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Abstract
We couple a one-dimensional energy balance climate model with heat

transportation across latitudes, with an economic growth model. We derive
temperature and damage distributions across locations and optimal taxes
on fossil fuels which, in contrast to zero-dimensional Integrated Assessment
Models, account for cross latitude externalities. We analyze the impact of
welfare weights on the spatial structure of optimal carbon taxes and identify
conditions under which these taxes are spatially nonhomogeneous and are
lower in latitudes with relatively lower per capita income populations. We
show the way that heat transportation affects local economic variables and
taxes, and locate suffi cient conditions for optimal mitigation policies to have
rapid ramp-up initially and then decrease over time.
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1 Introduction

The impact of climate change is expected to vary profoundly among geo-
graphical locations in terms of temperature and damage differentials.2 The
spatial dimension of damages can be associated with two main factors: (i)
Natural mechanisms which produce a spatially non-uniform distribution of
the surface temperature across the globe; and (ii) economic-related forces
which determine the damages that a regional (or local) economy is expected
to suffer from a given increase in the local temperature. These damages
depend primarily on the production characteristics (e.g. agriculture vs ser-
vices) or local natural characteristics (e.g. proximity to the sea and ele-
vation). The interactions between the spatially non-uniform temperature
distribution and the spatially non-uniform economic characteristics will ul-
timately shape the spatial distribution of damages.

Existing literature and in particular the RICE model (e.g. Nordhaus,
2007a,b, 2010, 2011) provides a spatial distribution of damages in which
the relatively higher damages from climate change are concentrated in the
zones around the equator.3 However, this model as well as other Integrated
Assessment Models (IAMs) does not account for the first factor, the natural
mechanism generating temperature distribution across the globe.

In climate science terminology, IAMs with a carbon cycle and no spa-
tial dimension are zero-dimensional models which do not include spatial
effects due to heat transportation across space. In contrast, the one- or two-
dimensional energy balance climate models (EBCMs) model heat transport
across latitudes or across latitudes and longitudes (e.g. Budyko, 1969; Sell-
ers, 1969,1976; North, 1975 a,b; North et al., 1981; Kim and North, 1992;
Wu and North, 2007). Since prediction of climate at various spatial scales
plays an important role in policy analysis, approaches other than EBCMs
have been developed for approximating temperature fields. These are based
on more complex and computationally costly models, such as pattern scaling
(Lopez et al., 2012) or emulation theory (e.g. Challenor et al., 2006). How-
ever, because the purpose of this paper is to construct the simplest coupled
climate economy model with a climate feedback response mechanism in space
that responds to changes in the spatiotemporal structure of taxes on fossil
fuels, and which is still analytically tractable, we considered the EBCMs
framework as most appropriate.4 It should be noted, however, that for a
comprehensive analysis of regional climate change and prediction of future

2See “Climate observations, projections and impacts” at
http://www.metoffi ce.gov.uk/climate-change/policy-relevant/obs-projections-impacts.

3Recent papers by Hassler and Krusell (2012) and Desmet and Rossi-Hansberg (2012)
also introduce space and regional issues into models of climate change.

4Furthermore, models such as pattern scaling may not be suitable when there are strong
nonlinear feedbacks present, such as “snow-albedo feedback at high latitudes”(Challenor
et al., 2006). Since we want to allow these nonlinear type of feedbacks, which can be
modelled using EBCMs, we did not use pattern scaling.

2



regional climates, one must turn to the large literature that deals with just
that. An approach such as the MAGICC/SCENGEN model, for example,
could be considered a very sophisticated combination of an energy-balance
model plus pattern scaling, although this is far too simple a description of
this kind of work (see Meinshausen et al., 2011). We stress that the purpose
of our own work is more modest. We seek a framework simple enough for
a pencil and paper analysis to expose, for example, potentially important
forces that shape Pareto optimal carbon tax schedules in the face of differ-
ent possibilities for international transfers. Our framework has not yet been
developed to the point where it can deal with important dynamics of the
actual climate system, e.g. the time-response of ocean heat uptake, which
is needed for a more detailed analysis of economic impacts on the climate
system. We hope this kind of exercise will prove useful for economists who
are used to working with simple analytical models, but also wish to include
more features of the dynamic spatial climate system than is usual in these
kinds of models.

One-dimensional EBCMs predict a concave temperature distribution
across latitudes with the maximum temperature at the equator. In this pa-
per we study the economics of climate change by coupling a one-dimensional
EBCM with heat transport and albedo differentiation across latitudes, with
an economic growth model. This approach integrates solution methods for
one-dimensional spatial climate models, which may be new to economics,
with methods of solving economic models. It may therefore provide new in-
sights regarding issues such as the spatiotemporal structure of optimal poli-
cies and the spatial distribution of damages, relative to the zero-dimensional
IAMs with carbon cycle, which ignore cross latitude externalities due to heat
transport.

The literature on climate and economy is so large that a complete lit-
erature review is beyond the scope of this paper. Many scholars besides
Nordhaus have written extensively on coupled economy and climate mod-
els.5 However, to our knowledge, there has been no analysis of the shape
of socially optimal tax structures in models that have a spatial heat trans-
port mechanism that shapes the dynamics of the temperature field, as we
attempt to do. Thus the main contribution of our paper is to couple spatial
climate models with economic models, and then use these spatial climate
models to achieve three objectives.

The first objective is to show the role of heat transport across latitudes
in the prediction of the spatial distribution and the corresponding temporal
evolution of temperature and damages. Our results show that heat trans-
port explicitly affects the spatial distribution of temperature and damages,
thus its omission from zero-dimensional models which rely on mean global
temperature may introduce a bias. As far as we know, this is the first time

5See Nordhaus’(2011) review for coverage of some of this work.
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that the spatial distribution of surface temperature and damages, and their
temporal evolutions, have been determined endogenously by accounting for
the interactions between local temperature and regional damages. We there-
fore believe this to be a contribution of our paper relative to the traditional
IAMs with regional disaggregation but without the natural mechanism of
heat transport across locations.

The second objective is to provide insights into the optimal spatial and
temporal profile for current and future mitigation, when thermal transport
across latitudes is taken into account. Regarding the spatial profile of fos-
sil fuel taxes, our results suggest higher tax rates for wealthier geographical
zones due to the practical inability of implementing without cost the interna-
tional transfers needed to implement a competitive equilibrium associated
with the Pareto optimum, or when Negishi welfare weights are not used.
Our one-dimensional model allows us to study how heat transport across
geographical zones impacts the degree of spatial differentiation of fossil fuel
taxes between poor and wealthy regions. The result that, in the absence of
international transfers, a spatially uniform optimal mitigation is not possible
was first noted by Chichilnisky and Heal (1994). Our results provide new
insights into this issue by characterizing the spatial distribution of fossil fuel
taxes and linking the degree of spatial differentiation of optimal fossil fuel
taxes to heat transport.

With regard to the temporal profile of optimal mitigation, the debate
among economists dealing with climate change on the mitigation side ap-
pears to have basically settled on whether to increase mitigation efforts (that
is, carbon taxes) gradually (e.g. Nordhaus, 2007a, 2010, 2011) or rapidly
(e.g. Stern, 2006; Weitzman, 2009 a,b). In this paper we locate suffi cient
conditions for profit taxes on fossil fuel firms to be decreasing over time and
for unit taxes on fossil fuels to grow over time more slowly than the rate of
return on capital. We also locate suffi cient conditions for the tax schedule
to be increasing according to the gradualist approach.

The third objective is to introduce spatial EBCMs with heat transport
and endogenous albedo into economics as a potentially useful alternative to
simple carbon cycle models in studying the economics of climate change.6

6Another issue that can be addressed by latitude dependent climate models is damage
reservoirs. Damage reservoirs in the context of climate change can be regarded as sources
of climate damages which will eventually cease to exist when the source of the damages is
depleted. Ice lines and permafrost can be regarded as such reservoirs. As the ice lines move
closer to the Poles due to climate change, we might expect that marginal damages from
this moving will be large at first and then diminish as the ice line approaches the Poles.
When there is no ice left at the Poles, this damage reservoir will have been exhausted. The
presence of an endogenous ice line in the EBCM allows us to model these types of damages
explicitly, given the relevant information. Permafrost is soil at or below the freezing point
of water for two or more years. The permafrost feedback suggests that permafrost carbon
emissions could affect long-term projections of future temperature change. Studies indicate
that up to 22% of permafrost could be thawed already by 2100. Once unlocked under
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Since these models are new in economics, we proceed in steps that we
believe make this methodology accessible to economists. In section 2 we
present a basic one-dimensional EBCM7 which incorporates human impacts
on climate resulting from carbon dioxide (CO2) accumulation due to use of
fossil fuels, which blocks outgoing radiation. In developing the model we
follow North (1975 a,b) and use his notation. We use the model to expose
solution methods and especially the two-mode approximating approach used
in section 3 to numerically approximate latitude dependent temperature and
damage functions. Section 4 couples the spatial EBCM with an economic
growth model. We solve the model for the social planner and for the compet-
itive equilibrium with taxes. In section 5 we derive the optimal taxes, their
spatial structure and their temporal profiles, while in section 6 we show how
heat transport affects local economic variables. The last section concludes.

2 An Energy Balance Climate Model with Human
Inputs

In this section we develop a one-dimensional EBCM with human inputs.
The term “one-dimensional”means that there is an explicit one-dimensional
spatial dimension in the model so that our unified model of the climate and
the economy evolves both in time and space.8 We follow North (1975a,b)
and North et al. (1981) in this development.

Let x denote the sine of the latitude. For simplicity we will just refer
to x as “latitude”. Following North (1975a,b), let I(x, t) denote infrared
radiation to space measured in W/m2 at latitude x at time t and T (x, t)
denote surface (sea level) temperature measured in ◦C at latitude x at time
t. The outgoing radiation and surface temperature can be related through

strong warming, thawing and decomposition of permafrost can release amounts of carbon
until 2300 comparable to the historical anthropogenic emissions up to 2000 (approximately
440 GTC) (Schneider et al., 2011). EBCMs, by explicitly introducing the spatial dimension
in the climate module of the problem, can help in the understanding of these types of
latitude dependent damages which may have an important effect on the temporal and
spatial structure of policy instruments, because of the ‘front loading’character of damages
and the possible relations with tipping points and thresholds. The modeling of damage
reservoirs is beyond the scope of this paper, but we believe it represents an important area
for further research. For some first results pointing out the role of damage reservoirs in
generating nonlinearities and multiple steady states, see Brock et al. (2012).

7For more on EBCMs see, for example Pierrehumbert (2008, chapters 3 and 9, especially
sections 9.2.5 and 9.2.6 and surrounding material). North et al. (1981) provide a very
informative review of EBCMs while Wu and North (2007) is a recent paper on EBCMs.

8 In contrast, a “zero-dimensional” model does not explicitly account for the spatial
dimension. On the other hand more complicated spatial structures could include two-
dimensional spherical models. Our methods can easily be applied to a two-dimensional
spherical world as in Wu and North (2007).
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the empirical formula9

I(x, t) = A+BT (x, t), A = 201.4W/m2, B = 1.45W/(m2)(◦C). (1)

The basic energy balance equation developed in North (1975a, equation
(29)) can be written, with human input added, as:

∂I(x, t)

∂t
= QS(x)α(x, xs(t))− [I(x, t)− h(x, t)] +D

∂

∂x

[
(1− x2)

∂I(x, t)

∂x

]
(2)

where x = 0 denotes the Equator, x = 1 denotes the North Pole, and
x = −1 denotes the South Pole; Q is the solar constant10 divided by 2;
S(x) is the mean annual meridional distribution of solar radiation which
is normalized so that its integral from -1 to 1 is unity; α(x, xs(t)) is the
absorption coeffi cient or co-albedo function which is one minus the albedo of
the earth-atmosphere system, with xs(t) being the latitude of the ice line at
time t; and D is a heat transport coeffi cient. This coeffi cient is an adjustable
parameter which has been calibrated to match observed temperatures across
latitudes. It is measured inW/(m2)(◦C) or can be expressed in dimensionless
form as D/B (North et al., 1981).

Equation (2) states that the rate of change of outgoing radiation is de-
termined by the difference between the incoming absorbed radiant heat
QS(x)α(x, xs(t)) and the outgoing radiation [I(x, t)− h(x, t)] . Note that
the outgoing radiation is reduced by human input h(x, t). Thus human input
at time t and latitude x can be interpreted as the impact of the accumulated
CO2 that reduces outgoing radiation.

We define h (x, t) = ξ ln
(

1 + M(t)
M0

)
where M0 denotes the preindustrial

concentration of atmospheric carbon dioxide (CO2) in the atmosphere,M (t)
the concentration at time t , and ξ = 5.35 is a temperature-forcing parameter
(◦C per W per m2). The stock of CO2 evolves according to:

Ṁ (t) =

∫ x=1

x=−1
βq (x, t) dx−mM (t) , M (0) = M0 (3)

where βq (x, t) are emissions generated at latitude x, with emissions being
proportional to the amount of fossil fuels used by latitude x at time t.11 M(t)

9 It is important to note that the original Budyko (1969) formulation cited by North
parameterizes A,B as functions of fraction cloud cover and other parameters of the climate
system. North (1975b) points out that due to non-homogeneous cloudiness, A and B
should be functions of x. There is apparently a lot of uncertainty involving the impact
of cloud dynamics (e.g. Trenberth et al., 2010 versus Lindzen and Choi, 2009). Hence
robust control in which A,B are treated as uncertain may be called for, but this is left for
further research.
10The solar constant includes all types of solar radiation, not just the visible light. It is

measured by satellite to be roughly 1.376 W/m2.
11β could be changing over time due to technical progress.
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should be interpreted as the stock of man-made CO2 in the atmosphere.
With preindustrial as the baseline this means that the interpretation be-
comes CO2 in excess of preindustrial. Hence, if q is set to zero, then when
M(t) goes to zero it signifies a return to preindustrial levels of atmospheric
CO2.

We assume that the total stock of fossil fuel available is fixed or,∫ x=1

x=−1
q (x, t) dx = q (t) ,

∫ ∞
0

q (t) = R0 (4)

where q (t) is total fossil fuels used across all latitudes at time t, and R0 is
the total available amount of fossil fuels on the planet. Thus in this model,
use of fossil fuels generates emissions and emissions increase the stock of
atmospheric CO2, which in turn increases the temperature by blocking the
outgoing radiation.

Returning to equation (2), in equilibrium the incoming absorbed radiant
heat at a given latitude is not matched by the net outgoing radiation and the
difference is made by the meridional divergence of heat flux which is mod-

elled by the term D ∂
∂x

[
(1− x2)∂I(x,t)∂x

]
(North,1975b). This term explicitly

introduces the spatial dimension stemming from the heat transport into the
climate model. The ice line is determined dynamically by the condition
(Budyko, 1969; North, 1975 a,b):

T > −T̃ oC no ice line present at latitude x
T < −T̃ oC ice present at latitude x

(5)

where −T̃ is empirically determined (e.g. -10oC). Below the ice line absorp-
tion drops discontinuously because the albedo jumps discontinuously. For
example North (1975a) specifies a discontinuous co-albedo function:

α(x, xs) =

{
α0 = 0.38 |x| > xs
α1 = 0.68 |x| < xs

. (6)

2.1 Approximating Solutions for the Basic Energy Balance
Equation

We turn now to a more detailed analysis of the solution process in which,
although equation (2) is a PDE, the climate problem can be reduced to the
optimal control of a small number of “modes”where each mode follows a
simple ODE. We believe this decomposition is another contribution of our
paper to the study of coupled economic and climate models.

North (1975 a,b) approached the solution of (2) by using approximation
methods.12 The solution is approximated as Î(x, t) =

∑
n even In(t)Pn(x),

12For a general approach to approximation methods see, for example, Judd (1998).
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where In(t) are solutions to appropriately defined ODEs and Pn(x) are even-
numbered Legendre polynomials. A satisfactory approximation of the so-
lution for (2) can be obtained by the so-called two-mode solution where
n = {0, 2} . We develop here a two-mode solution given the human forcing
function h(x, t). Since the temperature will be the basic state variable, we
redefine (2) using (1), in terms of temperature T (x, t) as:

B
∂T (x, t)

∂t
= QS(x)α(x, xs)− [(A+BT (x, t))− h(x, t)] + (7)

DB
∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]
.

Using the approximation T̂ (x, t) =
∑

n even Tn(t)Pn(x), where now Tn(t) are
solutions to appropriately defined ODEs, the two-mode solution is defined
as:

T̂ (x, t;D) = T0(t) + T2(t;D)P2(x) (8)

B
dT0(t)

dt
= −A−BT0(t) +∫ 1

−1

[
QS(x)α(x, xs) + ξ ln

(
1 +

M (t)

M0

)]
dx (9)

B
dT2(t)

dt
= −B(1 + 6D)T2(t) +

5

2

∫ 1

−1

[
QS(x)α(x, xs) + ξ ln

(
1 +

M (t)

M0

)]
P2(x)dx (10)

T0 (0) = T00, T2 (0) = T20, P2(x) =
(3x2 − 1)

2
(11)

S(x) = 0.5 [1 + S2P2(x)] , S2 = −0.482. (12)

The derivation of the solution is presented in Appendix 1.13 Given the
definitions of the functional forms, the two-mode solution is tractable and
can be calculated given initial conditions T00, T02 which are determined by
the initial climate state. In the two-mode solution, the ice line function xs(t)
which determines the co-albedo solves the equation Is = I(xs(t), t). In terms
of temperature and using the two-mode solution, the ice line function solves

T̂ (x, t;D) = T0(t) + T2(t;D)P2(xs(t)) = Ts, Ts = −T̃ oC (13)

13The two-mode solution is an approximating solution. We can develop a series of
approximations of increasing accuracy by solving this problem for expansions using a
“two-mode”solution, a “three mode”solution and so on. North’s results suggest that the
two-mode solution is an adequate approximation for nonoptimizing models. We use the
two-mode approximation in our optimal control setting. Further research could investigate
how many modes are needed for a good quality approximation in an optimal control
setting.
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and the ice line function is given by a solution of (13), i.e.

xs(t) = P−1
+

(
Ts − T0(t)

T2(t;D)

)
, (14)

where the subscript “+”denotes the largest inverse function of the quadratic
function P2(x) := (1/2)(3x2− 1). Notice that the inverse function is unique
and is the largest one on the set of latitudes [−1, 1]. Thus there exists a
nonlinear feedback from changes in temperature to the co-albedo through
the endogeneity of the ice line. This feedback can be simplified by mak-
ing the co-albedo function α (x, xs) a smooth function of the temperature,

α
(
x, T̂ (x, t;D)

)
, which can be highly nonlinear around −T̃ oC. For example

the co-albedo function

α (x, T (x, t)) = c0 + c1 tanh (T (x, t) + 10) for (c0, c1) = (.525, .195) (15)

provides a good approximation of the discontinuous function (5) at−T̃ oC=−10oC.
A more simplified and tractable specification of the co-albedo, but without
the nonlinear feedback, is the one introduced by North et al. (1981, p. 95
equation (18)), where

a (x) = 0.681− 0.202P2 (x) . (16)

2.1.1 Use of global mean temperature and potential bias

In the two-mode solution that defines the climate module by (8)-(12), and
(3)-(4), spatial interactions are incorporated through the mode-2 part of
the solution, i.e. the ODE (10). Thus the contribution of the second mode
to the full solution can be regarded as the “importance of space” through
heat transport, in the analysis of climate change. This can be seen by the
following argument.

The size of the coeffi cient D determines the speed of transport of heat
from warm areas to cool areas in (7). Assume D = 0, then if extra heat
energy is emitted by latitude x, damages stay in latitude x, that is there
are no cross latitude externalities. If D is positive, then an increase in heat
energy in a given latitude will cause damages in other latitudes due to heat
transfer. If D is infinite, externalities are “uniform” in the sense that any
extra heat energy emitted by latitude x is uniformly distributed over the
whole planet and the heat transport across latitudes is not relevant for our
problem. In this case, the mode-2 solution vanishes. To show this, note
that since the total amount of fossil fuel is finite and the contributions to
the stock of atmospheric CO2 are due to the use of fossil fuels, the stock
of CO2 M (t) must be bounded above. Thus the second term of the right
hand side of (10) is bounded above. Then the following proposition can be
stated.
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Proposition 1 Assume that
∫ 1
−1

[
QS(x)α(x, xs) + ξ ln

(
1 + M(t)

M0

)]
P2(x)dx =

Φ (t) ≤ UB < ∞, and that D → ∞. Then the solution T2 (t) of (10) van-
ishes.

For the proof see Appendix 2. Thus for a given transport D < ∞,
the relative contribution of T2 (t) to the solution T̂ (t) can be regarded as
a measure of whether the heat transport is important in the solution of
the problem. This result suggests that the use of the global mean tem-
perature alone in IAMs may introduce a bias. The global mean tempera-
ture is obtained for the two-mode approximation as mT =

∫ 1
−1 T̂ (x, t)dx =∫ 1

−1 [T0 (t) + T2 (t)P2(x)] dx = T0(t), since
∫ 1
−1 P2(x)dx = 0. This result,

along with Proposition 1, indicates that the zero-dimensional IAMs can be
regarded as a special case of a one-dimensional model when D → ∞. In
these models the second mode that provides the spatial distribution of tem-
perature is omitted. Since evidence indicates that D is less than infinity
(e.g. North et al., 1981), our result suggests that omitting the second mode
introduces a bias because cross latitude externalities are ignored. In our
paper we attempt to correct for this underlying bias by keeping that second
mode, and to provide a basis for a quantitative representation of this bias.

3 Temperature and Damage Functions: Approxi-
mations and Calibrations

In this section we use the two-mode approximating solution, along with
some additional simplifications of the climate model, to provide analytically
tractable results regarding latitude dependent local temperature and damage
functions.

3.1 Simplifications of the Climate Model

We use the two-mode approximating solution with two simplifications: (i)
the co-albedo function does not explicitly depend on T (t) and can be written
as a (x) = a0 − a1P2 (x); and (ii) S(x) = 0.5 [1− s0P2 (x)] (North et al.,
1981). Using the the inner product notation 〈f (x) g (x)〉 =

∫
X f (x) g (x) dx,

the two-mode approximating ODEs become:

Ṫ0 = −A
B
− T0(t) +

1

B

[
〈QS(x)α(x), 1〉+ ξ ln

(
1 +

M (t)

M0

)
〈1, 1〉

]
(17)

Ṫ2 = −(1 + 6D)T2(t) +
5

2B
〈QS(x)α(x), P2(x)〉 . (18)

A possible parameterization is shown in table 1.
Table 1: Parametrization*
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Figure 1: The temperature function

Parameter Value Parameter Value
a0 0.681 Q 340 W/m2

a1 0.202 M0 596 GtC
s0 0.477 M (2011) 831 GtC
A 221.6 W/m2 ξ 5.35 ◦C (W/m2)

B 1.24 W/(m2)(◦C) g 1.178% IPCC A1F1 scenario
D 0.3 W/(m2)(◦C m 0.83%

(*)Values for the dimensionless α0, a1, s0 have been obtained by North et al. (1981).

Values for A,B,D have been obtained by calibration so as to reproduce current global

temperature. Their values are very close to those appearing in the work of Budyko and

North. g = 1.178% is the average annual growth of total CO2 emissions corresponding

to the IPCC scenario A1F1 (http://www.ipcc-data.org/sres/ddc_sres_emissions.html)

Assume that T0 and T2 are evolving in a faster time scale than M and
that they relax fast to their respective steady states, so we assume dT0

dt =
dT2
dt = 0. Then temperature can be expressed as a function of M as:

T̂ (x, t;D) = C0 + C1 ln

(
1 +

M (t)

M0

)
− C2

(1 + 6D)
P2 (x) , C0, C1, C2 > 0.

(19)
The corresponding temperature function is shown in figure 1 with t = 0
corresponding to year 2011.

This temperature function implies a current average temperature of ap-
proximately 27◦C for the equator and -9.5◦C for the Poles. The predicted
temperature increase for a horizon of 100 years is 3.2◦C for the IPCC A1F1
emissions scenario. It is worth noting that similar temperature functions
have been derived by climate scientists (e.g. Sellers, 1969, 1976), but with-
out the impact of human activities on climate. In our case this impact is
realized by the increase in the concentration of atmospheric carbon dioxide.
When D →∞, the temperature function is spatially homogeneous or “flat”
across latitudes around 14.8◦C for 2011 and 14.4◦C for the period 1951-1980.
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Figure 2: Temperature and thermal transport

Note that NASA’s estimate of the absolute global mean temperature for the
base period 1951-1980 is 14◦C (data.giss.nasa.gov/gistemp/). The impact
of thermal transport is made clear in figure 2, which depicts temperature
as a function of latitude and the thermal transport coeffi cient D. As D in-
creases, the temperature function becomes spatially flat as the increase in
transport speed results in homogeneity. Thus an increase in D will warm
the Poles in the two-mode solution more (and cool x near zero more) for a
given increase in M(t) as in figure 2 (or figure 4 of North et al., 1981, page
95).14 The distinction between a latitude dependent and a flat temperature
field provides a first sign of the impact that thermal transport may have on
the temperature and damage functions.

Current empirical work based on zero-dimensional IAMs defines damages
in terms of changes in the mean global temperature with respect to a base
period (e.g.1890-1900). Since we are interested in the implications of thermal
transport across latitudes we define damages in terms of the levels of the
temperature. In this way we can trace the impact of the thermal transport
on damages and perform meaningful comparative statics with respect to D.

Let Ω (x, t;D) = exp
(
γ (A (t) ,t) T̂ (x, t;D)

)
, γ < 0 denote the propor-

tion of GDP available at a latitude x and time t after damages due to climate
change have been accounted for. The elasticity of marginal damages with
respect to the temperature is γ (A (t) ,t) T̂ , where A (t) denotes adaptation
expenses with (∂γ/∂A) < 0. Thus an increase in temperature will increase
damages when adaptation is fixed.15 We calibrate the parameter γ so that:

14This is in accordance to NASA’s concept of temperature anomaly
(data.giss.nasa.gov/gistemp/).
15This formulation could be useful in an extension of the present economic model that
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(i) currently (i.e. for t = 0) Ω (x, 0;D) = 1 for all x, which means there are
no damages at the current temperature level, and (ii) at t = 90, when the
temperature function of figure 1 predicts an increase in temperature of ap-
proximately 2.5◦C, Ω (0, 90; 100) = 0.9609. This means that when D is very
large, as in a zero-dimensional IAM, damages (i.e. 1−Ω) at the equator are
3.91% of GDP. This value corresponds to a regional damage of 3.91% in out-
put for Africa after a 2.5◦C increase in global mean temperature obtained
by Nordhaus and Boyer (1999, pp. 4-44). In the absence of information
about adaptation expenses, the requirements for this calibration imply that
γ (A,t) = γt, and result in γ = −0.0000252. This damage function is shown
in figure 3.

Figure 3: The damage function

It should be noted that the temperature effect around the equator com-
bined with the regional damage effect predicts damages around 6.5% of GDP
after 90 years.16 Figure 4 depicts the damage function at t = 90 as a function
of the thermal transport coeffi cient and shows that an increase in thermal
transport tends to equalize damages across latitudes.17

included adaptation expenses as a choice variable.
16Using historic data on temperature fluctuations, Dell et al. (2012) find that higher

temperatures substantially reduce economic growth in poor countries.
17The impact of thermal transport in the climate model suggests other potential sources

of damages. An increase in D will warm the Poles and cool x near the equator for a given
increase in M(t) as in figure 2. This may trigger an accelerated melting of the ice sheets
and release a “flood” that engulfs the inhabitants of x near zero who are assumed to
live in low lying coastal areas, e.g. Bangladesh. Damages to x near zero increase more
the bigger the flood. Notice that this mechanism models an “event”near the Poles that
happens to increase damages near x = 0 and an increase in D makes that event happen
with more intensity. A similar event could be a larger increase in permafrost melt with a
larger D for a given increase in M(t) as heat is transferred from the equator to the Poles.
The endogenous ice line, defined in (15), is a nonlinear feedback that affects the co-albedo
function. As D increases and warming near the Poles increases as well, the co-albedo
feedback is increased even more, and the ice lines move towards the Poles, generating

13



Figure 4: Damages and thermal transport

In the one-dimensional climate model we can define climate response
functions (CRF) in the context of e.g. Mendelsohn and Schlesinger, 1999
and Mendelsohn et al., 2000 which determine the changes in temperature and
damages at latitude x and time t, resulting from an exogenous change in the
atmospheric concentration M (t). To obtain a CRF, the steady state equa-
tions of the two-mode approximation ODEs (17)-(18) obtained for dT0

dt = 0,
dT2
dt = 0 can be used to define the CRF in two stages. First for a change
in M (t) , determine the change in T0 (x, t) and T2 (x, t) by using standard
comparative statics to obtain dT0

dM ,
dT2
dM and then determine the change in

Ω
(
T̂ (x, t)

)
≡ Ω (T0 (t) + T2 (t)P2(x)) by calculating the total differential

of Ω
(
T̂ (x, t)

)
. A potentially useful new element of this paper is that our

spatial model allows us to predict in a relatively straightforward way the
full geographical distribution of changes in damages across latitudes.18

4 An Economic Energy Balance Climate Model

We couple now the climate model with a model of the economy.

potential damages to lower latitudes. All these potentially important feedbacks can be
modelled in the context of the one-dimensional spatial model. Since we do not have
information about these feedbacks which would allow an approximate calibration, this
task is left for further research.
18Our approach does not provide a sectoral breakdown of damages due to climate change

as in Robert Mendelsohn’s work, but this can be accommodated by appropriate disag-
gregation of the damage function to reflect sectoral damages. This requires multisector
modeling which is beyond the scope of this paper and is left for further research.
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4.1 Potential world output and damages from climate change

Output at each location of our economy is produced according to a standard
neoclassical production function which is assumed to be of the Cobb Douglas
form with constant returns to scale and exponentially growing total factor
productivity (TFP), or

Y (t, x) = A(x, t)Ω(T (x, t))F (K(x, t), L(x, t), q(x, t))
= eatA(x, 0)Ω(T (x, t))K(x, t)αKL(x, t)αLq(x, t)αq

= e(a+nαL)tA(x, 0)L(x, 0)αLΩ(T (x, t))K(x, t)αKq(x, t)αq

≡ e(a+nαL)tΨ(x, T (x, t))K(x, t)αKq(x, t)αq

(20)

where K(x, t), L(x, t), q(x, t) denote capital, labour and fossil fuels respec-
tively used at latitude (location) x and time t; A(x, t) is TFP growth; n
is population growth; and Ω(T (x, t) are damages to output due to climate
change at latitude x and time t as a function of temperature at the same
latitude, with ∂Ω(T (x,t))

∂T < 0.
In this economy we define by Ftotal(K(t), q(t), {T (x, t)}x=1

x=−1 ; t) the “po-
tential world GDP at date t”. This concept represents the maximum output
that the whole world can produce given total world capital K(t) available
and total world fossil fuel q(t) used, for a given distribution of temperature
T (x, t) across the globe, with labor growing at a constant rate n, and treated
as realistically immobile.19 Thus Ftotal can be regarded as a natural baseline
under ideal world conditions where there are no barriers to capital, and fossil
fuel flows to their most productive uses across latitudes.20 We abuse nota-
tion and write Ftotal(K(t), q(t), {T (x, t)}x=1

x=−1 ;x, t) = Ftotal(K(t), q(t), T ; t).
The overall resource constraint for the economy can then be defined as:

C(t) + K̇(t) + δK(t) = Ftotal(K(t), q(t), T ; t) (21)

where total consumption, capital and fossil fuel are defined over all latitudes
as η (t) =

∫
X η (x, t) dx, η = C,K, q respectively, for all x, x′ ∈ X = [−1, 1].

As shown in Appendix 3, potential world GDP can be defined as:

K(x, t) = [Ψ(x, T (x, t;D))1/αL/

∫
X

Ψ(x′, T (x′, t)1/aLdx′]K(t) (22)

q(x, t) = [Ψ(x, T (x, t;D))1/αL/

∫
X

Ψ(x′, T (x′, t)1/aLdx′]q(t) (23)

Ftotal(K(t), q(t), T ; t) =
[
e(a+αLn)tK(t)αKq(t)αq

]
J(t;D) (24)

19Labor immobility at a global scale could be regarded as a reasonable approximation
given restrictions on labor mobility relative to capital and fossil fuel mobility.
20This notion can be regarded as similar to the notions of “potential GDP”, “potential

output”, etc. used by macroeconomists.
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where

J (x, t;D) =
Ψ(x, T (x, t))1/αL[∫

X Ψ(x′, T (x′, t)1/aLdx′
]aK+aq

(25)

J
(
{T (x, t)}x=1

x=−1

)
= J(t;D) ≡

∫
X
J (x, t;D) dx (26)

define damages at a specific location x and global damages respectively.
The Cobb-Douglas specification allows the “separation” of the climate

damage effects on production across latitudes, since the “index” J(t;D),
which depends on the thermal transport coeffi cient D, multiplies a produc-
tion function that is independent of x. Thus population growth and tech-
nical change affect the “macrogrowth component” e(a+αLn)tK(t)αKq(t)αq ,
while changes in the size of D have a direct effect on the “climate compo-
nent”. The combination of the macrogrowth and the climate components
determines the potential world input. This separability property allows for
more tractable analytical and numerical work regarding the importance of
the spatial dimension in the economic-climate model.

From the consumer side, the idea of working at the global scale suggests
a welfare optimization problem that can be interpreted as the maximization
of the welfare of an “aggregate dynastic consumer family” subject to an
aggregate production function. This problem is defined and presented in
Appendix 4.

4.2 Global welfare maximization

We analyze the welfare maximization problem of a social planner in the con-
text of the coupled EBCM-growth model. Allowing for per capita damages
in utility due to climate change given by ΩC(T (x, t), with ∂ΩC(T (x, t))/∂T >
0, the economic part of this problem is defined in terms of the potential world
GDP and a Ramsey-like form for the aggregate dynastic consumer family
as:

max

∫ ∞
0
e−ρt

∫
X
υ (x)L(x, t)

[
U

(
C(x, t)

L(x, t)

)
− ΩC(T (x, t))

]
dxdt (27)

subject to (21), (3), (7), the total consumption and total fossil fuel con-
straints, along with the appropriate initial conditions, where υ (x) are ex-
ogenously given nonnegative welfare weights. Varying the weights, all the
Pareto effi cient allocations can be traced. Assuming zero extraction cost
for the fossil fuels,21 the current value Hamiltonian for this problem can be
written as:
21This simplifying assumption does not affect the validity of our results.
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H =

∫
X
υ (x)L(x, t)

[
U

(
C(x, t)

L(x, t)

)
− ΩC(T (x, t))

]
dx+ (28)

λK (t) [Ftotal(K(t), q(t), T ; t)− C(t)− δK(t)]

−µR (t) q (t) + λM (t)

[∫
X
βq (x, t) dx−mM (t)

]
+λT (t, x)

[
1

B
[QS(x)α(x, T (x, t))− (A+BT (x, t))

+ξ ln

(
1 +

M (t)

M0

)
+DB

∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]]
+µC (t)

[
C (t)−

∫
X
C (x, t) dx

]
+µq (t)

[
q(t)−

∫
X
q(x, t)dx

]
.

In this problem the state and controls are v = (K (t) , R (t) ,M (t) , T (t, x)) ,
u = (C (t) , C (x, t) , q (t) , q(x, t)) , respectively, x ∈ X = [−1, 1] .

The maximum principle implies for the controls:22

C (t) , C (x, t) : λK (t) = µC (t) = υ (x)U
′
(
C(x, t)

L(x, t)

)
(29)

q (t) : λK (t)F ′total,q = µR (t)− µq (t) (30)

q(x, t) : λM (t)β = µq (t) (31)

or F ′total,q =
µR (t)− λM (t)β

λK (t)
. (32)

For equal welfare weights, (29) implies that per capita consumption
should be equated across locations. For the costates we have:

λ̇K (t) =
[
ρ+ δ − F ′total,K(K(t), q(t), T ; t)

]
λK (t) (33)

µ̇R (t) = ρµR (t) (34)

λ̇M (t) = (ρ+m)λM (t)− ξ

B
(

1 + M(t)
M0

) ∫
X
λT (t, x) dx (35)

λ̇T (t, x) = (ρ+ 1)λT (t, x) + υ (x)L (t, x) Ω′c,T (T (t, x)) (36)

−λK (t)F ′total,T (K(t), q(t), T ; t)−

QS(x)
λT (t, x)

B

∂α(x, T (x, t))

∂T
−D ∂

∂x

[
(1− x2)

∂λT (x, t)

∂x

]
.

22Since problem (27) is nonautonomous, we assume that the discount rate is suffi ciently
high and that the functions of the problem satisfy the growth conditions required to
apply the Pontryagin maximum principle (Malysh, 2008). To ease notation, sometimes
we denote derivatives by the subscript for the relevant variable and a (′) .
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The last term on the RHS of (36) is obtained by applying the maxi-
mum principle.23 A solution of the welfare maximization problem, provided
it exists and satisfies the desirable stability properties, will determine the
optimal temporal and latitudinal paths for the states, the controls and the
costates. Denoting optimality by (∗) , these paths can be written as:

{K∗ (t;D) ,K∗ (t, x;D)R∗ (t;D) ,M∗ (t;D) , T ∗ (t, x;D)}x=1
x=−1

{C∗ (t;D) , C∗ (x, t;D) , q∗ (t;D) , q∗(x, t;D)}x=1
x=−1

{λ∗K (t;D) , λ∗M (t;D) , µ∗R (t;D) , λ∗T (t, x;D)}x=1
x=−1 . (37)

Substituting these paths into (25) and (26) will determine the optimal dam-
ages from climate change on a global or a location basis.

4.3 Competitive Equilibrium with Fossil Fuel Taxes

To study the optimal taxation problem we consider a global market economy
with each latitude x considered as a country. In each country the represen-
tative consumer maximizes utility subject to a permanent income constraint
by considering as parametric damages due to climate change, and the rep-
resentative firm maximizes profits by considering as parametric fossil fuel
world prices and taxes on fossil fuel use. World fossil fuel firms maximize
profits by considering as parametric taxes on their profits.

4.3.1 Consumers

Consumers at latitude (or country) x are a “dynastic family” that takes
ΩC(T (x, t)) = Ω̄C as parametric beyond their control, and can borrow and
lend on world bond markets at the rate r (t) . Assume that after-tax profits
from fuel firms πFF (t) are redistributed lump sum to latitude x consumers in
the fraction sFF (x, t) and proceeds from fuel taxes Tax(t) are redistributed
lump sum to latitude x consumers in the fraction sTax(x, t).24 Set Γ (t) =∫ t
s=0 r(s)ds and impose the “solvency”constraints

B(x, t)e−Γ(t)→ 0, K(x, t)e−Γ(t) → 0 , t→∞ (38)

for bonds B(x, t) held at location x and time t, with B(x, 0) = 0, and
capital K(x, t). The consumer’s budget constraint can be written in present
value form as:
23 In the derivation of the conditions of the maximum principle, we need to differentiate

by parts twice with respect to x, in order to express the derivatives of T with respect to
x in terms of derivatives of λT with respect to x. The detailed argument is presented in
Appendix 5.
24 In baseline analysis using Arrow Debreu private ownership economies, it is standard

to assume perfect markets (borrowing and lending with no frictions, defaults, etc.) with
profits and taxes redistributed lump sum to consumers.
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∫ ∞
t=0
e−Γ(t)ps (t)C(x, t)dt = K0(x) +

∫ ∞
t=0
e−Γ(t)ps (t) I(x, t)dt (39)

K0 (x) = K (0, x) (40)

I(x, t) ≡ w(x, t)L(x, t) + sFF (x, t)πFF (t) + sTax(x, t)Tax(t) (41)

where ps (t) is the spot price of the consumption good at time t. The con-
sumer solves:

max
{C(x,t)}

{∫ ∞
t=0
e−ρt

[
L(x, t)U

(
C(x, t)

L(x, t)

)
− Ω̄C

]
dt

}
(42)

with optimality condition:

U ′
(
C(x, t))

L(x, t

)
= Λ(x)eρtpC (t) (43)

where Λ(x) is the Lagrangian multiplier for the permanent income constraint
(39) expressing the marginal utility of capitalized income at location x, and
pC (t) =e−Γ(t)ps (t). We obtain an exact correspondence between the equi-
librium problem and the planner’s problem with a corresponding optimality
condition,

υ (x)U ′
(
C(x, t))

L(x, t

)
= λK (t;D) , (44)

by letting pC (t) = e−ρtλK (t;D) . The welfare weights are the reciprocal of
marginal utility, or the so-called Negishi weights, υ (x) = 1/Λ(x),25 which is
the First Theorem of Welfare Economics. In terms of the Second Theorem of
Welfare Economics, any solution of the planner’s problem for any arbitrary
nonnegative set of welfare weights across locations will satisfy the conditions
for competitive equilibrium except for the budget constraint in each loca-
tion. Budget constraints can be satisfied with appropriate transfers across
locations. Thus a solution to the planner’s problem resulting from a specific
choice of welfare weights can be implemented as a competitive equilibrium
with transfers across locations. The choice of zero transfers corresponds to
the case of using the Negishi weights as welfare weights.26

25By the definition of the current value Hamiltonian for the planner’s problem, λK (t) ≡
λ̂K (t) eρt is the current value costate variable, where λ̂K (t) is the costate variable relative
to time zero.
26Note that per capita consumption will not be equated across latitudes unless Λ(x) =

Λ(x′) for all x, x′. For equality of the marginal utility across latitudes we will need to as-
sume, following the theory of the Second Welfare Theorem, that intertemporal endowment
flows are adjusted so that Λ(x) = Λ(x′) for all x, x′.
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4.3.2 Firms Producing Consumption Goods

Firms located at latitude x which produce consumption goods solve the
problem

max pC (t) [A(x, t)Ω(T (x, t))F (K(x, t), L(x, t), q(x, t))− (45)

(r(t) + δ)K(x, t)− L(x, t)− (p(x, t) + τ (x, t)) q(x, t)]

where p (x, t) is the price paid for fossil fuels at time t, w (x, t) is the wage
at location x and time t,27 and τ (t, x) is a tax on fossil fuels paid by the
representative firm located at point x, which we will consider as a carbon
tax, and F (K,L, q) is constant returns to scale. Hence profits will be zero at
each x for firms that produce consumption goods. The optimality conditions
for the optimal choices for K and q imply:

A(x, t)Ω(T (x, t;D))F ′K(K(x, t), L(x, t), q(x, t)) = r (t) + δ (46)

A(x, t)Ω(T (x, t;D))F ′q(K(x, t), L(x, t), q(x, t)) = p (x, t) + τ (x, t)(47)

A(x, t)Ω(T (x, t;D))F ′L(K(x, t), L(x, t), q(x, t)) = w(x, t). (48)

Thus in any decentralized problem, latitude x firms will choose demands
K(x, t) and q(x, t) according to (46) and (47). Note that these marginal
value products are equated across x′s for every date t only if taxes on fossil
fuels are equal across locations or τ (x, t) = τ (t). Furthermore if fossil fuel
prices are equated across locations through competition, then p (x, t) = p (t) .

4.3.3 Fossil fuel firms

World fossil fuel firms solve the problem

max
q(x,t)

∫ ∞
t=0
e−Γ(t)pC (t) [(p(t)q(x, t)(1− θ(t))]dt, (49)

subject to
∫ ∞
t=0

∫
X
q(x, t)dxdt ≤ R0 (50)

where µ0 denotes the Lagrangian multiplier on the resource constraint (50),
hence µ0 is constant in time, and θ(t) denotes profit tax on fossil fuel firms.
After-tax profits are redistributed lump sum to latitude x consumers in the
fraction sFF (x, t) and proceeds from taxes are redistributed lump sum to
latitude x consumers in the fraction sTax(x, t).

The FONC condition for the fossil fuel firms is:

p(t)(1− θ(t)) = µ0e
Γ(t) =

[
AΩF ′q − τ (x, t)

]
(1− θ(t)). (51)

27Wages are not equated across locations due to labour immobility.
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4.4 Equilibrium

In any decentralized problem, consumption goods firms at latitude x will
choose demands K(x, t) and q(x, t) to set

r(t) + δ = AΩF ′K , p(t) + τ (x, t) = AΩF ′q. (52)

Market clearing requires∫
X
B (x, t) dx = 0,

∫
X
K (x, t) dx = K (t) ,

∫
X
q (x, t) dx = q (t)∫

X
C (x, t) dx = C (t) ,

∫
X
Y (x, t) dx = Y (t) .

Conditions (46)-(48) and (51), for a multiplier value µ̄0 that exhausts the
fossil fuels reserves, along with the optimality conditions for the consumer
and market clearing, will determine the equilibrium temporal and latitudinal
paths for C,K and q. Since firms take temperature and taxes as parametric,
these paths can be written, denoting equilibrium by (e), as:

{Ce (x, t;D, τ, θ, p) ,Ke (x, t;T, τ , θ, p) , qe (x, t;T, τ , θ, p)}x=1
x=−1 . (53)

5 Optimal Carbon Taxes

Carbon taxes will be used to correct for the climate externality. For a given
set of welfare weights υ (x) , the social planner solves the Pareto optimum
problem, denoted as PO∗ (υ) . The solution produces the optimal paths (∗) of
(37). Implementation by competitive markets implies that each actor in the
economy, i.e. consumers and firms, is faced with a tax on fossil fuels equal to
the social marginal cost τ∗(x, t) of using fossil fuels at each x, t. This tax will
induce the consumers and firms to produce a competitive equilibrium equal
to the optimal quantities, provided that the firms’problems are concave and
the consumers’problems are concave. Since we assume such concavity for
the consumers and producers, implementation of the PO∗ (υ) by τ∗(x, t) is
feasible. We turn now to determining τ∗(x, t).

5.1 Spatially Uniform Optimal Carbon Taxes

Implementation of PO∗ (υ) requires that social and private marginal prod-
ucts for K and q be equated. Combining the market equilibrium conditions
(43, 46, 47, 51) with the welfare maximizing conditions (29) - (36) and
denoting by (∗) welfare maximizing paths, we obtain
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υ (x)U ′
(
C∗ (x, t)

L (x, t)

)
= λ∗K (t;D) , (54)

τ∗ (x, t;D) =
µ∗R (t;D)− βλ∗M (t;D)

λ∗K (t;D)
− p (t) = (55)

µ∗R (t;D)− βλ∗M (t;D)

υ (x)U ′
(
C∗(x,t)
L(x,t)

) − p (t) (56)

p (t) =
µ0e

Γ(t)

1− θ∗ (t)
. (57)

Assume that the planner can carry out without cost the necessary adjust-
ments to intertemporal endowment flows across locations so that Λ(x) =
Λ(x′) = Λ̄ for all x, x′. This implies that per capita consumption will be
equated across latitudes, and that the Pareto optimum PO(υ) is a compet-
itive equilibrium for the choice of weights ῡ = 1/Λ̄. Following the second
welfare theorem, PO(ῡ) can be implemented with the appropriate transfers
and, from (56), the optimal spatially uniform tax is

τ∗ (t;D) =
µ∗R (t;D)− βλ∗M (t;D)

ῡU ′ (C∗ῡ (t) /L (t))
− p (t) . (58)

Alternatively the regulator can obtain a spatially uniform tax by: (i) using
Negishi weights to implement a competitive equilibrium with zero transfers

so that υ (x)U ′
(
C∗(x,t)
L(x,t)

)
= 1, or (ii) making appropriate transfers so that

υ̂ (x)U ′
(
C∗υ̂(x,t)

L(x,t)

)
is the same across locations for any arbitrary set of welfare

weights υ̂ (x).
In defining the carbon tax, the climate externality is captured by the

costate variable λ∗M (t;D) . As shown in the next section, λ∗M (t;D) < 0;
therefore as expected, when we account for the climate externality fossil
fuel taxes increase. The dependence of the tax functions on the thermal
transport coeffi cient follows from the fact that damage functions depend on
D through their dependence on the temperature field and in principle can
be determined by the comparative static derivative ∂τ∗ (t;D) /∂D, which
depends on the derivatives of the costate variable λ∗M , λ

∗
K with respect to

D. In section 6 we provide simplified comparative static results.

5.2 Spatially Differentiated Optimal Carbon Taxes

The analysis above suggests that a spatially differentiated optimal carbon
tax can emerge if it is not possible to equalize per capita consumption across
locations, or if the planner wants to change the existing distribution with
transfers but full equalization is not possible or desirable. We examine two
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possible cases which provide good insights into the structure of an optimal
spatially differentiated carbon tax. The first is a polar case where all loca-
tions are closed economies which have their own isolated capital markets,
fossil fuel reserves and fossil fuel markets. This is not a realistic case but
it helps bring out the forces that generate spatially differentiated carbon
taxes. The second is an intermediate case where transfers across locations
can take place but they are costly. This is a more realistic but also more
complicated case.

In order to provide a clearer analysis of the spatial profile of fossil fuel
taxes, we simplify climate dynamics following section 2.1 by assuming that
the temperature dynamics are modelled by the two-mode approximation
and that the co-albedo function is independent of the temperature field,
or α (x, T (x, t)) = α (x) . From (8)-(12) it can be seen that the zero-mode
depends on the concentration M (t) but not on the thermal transport co-
effi cient D, while the the second mode depends on D but not on M (t) .28

Then from (8) the zero mode dynamics can be written as

Ṫ0 = −T0 −
A

B
+

∫ x=1

x=−1
QS (x)α (x) dx+

2ξ

B
ln

(
1 +

M (t)

M0

)
(59)

Ṫ0 = −T0 + Z1 ln

(
1 +

M (t)

M0

)
+ Z0, (60)

Z1 =
2ξ

B
,Z0 = −A

B
+

∫
X
QS (x)α (x) dx (61)

and the temperature field can then be written as T̂ (x, t) = T0 (t)+T2 (t,D)P2 (x) .

5.2.1 Optimal carbon taxes in closed economies

The planner maximizes (27) subject to the resource constraint in each loca-
tion, the zero mode climate constraint and the fossil fuel constraint R∗0 (x) =∫∞
t=0 q

∗ (x, t) dt, where q∗ (x, t) is the socially optimal quantities from the
solution of the planner’s problem (27). Let p∗ (x, t) := p (x, t) + τ∗ (x, t)
denote the full price or social price of fossil fuels at location x and time
t, including the externality costs, where (∗) indicates optimal paths at the

POce (υ) , and let p∗M (x, t) :=
µ∗R(x,t;D)

λ∗K(x,t;D) denote the market price for fossil
fuels if λ∗M (t;D) = 0, that is, in the case where there are no human induced
negative externalities from emissions. Setting θ(x, t) = 0 to simplify the
exposition, we obtain the following result.

Proposition 2 The optimal full social price of fossil fuels for each closed
economy across latitudes is:

28This is because from (10) we have that
∫ 1
−1 ξ ln

(
1 + M(t)

M

)
P2 (x) dx = 0 since∫ 1

−1 P2 (x) dx = 0.
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p∗ (x, t) = p (x, t) + τ∗ (x, t) = (62)
µ∗R (x, t;D)− βλ∗M (t;D)

λ∗K (x, t;D)
=

µ∗R (x, t;D)− βλ∗M (t;D)

υ (x)U ′
(
C∗(x,t)
L(x,t)

) . (63)

For the proof see Appendix 6.
If the planner makes no international transfers and uses Negishi weights

so that υ (x)U ′
(
C∗(x,t)
L(x,t)

)
= 1 for all x, then p∗ (x, t;D) = µ∗R (x, t;D) −

βλ∗M (t;D). In this case the part of fossil fuel social price that corresponds
to the climate externality is the same across locations. The optimal full
social price of fossil fuels is higher in resource poor locations.

Consider the case where µ∗R (x, 0;D) = µ∗R (x′, 0;D) for all x. This means
that the social planner allocates fossil fuels equally in the initial period.
Along the optimal path µ̇∗R(x,t;D)

µ∗R(x,t;D) = ρ for all x, therefore µ∗R (x, t;D) =

µ∗R (x′, t;D) for all x and t. Then

p∗ (x, t)

p∗ (x′, t)
=
υ (x′)U ′

(
C∗(x′,t)
L(x′,t)

)
υ (x)U ′

(
C∗(x,t)
L(x,t)

) .
Thus if the planner does not use Negishi weights, but instead uses arbitrary
weights, and potentially transfers, such that marginal social valuations are

not equated across latitudes, i.e. υ (x′)U ′
(
C∗(x′,t)
L(x′,t)

)
6= υ (x)U ′

(
C∗(x,t)
L(x,t)

)
for

all x′ 6= x, then the optimal full social price of fossil fuels is different across
locations. In the special case where the planner uses equal welfare weights
across locations, we can obtain the following result.

Proposition 3 When welfare weights across latitudes are equal and inde-
pendent of x, a latitude located at the equator x = 0 will pay a lower
social price for fossil fuels relative to a latitude located at latitude x 6= 0, if

U ′
(
C∗(x,t)
L(x,t)

)
< U ′

(
C∗(0,t)
L(0,t)

)
.

Since latitudes around the equator are expected to be poorer, with rel-
atively lower per capita consumption which implies C∗(x,t)

L(x,t) > C∗(0,t)
L(0,t) , these

latitudes will pay a lower social price for fossil fuels relative to a richer lat-
itude located away from the equator. For example with logarithmic utility
and equal welfare weights,

p∗ (x, t)

p∗ (0, t)
=
C∗ (x, t) /L(x, t)

C∗ (0, t) /L(0, t)
. (64)
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5.2.2 Optimal carbon taxes with costly international transfers

We consider again a social planner that seeks to maximize social welfare de-
fined by (27), subject to the relevant constraints. The regulator can transfer
endowments across locations. Transfers across locations are however costly.
The impact of constraints not allowing private goods to be transferred freely
between regions on economic policy related to climate change was first noted
by Chichilnisky and Heal (1994), and has since been studied by others (e.g.
Chichilnisky et al., 2000; Sandmo, 2006; Anthoff, 2011; Keen and Kotsogian-
nis, 2011). We extend this line of research to the one-dimensional climate
model and show that under plausible assumptions the social price of fossil
fuels around the equator should be lower relative to northern or southern
latitudes.

This cost of transfers across latitudes is captured by a quadratic cost
term which affects the planner’s resource constraint, which can be written
as ∫

X

[
C(x, t) + K̇(x, t) + δK(x, t)

]
dx =

∫
X
Y (t, x) dx−C0

2
Θ (t) (65)

Θ (t) =

∫
X

[y (t, x)− C (t, x)]2 dx, y (t, x) = (66)

Y (t, x)− δK (t, x)− u (t, x) , K̇ (t, x) = u (t, x) , (67)

Y (t, x) = A(x, t)Ω(T̂ (x, t))F (K(x, t), L(x, t), q(x, t)). (68)

The quantity y (t, x) can be interpreted as private consumption available out
of the production of location x at time t. If C0 = 0, any consumption transfer
across location is without cost and the planner will attain the unconstrained
OP(υ). If C0 → ∞, then transfers are prohibitively costly. We call the
solution to this problem the constrained Pareto optimal solution, POc (υ).
We can now obtain the following result regarding the social price for fossil
fuels.

Proposition 4 Assume that the difference between private consumption
available out of local production and local private consumption is approx-
imately constant over time, or d[y(x,t)−C(y,t)]

dt ' 0. Then the optimal spatially
non-uniform full social price for fossil fuels is

p∗ (x, t) = p (x, t) + τ̂ (x, t) =
µ∗R (t;D)− βλ∗M (t;D)

λ∗K (t;D) [1− C0 [y∗ (x, t)− C∗ (x, t)]]
(69)

where (∗) indicates optimal paths at the POc (υ) .

For proof see Appendix 7. It can easily be seen that:

p∗ (x, t)

p∗ (0, t)
=

[1− C0 [y∗ (0, t)− C∗ (0, t)]]

[1− C0 [y∗ (x, t)− C∗ (x, t)]]
. (70)
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Proposition 5 If [y∗ (x, t)− C∗ (x, t)] > [y∗ (0, t)− C∗ (0, t)] , then p∗ (x, t) >
p∗ (0, t) .

Since locations around the equator are poor relative to higher latitude
locations, it is expected that [y∗ (x, t)− C∗ (x, t)] > [y∗ (0, t)− C∗ (0, t)] , for
x� 0. Therefore this proposition suggests that these poor locations should
pay a smaller social price for fossil fuel relative to rich locations, which is
similar to the result obtained above. If it is further assumed that p (x, t)
is approximately equal across locations, the proposition implies that poor
locations around the equator should pay a lower carbon tax.

Thus the spatially uniform taxes emerge as an optimal solution only
under transfers across locations that equalize per capita consumption or
marginal social valuations, or when Negishi welfare weights are used and
distribution across latitudes does not change. Negishi weights - being the
inverse of marginal utility - assign relatively larger welfare weights to loca-
tions with higher per capita consumption. For example with a logarithmic
utility, Negishi weights assign a welfare weight equal to per capita consump-
tion in each location. Thus the utility of poor locations has a relatively
smaller importance, compared to the utility of rich locations, in the plan-
ner’s welfare function. The RICE model adopts Negishi weights and pro-
duces spatially uniform carbon taxes keeping at the same time the regional
distribution of per capita consumption invariant (e.g. Stanton, 2009). Our
results, on the other hand, suggest that the spatial structure of the opti-
mal carbon tax is sensitive to the choice of welfare weights, and deviations
from the Negishi solution will result into spatially differentiated taxes. Thus
when intertemporal distribution is treated as fixed or it is costly to change
it, and welfare weights are not Negishi weights, poor locations could, under
plausible assumptions, pay lower carbon taxes.

5.3 The Temporal Profile of Optimal Taxes

As stated in the introduction, one of the purposes of this paper is to provide
insights regarding the optimal time profile for current and future mitigation.
Thus we study the temporal profiles of spatially uniform optimal taxes on
fossil fuels τ(t) and the profits tax θ(t) that implements the Pareto optimal
solution when the necessary adjustments to intertemporal endowment flows
across locations can be carried out without cost.

If we take the time derivative of (51) we obtain

d [p(t)(1− θ∗(t))] /dt
p(t)(1− θ∗(t)) = r (t) = AΩF ′K − δ, (71)

which is Hotelling’s rule indicating that after-tax marginal profits increase
at the rate of interest.
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Let us examine the cases of profits taxes and unit fossil fuel taxes sepa-
rately. We examine profit taxes by setting τ(t) = 0 and fossil fuel taxes by
setting θ (t) = 0. From (71) the optimal profit tax function should satisfy

− θ̇
∗
(t)

1− θ∗(t)= r(t)− ṗ(t)
p(t)

, (72)

while the optimal unit tax function should satisfy

(ṗ(t)− τ̇∗(t))
(p(t)− τ∗(t))= r(t). (73)

The policy ramp under the gradualist approach suggests that τ̇∗(t) > 0, θ̇
∗
(t) > 0.

To examine the validity of this result in the context of our model, we seek
to locate suffi cient conditions so that profit tax and/or the unit tax will
decline through time. In order to have a declining tax schedule through
time, equation (72) implies that

r(t)− ṗ(t)

p(t)
> 0. (74)

Note that a declining tax schedule through time contrasts dramatically with
the gradualist tax schedule which increases through time. Since we are im-
plementing the global welfare optimum we use the optimality conditions of
section 3.1 without the two-mode approximation of the temperature dynam-
ics. We denote by (*) the global welfare optimizing paths.

Lemma 1 ζ (t) ≡
∫
X λ
∗
T (t, x;D)dx < 0, λ∗M (t;D) < 0.

For proof see Appendix 8. The lemma states an intuitive result. If we
denote by V ∗ the maximum value function for the welfare maximization
problem, we know from optimal control results that if V ∗ is differentiable,
∂V ∗

∂T (x,t) = λ∗T (x, t;D) . That is, λT (x, t;D) can be interpreted as the shadow

value of temperature at time t and latitude x. Thus ζ (t) ≡
∫
x λT (t, x;D) <

0 can be interpreted as the global shadow cost of temperature at time t
across all latitudes, which means that an increase in temperature across all
latitudes will reduce welfare. In a similar way, λ∗M (t;D) < 0 means that
an increase in atmospheric accumulation of CO2 at any time t will reduce
welfare.

Proposition 6 If m < δ, then the optimal profit tax decreases through time,
or θ̇

∗
(t) < 0. Furthermore, the optimal unit tax on fossil fuels grows at a

rate less than the rate of interest, or τ̇∗(t)
τ∗(t) < r∗ (t) .29

29For similar results in a discrete time model with full depreciation of capital in one
period, see Golosov et al. (2011).
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For proof see Appendix 9. We can also derive suffi cient conditions for an
increasing tax schedule according to the gradualist approach.

Proposition 7 If m > δ and λ∗M (m − δ) −
(

ξ
BM(t)

) ∫
X λ
∗
Tdx > 0, then

θ̇
∗

(t) > 0 and dτ∗(t)
dt > r∗(t).

For proof see Appendix 10. Thus a gradualist tax schedule requires, in
the context of our model, rapid decay of atmospheric CO2, and a relatively
small global shadow cost of temperature at time t across all latitudes. In
this case profit taxes on fossil fuel firms are increasing, and unit taxes on
fossil fuels increase more than the rate of interest.

6 The Impact of Thermal Transportation and En-
dogenous Co-albedo

Since our one-dimensional climate model introduces heat transport across
latitudes and endogenous co-albedo, it is interesting to examine their im-
pact on the economic variables of the model. The impact of changes in the
heat transport coeffi cient D can in principle be obtained by comparative
analysis of the Pareto optimal solutions. Given however the complexity of
the solutions for the general models, to obtain tractable results and use-
ful insights into these effects we consider a simplified version of the social
planner’s problem when no transfers are possible.

Simplifying assumptions: Assume no technical change, constant pop-
ulation, no fossil fuel constraint at each latitude, logarithmic utility function
with no damages in utility due to temperature increase, a constant returns
to scale production function at each location, and an exponential damage

function associated with output Ω(T̂ (x, t)) = exp
(
−γT̂ (x, t)

)
.

The no technical change, no population growth simplification allows us to
perform comparative statics at the steady state, the no fossil fuel constraint
implies µR (x, t) = 0 for all x and t, while the assumption about the utility
function implies that ΩC = 0.

Let

A1 =
{
x : −1/

√
3 < x < 1/

√
3
}
, A2 =

{
x : x = ±1/

√
3
}

A3 =
{
x : 1/

√
3 < x ≤ 1 and − 1 ≤ x < −1/

√
3
}
.

Thus A1 are latitudes below x = ±1/
√

3, including the equator, while A3

are latitudes above x = ±1/
√

3, including the Poles.
Our results can be summarized in the following proposition.

Proposition 8 Under the simplifying assumptions above, an increase in
the heat transport coeffi cient D will have the following effects on the steady
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state Pareto optimal solution of the planner’s problem in closed economies
with nonnegative welfare weights: (i) in A1 it will reduce temperature and
damages, increase per capita capital and consumption, and increase the so-
cial cost of fossil fuels, (ii) in A2 it will have no effect, and (iii) in A3 it will
increase temperature and damages, reduce per capita capital, consumption,
and the social cost of fossil fuels.

For proof see Appendix 11. In terms of damages, latitudes at x = ±1/
√

3
are not affected by changes in D, latitudes above x = ±1/

√
3 are negatively

affected by an increase inD since the transport of heat from the low latitudes
towards high latitudes and the Poles increases temperature and damages
there, while temperature and damages are reduced at the low latitudes.
Some interesting questions emerge from this proposition.

Is there any bias from ignoring heat transport or equivalently ignoring
cross latitude externalities? As we have shown in this paper, ignoring the
heat transport is equivalent to setting D at a suffi ciently high value. So ac-
counting for D implies a reduction in the heat transport coeffi cient relative
to the benchmark of ignoring it. In the context of our simplified example
and Proposition 9, this means that the Pareto optimal solution when heat
transport is ignored will underestimate temperature and damages, overesti-
mate per capita capital and consumption and underestimate the social price
of fossil fuels at low latitudes in A1. The opposite applies to high latitudes
in A3. Zero-dimensional IAMs, which implicitly set D → ∞, with regional
differentiation of damages only due to local characteristics of the economy
(e.g. agriculture, services, etc.) and not due to local temperature, introduce
a bias. This is because the one-dimensional model, by accounting for cross
latitude externalities, determines local damages as a direct function of lo-
cal temperature while zero-dimensional IAMs surpass the local temperature
domain and make local damages a direct function of global temperature.

What determines the size of the heat transport coeffi cient D? In the
EBCM literature (e.g. North, 1975 a,b; North et al., 1981), the parameter
D in the energy balance equation is regarded as a free parameter divided
by the heat capacity of the relevant layers of the atmosphere plus the hy-
drosphere. If human actions change the heat capacity of the atmosphere
and the oceans, then D is expected to change with effects on damages and
economic variables.30

This analytic result confirms our intuition that heat transport across
latitudes matters for economic variables as well as climate variables. For
a more realistic model, without the simplifying assumptions made above
where closed form solutions are not possible, the impact of heat transport
can be approximated numerically. This an area for further research.

30Scientific evidence suggests that ocean warming over the last 50 years is due to an-
thropogenic causes (e.g. Pierce et al., 2011).
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Finally, it should also be noted that this simplified comparative sta-
tic analysis ignores any possible positive feedbacks from the Poles towards
low latitudes. If the increase in temperature around the Poles due to heat
transfer triggers damage reservoirs such as ice line movements or permafrost
thawing, this feedback could increase damages at low latitudes. The incor-
poration of these effects is undoubtedly an area for further research.

The impact of D on global damages can be explored by using (25), (26)
and the two-mode approximation. If D goes to infinity, only the mode zero
remains and thermal transportation does not affect damages across latitudes.
Therefore one measure of how much heat transport, as reflected by damages
D, matters at date t is |J(t;∞)− J(t;D)|.

Endogenous co-albedo generates a discounting function effect. As shown
in the proof of Lemma 1, if we denoted by

∫
x λT (t, x) dx ≡ ζ the global

shadow cost of temperature across latitudes, then ζ̇ = υζ − Ξ (t) , where

υ ≡ ρ+ 1−Q
B

(∫
x λT (x, t;D)S (x) (∂a/∂T ) dx∫

x λT (x, t;D) dx

)
.

Thus the impact of T on co-albedo (since ∂a/∂T > 0) causes the dis-
counting function υ to fall which will make the forward discounted costs of
climate change induced by burning an extra unit of fossil fuels higher than
when the co-albedo function is independent of temperature, or ∂a/∂T =
0. This could be very important quantitatively, if the impact of T on
a(x, T (x, t)) can vary by latitude as well as be quite large due to effects
on types of plant growth and other determinants of co-albedo besides ice.

7 Concluding Remarks

In this paper we develop a model of climate change consisting of a one-
dimensional energy balance climate model which is coupled with a model of
economic growth. We believe that modeling heat transport in the coupled
model is the main contribution of our paper since it allows, for first time to
our knowledge, the derivation of latitude dependent temperature and dam-
age functions, as well as optimal mitigation policies in the form of optimal
carbon taxes, which are all determined endogenously through the interac-
tion of climate spatiotemporal dynamics with optimizing forward looking
economic agents.

We derive Pareto optimal solutions for a social planner who seeks to im-
plement optimal allocations with taxes on fossil fuels and we show the links
between welfare weights and international transfers across locations and the
spatial structure of optimal taxes. Our results suggest that when per capita
consumption across latitudes can be adjusted through costless transfers for
any set of nonnegative welfare weights, so that marginal valuations across
latitudes are equated, or transfers are zero and Negishi welfare weights are
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used, then optimal carbon taxes are spatially homogeneous. On the other
hand, when marginal valuations across latitudes are not equated, due to in-
stitutional/political constraints or the cost of transfers, optimal carbon taxes
are spatially differentiated. We show that if the international transfers are
costly and the planner is not constrained to using Negishi weights, then
taxes on fossil fuels could be lower in relatively poorer geographical zones.
The degree of geographical tax differentiation depends on the heat transport
across latitudes, and the way in which the planner takes into account in-
tertemporal distribution in choosing welfare weights. Without appropriate
implementation of international transfers, and without Negishi weights that
keep the existing international distribution invariant, carbon taxes should
be latitude specific and their sizes should depend on the heat transfer across
locations. Furthermore comparative static analysis suggests that since heat
transport affects local damages and local economic variables, ignoring it -
by using mean global temperature as the central state variable for climate -
introduces a bias.

We also provide results indicating that if the decay of atmospheric CO2

is lower than the depreciation of capital, then profit taxes on fossil fuel
firms will decline over time and unit taxes on fossil fuels will grow at a
rate less than the interest rate. These results, which can be contrasted to
the gradually increasing policy ramps derived by IAM models like DICE
or RICE, indicate that mitigation policies should be stronger now relative
to the future. Increasing policy ramps so that mitigation is stronger in
the future requires rapid decay of the atmospheric carbon dioxide, and a
relatively small global shadow cost of temperature increase.

Our model is a surface EBCM where the impact of oceans is reflected in
the carbon decay parameter m, but no further modeling of the deep ocean
component is undertaken. Further extensions of our simple comparative
methods to richer climate models (e.g. Kim and North, 1992; Wu and North,
2007) with a simple “ocean” and with simple “atmospheric layers” added
and where tipping phenomena are possible may help understand results like
those of Challenor et al. (2006) who found higher probabilities of extreme
climate change than they expected. They suggest several reasons for their
findings, including: “The most probable reason for this is the simplicity of
the climate model, but the possibility exists that we might be at greater risk
than we believed.”

We emphasize that we are still doing what economists call a “finger exer-
cise”in this paper where one deliberately posits an oversimplified “cartoon”
model in order to illustrate forces that shape, for example, an object of in-
terest such as a socially optimal fossil fuel tax structure over time and space
that might be somewhat robust to introduction of more realism into the toy
model. For example, we believe that the interaction of spatial heat trans-
port phenomena and diffi culties in implementing income transfers (or their
equivalent, e.g. allocations of tradeable carbon permits) will play an impor-
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tant role in determining the shape of the socially optimal tax schedule over
different parts of space in more complex and more realistic models. Our
simple model is useful in making this type of point under institutions when
income transfers are possible but also and when they are politically infea-
sible, i.e. essentially impossible. However, in implementing carbon taxes
that depend upon location in the real world, one must take into account the
effects of potential “carbon leakage”(Elliot et al., 2010).

The one-dimensional model allows the exploration of issues which can-
not be fully analyzed in conventional zero-dimensional models. In particular
one-dimensional models with spatially dependent co-albedo allow the intro-
duction of latitude dependent damage reservoirs such as endogenous ice lines
and permafrost. Since reservoir damages are expected to arrive relatively
early and diminish in the distant future - because the reservoir will be ex-
hausted and suffi cient adaptation will have taken place - the temporal profile
of the policy ramp could be declining, enforcing the result obtained for profit
taxes, or even U-shaped.31 A U-shaped policy ramp could be explained by
the fact that as high initial damages due to the reservoir start declining (as
the reservoir is exhausted), giving rise to a declining policy ramp, damages
from the increase in the overall temperature will dominate, causing the pol-
icy ramp to become increasing. This is another potentially interesting and
important area of further research.

APPENDIX
Appendix 1: The two-mode solution
In this appendix we show how to derive the two-mode solution (8)-(12).

We start with the basic PDE with temperature as the state variable which
is defined using (1) as:

B
∂T (x, t)

∂t
= QS(x)α(x, T (x, t))−[(A+BT (x, t))− h(x, t)]+DB

∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]
.

(75)
The two-mode solution is defined as:

T̂ (x, t) = T0(t) + T2(t,D)P2(x), P2(x) =
(3x2 − 1)

2
(76)

then, after dropping D to ease notation

∂T (x, t)

∂t
=
dT0(t)

dt
+
dT2(t)

dt
P2(x) (77)

∂T (x, t)

∂x
= T2(t)

dP2(x)

dx
= T2(t)3x. (78)

31Judd and Lontzek (2011) have formulated a dynamic stochastic version of DICE -
the SDICE - which includes stochastic tipping points possibilities. They show that this
complexity affects the optimal policy results in comparison to RICE.
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Substituting the above derivatives into (75) and using the definition of
h (x, t) we obtain:

B
dT0(t)

dt
+B

dT2(t)

dt
P2(x) = QS(x)α(x, xs)− (79)[

(A+B (T0(t) + T2(t)P2(x)))− ξ ln

(
1 +

M (t)

M0

)]
+

BD
∂

∂x

[
(1− x2)T2(t)

∂P2(x)

∂x

]
, or (80)

B
dT0(t)

dt
+B

dT2(t)

dt
P2(x) = QS(x, t)α(x, xs)−A− (81)

BT0(t)−BT2(t)P2(x) + ξ ln

(
1 +

M (t)

M0

)
− 6DBT2(t)P2(x).

Use ∫ 1

−1
Pn(x)Pm(x)dx = 〈Pn(x), Pm(x)〉 =

2δnm
2n+ 1

(82)

δnm = 0 for n 6= m, δnm = 1 for n = 1

and note that P0(x) = 1, P2(x) = (3x2−1)
2 .

Multiply (81) by P0(x) and integrate from -1 to 1 to obtain

B
dT0(t)

dt
+B

dT2(t)

dt
〈P0(x), P2(x)〉 =

∫ 1

−1
QS(x, t)α(x, T̂ (x, t))P0(x)dx−A

BT0(t)−BT2(t) 〈P0(x), P2(x)〉+ ξ

(
1 + ln

M (t)

M0

)∫ 1

−1
dx−

6DBT2(t) 〈P0(x), P2(x)〉 , or

B
dT0(t)

dt
= −A−BT0(t)+∫ 1

−1

[
QS(x, t)α(x, xs) + ξ ln

(
1 +

M (t)

M0

)]
dx. (83)

Multiply (81) by P2(x) and integrate from -1 to 1 noting that
∫ 1
−1 P2(x)dx =
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0, and 〈P2(x), P2(x)〉 = 1
5 to obtain

B
dT0(t)

dt

∫ 1

−1
P2(x)dx+B

dT2(t)

dt
〈P2(x), P2(x)〉 =∫ 1

−1
QS(x, t)α(x, xs)P2(x)dx−A−BT0(t)

∫ 1

−1
P2(x)dx−BT2(t) 〈P2(x), P2(x)〉+

ξ ln

(
1 +

M (t)

M0

)∫ 1

−1
P2(x)dx− 6DBT2(t) 〈P2(x), P2(x)〉 , or

2

5

dT2(t)

dt
=

[∫ 1

−1
QS(x, t)α(x, xs) + ξ ln

(
1 +

M (t)

M0

)]
P2(x)dx−

2

5
BT2(t)− 12

5
DBT2(t) , or

B
dT2(t)

dt
= −B(1 + 6D)T2(t)+

5

2

[∫ 1

−1
QS(x, t)α(x, xs) + ξ ln

(
1 +

M (t)

M0

)]
P2(x)dx. (84)

The ODEs (83) and (84) are the ODEs of the two-mode solution. �

Appendix 2: Proof of Proposition 1
Differential equation (10) can be written as Ṫ2 = −(1+6D)T2+(5/2B) Φ (t) .

As D → ∞, any steady state of (10) defined as T+
2 = 5Φ(t)

2B(1+6D) → 0. Fur-
thermore, consider the ODE

dT̄2

dt
= −(1 + 6D)T̄2 + (5/2B)UB. (85)

Since Ṫ2 ≤ −(1 + 6D)T2 + (5/2B)UB, then by Gronwall’s inequality the
solution of (10) will be bounded above by the solution T̄2 (t) of (85). This
solution however goes to zero as D →∞. Therefore T2 (t)→ 0 as D →∞. �

Appendix 3: World GDP
The potential world GDP can be analytically defined as follows. Us-

ing Ψ(x, T (x, t)) from (20), and the definition of location specific damages

J (x, t;D) and global damages J
(
{T (x, t)}x=1

x=−1

)
from (25) and (26) respec-

tively, potential world GDP, Ftotal(K(t), q(t), T ; t), can be computed through
the following optimization problem:

Ftotal(K(t), q(t), T ;x.t)

≡ max{
∫
x e

(a+nαL)tΨ(x, T (x, t))K(x, t)αKq(x, t)αqdx,
s.t.

∫
xK(x, t)dx ≤ K(t),

∫
x q(x, t)dx ≤ q(t)}.

(86)
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The Lagrangian associated with (86) is:

L =

∫
x
e(a+nαL)tΨ(x, T (x, t))K(x, t)αKq(x, t)αq)dx+ (87)

µK (t)

[
K(t)−

∫
X
K(x, t)dx

]
+ µq (t)

[
q(t)−

∫
X
q(x, t)dx

]
(88)

which leads to

aKe
(a+nαL)tΨ(x, T (x, t))K(x, t)αK−1q(x, t)αq = µK (t) (89)

aqe
(a+nαL)tΨ(x, T (x, t))K(x, t)αKq(x, t)αq−1 = µq (t) (90)

which means that the marginal product of capital and the marginal product
of the fossil fuels are equated across latitudes for all times t, in the context
of the potential world GDP notion. Furthermore, since F is Cobb-Douglas:

K(x, t) = [Ψ(x, T (x, t;D))1/αL/

∫
x′

Ψ(x′, T (x′, t)1/aLdx′]K(t) (91)

q(x, t) = [Ψ(x, T (x, t;D))1/αL/

∫
x′

Ψ(x′, T (x′, t)1/aLdx′]q(t) (92)

Ftotal(K(t), q(t), T ; t) =
[
e(a+αLn)tK(t)αKq(t)αq

]
J(t;D). (93)

�

Appendix 4: The aggregate dynastic consumer family problem
This problem can be set in the following way: Allocate C(t) to solve the

problem

max{
∫
x
(e(−ρ+n(1−γ))tL(x, 0)1−γC(x, t)γ

γ
)dx,

∫
X
C(x, t)dx ≤ C(t)} (94)

to obtain:

C(x, t) =
L(x, 0)∫

X L(x, 0)dx
C(t). (95)

Allowing for per capita damages in utility due to climate change given by
ΩC(T (x, t), with ∂ΩC(T (x, t))/∂T > 0, the economic part of the social wel-
fare problem in the Ramsey-like form for the “aggregate dynastic consumer
family”can be written as:

max

∫ ∞
0
e(−ρ+n(1−γ))tC(t)γ

γ

∫
X

[
L(x, 0)∫

x′ L(x′, 0)dx′

]γ
dxdt−[∫ ∞

t=0
e(−ρ+n)t

∫
X
L(x, 0)ΩC(T (x, t)dx

]
dt, (96)

subject to

C(t) + K̇(t) + δK(t) = e(a+αLn)tK(t)αKq(t)αqJ(T ;D) (97)∫ ∞
0

q(t)dt ≤ R0 (98)
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with R0 denoting the total available amount of fossil fuel on the planet. �

Appendix 5: Proof of (36)
The relevant part for the Maximum Principle derivation associated with

the Hamiltonian (28) is

...+

∫
X
λT (t, x)

1

B

[
QS(x)α(x, T (x, t))−

[
(A+BT (x, t))− ξ ln

(
1 +

M (t)

M0

)]
+

DB
∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]]
dx. (99)

Put

v =
∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]
, u = λT (t, x) . (100)

Then integrating by parts we obtain,∫
X
λT (t, x)

∂

∂x

[
(1− x2)

∂T (x, t)

∂x

]
dx = uv|x=1

x=−1 −
∫ x=1

x=−1
vdu =

= −
∫ x=1

x=−1

[
(1− x2)

λT (t, x)

∂x

]
∂T (x, t)

∂x
dx

since the term

uv|x=1
x=−1 = ∂/∂x[(1− x2)∂λT (x, t)/∂x]dx

∣∣x=1

x=−1
= 0 (101)

is zero because it is zero at x = −1 and x = 1.
Put

v = T (x, t), u = (1− x2)
λT (t, x)

∂x
(102)

and integrate by parts once more to obtain:

−
∫ x=1

x=−1

[
(1− x2)

λT (t, x)

∂x

]
∂T (x, t)

∂x
dx =

∫ x=1

x=−1
T (x, t)

∂

∂x

[
(1− x2)

∂λT (t, x)

∂x

]
dx.

(103)
If we take the partial derivative of the Hamiltonian (28) with respect to
T (x, t) for each (x, t) , we will obtain (36). �

Appendix 6: Proof of Proposition 2
The current value Hamiltonian for the planner’s problem is:
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H =

∫
X
υ (x)L(x, t)

[
U

(
C(x, t)

L(x, t)

)
− ΩC(T̂ (x, t))

]
dx (104)

+

∫
X
λK (x, t)

[
A(x, t)Ω(T̂ (x, t))F (K(x, t), L(x, t), q(x, t))− C(x, t)− δK(x, t)

]
dx

+λM (t)

[
−mM (t) + β

∫
X
q (x, t) dx

]
− µR (x, t) q (x, t)

+λT0 (t)

[
−T0 + Z1 ln

(
1 +

M (t)

M0

)
+ Z0

]
with optimality conditions:

υ (x)U ′
(
C(x, t)

L(x, t)

)
= λK (x, t) (105)

AΩ(T̂ (x, t))F ′q =
µR (x, t)− βλM (t)

λK (x, t)
(106)

λ̇K (x, t)

λK (x, t)
= ρ+ δ − A(x, t)Ω(T̂ (x, t))F ′K (107)

µ̇R (x, t) = ρµR (x, t) (108)

λ̇M (t) = (ρ+m)λM (t)− λT0 (t)
Z1

1 +M (t) /M0
(109)

λ̇T0 (t) = (ρ+ 1)λT0 (t) +

∫
X
υ (x)L(x, t)Ω′C,T0dx (110)

−
∫
X
λK (x, t)AΩ′T0Fdx.

We implement the solution to the planner’s problem with a competitive equi-
librium with spatially differentiated taxes. It can easily be seen from section
3.3 that the competitive equilibrium conditions for the closed economies are:

U ′
(
C(x, t)

L(x, t)

)
= Λ (x) eρtpC (x, t)

A(x, t)Ω(T̂ (x, t))F ′K = r (x, t) + δ

A(x, t)Ω(T̂ (x, t))F ′q = p (x, t) + τ (x, t)

p(x, t)(1− θ(x, t)) = µ0e
−Γ(x,t)

where µ0 is defined below condition (50). Let p
∗ (x, t) = p (x, t) + τ∗ (x, t) .

p∗ (x, t) should be equated with the marginal social cost of fossil fuel in
(106). Setting θ(x, t) = 0 to simplify the exposition, the full social price of
fossil fuels should satisfy:

p∗ (x, t;D) =
µ∗R (x, t;D)− βλ∗M (t;D)

λ∗K (x, t;D)
=
µ∗R (x, t;D)− βλ∗M (t;D)

υ (x)U ′
(
C∗(x,t)
L(x,t)

) . (111)
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Appendix 7: Proof of Proposition 4
The planner maximizes (27) subject to (65)-(68), the zero mode dynam-

ics, the CO2 evolution and the fossil fuel resource constraint. The Hamil-
tonian for the planner is:

H =

∫
X

{
υ (x)L(x, t)

[
U

(
C(x, t)

L(x, t)

)
− ΩC(T̂ (x, t))

]
+ λK (t, x)u (x, t)

}
dx

+λK (t)

[∫
X

[Y (t, x)− u (x, t)− C(x, t)− δK(x, t)] dx−C0

2
Θ (t)

]
+λM (t)

[
−mM (t) + β

∫
X
q (x, t) dx

]
+λT0 (t)

[
−T0 + Z1 ln

(
M (t)

M0

)
+ Z0

]
− µR (t)

∫
X
q (x, t) dx. (112)

Optimality conditions imply:

υ (x)U ′
(
C(x, t)

L(x, t)

)
= λK (t) [1− C0 [y (x, t)− C (x, t)]] (113)

AΩF ′q =
µR (t)− βλM (t)

λK (t) [1− C0 [y (x, t)− C (x, t)]]
(114)

λK (x, t) = λK (t) [1− C0 [y (x, t)− C (x, t)]] (115)

λ̇K (x, t) = ρλK (x, t)− ∂H

∂K (x, t)
(116)

AΩF ′K = ρ+ δ − λ̇K (t)

λK (t)
+ C0

d [y (x, t)− C (x, t)] /dt

[1− C0 [y (x, t)− C (x, t)]]
(117)

λ̇M (t) = (ρ+m)λM (t)− λT0 (t)
Z1

M (t)
(118)

λ̇T0 (t) = (ρ+ 1)λT0 (t) +

∫
X
υ (x)L(x, t)Ω′C,T0dx (119)

−λK (t)

∫
X

[1− C0 [y (x, t)− C (x, t)]]AΩ′T0Fdx.

Note that while λK (t) is the marginal utility of social income at time t,
λK (x, t) is the costate - or the shadow value - for the capital stock at location
x and time t. It can easily be seen that if there is no transfer cost or C0 = 0,
then conditions (113)-(119) are reduced to the optimality conditions of the
planner who is not constrained by transfer costs.

We set θ (x, t) = 0 and, by taking the time derivative of (51), we obtain:

dp(t)/dt

p(t)
= r (t) . (120)
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If we assume that (d [y (x, t)− C (y, t)] /dt) ' 0, then condition (117) implies
that

AΩF ′K = ρ+ δ − λ̇K (t)

λK (t)
= r (x, t) = r (t) . (121)

This means that the rates of return of capital are approximately equal across
locations. From (120) and (121) we can infer that the market price of
fossil fuels across locations grows at an approximately equal rate. Given
initial prices p (x, 0) , fossil fuels prices will be determined as p (x, t) =
p (x, 0) exp(

∫ t
s=0 r(s)ds).

In this set-up the constrained Pareto optimum POc (υ) can be imple-
mented by spatially differentiated fossil fuel taxes with approximately uni-
form interest rates across locations. Thus the optimal spatially non-uniform
full social price for fossil fuels is:

p∗ (x, t) = p (x, t) + τ̂ (x, t) =
µ∗R (t;D)− βλ∗M (t;D)

λ∗K (t;D) [1− C0 [y∗ (x, t)− C∗ (x, t)]]
(122)

where (∗) indicates optimal paths at the POc (υ) .�

Appendix 8: Proof of Lemma 1
The costate variables for the welfare maximization problem satisfy (35)

and (36). We know that F ′total,T < 0, since ∂Ω(x, T (x, t))/∂T (x, t) < 0 by as-
sumption, also by assumption ∂ΩC(x, T (x, t))/∂T (x, t) > 0 and ∂a(x, T (x, t))/∂T (x, t) >
0. To show that λ∗M (x, t) < 0, it is enough to locate suffi cient conditions for∫
X λ
∗
T (x, t)dx < 0. Integrate the costate equation for T (x, t) with respect to

x to obtain:

d

dt
(

∫
X
λT (t, x) dx)= (123)[

ρ+ 1− Q

B

(∫
X λT (t, x)S (x) a′Tdx∫

X λT (t, x) dx

)]∫
X
λT (t, x) dx

+

∫
X

(
υ (x)LΩ′C,T − λKF ′to,T

)
dx−

∫
X

∂

∂x
[(1− x2)

∂λT (x, t)

∂x
]dx.

Note that the term ∫
X

∂

∂x

[
(1− x2)

∂λT (x, t)

∂x

]
dx = 0 (124)

is zero since it is an integral of a derivative of a term from x = −1 to x = +1
and that term is zero at x = −1 and x = 1. Put

∫
X λT (t, x) dx ≡ ζ (t) and

rewrite (123) as:

ζ̇ =

[
ρ+ 1− Q

B

(∫
X λT (x, t)S (x) a′T∫

X λT (x, t) dx
dx

)]
ζ (125)

+

∫
X

(
υ (x)LΩ′C,T − λKF ′to,T

)
dx (126)
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or as:

ζ̇ (t) = φ (t) ζ (t) +

∫
X
σ
[
υ (x)LΩ′C,T − λKF ′total,T

]
dx (127)

where

φ (t) ≡ ρ+ 1− Q

B

(∫
x σλTS (x) a′Tdx∫

x σλTdx

)
(128)

is a time varying discount factor. Since F ′to,T < 0,Ω′C,T > 0 by assumption,
we see that σ

∫
x λT (t, x) dx ≡ ζ (t) < 0 for all t by forward integration, since:

ζ (t) = −
(

exp

∫ t

0
φ (s) ds

)∫ t

0

[
exp

(
−
∫ t

0
φ (s) dt

)
Z (s)

]
ds(129)

Z (t) =

∫
X

[
υ (x)LΩ′C,T − λKF ′total,T

]
dx. (130)

From (35)

λ̇M (t) = (ρ+m)λM (t)− ξ

B (1 +M (t) /M0)
ζ (t) (131)

which implies

λM (t) = e(ρ+m)t

∫ t

0
e−(ρ+m)s ξζ (s)

B (1 +M (t) /M0)
ds.

Thus solving (131) forward for each t shows that λM is a forward integral
of negative quantities for each t, therefore λM (x, t) < 0 for each t.�

Appendix 9: Proof of Proposition 6
Set τ (t) = 0. For a decreasing θ (t) , (74) should hold. At the global

social welfare maximizing path, after omitting (x, t;D) to ease notation, we
have that

p∗ (t) = (F ∗total)
′
q =

µ∗R−βλ∗M
λ∗K

(132)

r∗ = ρ− λ̇
∗
K

λ∗K
, (133)

then

r∗− ṗ
∗

p∗
=ρ− λ̇

∗
K

λ∗K
−d[(µ∗R−βλ∗M )/λ∗K ]/dt

[(µ∗R−βλ∗M )/λ∗K ]
, (134)

or using the optimality conditions for the costate variables

r∗− ṗ
∗

p∗
= (135)

βλ∗M (m− δ)− (βξ/B (1 +M (t) /M0))
∫
X λ
∗
Tdx

(µ∗R − βλ
∗
M )

.
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To show that θ∗ (t) decreases through time we need to show that the nu-
merator and the denominator of (135) are both positive. If the decay of
atmospheric carbon dioxide is slow so that m− δ < 0, then by lemma 1 the
numerator is positive. From the Kuhn-Tucker conditions µ∗R is non-negative
and λ∗M < 0 by lemma 1. Therefore θ̇

∗
(t) < 0. To examine the time path of

the optimal unit tax we use (73) to obtain

τ̇∗(t) = ṗ∗(t)− r∗(t)p∗(t) + r∗(t)τ∗(t). (136)

We want to locate suffi cient conditions for ṗ∗(t)− r∗(t)p∗(t) < 0. But this is
true if and only if r∗ − ṗ∗/p∗ > 0 which was our previous result. Therefore
τ̇∗(t)/τ∗ (t)< r∗ (t) .

Thus, we have essentially produced suffi cient conditions for rapid ramp-
up of profit taxes and for unit taxes to rise at a rate less than the net of
depreciation rate of return r∗(t) on capital.�

Appendix 10: Proof of Proposition 7
The first part of the proposition follows directly from lemma 1 and

Proposition 6. For the second part note that when θ̇
∗

(t) > 0, r∗− ṗ∗/p∗ < 0
and ṗ∗(t)− r∗(t)p∗(t) > 0. �

Appendix 11: Proof of Proposition 8
The optimality conditions for the planner are:

υ (x)U ′
(
C(x, t)

L(x, t)

)
= λK (x, t) (137)

AΩ(T̂ (x, t))F ′q =
µR (x, t)− βλM (t)

λK (x, t)
(138)

λ̇K (x, t)

λK (x, t)
= ρ+ δ − A(x, t)Ω(T̂ (x, t))F ′K (139)

µ̇R (x, t) = ρµR (x, t) (140)

λ̇M (t) = (ρ+m)λM (t)− λT0 (t)
Z1

1 +M (t) /M0
(141)

λ̇T0 (t) = (ρ+ 1)λT0 (t) +

∫
X
υ (x)L(x, t)Ω′C,T0dx (142)

−
∫
X
λK (x, t)AΩ′T0Fdx.

To ease notation we write AΩ(T̂ (x, t)) = B (x). Let k̄ (x) = K(x)
L(x) , q̄ (x) =

q(x)
L(x) , c̄ (x) = C(x)

L(x) denote per capita quantities, thus output per capita at

each location is B (x) k̄ (x)αK q̄ (x)αq , while utility is ln (c̄ (x)) .
We obtain the steady state as follows. Set λ̇K (x, t) = 0 in (107) and

divide by (106), noting that µR (x, t) = 0 for all x, t due to the simplifying
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assumptions, to obtain

αK
αq

q̄ (x)

k̄ (x)
=

(ρ+ δ)λK
−βλM

(143)

q̄ (x) =
(ρ+ δ)λK
−βλM

αq
αK

k̄ (x) . (144)

From (105)

λK =
υ (x)

c̄ (x)
, c̄ (x) = B (x) k̄ (x)αK q̄ (x)αq − δk̄ (x) . (145)

Substituting λK into (143) we obtain

q̄ (x) =
(ρ+ δ)

−βλM
αq
αK

υ (x)

B (x) k̄ (x)αK−1 q̄ (x)αq − δ
.

But from (107) at the steady state

B (x) k̄ (x)αK−1 q̄ (x)αq =
ρ+ δ

αK
.

Therefore

q̄ (x) =
(ρ+ δ)

−βλM
υ (x)αq

[ρ+ (1− αK) δ]
. (146)

From (3) the steady state stock of CO2 is:

M =
β

m

∫ 1

−1
L (x) q̄ (x) dx =

β

m

∫
X
L (x)

[
(ρ+ δ)

−βλM
υ (x)αq

[ρ+ (1− αK) δ]

]
dx.

(147)

Using Ω(T̂ (x, t)) = exp
(
−γT̂ (x, t)

)
, so that Ω′T0 = −γΩ(T̂ (x, t)) and (109)

- (110), we obtain at the steady state:

λM =
λT0

(ρ+m)

Z1

1 +M/M0
(148)

λT0 =
−γ

(1 + ρ)

∫
X

υ (x)

c̄ (x)

[
B (x) k̄ (x)αK q̄ (x)αq

]
dx. (149)

Using c̄ (x) = k̄ (x)
[
B (x) k̄ (x)αK−1 q̄ (x)αq − δ

]
and αkB (x) k̄ (x)αK−1 q̄ (x)αq =

ρ+δ from (107) and substituting into (149) we obtain the steady state value
of λT0 as

λ∗T0 = −γ
∫
X

υ (x) (ρ+ δ)

[ρ+ (1− δ)αK ]
dx = −γΓ0 < 0 (150)

Γ0 =
(ρ+ δ)

[ρ+ (1− δ)αK ]

∫
X
υ (x) dx. (151)
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Then

λM =
−γΓ0

(ρ+m)

Z1

1 +M/M0
< 0. (152)

Since λM does not depend on x, using (152) into (147) we can obtain

M = − 1

mλM
Γ1 , Γ1 =

∫
X
L (x)

[
υ (x)αq (ρ+ δ)

[ρ+ (1− αK) δ]

]
dx. (153)

From (152) and (153) we obtain the steady state values M∗ and λ∗M , which
are both independent of D. Combining results the steady state values for
the rest of the variables are:

T ∗0 = Z1 ln

(
1 +

M∗

M0

)
+ Z0 (154)

T̂ ∗ (x) = Z0 + Z1 ln

(
1 +

M∗

M0

)
− Z2

1 + 6D
P2 (x) (155)

Z1, Z2 > 0, P2 (x) =

(
3x2 − 1

)
2

(156)

q̄∗ (x) =
(ρ+ δ)

−βλ∗M
υ (x)αq

[ρ+ (1− αK) δ]
(157)

k̄∗ (x) =

(
ρ+ δ

αK

) 1
αK−1

[
AΩ

(
T̂ (x)

)] 1
1−αK [q̄∗ (x)]

1
1−αK = (158)

Γ2

[
Ω
(
T̂ ∗ (x)

)] 1
1−αK = Γ2 exp

(
γT̂ ∗ (x)

1− αK

)
, (159)

Γ2 =

(
ρ+ δ

αK

) 1
αK−1

[Aq̄∗ (x)]
1

1−αK (160)

c̄∗ (x) = AΩ
(
T̂ (x)

) [
k̄∗ (x)

]αK [q̄∗ (x)]αq − δk̄∗ (x) (161)

λ∗K (x) =
υ (x)

c̄∗ (x)
. (162)

This indicates that heat transport D affects the steady state values of per
capita capital and consumption at each location as well as the shadow value

of capital through their dependence on damages Ω
(
T̂ ∗ (x)

)
.

The impact of D on damages at a latitude x is determined as

∂Ω (x)

∂D
=
∂Ω

∂T̂

∂T̂ ∗ (x)

∂D
(163)

with ∂Ω
∂T̂

< 0, since damages reduce output, and an increase in tempera-
ture will reduce Ω which will in turn reduce output. Thus the impact of
heat transport on damages at a given latitude depends on the sign of the

derivative ∂T̂ ∗(x)
∂D .
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From (155)

∂T̂ ∗ (x)

∂D
=

3Z2

(
3x2 − 1

)
(1 + 6D)2


= 0 for x = ±1/

√
3

< 0 for −1/
√

3 < x < 1/
√

3

> 0 for

{
1/
√

3 < x ≤ 1

−1 ≤ x < −1/
√

3

(164)

and

∂Ω (x)

∂D
=
∂Ω

∂T̂

∂T̂ ∗ (x)

∂D


= 0 for x = ±1/

√
3

> 0 for −1/
√

3 < x < 1/
√

3damage reduction

< 0 for

{
1/
√

3 < x ≤ 1

−1 ≤ x < −1/
√

3
damage increase

.

(165)
From (158) and (159)

∂k̄∗ (x)

∂D
=

1

1− αK
Γ2Ω

αK
1−αK

∂Ω

∂T̂

∂T̂ ∗ (x)

∂D


= 0 for x = ±1/

√
3

> 0 for −1/
√

3 < x < 1/
√

3

< 0 for

{
1/
√

3 < x ≤ 1

−1 ≤ x < −1/
√

3

.

(166)
From (161) and (162)

∂c̄∗ (x)

∂D
= A

∂Ω

∂T̂

∂T̂ ∗ (x)

∂D

[
k̄∗ (x)

]αK [q̄∗ (x)]αq (167)

+
(
αKAΩ

[
k̄∗ (x)

]αK−1
[q̄∗ (x)]αq − δ

) ∂k̄∗ (x)

∂D
= 0 for x = ±1/

√
3

> 0 for −1/
√

3 < x < 1/
√

3

< 0 for

{
1/
√

3 < x ≤ 1

−1 ≤ x < −1/
√

3

since
(
αKA


[
k̄∗ (x)

]αK−1
[q̄∗ (x)]αq − δ

)
> 0 at the steady state due to

(107).

∂λ∗K (x)

∂D
=
−υ (x) ∂c̄

∗(x)
∂D

[c̄∗ (x)]2


= 0 for x = ±1/

√
3

< 0 for −1/
√

3 < x < 1/
√

3

> 0 for

{
1/
√

3 < x ≤ 1

−1 ≤ x < −1/
√

3

. (168)

Furthermore from (62) the impact of D on the full social price of fossil fuels
at the steady state is:

∂p∗ (x)

∂D
=
βλ∗M

∂λ∗K(x)
∂D

[λ∗K (x)]2


= 0 for x = ±1/

√
3

< 0 for −1/
√

3 < x < 1/
√

3

> 0 for

{
1/
√

3 < x ≤ 1

−1 ≤ x < −1/
√

3

. � (169)
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