the presence of bounded rationality and imitative behaviors underlying
the random matching model may generate path-dependency in the economy.
When this is the case, the present model allows to perform comparative statics
analyses that show how the basins of attraction of the existing equilibria vary
with changes in key parameters of the model, such as the penalty level to non-
compliant firms. To the best of our knowledge, the possible existence of path
dependency in ETS and the analysis of its dynamic features has been mainly
ignored by the existing literature, therefore it represents a further value added
of the present work as compared to previous studies.

To investigate this issue, the structure of the paper will be as follows. Section
2 describes the model, distinguishing two possible payoff matrices according
to the kind of firms that interact in random pairwise matchings. Section 3
investigates the dynamics emerging under each of the two possible cases and
analyses the corresponding Pareto ranking among the equilibria of the model.
Section 4 contains some concluding remarks on the main results that descend
from the model.

2 The model

Let us consider a large population of firms that interact among themselves
through pairwise random matchings. Each firm has to choose ex ante between
two possible strategies: (i) keep on using an old, polluting technology (with
production cost CP ) and buy the corresponding pollution permits (at price p)
or (ii) shift to a new, environmental-friendly technology that implies higher
production costs (CNP > CP ) but requires no pollution permits to operate.

To fix ideas, let us suppose that each firm initially has one permit at disposal
and that the firms that use the polluting technology (henceforth firms P ) need
two permits to operate, while the firms that adopt the clean technology (firms
NP ) need no permit for the activity. If so, firms P need to buy one more
permit to keep on producing, whereas firms NP can sell its permit, so that the
conditions for their exchange are obviously satisfied.

Let us indicate with T the sanction that a non-compliant firm P has to
pay if is discovered by the regulatory authority, namely, if it produces with the
old technology without purchasing the additional permit that is needed for this
purpose. We will denote with θ ∈ (0, 1) the probability of being discovered by
the regulatory authority, therefore θT indicates the expected fee for the non-
compliant firms P .

Given the random matching structure of the game, we can obviously dis-
tinguish three possible cases depending on the kind of firms that meet up in
pairwise matchings.

a) If two firms P meet, then in principle they both have to pay the fee,
since none of them has enough permits to operate. However, they can decide
to exchange their permits (i.e. one firm P sells its permit to the other that has
thus the two permits that it needs to operate) and share the expected penalty.
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In this case, the exchange price is p = θT/2 and the payoffs πP of the two firms
will be:

πP = −CP − θT/2

so that both firms are better-off with respect to the no exchange case (in
which they both have the "full" expected penalty θT ).

b) If two firms NP meet, the permits are useless for both of them so no
permit trade will occur. In this case, the payoffs πNP of the two firms will be:

πNP = −CNP + δ

where δ ≥ 0 denotes the possible positive spillover deriving to each firm NP
from the diffusion of the new technology (e.g. the positive externality in terms
of reduction cost for the new technology that is allowed by the network effects
emphasized by much of the empirical literature on this issue).1

c) If a firm P meets a firm NP , the former can buy from the latter the
permit that it needs to avoid the penalty, however the permit exchange may
not take place for different reasons. For instance, firm P might decide not to
buy the permit and run the risk to be sanctioned by the regulatory authority
since it regards the expected penalty to be sufficiently low. Alternatively, firm
NP could decide not to sell the permit to damage and/or eliminate firm P as
it may represent a potential competitor on the market.2

We can, therefore, distinguish two possible subcases within case c:
c.1) No permit exchange occurs between firm P and NP (because P does

not buy the permit and/or NP does not sell it). In this case, if firm P is not
discovered (which occurs with probability 1−θ), the payoffs of the two firms are
simply represented by the costs of their respective technologies (CP and CNP ).
If, on the contrary, firm P is discovered (which occurs with probability θ) it will
also have to pay the penalty T , while firmNP may possibly derive a competitive
gain γ from the "punishment" suffered from its competitor P .3 In this case,
therefore, the expected payoff of firms P and NP are given by the probability
that P is actually discovered/not discovered times the corresponding payoffs for
each firm as described above, that is, respectively:

πP = θ(−CP − T ) + (1− θ)(−CP ) = −CP − θT

πNP = θ(−CP + γ) + (1− θ)(−CNP ) = −CNP + θγ

1 See, for instance, Borghesi et al. (2012) and the literature cited therein.
2 A similar use of emission permits for strategic purposes has actually occurred in some

applications of ETS. For instance, when a system of water pollution permits was implemented
on the Fox River in Wisconsin, the largest firms that possessed most of the permits refused
to sell them to the smaller firms to hinder the growth in the production activity of the latter
(’O Neill et al., 1983).

3 One can interpret γ, for instance, as the increase in the revenues and/or in the market
share accruing to firm NP from the closing of the non-compliant firm P or from the acquisition
by NP of some green labelling that increases the number of its consumers who are concerned
with the environmental consequences of the dirty production process used by firm P .
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where γ ≥ 0 is the competitive gain for NP from "punishing" firm P.
c.2) The permit exchange does take place and firms P buys the permit from

firm NP . In this case, the payoffs of the two firms will simply be, respectively:

πP = −CP − p

πNP = −CNP + p

where p is the price of the tradable permit.
Notice that firm P will obviously be willing to buy the permit only if its

corresponding payoff is higher than the expected payoff from not buying the
permit, namely if:

−CP − p > −CP − θT

or, equivalently, if p < θT .
Similarly, firm NP will be willing to sell its permit only if the payoff that

it derives from the exchange is higher or at least equal to the expected payoff
from not selling the permit, namely if:

−CNP + p > −CNP + θγ

that is, if p > θγ.
For the permit exchange to actually take place, therefore, the equilibrium

price must range between the minimum willingness to accept of firm NP and
the maximum willingness to pay of firm P , that is θγ < p < θT .

We can, therefore, distinguish two possible cases that encompass all the
possible situations described above:

Case 1: If γθ ≥ θT , i.e. γ ≥ T , there cannot exist any equilibrium price that
satisfies the conditions above so that no trade will take place between firms P
and NP . In this case (that encompasses cases a), b) and c.1) discussed above),
the payoff matrix is as follows:

P NP

A :
P
NP

�
−CP −

θT
2

−CP − θT
−CNP + γθ −CNP + δ

�

Case 2: If θγ < θT , i.e. γ < T , the permit exchange is mutually convenient
for any p ∈ (θγ, θT ). In this case, therefore, summarising the cases a), b) and
c.2) above, the payoff matrix is given by:

P NP

B :
P
NP

�
−CP −

θT
2

−CP − p
−CNP + p −CNP + δ

�
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For the sake of simplicity, we will assume that the equilibrium price sets half
way between the minimum willingness to accept of firm NP and the maximum
willingness to pay of firm P , that is:4

p =
θγ + θT

2
= θ

γ + T

2

If so, the payoff matrix B becomes:

P NP

C :
P
NP

�
−CP −

θT
2

−CP − θ
γ+T
2

−CNP + θ
γ+T
2

−CNP + δ

�

In what follows we will examine the dynamics and the equilibria that emerge
under each payoff matrix and the possible shifts in the dynamic regimes from
one case to the other (i.e. from matrix A to matrix C) that may derive from
changes in the parameter values of T and γ.

3 Dynamics of the game

Let us indicate with x(t) ∈ [0, 1] the share of firms that adopt strategy P at
time t ∈ [0,+∞). As a consequence, 1−x(t) denotes the share of firms adopting
the alternative strategy NP . Variable x represents, therefore, the distribution
of the two strategies in the population of firms; if x = 1 (respectively, x = 0)
then all firms adopt strategy P , that is, they all keep on using the polluting
technology (respectively, all firms adopt strategy NP , i.e. they all shift to the
clean technology).

At any time t a large number of pairwise matchings occur between firms that
randomly interact.

Given the random maching structure of the game, x (respectively, 1 − x)
measures the probability of "meeting" a firm that has adopted strategy P (re-
spectively, NP ).

Let us assume, for the sake of simplicity, that the adoption process of the two
strategies can be described by the well-known replicator dynamics (see Weibull
1995):

·

x = x(1− x) [ΠP (x)−ΠNP (x)] (1)

where ΠP (x) and ΠNP (x) indicate the expected payoffs of strategies P and

NP , while
·

x denotes the time derivative of x(t), namely,
·

x = dx(t)/dt. Ac-
cording to replicator dynamics, the strategy whose expected payoff is greater

4 This is equivalent to assuming that firms P and NP have the same bargaining power.
If this is not the case, the equilibrium price will obviously tend towards one extreme or the
other of the range of values (θγ, θT ) according to the respective importance and bargaining
power of the two firms.
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than the average payoff spreads within the populations at the expense of the
alternative strategy, namely:

·

x � 0 iff ΠP (x)−ΠNP (x) � 0, ∀x ∈ (0, 1) (2)

3.1 Dynamics of the game when the payoff matrix A ap-

plies

If γ ≥ T , the payoff matrix A applies (i.e. tradable permits are exchanged only
between firms P but not between heterogeneous firms, P and NP ). In this case,
the expected payoffs for the two strategies are as follows:

ΠP (x) = (−CP −
θT

2
)x+ (−CP − θT )(1− x) = −CP − θT +

θT

2
x

ΠNP (x) = (−CNP + γθ)x+ (−CNP + δ)(1− x) = −CNP + δ + (γθ − δ)x

so that the replicator dynamics become:

·

x = x(1−x) [ΠP (x)−ΠNP (x)] = x(1−x)

�
CNP −CP − θT − δ +

��
T

2
− γ

�
θ + δ

�
x

�

(3)
where T

2
− γ < 0, since γ ≥ T .

Notice that the payoff ΠP (x) is a strictly increasing function of the share of
polluting firms x: in fact, the higher is the share of polluting firms, the higher
the probability for a firm P to meet a similar firm and thus share the expected
penalty (θT

2
) rather than having to pay it all (θT ) as it occurs when it meets a

firm NP .
Also observe that the payoff ΠNP (x) is a strictly increasing function of x if

γθ − δ > 0, while it is strictly decreasing if γθ − δ < 0. This is also consistent
with what one would reasonably expect: if for a firm NP the expected gain
from meeting a firm P (γθ) is higher than the gain from meeting another firm
NP (δ), then its payoff will increase with the number of firms P . The opposite
obviously occurs if the sign of the relationship between γθ and δ is reversed.
Notice that if δ = 0, that is, the meeting of two firms NP does not generate any
positive spillover for each of them, then only the former condition can apply and
the payoff ΠNP (x) is always strictly increasing in the share of polluting firms x.

As one easily observe from equation (3), the payoff differential ΠP (x) −
ΠNP (x) is strictly increasing (decreasing) in x if

�
T
2
− γ

�
θ+ δ is positive (neg-

ative). As shown below, we will therefore distinguish two possible cases in the
description of the dynamics of the model according to the sign of the previous
expression.

The following Proposition illustrates the taxonomy of the dynamic regimes
that may occur in the context γ ≥ T .
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Proposition 1 When γ ≥ T , dynamics (3) can lead to the following possible
dynamic regimes:

1) If CNP − CP ≥ max
�
θT + δ, θ

�
T
2
+ γ

��
, then whatever the initial dis-

tribution of strategies x(0) ∈ (0, 1), x will always converge to the steady state
x = 1 (see Figure 1).

2) If CNP − CP ≤ min
�
θT + δ, θ

�
T
2
+ γ

��
, then whatever the initial dis-

tribution of strategies x(0) ∈ (0, 1), x will always converge to the steady state
x = 0 (see Figure 2).

3) If θ
�
T
2
+ γ

�
< CNP − CP < θT + δ and

�
T
2
− γ

�
θ + δ > 0, then there

exists a repulsive inner steady state:

x := (CP −CNP + θT + δ) /

��
T

2
− γ

�
θ + δ

�
∈ (0, 1)

If x(0) ∈ [0, x), then x converges to the steady state x = 0, while if x(0) ∈
(x, 1], then it converges to the steady state x = 1 (see Figure 3).

4) If θT + δ < CNP −CP < θ
�
T
2
+ γ

�
and

�
T
2
− γ

�
θ+ δ < 0, then whatever

the initial distribution of strategies x(0) ∈ (0, 1), x will always converge to the
inner steady state x ∈ (0, 1) in which the alternative strategies P and NP coexist
(see Figure 4).

Figure 1: Whatever the initial distribution of strategies x(0) ∈ (0, 1), x
converges to the steady state x = 1. Parameter values δ = 2, γ = 130, θ = .4,
CNP = 115, CP = 42, T = 100.
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Figure 2: Whatever the initial distribution of strategies x(0) ∈ (0, 1), x
converges to the steady state x = 0. Parameter values δ = 2, γ = 130, θ = .4,
CNP = 45, CP = 42, T = 100.

Figure 3: Bi-stable dynamic regime (path-dependence): if x(0) ∈ [0, x),
then x converges to the steady state x = 0, while if x(0) ∈ (x, 1], then it
converges to the steady state x = 1. Parameter values δ = 50, γ = 130, θ = .4,
CNP = 125, CP = 42, T = 100.
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Figure 4: Coexistence dynamic regime: whatever the initial distribution of
strategies x(0) ∈ (0, 1), x always converges to the inner steady state x ∈ (0, 1)
in which the alternative strategies P and NP coexist. Parameter values δ = 2,
γ = 130, θ = .4, CNP = 95, CP = 42, T = 100.

The Proposition above suggests that there can be multiple equilibria of the
game: two extreme equilibria (x = 0 and x = 1) in which all firms adopt the
same (clean and dirty, respectively) technology and an inner equilibrium that
can be either repulsive or attracting. In the former case, the system is path-
dependent: the trajectories of the economy may lead to one extreme or the
other depending on the initial distribution of polluting firms in the population
so that the technolgical adoption strategy is self-enforcing. In the latter case the
trajectories will lead to an attracting equilibrium in which both technological
adoption strategies coexist.

Notice that the bi-stable dynamics characterizing case 3 above can occur if
and only if

�
T
2
− γ

�
θ + δ > 0, namely, only if the payoff differential ΠP (x) −

ΠNP (x) is strictly increasing in x, which generates a self-enforcing mechanism
leading to extreme equilibria.5 On the contrary, the coexistence regime char-
acterizing case 4 above can occur if and only if

�
T
2
− γ

�
θ + δ < 0, namely, the

payoff differential ΠP (x)−ΠNP (x) is downward sloping in x.
The following Proposition describes how a change in θ and/or T modifies

the inner equilibrium value x.

Proposition 2 In the context γ ≥ T , if θ
�
T
2
+ γ

�
< CNP −CP < θT + δ and�

T
2
− γ

�
θ + δ > 0 (bi-stable regime), then ∂x

∂T
> 0 and ∂x

∂θ
> 0. If

5 Since γ ≥ T , observe that for the condition above to apply it must be δ > 0, that is, a
positive spillover must derive from diffusion of the new technology.
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θT+δ < CNP −CP < θ
�
T
2
+ γ

�
and

�
T
2
− γ

�
θ+δ < 0 (coexistence regime),

then ∂x
∂T
< 0 and ∂x

∂θ
< 0.

The above Proposition suggests that an increase in θ and/or T shifts the
repulsive inner equilibrium x to the right, thus enlarging the attraction basin
of the "virtuous" equilibrium x = 0 in which no firm pollutes any longer. The
opposite applies when the inner equilibrium x is an attractor: in this case an
increase in the expected penalty (due to higher penalty level T and/or higher
probability of being discovered θ by the regulatory authority for non-compliant
firms) shifts x to the left, thus increasing the share of non-polluting firms at the
equilibrium.

In what follows, we intend to point out the possible Pareto dominance rela-
tionships between the stationary states of the dynamic system analysed above.
For this purpose, let us consider that the average payoff of the population of
firms is given by:

Π(x) = x ·ΠP (x) + (1− x) ·ΠNP (x)

Therefore Π(1) = ΠP (1) and Π(0) = ΠNP (0) hold. When the two extreme
equilibria x = 0 and x = 1 are both attractors, it seems important to emphasize
under which conditions the firms’ payoffs are higher in x = 0 than in x = 1.
This occurs when:

ΠNP (0) > ΠP (1)

i.e.:

−CNP + δ > −CP −
θT

2

which can be rewritten as follows:

θT

2
+ δ > CNP −CP

Therefore if the cost differential CNP −CP between the clean and the dirty
technologies is sufficiently low, then both the firms and the citizens are better-
off in x = 0 than in x = 1: the former because they get a higher payoff,
while the latter because they live in a non-polluted environment. Notice that
the condition above requires that the expected penalty θT and/or the spillover
effect δ are sufficiently high so that all firms are highly motivated to shift to the
clean technology.

If, on the contrary, the condition above does not apply, then the firms’ payoffs
are higher in x = 1 than in x = 0, while the opposite applies for the citizens, at
least in terms of their benefits from a clean environment.6

6 Notice that in the present model we focus attention on the firms’ profit rather than on
the welfare of the whole collectivity. However, given the many and well-documented health
damages provoked by environmental degradation (cf. WHO, 2005), it seems reasonable to
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3.2 Dynamics of the game when the payoff matrix C ap-

plies

If γ < T , the payoff matrix C applies (i.e. tradable permits are exchanged not
only between homogeneous firms P , but also between heterogeneous firms, P
and NP ). In this case the expected payoffs are:

ΠP (x) = (−CP −
θT

2
)x+ (−CP − p)(1− x) = −CP −Ep+

�
Ep−

θT

2

�
x =

= −CP − θ
γ + T

2
+ θ

γ

2
x

ΠNP (x) = (−CNP + p)x+ (−CNP + δ)(1− x) = −CNP + δ + (Ep− δ)x =

= −CNP + δ +

�
θ
γ + T

2
− δ

�
x

and the replicator dynamics become:

·

x = x(1− x) [ΠP (x)−ΠNP (x)] = x(1− x)

�
CNP −CP − δ −Ep+

�
δ −

θT

2

�
x

�
=

= x(1− x)

�
CNP −CP − δ − θ

γ + T

2
+

�
δ −

θT

2

�
x

�
(4)

Notice that the payoff function ΠP (x) is always strictly increasing in x so
that the polluting strategy is self-enforcing.7 The payoff of the non-polluting
technology ΠNP (x) is, instead, strictly increasing in x if θ γ+T

2
− δ > 0, namely,

if the price of the tradable permits (θ γ+T
2

) sold to firm P is higher than the
benefit gained from meeting a firm NP (δ). Stated differently, in this case the
payoff of firm NP increases with x since the firm NP is more likely to meet a
firm P which makes it better off. The opposite obviously applies if the price
of the tradable permits sold to firm P is lower than the spillover effect from
meeting a firm NP .

The payoff differentialΠP (x)−ΠNP (x) is strictly increasing in x if δ− θT
2
> 0,

strictly decreasing if δ− θT
2
< 0. This is consistent with our apriori intuition: if

the benefit obtained by the matching of two firms NP (δ) are higher than that

argue that citizens would be better-off in a perfectly clean world (x = 0) than in an extremely
polluted one (x = 1). The opposite result will obviously emerge when the firms’ profits are
higher in x = 1 than in x = 0 (i.e. ΠNP (0) < ΠP (1)). In that case, the firms’ interests are
likely to conflict with the welfare of society as a whole. The welfare analysis of the whole
collectivity, however, goes beyond the scope of the present paper. We therefore leave it for
future extensions of the present work.

7 This occurs because, if γ > 0, the price that a firm P pays when it buys the pollution
permit from another firm P ( θT

2
) is higher than what it pays when it buys it from a firm NP

(θ γ+T
2

).
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from the meeting of two firms P (θT
2

), then the payoff of the former firms grow
faster than that of the latter as firms NP spread through the population. The
opposite obviously applies if δ is lower than θT

2
.

The following Proposition illustrates the taxonomy of the dynamic regimes
that may occur in the context γ < T .

Proposition 3 When γ < T , dynamics (4) can lead to the following possible
dynamic regimes:

1) If CNP − CP ≥ max
	
θ γ+T

2
+ δ, θ

�
T + γ

2

�

, then whatever the initial

distribution of strategies x(0) ∈ (0, 1), x will always converge to the steady state
x = 1 (see8 Figure 1).

2) If CNP − CP ≤ min
	
θ γ+T

2
+ δ, θ

�
T + γ

2

�

, then whatever the initial

distribution of strategies x(0) ∈ (0, 1), x will always converge to the steady state
x = 0 (see8 Figure 2).

3) If θ
�
T + γ

2

�
< CNP −CP < θ

γ+T
2
+ δ and δ − θT

2
> 0, then there exists

a repulsive inner steady state:

x =

�
CP −CNP + δ + θ

γ + T

2

�
/

�
δ −

θT

2

�
∈ (0, 1)

If x(0) ∈ [0, x), then x converges to the steady state x = 0, while if x(0) ∈
(x, 1], then it converges to the steady state x = 1 (see8 Figure 3).

4) If θ γ+T
2
+ δ < CNP −CP < θ

�
T + γ

2

�
and δ− θT

2
< 0, then whatever the

initial distribution of strategies x(0) ∈ (0, 1), x will always converge to the inner
steady state x ∈ (0, 1) in which the alternative strategies P and NP coexist (see8

Figure 4).

Notice that, as occurred under matrix A, even in the present context a
bi-stable (path-dependent) dynamic regime takes place only if the spillover pa-
rameter δ is sufficiently high (more precisely, δ > θT

2
, see case 3 above).

As it clearly emerges from the Proposition above, the dynamic regimes that
may occur with matrix C (when permits are traded between heterogeneous
firms) are similar to those that result from matrix A (when permits are traded
only between polluting firms), although under different parameter values. In
both cases (in particular under cases 3 of Propositions 1 and 3), we can have a
bi-stable dynamics so that hysteresis takes place in the model. This implies that
two economies that take part to the same ETS and undergo the same legislation
in terms of sanctions to non-compliant firms may lead to two opposite outcomes
(x = 0 where none pollutes or x = 1 where everyone pollutes) depending on
the share of firms x(0) that initially adopt the new technology NP . On the
contrary, when cases 4 of Propositions 1 and 3 apply, the dynamics emerging
from the payoff matrices A and C are independent of the initial conditions and

8 Please note that altough the referred figures in the statement are related to the matrix
A, from a qualitative point of view they can fit also for the cases under scrutiny.
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there always exists a unique steady-state that is globally attractive (x = 0,
x = 1, or x = x).

It is important to emphasize that -ceteris paribus- a rise in the penalty level
T shifts the economy from the regime analyzed in Proposition 1 (case γ ≥ T )
to that of Proposition 3 (case γ < T ), thus increasing the overall number of
transactions in the ETS as it induces also firms P and NP to exchange permits.

The following Proposition describes how the inner equilibrium identified in
Proposition 3 is modified by a change in the penalty level and/or in the monitor-
ing capacity of the regulatory authority that affects the probability to discover
non-compliant firms.

Proposition 4 In the context γ < T , if θ
�
T + γ

2

�
< CNP − CP < θ

γ+T
2
+ δ

and δ − θT
2
> 0 (bi-stable regime), then ∂x

∂T
> 0 and ∂x

∂θ
> 0. If

θ γ+T
2
+ δ < CNP − CP < θ

�
T + γ

2

�
and δ − θT

2
< 0 (coexistence regime),

then ∂x
∂T
< 0 and ∂x

∂θ
< 0.

When a bi-stable dynamics regime applies (case 3 of Proposition 3 above),
an increase of T raises the value of the repulsive inner steady-state x, therefore
it increases the basin of attraction of x = 0 with respect to that of x = 1.
Stated differently, when the system is path-dependent an increase of T raises
the likelihood that the system may converge to the steady state x = 0 (where
all firms adopt the non-polluting technology NP ).

When the inner steady-state x is globally attracting (case 4 of Proposition
3 above), an increase in T reduces the value of x. In other words, in this case
a rise in the penalty level (that shifts the system from matrix A to matrix C)
increases the share of non-polluting firms NP at the equilibrium.

In both cases, therefore, a rise in the penalty level implemented by the
regulatory authority that increases permits trade tends to promote the diffusion
of the new non-polluting technology, as it increase either the attraction basin of
the totally clean outcome (x = 0) or the share of clean firms at the equilibrium.9

The same applies to an increase in the monitoring effort/ability of the reg-
ulator that raises the value of θ, thus making more difficult for non-compliant
firms to escape the sanction.

Finally, it is important to underline that the dynamics of the economy may
lock the system into a "poverty-trap". As a matter of fact, in some cases the
dynamic regime may lead the system towards the "dirty" steady-state x = 1,
although the firms’ profits would be higher in the "clean" steady-state x = 0,
in which also the overall collectivity would most likely be better-off. To show
that this may be the case, consider Proposition 3. In this context, we have:

ΠNP (0) > ΠP (1)

for:
9 Notice that, when γ = T , the two matrices A and C coincide so that they have the same

inner equilibrium x. As a consequence, the comparative statics results concerning x described
in the previous Propositions hold true even when an increase in T shifts the regime from
matrix A to matrix C.
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−CNP + δ > −CP − θ
T

2
+ θγ

or equivalently when:

θ

�
T

2
− γ

�
+ δ > CNP −CP (5)

Recalling that the condition for a bi-stable dynamics under Proposition 3 is:

θ
�
T +

γ

2

�
< CNP −CP < θ

γ + T

2
+ δ (6)

it turns out that the two conditions (5) and (6) can simultaneously apply if:

θ
�
T +

γ

2

�
< θ

�
T

2
− γ

�
+ δ

that is, if:

θ

�
T

2
+
3

2
γ

�
< δ

This condition suggests that if the positive spillover effect δ that firms NP
enjoy when they meet on the market is sufficiently large, then all firms would be
better-off by adopting the new technology but the bi-stable dynamics may still
lead the economy in the opposite direction if many firms are initially reluctant
to change technology and keep on using the old one (i.e. if x(0) is initially above
the repulsive inner equilibrium x).10 In other words, in this case the economy
may end up in a situation that is Pareto-dominated for the firms and most likely
also for the society as whole.

3.3 Dynamics of the game when θ is endogenous

So far, we have assumed that the monitoring capacity of the regulatory au-
thority and thus the probability θ of non-compliant firms of being discovered is
exogenously given. However, this may not be the case. In fact, the monitoring
capacity and effort of the regulatory authority in discovering and sanctioning
non-compliant firms can actually be endogenously determined by the number
of polluting firms that the authority has to control. In this section we intend
to analyse how results may change if we account for this possibility by endo-
genising the probability θ. For this purpose, we will focus on the case in which
heterogeneous firms can exchange emission permits (matrix C above).11

10 Notice that a positive technological spillover δ is a necessary but not a sufficient condition
to satisfy the condition above, since such a spillover has to be sufficiently high for this to
occur.

11 A similar analysis can obviously be performed also in the case of matrix A. We omit it
for space reasons and prefer to focus on matrix C since in this latter case the permit market
is more extended as it includes also the trade between firms P and NP .
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Let us assume, for the sake of simplicity, that the probability that a non-
compliant firm P is actually discovered by the regulatory authority is a linear
function of the overall share of polluting firms, that is:

θ(x) := a+ bx

where: a ≥ 0, b ≷ 0 and 0 ≤ a+ bx ≤ 1 ∀x.
Notice that we intentionally imposed no apriori condition on the sign of

the parameter b. In fact, an increase in the share x of polluting firms may have
conflicting effects on the monitoring capacity of the regulatory authority, so that
the sign of b is apriori ambiguous. On the one hand, the higher is the share of
polluting firms, the lower is the probability for each of them of being discovered
if it keeps producing without purchasing the additional emission permit that is
requested by law (b < 0). On the other hand, the higher is the share of polluting
firms, the higher is likely to be the monitoring effort of the regulatory authority
and thus also the probability for non-compliant firms of being discovered (b > 0).

Assuming θ(x) := a+ bx, the expected payoffs become:

ΠP (x) = −CP −
γ + T

2
(a+ bx) +

γ

2
x(a+ bx) =

−CP − a
γ + T

2
+
1

2
(aγ − b(γ + T ))x+ b

γ

2
x2

ΠNP (x) = −CNP + δ +

�
γ + T

2
(a+ bx)− δ

�
x =

= −CNP + δ +

�
a
γ + T

2
− δ

�
x+ b

γ + T

2
x2

therefore, the following replication dynamics apply:

·

x = x(1−x)

�
CNP −CP − δ − a

γ + T

2
+

�
δ − b

γ + T

2
− a

T

2

�
x− b

T

2
x2
�

(7)

Observe that the graphs of the payoff functions ΠP (x) and ΠNP (x) are given
by two convex (U-shaped) parabola if b > 0, while they can be represented as
two concave (bell-shaped) parabola if b < 0. Both parabola, therefore, have a
minimum (respectively, maximum) that may lie or not within the interval (0, 1).
The payoff differential:

f(x) := CNP −CP − δ − a
γ + T

2
+

�
δ − b

γ + T

2
− a

T

2

�
x− b

T

2
x2

is a concave parabola if b > 0, whereas is a convex parabola if b < 0.
It follows that we can have two steady-states in (0, 1), x1 and x2, with

x1 < x2. In such case, if b > 0, we have four steady-states, x = 0 and x2
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being attractive, while x = 1 and x1 are repulsive (see Figure 5); if, on the
contrary, b < 0 we still have the same four steady states but with opposite
stability properties: x = 0 are x2 repulsive, while x = 1 and x1 are attractive
(see Figure 6).

Observe that it is:

f(0) = CNP −CP − δ − a
γ + T

2
< 0 (8)

for CNP −CP < δ + a
γ+T
2

and:

f(1) = CNP −CP − (a+ b)
�γ
2
+ T

�
< 0 (9)

for CNP −CP < (a+ b)
�
γ
2
+ T

�
.

Also notice that the value of x that maximizes f(x) (if b > 0) or minimizes
f(x) (if b < 0) is the solution of the following equation:

f ′(x) = δ − b
γ + T

2
− a

T

2
− bTx = 0

namely:

xe =
δ − bγ+T

2
− aT

2

bT

where xe > 0 when:

δ − b
γ + T

2
− a

T

2
≷ 0 if b ≷ 0 (10)

while xe < 1 when:

δ − b
γ + T

2
− a

T

2
≷ bT if b ≷ 0 (11)

3.3.1 Case b > 0

When b > 0, the necessary and sufficient condition to have 4 steady-states is
that conditions (8)-(11) are simultaneously satisfied and that f(xe) > 0 also
holds.

Among this set of conditions, (10)-(11) jointly ensure that the value of x
that maximizes f(x) lies in the interval (0, 1), namely xe ∈ (0, 1) iff:

b
γ

2
+ (a+ b)

T

2
< δ < b

γ

2
+ (a+ 3b)

T

2

which can also be expressed in terms of the penalty T as follows:

2δ − bγ

a+ 3b
< T <

2δ − bγ

a+ b
(12)
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provided a+ b �= 0.12

Figure 5: Graphes of
·

x corresponding to two different values of CNP−CP ,
that give rise to two different dynamic regimes; in one regime, the steady states
x2 and x = 0 are locally attracting, in the other the steady state x = 0 is
globally attracting. The dotted line refers to the cost difference CNP −CP = 31
the continuous line to the cost difference CNP −CP = 31.5 The other parameter
values are a = 0.4, b = 0.3, T = 47, δ = 22 γ = 3.

The remaining conditions (8), (9) and f(xe) > 0, that are needed to have
4 steady states, are all dependent on the cost difference between the two tech-
nologies CNP − CP . More precisely, as can be clearly seen from conditions
(8)-(9), the cost difference between the clean and the dirty technology must
be sufficiently low to have the dynamic regime with four equilibria described
in the section above. In fact, an increase in the difference CNP − CP shifts
upwards the concave parabola f(x). A relatively low increase in the cost of the
two technologies moves the attracting equilibrium x2 to the right (thus raising
the number of polluting firms at the equilibrium) and the repulsive equilibrium
x1 to the left (which reduces the attraction basin of the "virtuous" equilibrium
x = 0), which is consistent with what one would reasonably expect. But if the
increase in the difference CNP −CP is very high, the parabola may shift above
the horizontal axis, so that there is no longer any inner equilibrium. Figure 5

shows two graphes of
·

x, corresponding to different values of CNP − CP , that
give rise to two different dynamic regimes; in one regime, the steady states x2
and x = 0 are locally attracting, in the other the steady state x = 0 is globally
attracting.

Summing up, when b > 0, if the difference in the technological costs is
sufficiently low and the penalty level has intermediate values as described above,

12 Notice that it is always a+ b ≥ 0 since we have: 0 ≤ a+ bx ≤ 1 ∀x.
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then we can have 4 steady states, that is, a path-dependent economy with one
inner equilibrium x2 in which the two strategies P and NP coexist.

3.3.2 Case b < 0

A similar reasoning applies in the case b < 0. When b < 0, we have 4 steady-
states iff: f(0) > 0, f(1) > 0, f(xe) < 0 and xe ∈ (0, 1). The former three
conditions crucially depend on the difference CNP − CP (that has to be suffi-
ciently high for the vertical intercept of the curve to be positive as well as its
value at x = 1). As to the latter condition xe ∈ (0, 1), it is easy to check that
it holds iff:

a+ 3b > 0 and
2δ − bγ

a+ b
< T <

2δ − bγ

a+ 3b

Thus, when b < 0, if the difference in the technological costs is sufficiently
high and the penalty level has intermediate values as described above, we have
4 steady-states with opposite stability features with respect to the case b > 0,
namely: x = 0 and x2 repulsive, while x = 1 and x1 are attractive.

Figure 6: Graphes of
·

x corresponding to two different values of CNP−CP ,
that give rise to two different dynamic regimes; in one regime, the steady states
x1 and x = 1 are locally attracting, in the others, the steady state x = 1 or
x = 0 are globally attracting. The dotted line refers to the cost difference
CNP − CP = 23.5, the continuous line to the cost difference CNP − CP = 22.
The other parameter values area = 0.7, b = −0.3, T = 47, δ = 4, γ = 3.

Observe that an increase in the cost difference CNP−CP shifts the attracting
equilibrium x1 to the right (thus increasing the share of polluting firms P at
the equilibrium) and the repulsive equilibrium x2 to the left (which extends the
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attraction basin of x = 1 where pollution is maximum). This seems consistent
with our intuition: the higher is the cost of the clean technology with respect to
the polluting technology, the lower is the number of firms that decide to invest in
the new technology and the more attractive is the "business-as-usual" solution
in which firms prefer to keep on using the traditional polluting technology.

Even in this case, however, if the increase in the cost difference CNP −CP is
remarkably high, the parabola will shift above the horizontal axis, so that the
inner coexistence equilibria x1 and x2 cease to exist and there remains only one

attracting equilibrium, x = 1.Figure 6 shows two graphes of
·

x, corresponding to
different values of CNP − CP , that give rise to two different dynamic regimes;
in one regime, the steady states x1 and x = 1 are locally attracting, in the other
the steady state x = 1 is globally attracting.

4 Conclusions

The present paper has examined how the implementation of an ETS may affect
the diffusion of new environmental-friendly technologies, taking into account
both the penalty to non-compliant firms established in the ETS and the possible
strategic behaviour of single firms. For this purpose, we have set up and analysed
an evolutionary game model with random matching. While this framework
does not aim to be necessarily realistic (although it fits many contexts, possibly
including also the pairwise meetings in local ETS), it allows to explain learning
processes and to emphasize specific mechanisms that may derive from strategic
interaction among economic agents.

As shown in the paper, we can have two alternative payoff matrixes depend-
ing on the relationship between two crucial parameters, T and γ, that capture
the penalty level and the incentive of clean firms to act strategically, respec-
tively. In one case, only polluting firms exchange permits among themselves,
whereas in the other case permits can be traded between heterogeneous firms
(polluting and non-polluting). We have shown that by properly increasing the
penalty level the regulatory authority can shift from one dynamic regime to the
other (i.e. we can pass from the former to the latter case) and that an increase
in permits trade promotes the diffusion of innovative pollution-free technologies
at the equilibrium.

In both cases, morever, multiple equilibria emerge from the model, with dy-
namics leading either to extreme equilibria or to inner equilibria. When the
dynamics lead to extreme equilibria, all firms imitate the others and select the
same (polluting or non-polluting) strategy. When they converge to an inner
attracting equilibrium, then there coexist heterogeneous choices in the popula-
tion of firms, with some firms that adopt the clean technology and others that
remain with the old polluting technology. When the inner equilibrium is, in-
stead, a source (i.e. a repulsive steady state), the system is characterized by
path-dependency. This suggests that in a context characterized by bounded
rationality and imitative behaviours as the one described in this paper, the ini-
tial share of innovative firms that adopt the new non-polluting technology may
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play a key role in determining the final outcome of the ETS. If the dynamic
trajectories are path-dependent, in fact, two economies that take part to the
same ETS and undergo the same penalty system (as it occurs, for instance, in
the European ETS) might end up in opposite situations as to the diffusion of
the new technology depending on the initial share of non-polluting firms.

Finally, the number of possible equilibria can further increase (up to four
alternative steady-states) if we assume that the probability of discovering non-
compliant firms is not exogenously given, but rather a function of the number
of polluting firms. In any case, whatever the number of possible equilibria, it is
also possible to rank them and analyse which one Pareto-dominates the others.

Further research will be needed in the future to deepen the present analysis.
In particular, it would be desirable to extend the evolutionary game proposed
here from pairwise random matchings to the case of n firms possible meetings,
so that each firm can simultaneously match up and exchange permits with any
other firm in the market rather than with a single firm. This would strengthen
the realism of the model, potentially adding further complexity to the possible
dynamics that derive from it.
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