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Abstract

We study rational expectations equilibrium problems and social

optimum problems in in�nite horizon spatial economies in the con-

text of a Ramsey type capital accumulation problem with geographi-

cal spillovers. We identify su¢ cient local and global conditions for the

emergence (or not) of optimal agglomeration, using techniques from

monotone operator theory and spectral theory in in�nite dimensional

Hilbert spaces. Our analytical methods can be used to systematically

study optimal potential agglomeration and clustering in dynamic eco-

nomics.
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1 Introduction

This paper shows how monotone operator theory can be used to study ra-

tional expectations equilibrium problems and social optimum problems in

in�nite horizon, in�nite dimensional spatial economies. Our analysis is ap-

plied to an illustrative in�nite horizon, in�nite dimensional spatial Ramsey

type capital accumulation problem where borrowing and lending on world

capital markets at a rate of interest equal to the rate of discount on sub-

jective utility are the same and quadratic adjustment costs penalize rapid

movements of capital. We locate su¢ cient conditions on primitives that

may cause potential agglomerations to form and to not form for both prob-

lems. Furthermore, we show how the spectral theory of compact operators

allows decomposition of the in�nite dimensional problem into a countable

collection of tractable �nite dimensional problems. Using this technique we

provide explicit local stability criteria for the linearized system.

Related literature includes work by Krugman (1996), Fujita et al. (2001),

Lucas (2001), Quah (2002), Desmet and Rossi-Hansberg (2007), Ioannides

and Overman (2007), Lucas and Rossi-Hansberg (2007), and others. How-

ever, to our knowledge, no one has yet provided a concise framework in which

the combination of monotone operator theory, the theory of compact oper-

ators, and the decomposition techniques we develop here can be applied to

in�nite horizon, in�nite dimensional spatial economies to study endogenous

agglomeration (or non-agglomeration) for rational expectations equilibrium

and the social optimum in terms of local and global analysis as we do here.

There is a large literature in mathematical biology (e.g., Murray, 2003)

that studies spatial agglomeration problems in in�nite dimensional spaces.

However, as far as we know, none of this literature deals with optimiza-

tion problems as we do here. There are many di¤erences between the

�backward-looking�dynamics in mathematical biology problems and other

natural science problems, and the �forward-looking�dynamics of economic

problems. It is not just a simple adaptation of dynamical systems tech-

niques to two-point boundary value problems in analogy with the familiar

phase diagrams in textbook analysis of Ramsey type optimal growth prob-

lems and Ramsey type rational expectations problems in �nite dimensional

spaces. For example, our development of techniques from operator theory

mentioned above allows us to locate su¢ cient conditions on primitives for

2



all potential agglomerations to be removed in in�nite horizon optimization

problems. Intuitively this is a generalization of classical turnpike theory of

�nite dimensional economic models to in�nite dimensional spatial models.

Thus, contrary to the spirit of the Turing instability which provides local

results for the linearized dynamical systems, we obtain global results valid

for the fully nonlinear optimized dynamical system. Global analysis based

on monotone operator theory, combined with local analysis based on spec-

tral theory, provides valuable insights regarding the endogenous emergence

(or not) of optimal agglomerations at a rational expectations equilibrium

and the social optimum of dynamic economic systems. The possibility of

a potential agglomeration at a rational expectations equilibrium is related

to the incomplete internalization of the spatial externality by optimizing

agents, while the �no agglomerations� result at the social optmum stems

from the full internalization of the spatial externality by a social planner

and the strict concavity of the production function.

The paper is organized as follows: Section 2 introduces the model and

Section 3 characterizes equilibria with spatial spillovers. Sections 4 and 5

provide global and local analysis for the emergence (or not) of optimal po-

tential agglomerations while Section 6 presents a detailed analytic and nu-

merical example. Section 7 discusses intuition, shows how our methods can

be used to study generalizations to spatial domains of similarly structured,

economic problems - in this case the well known investment problem of the

�rm with adjustment costs - and outlines other ways in which the present

paper can be extended. So as not to disrupt the �ow of the presentation,

all proofs are contained in Section 8 which serves as an Appendix.

2 Geographical Spillovers in Forward-Looking Op-

timizing Economies

Consider a spatial economy occupying a bounded domain O � Rd. It is
worth noting that space may be considered as either geographical (phys-

ical) space or as economic space (space of attributes related to economic

quantities of interest). Without loss of generality we may assume d = 1.

Capital stock is assumed to be a scalar quantity that evolves in time

and depends on the particular point z of the domain O under consideration.
Thus capital is described as a function of time t and space z, i.e. x : I�O !
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R where I = (0; T ) is the time interval over which the temporal evolution

of the phenomenon takes place. We assume an in�nite horizon model, i.e.

I = R+, and denote the capital stock at point z 2 O at time t by x (t; z).

The spatial behavior of x is modelled by assuming that the functions x(t; �)
belong for all t to an appropriately chosen function space H. Therefore, as
is common in the abstract theory of evolution equations, we assume that x

is described by a vector-valued function �x : I ! H, where I = (0; T ), and

H is the function space that describes the spatial properties of the function
x.1 Di¤erent choices for H are possible. A convenient choice is to let H be a
Hilbert space,2 e.g., H = L2(O), the space of square integrable functions on
O, or an appropriately chosen subspace, e.g. L2per(O); the space of square
integrable functions on O = [�L;L] satisfying periodic boundary conditions
(this would model a circular economy).

Consumption is assumed to be a local procedure and modeled by a vector

valued function c : I ! H interpreted in a similar fashion to the capital

stock function x discussed above. By the scalar quantity c(t; z) we denote

consumption at time t 2 I at the spatial point z 2 O. Consumption is
associated with a utility function U : I�H! R. The utility of consumption
at time t 2 I and at point z 2 O is given by U(c(t; z)).

Production at each location is determined by local inputs and by nonlocal

procedures. At time t, output production at each location z is described

by the production function f with inputs being capital x(t; z) and labour

`(t; z); at this location, and also spatial e¤ects describing the e¤ect that

capital stocks on locations s 2 O at time t have on production at location z.
Without loss of generality and to concentrate on the impact of geographical

spillovers, we assume that labour input is normalized to unity `(t; z) = 1.

Spillover e¤ects play a very important role in this study. We adopt the

notation �X(t; z) for the spillover e¤ects at time t on site z. Production at

time t and site z is given by the production function f : R�R! R in terms
of f(x(t; z); �X(t; z)).

1This function is de�ned such that (�x(t))(z) := x(t; z); to avoid cumbersome notation
in the sequel we denote the H-valued function �x using the same notation x and therefore
by x(t) we denote an element of H, which is in fact a function x(t) : O ! R which describes
the spatial structure of the capital stock at time t.

2Other choices are possible, where H is a Banach space, e.g., H = C(O) the set of
continuous functions on O or H = Lp(O), p 6= 2, 1 � p � 1, the set of p-integrable
functions on O. In the present paper, we restrict our attention to Hilbert spaces, though
many of our results may be extended to Banach space.
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Clearly the modelling of spillover e¤ects is crucial. We will adopt two

alternative ways:

(a) as exogenously given �X(t; z) = Xe(t; z) where Xe : I ! H is a known
function or

(b) as endogenously determined by the state of the system, i.e. �X(t; z) =

(Tx)(t; z) where T : H! H is a mapping (operator) taking the state of
the system at time t, x(t; :) 2 H and providing the spillovers �X(t; �) 2
H.

If we regard spillovers as the spatial externality case, (b) indicates in-

ternalization of the externality. When adopting modelling strategy (b),

spillover e¤ects at time t and site z are given by the intermediate quan-

tity:

X(t; z) =

Z
O
w(z; s)x(t; s)ds (1)

where w : O�O ! R is an integrable kernel function modeling the e¤ect that
position s has on position z. This introduces nonlocal (spatial) e¤ects, and

may be understood as de�ning a mapping which takes an element x(t; �) 2 H
and maps it to a new elementX(t; �) 2 H such that (1) holds for every z 2 O.
This mapping is understood as an operator T : H! H.

Some comments are due on the interpretation of the intermediate vari-

able X. The quantity X(t; z) will have di¤erent interpretations in di¤er-

ent contexts. If X(t; z) represents a type of knowledge which is produced

proportionately to capital usage, it is natural to assume that the kernel

w(�); � = z� s is single peaked bell-shaped, with a maximum at � = 0; and

with w(�) ! 0 for su¢ ciently large �: If X(t; z) re�ects aggregate bene�ts

of knowledge produced at (t; s) for producers at (t; z) and damages to pro-

duction at (t; z) from usage of capital at (t; s), then non-monotonic shapes

of w, with for example a single peak at � = 0 and two local minima located

symmetrically around � = 0; with negative values indicating damages to

production at z from usage of capital at s; are plausible. This production

function could be considered as a spatial version of a neoclassical produc-

tion function with Romer (1986) and Lucas (1988) externalities modelled by

geographical spillovers given by a Krugman (1996), Chincarini and Asherie

(2008) speci�cation.
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Let us now �x a time t and consider a site z 2 O. Let x(t; z) be the
capital stock at this site and �X(t; z) the spillover e¤ects at site z from all

the other sites in O. We treat the site as analytically equivalent to an agent
located on the site who has access to valuable technology f

�
x (t; z) ; �X(t; z)

�
that generates rents. The individual (or the site) has access to the world

capital market and can borrow x at an exogenous interest rate r (t) against

the present value of future rents from operating f
�
x (t; z) ; �X(t; z)

�
. The

agent faces quadratic adjustment costs, �2

h
@x(t;z)
@t

i2
, to adjusting the capital

stock and experiences geographical spillovers �X; while the capital stock de-

preciates at a �xed rate �: The instantaneous budget constraint facing the

individual or the site, z; at t can therefore be written as:

c (t; z) +
@x (t; z)

@t
= f

�
x (t; z) ; �X (t; z)

�
� �x (t; z)� �

2

�
@x (t; z)

@t

�2
: (2)

Assuming for simplicity constant r, the lifetime budget constraint expressed

in present discounted value form for the agent is obtained if (2) is multiplied

by e�rt , integrated over t from t = 0 to 1 (assuming momentarily the ex-

istence of exponentially bounded solutions of (2)) and all debts are required

to be paid o¤.3 De�ning4

� = r + �; u (t; z) =
@x

@t
(t; z) = x0 (t; z)

leads to a reformulation of the instantaneous budget constraint in a static

3We assume that the agent (or the site) has discounted future income greater than any
desired borrowing at any point in time. Thus the capitalized, at the rate r; sum of the
site�s future income is large enough to pay o¤ the debt incurred by borrowing. To put it
di¤erently, we assume that each site z has enough capital so that it is �solvent� in the
present value sense at each point in time. If for example initial capital is zero and initial
bonds are zero, then the solvency condition is obtained by multiplying both sides of (2)
by e�rt and using x (0; z) = b (0; z) = 0; as:Z 1

0

e�rt
�
f
�
x(t; z); �X(t; z)

�
� (r + �)x(t; z)� a

2

d2x

dt2
(t; z)

�
dt � 0

where b (t; z) is �bonds�held by z at time t; b (t; z) < 0 is debt, and b (t; z) > 0 is assets.
4By 0 we denote the derivative with respect to time of the Hilbert space valued function

x : I ! H:
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form as:

0 = C(z) := (3)Z 1

0
e�rt[x0 + f

�
x(t; z); �X(t; z)

�
� �x(t; z)� c(t; z)� �

2
u2(t; z)]dt

which holds a.e. in O. The same constraint over the whole domain O takes

the form:

0 = C� := (4)Z
O

Z 1

0
e�rt[x0 + f

�
x(t; z); �X(t; z)

�
� �x(t; z)� c(t; z)� �

2
u2(t; z)]dtdz:

To summarize, in this model the use or production of capital on a site

a¤ects other sites through the geographical spillovers, while a site can borrow

or lend capital using the world capital markets. Depending on the type

of the agent we can specify �X accordingly. An individual located at z

treats geographical spillovers as parametric and exogenously given, �X(t; z) =

Xe (t; z), while a social planner fully internalizes geographical spillovers so

that �X(t; z) = X(t; z) =
R
O w(z � s)x(t; s)ds.

3 Equilibria with Geographical Spillovers

3.1 Rational expectations and social optimum equilibria

The objective is to maximize the utility of consumption either locally or

globally. Both cases are considered in this work: the maximization of local

consumption when spillovers are exogenous will be called a rational expec-

tations (RE) problem, while the maximization of global utility with endoge-

nous spillovers will be called a social optimum (SO) problem.

Given the (local) utility function U we now de�ne the functionals JRE :

H! R and JSO : H! R whose action on the consumption function c is as
follows:

(JRE(c))(z) :=

Z 1

0
e��tU(c(t; z))dt; (5)

JSO(c) :=

Z
O
 (z)(Jsc)(z)dz =

Z
O

Z 1

0
e��t (z)U(c(t; z))dtdz: (6)

The functional JRE provides the discounted - by a subjective utility
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discount rate � > 0 - utility of consumption c(t; z) in the in�nite horizon at

location z. On the other hand, the functional JSO provides the discounted

utility of consumption averaged over the whole domain O, with a weight
function  which will be set to one without loss of generality.

We are now in a position to de�ne the two optimization problems faced

by either an arbitrary representative agent at location z (RE problem) or a

social planner (SO problem).

De�nition 1 (RE and SO problems).

RE problem: max
c2A

JRE subject to (3) with �X(t; z) = Xe (t; z) (7)

SO problem: max
c2A

JSO subject to (4) with �X(t; z) = X (t; z) (8)

where JRE and JSO are the functionals de�ned in (5) and (6) respectively

and A is the acceptable consumption set (typically c(t; z) � 0 a.e. in O
would su¢ ce).

3.2 Standing assumptions

In developing our model we make the four assumptions below, which will

be assumed to hold through the paper unless explicitly stated otherwise.

Note that some of these assumptions can be relaxed considerably for some

of our results. To simplify the exposition, we assume the stronger conditions

that guarantee that all of our results hold uniformly, and we make speci�c

remarks concerning the possibility of relaxing them in the particular cases

where this is feasible.

When RE equilibria are concerned, we need to make an assumption on

Xe.

Assumption 1. The exogenously given spillover function Xe 2 H.

We make the following assumptions on the primitives of the economy.

Assumption 2. Assume that

(a) The in�uence kernel function w : O �O ! R is continuous and sym-
metric, i.e. w(z; s) = w(s; z) = w(z � s).

(b) The production function f : R�R! R is a strictly increasing, strictly
concave function of the (real) variables (x;X).
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(c) The utility function U : R+ ! R is an increasing and strictly concave
C2 function in consumption c and satis�es the Inada conditions5

lim
c!0

@cU (c) = +1; lim
c!+1

@cU (c) = 0:

Under Assumption 2(a), equation (1) de�nes an integral operator K :

H! H whose action on a function x is de�ned as:

(Kx)(t; z) :=

Z
O
w(z � s)x(t; s)ds: (9)

Since O is a bounded domain, the continuity assumption leads us to the

result that w 2 L2(O) so that by standard results in the theory of integral
operators, K is a compact bounded operator which, furthermore, by the

symmetry of the kernel function w, is a self-adjoint operator.

We impose the following smoothness assumptions on the production

function.

Assumption 3.

(a) The production function is a C2 function of the (real) variables (x;X)

such that fxX , fXX are uniformly bounded below in O,

�� := inf
(x;X)2R2

fXX ; � := inf
(x;X)2R2

fxX ; �; � 2 R+:

(b) Furthermore, it holds that

lim
(x;X)!(0;0)

fx(x;X) > C; and lim
(x;X)!(0;0)

fX(x;X) > C;

for a positive constant C.

The positive constant C in Assumption 3(b) will be chosen typically

larger than � (in the RE case, or a multiple of that depending on the choice of

the kernel w in the SO case). This will be needed to guarantee the existence

of steady-state solutions (see Theorem 2 and its proof). Assumption 3(b)

holds for typical production functions, e.g., for the Cobb-Douglas production

function.6

5@u�; @uv� denote �rst and second order partial derivatives of a function �; with respect
to variables u; v.

6 In fact for the Cobb-Douglas, these limits are in�nite.
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Finally, we impose a positivity assumption on the spillover operator K.

This assumption is needed for the monotonicity results that are important

in the study of the global behaviour of the system. This assumption is not

imposed in Section 5, where the local behaviour is studied.

Assumption 4.

(a) The operator K : H! H is strictly positive.7

(b) It holds that �=� < �1 where �1 is the largest (positive) eigenvalue of

operator K.

The economic interpretation of positivity is that spatial spillovers have

overall positive e¤ects. This observation stems from the interpretation of

the inner product (Kx; x) as the total (average) spillovers over the whole

domain O. Note that the positivity of the operator does not rule out the
possibility of a negative spillover e¤ect locally. In fact the kernel function

may also assume negative values locally, but the overall (average over the

whole domain) spillover e¤ect will have to be positive. The positivity of the

operator K is related to the positivity of its eigenvalues.

3.3 The rational expectations and social optimum equilibria

The RE and SO equilibrium problems, (7) and (8) respectively, can be re-

formulated into a form which is more convenient to handle, using a gen-

eralization of the Fisher separation principle, for this in�nite dimensional

economy.

The optimization problem (7) can be broken down, by expressing the

associated Lagrangian in a separable form, into two distinct but interre-

lated sub-problems: A problem corresponding to the choice of the agent�s

consumption, c(t; z), to maximize discounted lifetime utility subject to a

lifetime budget constraint; and a problem corresponding to the choice of

the agent�s investment, u(s; z) = x
0
(t; z); to maximize the agent�s interests

in the economy by maximizing the location�s present value. This is essen-

tially a generalization of the Fisher separation principle for a single-owner

�rm which implies that if the optimization problem (7) admits a solution

7K is a positive operator if (Kh; h) � 0 for all h 2 H; and strictly positive if furthermore
(Kh; h) = 0 implies h = 0.
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(c�; x�), then there exists a � : O ! R+ such that the solution of this prob-
lem can be split into two separate problems:

(a) A consumption optimization problem which, upon choice of �; assumes

the form

max
c(�;z)

Z 1

0
e��t(U(c(t; z)� �(z)e�rtc(t; z))dt: (10)

(b) An investment optimization problem, independent of the choice of �,

according to which x(t; z) = x0(z) +
R t
0 u(s; z)dz is chosen so as to solve

max
x0(�;z)

Z 1

0
e�rtff(x(t; z); Xe(t; x))� �x(t; z)� �

2
(x

0
(t; z))2gdt; (11)

with � = r + �. As the following remark shows, it is reasonable to assume

that r = �.

Remark 1. The �rst order necessary condition for problem (10) is U 0 (c (t; z))
= e(��r)t� (z). Since �(z) is positive and independent of time, we see that

marginal utility goes to in�nity, i.e. c (t; z) goes to zero, if the individual

discounts the future higher than r and vice versa if the consumer discounts

the future less than r. Thus, if we want to study a steady state for c(t; z);

we can assume that the consumer discounts at the same rate as r.

Similarly an application of the Fisher separation to the social planner

problem (8) shows that the solution of this problem may be obtained by the

solution of two separate problems:

(a) A consumption optimization problem which upon choice of �� 2 R+
independent of z assumes the form

max
c

Z 1

0

Z
O
e�r t

�
 (z)U(c(t; z))� ��c(t; z)

�
dz dt: (12)

(b) An investment optimization problem, independent of the choice of ��,

where u is chosen so that x(t; z) = x0(z) +
R t
0 u(s; z)ds solves

max
x0

1Z
0

Z
O

e�r t
�
f(x(t; z); (Kx)(t; z))� �x(t; z)� �

2
(x

0
(t; z))2

�
dz dt: (13)

The above results can be easily shown, e.g., for the RE problem, by using

the Lagrangian L (z) =
R1
0 e��tU (c) dt+ �(z) C (z) :
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We note that in both cases only the solution of the second problems (11)

and (13) respectively, which are independent of the choice of the Lagrange

multiplier �; is required to characterize the spatial structure of the capital

stock. This problem is essentially equivalent to a calculus of variations

problem. At this point the following de�nition is required:

De�nition 2 (The RE and SO problems).

(i) RE problem:

max
x(�;z)

Z 1

0
e�rtff(x(t; z); Xe(t; x)� �x(t; z)� �

2
(x

0
(t; z))2gdt; 8z 2 O:

(14)

(ii) SO problem:

max
x

1Z
0

Z
O

e�r t
�
f(x(t; z); (Kx)(t; z))� �x(t; z)� �

2
(x

0
(t; z))2

�
dz dt:

(15)

Note that the RE problem is a calculus of variations problem where for

each �xed z 2 O we �nd a function x(�; z) : R+ ! R that maximizes the
functional

JRE(x(�; z); z) :=
1Z
0

e�rtff(x(t; z); Xe(t; x))� �x(t; z)� �

2
(x

0
(t; z))2gdt:

On the other hand the SO problem is a calculus of variations problem where

we �nd a vector valued function x : R+ ! H that maximizes the functional

JSO(x(�)) :=
Z 1

0

Z
O

e�r t
�
f(x(t; z); (Kx)(t; z))� �x(t; z)� �

2
(x

0
(t; z))2

�
dz dt:

3.4 Existence of equilibria and �rst order conditions

We now discuss the existence of RE and SO equilibria. The following oper-

ators will be needed.

De�nition 3. De�ne the nonlinear operators A� : H ! H, A� : H ! H,
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� = RE;SO, by

AREx := ���1(fx(x; �X)� �); �X = Xe;

ASOx := ���1(fx(x; �X) + KfX(x; �X)� �); �X = Kx

and

AREx := ���1(fx(x; �X)� �); �X = Kx;

ASOx := ���1(fx(x; �X) + KfX(x; �X)� �); �X = Kx:

Note that the operators ASO and ASO coincide, but we include both for

notational consistency.

Theorem 1.

(a) The optimization problems (14) and (15) admit a solution.

(b) The �rst order necessary condition for problems (14) and (15) is of

the form

x
00 � rx0 �A�x = 0; � = RE;SO (16)

where A� are the nonlinear operators of De�nition 3. The �rst order

necessary conditions have to be complemented with the transversality

condition

lim
t!1

e�rtxx0 = lim
t!1

1

2
e�rt(x2)0 = 0: (17)

Remark 2. This theorem does not require the positivity Assumption 4 on

K. The existence part of the theorem (claim (a)) requires only Assumption

2 (and Assumption 1 as well for the case � = RE) along with a mild growth

condition on the production function to ensure that the supremum is �nite.

The extra smoothness of the data imposed by Assumption 3 is required for

the �rst order conditions (Euler-Lagrange) to hold (claim (b)). Furthermore,

if the maximization is performed on a close convex subspace of H then the

�rst order condition (16) must be replaced by a variational inequality.

Remark 3. An alternative would be to use the maximum principle, in terms
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of the current value Hamiltonian H� , � = RE;SO where

HRE := f(x; �X)� �x� �

2
u2 + p u; �X = Xe; (18)

HSO :=
Z
O
(f(x; �X)� �x� �

2
u2 + p u)dz; �X = Kx: (19)

Applying the Pontryagin maximum principle formally and maximizing over

u, the Hamiltonian equations are easily seen to be equivalent to (16).

The form of the �rst order conditions (16) motivates the following de�-

nition:

De�nition 4 (RE and SO equilibrium). A solution x : I ! H, if it exists,
of the nonlinear integro-di¤erential equation

x00 � rx0 � A�x = 0 (20)

is called an RE equilibrium if � = RE and an SO equilibrium if � = SO.

Remark 4. Note that in the RE equilibrium we use the operator ARE
rather than the operator ARE . This means that the agent makes her decision

locally using �X = Xe but her decision changes the background spillovers to
�X = Kx.

4 Optimal Agglomerations in the Long Run: Global

Analysis

Having de�ned the RE equilibrium and the SO equilibrium in the context of

geographical spillovers, we turn to the study of the long-run characteristics

of these equilibria. These characteristics will provide information about the

potential emergence of optimal agglomerations as long-run equilibria, as well

as information about potential di¤erences in the long run between the RE

equilibrium and the SO. Analyzing these issues requires global analysis to

study existence, uniqueness and stability regarding both types of equilibria.

The long-term behavior of the system will be provided by the steady-

state solutions of the equilibrium equations given in De�nition 4. These are

solutions without any temporal variability, and are given as solutions of the

nonlinear operator equations A�x = 0, � = RE;SO. In general, the solution
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of this operator equation presents spatial variability, i.e., x = x(z), but if

operator K has the following property (which we will henceforth refer to as

Property P),

K�x is independent of z, if �x is independent of z; (P)

then the solution of A�x = 0 may be uniform in space. We will call such

an equilibrium a �at equilibrium. Property P holds in the case of periodic

boundary conditions (see Proposition 4) so that a �at steady state always

exists when periodic boundary conditions are taken into account. The �at

steady state is the solution of an algebraic nonlinear equation.

If a �at steady state exists, it is globally stable and if, furthermore, the

steady states of the system are unique, then the dynamics of the system pre-

clude the emergence of spatially varying solutions in the long run; therefore,

they preclude the emergence of spatial pattern formation in the economy.

We will refer to such patterns as potential �agglomeration patterns�to be

in accordance with the terminology of economic geography. Furthermore,

since such spatial patterns may occur as a result of optimizing behaviour,

we will henceforth refer to them as �optimal agglomeration�.

The following theorem provides important information on the long-run

dynamics.

Theorem 2.

(a) The operator equations A�x = 0, � = RE;SO, have unique solutions.

(b) All bounded solutions of x00 � rx0 � A�x = 0 have as weak limit the

solution of A�x = 0, � = RE;SO.

Remark 5. The results of Theorem 2 hold for SO without Assumption

4. Assumption 4 is a su¢ cient condition for Theorem 2 to hold in the

RE case. Therefore, convergence to the RE steady state depends on the

strength of diminishing returns with respect to spatial spillovers (fXX),

the strength of the complementarity between the capital stock and spatial

spillovers in the production function (fxX), and the structure of the spatial

domain as re�ected in the largest eigenvalue of K. Furthermore, relaxing the

monotonicity assumption on operator K, there may exist multiple solutions

for the RE steady-state equation for appropriate values of �.
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Remark 6. We only consider solutions of (20) that satisfy the condition
that supt2R+ jjx(t)jj < 1. This is a very reasonable restriction; since (20)
arises from an optimal control problem, it exhibits a saddle-point-like struc-

ture and the boundedness condition restricts us on the bounded manifold,

i.e. the manifold of the bounded solutions, which is the class of solutions of

interest to economic theory.

Example 1. To provide an illustration of what these operator equations
look like, let us consider as an example the case � = RE under the sim-

pli�ed assumption that the production function is separable f(x;X) =

F1(x)F2(X). We also assume that operator K (as well as the production

function f) satis�es the standing assumptions employed in this work.

In this special case this operator equation can be transformed to a Ham-

merstein type nonlinear integral equation. By straightforward algebra we see

that AREx = 0 is equivalent to the integral equation Kx = �2( �
F1;x(x)

) where

�2 is the inverse function of F2. In terms of the new variable y = �2( �
F1;x(x)

),

this assumes the Hammerstein form KN(y) = y, in terms of the nonlinear

function N , de�ned by N(y) := �1(
�

F2(y)
), where �1 is the inverse of the

function F1;x. By the properties of the production function it can be seen

that N is non-decreasing; therefore by Li et al. (2006) it admits a unique

solution.

An application of Theorem 2 in the periodic boundary conditions case

allows us to rule out the emergence of optimal agglomeration in the SO case

or for certain parameter values in the RE case. In particular,

Proposition 1. Assume periodic boundary conditions, and assume that a
�at steady state �x exists and de�ne

s11 := ��1@2xxf(�x;K�x); s22 := ��1@2XXf(�x;K�x); s12 := ��1@2xXf(�x;K�x):

(a) If �=� < �1 < js11j=s12 holds, then no agglomeration patterns will
arise in the fully nonlinear RE equilibrium.

(b) No agglomeration will arise in the fully nonlinear SO equilibrium.

At this point we summarize and comment upon our global results as

stated in the above theorem and proposition, focusing on their economic

meaning.
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For strictly concave production functions f , if the steady state equation

ASOx = 0 admits a �at solution then all bounded solutions of the time

dependent system will �nally tend weakly to that �at solution as t ! 1.
Thus agglomeration is not a socially optimal outcome in this case. The

uniqueness of the solution of ASOx = 0 precludes the existence of any steady

state other than the �at steady state as long as total spillover e¤ects are

the same across all sites of the spatial domain. Then the socially optimal

spatial distribution of economic activity is the uniform distribution in space.

This is always true in the case of periodic boundary conditions, when � is

independent of z. This result is a generalization of classical turnpike theory

to in�nite dimensional spatial models.8

When the long-run behavior of the RE and the SO are compared, we

note that:

(i) Convergence to the RE steady state is not guaranteed by the strict

concavity of the production function, as in the SO case, but depends,

according to Theorem 2(a), on the relation between diminishing re-

turns, complementarities, and the spatial geometry;

(ii) If a unique globally stable RE steady state exists it will be �at. Hence

for both the RE and SO the unique steady state is the �at steady

state.9

(iii) If the conditions of Theorem 2(a) are not satis�ed, a more complex

behavior is expected in the RE equilibrium. In this case, multiple

RE steady states cannot be eliminated, and a potential agglomeration

at the RE equilibrium takes the form of instability of the �at steady

state.10

Therefore to study the emergence of agglomeration at the RE in terms of

the stability of a RE equilibrium �at steady state, we turn to local analysis.

8 It should be noted that we obtain global asymptotic stability results for the SO,
which are independent of r; whereas some results in classical turnpike theory obtain global
asymptotic stability when r is close enough to zero.

9The RE and SO steady states will in general be di¤erent from each other, which calls
for spatially dependent economic policy if the SO steady state is to be attained.
10Note that we work on a symmetric space throughout so that any agglomeration that

arises is due to endogenous forces, not to any kind of exogenous imposition of structure
on the problem.
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5 Agglomeration Emergence and Local Spillover

Induced Instability

In the event that a �at steady state �x exists, and the conditions of Theorem

2(a) are not satis�ed at the RE equilibrium (in particular Assumption 4

is waived), the emergence of potential agglomeration may be studied in

terms of the linear stability of �x with respect to spatially inhomogeneous

perturbations. The question we seek to answer is what will happen to an

initial condition of the form x(0; z) = �x + �x̂(0; z), for � small, under the

action of the dynamical system x00� rx0�A�x = 0? Since we are interested
in local results, in this section we do not necessarily assume that Assumption

4 holds, unless explicitly stated.

If the initial spatial inhomogeneity is suppressed in time, then the �at

steady state is stable, thus leading to a new �at steady state and no agglom-

eration. If it grows in time, then this corresponds to a precursor instability,

which may lead to pattern formation and agglomeration in the long run. We

call this type of instability, which in the context of economic geography may

lead to equilibrium agglomeration, optimal spillover induced instability.

The linearized stability of the �at equilibrium is determined by the spec-

tral theory of the following linear operators:

De�nition 5. For a �at steady state �x, let

s11 := ��1@2xxf(�x;K�x); s22 := ��1@2XXf(�x;K�x); s12 := ��1@2xXf(�x;K�x) > 0;

and de�ne the linear bounded operators L� : H! H by11

LRE x̂ := s11x̂+ s12Kx̂

LSOx̂ := s11x̂+ 2s12Kx̂+ s22K
2x̂:

A typical linearization argument shows that these operators govern the

behaviour of spatio-temporal perturbations, x̂, from the �at steady state �x:

Inserting the ansatz x = �x+ �x̂ into (20) and expanding in �; we obtain the

linearized equation for the evolution of the perturbation x̂(t; z) as follows:

x̂00 � rx̂0 + L� x̂ = 0; � = RE; SO: (21)

11By the standard theory of integral operators, K2 is in turn an integral operator.
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From the point of view of pattern formation, a spectral decomposition

of (21) may provide detailed results concerning the onset and development

of instability.

Proposition 2. Let f�jg be the eigenvalues of operator K and f�jg the
corresponding eigenfunctions. Then,

(a) An arbitrary initial perturbation of the �at steady state of the form

x̂(0; z) =
X
j

aj�j(z); x̂
0(0; z) =

X
j

bj�j(z);

evolves under the linearized system (21) to

x̂�(t; z) =
X
j

c�;j(t)�j(z)

where fc�;j(t)g is the solution of the countably in�nite system of ordi-

nary di¤erential equations

c00�;j � rc0�;j + ��;jc�;j = 0; � = RE;SO; j 2 N (22)

c�;j(0) = aj ; c
0
�;j(0) = bj

where

�RE;j = s11 + s12�j

�SO;j = s11 + 2s12�j + s22�
2
j :

(b) There are three possible types of dynamic behaviour, depending on the

values of ��;j:

1. If ��;j < 0; then c�;j(t) = �Aje
�1t+ �Bje

�2t where �1 < 0 < r
2 < �2

(saddle path behaviour).

2. If 0 < ��;j <
�
r
2

�2
; then c�;j(t) = �Aje

�1t+ �Bje
�2t where 0 < �1 <

r
2 < �2 (unstable solutions).

3. If
�
r
2

�2
< ��;j ; then cj(t) = e

r
2
t
�
�Aj cos(�t) + �Bj sin(�t)

�
, � 2 R

and �Aj, �Bj are constants related to the initial conditions.
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The above general form of the linearized solutions clari�es possible pat-

tern formation patterns that may arise from small perturbations of the �at

steady state. Assume for example that for every mode �j we have that

��;j < 0. Then, according to the standard saddle path arguments, the

control procedure will lead the state of the system to the stable manifold

and we will observe exponential decay of the initial perturbation x̂(0; z) to

0: That is, the system will return to the �at steady state. Therefore, in

case ��;j < 0 for all j; we do not expect spatially varying patterns in the

long run. In all other cases, we lose the saddle path property in the lin-

earized system. Such cases may destabilize the system and take it away

from the �at equilibrium state �x. How this is done depends on the type

of initial perturbation. If the initial perturbation contains modes for which

0 < ��;j <
�
r
2

�2
; then for generic initial conditions we will have the linear

combination of two (increasing) exponentials, one with rate larger than r=2

and one with rate smaller than r=2. Clearly such a general combination

will not satisfy the transversality condition (17) and its general validity is

doubtful. However, for particular initial conditions (such that �Bj = 0) the

remaining part satis�es the transversality condition and will lead to pattern

formation with a mechanism that resembles Turing instability. Note that

for a randomly selected initial perturbation x̂(0; z); it is not expected that
�Bj = 0 so this mechanism for pattern formation will lead to patterns as long

as the initial perturbations from the �at steady state are carefully selected.

One the other hand, if the initial perturbation contains modes j such that�
r
2

�2
< ��;j ; then we obtain a spatio-temporal pattern which satis�es the

transversality conditions (17) for any choice of initial conditions. There-

fore, for �generic�initial perturbations from the �at steady state, we obtain

patterns which are compatible with the transversality conditions and corre-

spond to temporal growth accompanied with temporal oscillations. This can

be compared to a Turing-Hopf-type pattern formation mechanism. We then

obtain spatio-temporal growing, oscillatory patterns, which may correspond

to the onset of spatio-temporal cyclic economic behaviour.

To summarize:

� The perturbations from the �at steady state which contain modes �j
such that ��;j < 0 will die out and the system will converge to the �at

steady state �no possible agglomeration is expected.
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� The perturbations from the �at steady state which contain modes �j
such that ��;j > 0 will turn unstable and lead to possible potential

agglomeration spatial patterns, either monotone in time or oscillatory

in time.

Remark 7. This instability can be contrasted with the celebrated Turing
instability mechanism (Turing, 1952), which leads to pattern formation in

biological and chemical systems. The important di¤erences here are that:

(a) in our model the instability is driven not by the action of the di¤usion

operator (which is a di¤erential operator) but rather by a compact integral

operator that models geographical spillovers, and (b) contrary to the spirit

of the Turing model, here the instability is driven by optimizing behavior, so

it is the outcome of forward-looking optimizing behavior by economic agents

and not the result of reaction di¤usion in chemical or biological agents. It

is the optimizing nature of our model which dictates precisely the type of

unstable modes which are �accepted�by the system, in the sense that they

are compatible with the long-term behaviour imposed on the system by the

policy maker. In some sense local spillover induced instability is a mixture

of Turing- and Hopf-type instabilities.

We now turn to the comparison of stability of the RE and the SO �at

equilibrium. A relevant question is under what conditions we might expect

possible agglomeration to emerge.

Proposition 3.

(a) At the RE equilibrium, agglomeration is possible for the modes for

which �j � � s11
s12
.

(b) At the SO equilibrium, since the production function is strictly concave,

agglomeration is never possible.

Remark 8. The above proposition con�rms and further clari�es the results
of global analysis. The SO has a locally-stable �at steady state which by

the global analysis is unique. Thus no agglomeration is possible at the SO

with strictly concave production function. However, the �at steady state

of the RE system can be locally unstable and this locally instability may

induce agglomeration. Note that the local instability condition, �j � js11j
s12

;

is directly comparable with the �no agglomeration�condition of Proposition
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1 of the global analysis, in the sense that if the global �no agglomeration�

condition is satis�ed, the local instability condition is not satis�ed for all

modes, and the �at RE equilibrium is locally stable and unique. On the other

hand if the global �no agglomeration�condition is not satis�ed, that is �1 =

jjKjj � js11j
s12

; this means local instability of the �at RE equilibrium steady

state by Proposition 3 (a), and the possibility of endogeous agglomeration

emergence for the RE. Thus theorem 2 and Proposition 1 allow us to link

the global nonlinear picture of the system with the linearized picture we

obtained in this section using the Turing-type analysis.

Remark 9. Furthermore concerning the RE equilibrium, if �K is a positive
operator (negative spillovers) then agglomeration is never possible, whereas

if K is a positive operator (positive spillovers) then agglomeration is pos-

sible only if �1 = jjKjj � js11j
s12
. The economic intuition behind this is that

agglomeration can occur if the spillover e¤ects (as measured by the eigenval-

ues of operator K) are strong enough as compared to the ratio js11j
s12

(which

is determined by the production function and gives the relative strength of

diminishing returns with respect to complementarity e¤ects).

Remark 10. Note the important qualitative di¤erence between the case
considered in this paper (where K is a symmetric bounded compact op-

erator) as compared to models commonly used in biology or chemistry -

including Turing�s own seminal contribution (where K is a symmetric un-

bounded operator, e.g., K = ��, the Laplacian). In the latter case the
spectrum of operator K is unbounded (j�j j ! 1). This means that if K
is an unbounded symmetric positive operator, there will always be a mode

which turns unstable.

An important special case is that of periodic boundary conditions. In

this case the eigenfunctions and the eigenvalues of operator K are obtained

very easily in terms of the Fourier basis, thus leading to very general and

easy to implement results. The main general results in this case are summa-

rized in Proposition 4 (where the symmetry of the kernel is explicitly used).

Proposition 4 is elementary and is only included here as a reminder, and for

completeness of the paper.

Proposition 4 (Periodic Boundary Conditions). Assume periodic boundary
conditions, i.e., H = Lper(O), O = [�L;L]. Then,
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(a) The eigenfunctions of operator K are the Fourier modes �n(z) = cos(n�z=L),

n 2 N with corresponding eigenvalues Wn =
R L
�Lw(z)�n(z)dz.

(b) The action of operator K on a �at state returns a �at state, K�x =

�x
R L
�Lw(z)dz:

Therefore, the onset of instability (i.e., the particular modes which are

likely to become unstable) is determined by the Fourier expansion of the

kernel w. For speci�c classes of kernels the calculation of the eigenvalues

can be made explicit, thus leading to detailed results on the unstable modes

and the shape of the patterns created near the onset of the instability (in

the linear regime). The general result is that if certain modes are to become

unstable, these will be the low modes, since Wn is expected to decay to 0 as

n!1.

6 An Illustrative Example: Cobb-Douglas-Type

Production with Spillover E¤ects

In this section we provide an illustrative example of the general theory pro-

vided in this paper, using a Cobb-Douglas type production function with

spillover e¤ects. We assume periodic boundary conditions and for simplicity

we assume the spillovers to be described by exponential kernels. The rea-

son for this choice is twofold: First, kernels of this type were employed by

Krugman (1996) in his modelling of spillover e¤ects and second, this type

of kernels allows for some closed form expressions for the spectrum of the

integral operator K.

We illustrate our general theoretical results through a detailed analysis

of the modes that may turn unstable, and some results for the evolution

of possible agglomeration patterns obtained by numerical analysis of the

system.

6.1 The primitives of the economy and the Euler-Lagrange
equation

Consider a standard Cobb-Douglas production function

f (x;X) = C0x
aXb; a+ b < 1;
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where C0 is a constant. This production function takes into account local

e¤ects (modelled by the x contribution) and nonlocal e¤ects (modelled by

the X contribution) in the production.

The nonlocal e¤ects are modelled by the integral operator K, de�ned by

the composite exponential kernel function

w(z) =

NX
i=1

Ci exp(�
ijzj); 
i � 0; Ci 2 R: (23)

The coe¢ cients 
i give a measure of the spatial decay of spillover e¤ects.

The larger 
i is, the faster the spillover e¤ects are decaying as distance

increases. These e¤ects may be positive or negative depending on the sign

of the corresponding coe¢ cient Ci.

The operators ARE and ASO become

ARE := ���1 (aC0 xa�1 (Kx)b � �);

ASO := ���1 (aC0 xa�1 (Kx)b + bC0K
�
xa (Kx)b�1

�
� �)

and the steady-state equations are nonlinear integral equations.

Under the assumption of periodic boundary conditions, the action of

operator K on a �at state �x renders a �at state. Since K�x = W �x where

W is known (see next section for a closed form expression), we have that

the �at steady state for the RE is the solution of the nonlinear algebraic

equation

aW b�xa+b�1 � �� = 0;

whereas for the SO it is the solution of

aW b�xa+b�1 + bwb�xa+b�1 � �� = 0;

where �� = �
C0
. These immediately yield

�xRE =

� ��
a

� 1
a+b�1

W� b
a+b�1 ;

�xSO =

� ��

a+ b

� 1
a+b�1

W� b
a+b�1 :

Note that �xSO � �xRE since b > 0 and a+ b < 1. In the case where spillovers
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play no role (b = 0); these steady states coincide.

6.2 The spectrum of operator K

The spectrum of operator K, for periodic boundary conditions, can be cal-

culated analytically, in closed form using Proposition 4.

Consider �rst the case where N = 1 in (23). Then, setting 
1 = 


and C1 = C, a straightforward application of Proposition 4 shows that the

eigenfunctions of K are the Fourier modes �n = cos
�
n�z
L

�
with eigenvalues

�n (
) =Wn = 2C
L2


n2�2 + 
2L2
(1� e�
L cos(n�));

for n 2 N. Furthermore, W = �0 =W (0).

Consider now a composite kernel as in (23), for N 6= 1. Clearly K is

a linear combination of operators generated by simple exponential kernels.

Using the linearity of the operators it is clear that the Fourier modes �n, for

n 2 N, are eigenfunctions of K with corresponding eigenvalue

Mn =
NX
i=1

Ci�n (
i) ; (24)

and W =M0.

6.3 Local spillover induced instability

As already mentioned, our general results preclude emergence of agglomera-

tions in the SO case. However, agglomeration emergence, via local spillover

induced instability, is possible under certain conditions for the RE problem.

The emergence of this instability is governed by the linearized system

x
00 � rx0 + LREx = 0; (25)

with initial conditions x(0; z), x
0
(0; z) where x now denotes a small pertur-

bation from the �at steady state �x := �xRE and LRE is the linear operator

de�ned by

LREx := s11x+ s12Kx;
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where s11, s12 are the constants

s11 = a(a� 1)C0W b �xa+b�2;

s12 = a bC0W
b�1 �xa+b�2:

The knowledge of the eigenvalues in combination with Proposition 2

allows us to determine unstable modes and draw some general conclusions.

Consider �rst the case where the kernel consists of a single exponential

(N = 1) with 
1 = 
 and C1 = C. Then, the instability condition yields

that a mode n is unstable if

a� 1
b

+
L2
2

n2�2 + 
2L2
(1� e�
L cos(n�)) � 1

ab

�r
2

�2
W�b�x2�a�b:

The expression I(n) = L2
2

n2�2+
2L2
(1 � e�
L cos(n�)) attains its maximum

value for n = 0 so that

a� 1
b

+
L2
2

n2�2 + 
2L2
(1�e�
L cos(n�)) � a� 1

b
+1�e�
L � a+ b� 1

b
� 0;

since a + b < 1 so that the instability condition is never satis�ed and all

modes are stable.

The situation is more interesting when composite kernel functions are

taken into account. Consider for example a kernel function as in (23), with

N = 2 and 
1 = 0:3, C1 = 2, 
2 = 0:1, C2 = �0:75. In this case the in�uence
of neighboring locations on local state is a weighted average of the state at

neighboring locations, but the in�uence from nearby locations is positive,

while the in�uence is negative from relatively more distant locations. The

kernel function chosen is similar to the one employed by Krugman (1996) in

the modelling of a market potential function. The shape of the composite

kernel function is shown in the left panel of Figure 1.

The operator K associated with the speci�c composite spillover is pos-

itive, so Assumption 4(a) is satis�ed. Furthermore, the spectrum of this

operator is available in closed form (see equation (24)) so that using the

spectrum, we can readily check for the existence of unstable modes, for

which spillover induced instability is possible. Since the spectrum depends

on the parameters a, b and L in the right panel of Figure 1, we plot the num-

ber of unstable modes that emerge as a function of the ratio 1�a
b and the
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Figure 1: The shape of the composite kernel for 
1 = 0:3, C1 = 2, 
2 = 0:1,
C2 = �0:75 (left panel). The number of unstable modes for this choice of
kernel function, as a function of the parameter 1�ab and L (right panel).
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length of the domain L. We remark �rst that low modes may turn unstable

(as a result of the monotonicity of the spectrum and its boundness; recall

that K is a compact operator). That means that when, e.g., one mode is

unstable, this is the �rst mode corresponding to n = 1, when two modes are

unstable, this means that these are the modes n = 1 and n = 2; etc. One

observes from our results that as L increases, more modes become unstable,

as the increased length of the system can then accomodate more modes.

This will lead to di¤erent spatial patterns that emerge as the length of the

domain increases. The spatial complexity increases with the increase of L,

and this is essentially a bifurcation phenomenon.

To display the wealth and variety of possible spatio-temporal agglomera-

tion patterns that may emerge, we solve numerically the linearized equation

(25) for the chosen kernel, and for the parameter values a = 0:8, b = 0:1,

for various choices of L. We assume a small random perturbation from the

�at steady state and we leave this perturbation evolving by solving (25), in

order to determine the �x+ x(t; z) which is an approximation of the optimal

path for the full system. The results are shown in Figure 2. In the �rst

panel, where L = 10, no modes can become unstable and the perturbation

dies out, and we revert to the �at steady state and no agglomeration oc-

curs. In the second panel, L = 15 and according to our analysis only the

�rst mode n = 1 is unstable. This leads to an agglomeration pattern whose

spatial structure resembles that of the �rst eigenfunction of operator K. In

the third panel, L = 18 and in this case two modes, n = 1 and n = 2; are

unstable, a fact that leads to agglomeration patterns with spatial structure

resembling linear combinations of the �rst two eigenfunctions of operator

K. Finally, in the fourth panel, L = 20 and more modes become unstable

leading to the occurence of more complex spatio-temporal agglomeration

patterns.

6.4 The existence of patterns in the fully nonlinear model

We close this section by showing that the agglomeration patterns predicted

by the linear stability analysis exist in the fully nonlinear case, by using a

variational argument based on the mountain pass argument. We consider

the steady-state equation AREx = 0, which in this case is a nonlinear integral

equation of the form

axa�1 (Kx)b = �� (26)
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Figure 2: Emerging patterns from the instability for di¤erent domain sizes.
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which, as we saw earlier on, has a unique �at steady-state solution

�xRE =

� ��
a

� 1
a+b�1

W� b
a+b�1 :

We solve (26) in terms of X = Kx and rewrite this integral equation as

Kx =

� ��
a

� 1
b

x
1�a
b
:

We write x = �xRE + v and de�ne the new variable

u = (v + �xRE)
1�a
b : (27)

Using (27), (26)assumes the equivalent form

Ku
b

1�a =

� ��
a

� 1
b

u (28)

which is in the standard form of a Hammerstein nonlinear integral equation.

Since a + b < 1; we see that b
1�a < 1; so this is a sublinear Hammerstein

equation. Clearly it admits the trivial solution u = 0 which is not acceptable

on economic grounds since it leads to a �at steady state which is negative.

Furthermore, it also admits a unique nontrivial �at solution �u such that

�u =

� ��
a

� 1�a
b(a+b�1)

W� 1�a
a+b�1

which by undoing the transformation of variables (27) is easily seen to co-

incide with �xRE .

The question that arises is whether the Hammerstein equation (28) ad-

mits other solutions apart from these two. If it does, then this must be

a non-�at solution, which corresponds to agglomeration. This is a fully

nonlinear agglomeration pattern. By the linear analysis performed in the

previous section, this fully nonlinear pattern must in the appropriate linear

limit coincide with the patterns predicted by the linear stability analysis.

There is a well-developed theory concerning the solution of such Ham-

merstein equations. This theory, which is based on the powerful techniques

of critical point theory, allows detailed results on the number and nature of
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nontrivial solutions. The following proposition provides an answer to the

question we have set.

Proposition 5. There exists a �� such that for
�
��
a

� 1
b
> �� the Hammer-

stein equation (28) admits at least two nontrivial solutions. Since one of

these is the unique �at steady state �u, the other corresponds to a nonlinear

agglomeration pattern.

The proof of the proposition follows the proof of Theorem 7 of Faraci

and Moroz (2003) with minor modi�cations and is omitted for the sake of

brevity. The critical value �� can be estimated in terms of the primitives

of the problem. A full account of the nonlinear bifurcation theory for the

steady states is beyond the scope of the present paper and will be addressed

in future work.

7 Discussion, Extensions and Concluding Remarks

This paper develops a fairly general approach to the study of in�nite dimen-

sional, in�nite horizon, intertemporal recursive dynamic optimization mod-

els in continuous spatial settings. Using the theory of maximal monotone

operators for global analysis and spectral theory of compact operators for

local analysis, we studied the spatiotemporal long-run behavior of the ra-

tional expectations equilibrium and the social optimum associated with a

Ramsey-Fisher-type optimal growth model. We show, in the context of

global analysis, that strong concavity of the production function implies

convergence of the SO to a unique �at steady state, while similar conver-

gence of the RE equilibrium requires stronger conditions. The possibility of

a potential agglomeration at the RE equilibrium induced by instability of

the �at steady state led us to local analysis. In the local analysis, we derived

conditions for local stability and spillover-induced instability associated with

the RE equilibrium which could signal agglomeration emergence. Since both

our local and global conditions depend on primitives such as the strength of

diminishing returns and complementarities in the production function, the

characteristics of the spatial spillovers and the spatial geometry, our results

are easily interpretable and potentially testable.

Our global results can be associated with general turnpike theorems in

in�nite dimensional spaces, which means that they allow the study of the
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long-run behavior of dynamic systems that include explicit spatial interac-

tions - e.g. spatial spillovers - among economic agents.12 The global asymp-

totic stability of the SO, obtained by using monotone operator theory, can

be related to global asymptotic stability results obtained by Scheinkman

(1978) about the stability of separable Hamiltonians in �nite dimensional

settings. From (18) and (19) we can write our problem in terms of separable

Hamiltonians as:

H�(p; x; �X) = H1�(p) +H2�(x; �X) ; � = RE;SO

H1RE(p) := max
x0

n
��
2

�
x0
�2
+ p x0

o
;

H1SO(p) := max
x0

�Z
O

h
��
2

�
x0
�2
+ p x0

i
dz

�
H2RE(x; �X) := f(x;Xe)� �x;

H2SO(x; �X) :=
Z
O
[(f(x;Kx)� �x] dz:

This implies that the global long-run behavior of in�nite dimensional op-

timization problems that give rise to Hamiltonians which are separable in

the above sense, can be analyzed using the theory of monotone operators

developed in this paper, while local results can be obtained using spectral

theory.

For example, the well-known problem of investment theory of the �rm

with convex adjustment costs (Lucas 1967a,b), which has been analyzed in

terms of separable Hamiltonians by Scheinkman (1978), can be extended us-

ing our methods in a spatial setting. In a simpli�ed set-up, consider a large

number of �rms which occupy a spatial domain O; sell a homogeneous out-
put at an exogenous price, face quadratic adjustment costs with respect to

net investment, and experience knowledge spillovers which generate spatial

interactions among them. The RE and SO problems can be written as:

12An interesting paper by Boucekkine et al. (2010) studies optimal dynamic social
welfare, e.g., an analog of our SO problem in an AK type model with a trade balance
on a circular space where capital is mobile across space and growth occurs. It would be
interesting to model the e¤ect of introducing spillover externalities like ours as well as
introducing growth and trends like Boucekkine et al. (2010) and comparing the solutions
for SO and RE as we do in our paper. Unfortunately this is beyond the scope of the
current paper.
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RE: max
x0

1Z
0

e�r t
�
lf(x;Xe)� q

�
x0 + �x

�
� �

2
(x

0
)2
�
dt

SO: max
x0

1Z
0

Z
O

e�r t
�
lf(x;Kx)� q

�
x0 + �x

�
� �

2
(x

0
)2
�
dz dt;

where l is the exogenous output price, and q is the unit price of capital,

both assumed independent of time. In this case the nonlinear operators of

De�nition 5 become

AREx := ���1(fx(x; �X)� q (� � r)); �X = Kx;

ASOx := ���1(fx(x; �X) + KfX(x; �X)� q (� � r)); �X = Kx:

and Theorem 1 suggests that the �rst order necessary condition for problems

RE and SO are, respectively,

x
00 � rx0 � A�x = 0; � = RE;SO:

Therefore with a strictly concave production function, the �at steady

state of SO is globally asyptotically stable, independent of the value of r; and

no agglomeration is possible at the SO. On the other hand by Propositions

1 and 3, agglomeration might be possible at the RE.

The factor that could potentially di¤erentiate the spatial structure of

the SO and RE in the long run is the way in which the optimizing agent

takes into account the spatial spillover. As seen from Propositions 1 and 3,

the important quantity for characterizing RE is the ratio js11j =s12. If this
quantity is less than the largest eigenvalue of operator K; then agglomeration

is possible. If the production function is separable in x and X; then s12 = 0

and no agglomeration is possible at the RE. For agglomeration to be a pos-

sibility, s12 should be su¢ ciently large in relation to the diminishing returns

on x: In this case the optimizing agent treats the spillover X as exogenous

and takes into account only its complementarity with x which is re�ected

in s12: At the SO, however, the optimizing agent - e.g., the social planner -

by treating X as endogenous, takes into account the diminishing returns of

the spillover, in addition to the complementarity. With a strictly concave
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production function, this diminishing returns implies a maximal monotone

operator ASO and equivalently �SO;j < 0 for all modes j in local analysis,

and thus no agglomeration at the SO. Therefore it is the full internalization

of the spatial externality that prevents the emergence of agglomerations.

We feel that the methods developed in this paper provide insights about

the spatial structure of dynamic economic models that could provide a direct

link between economic geography and optimal growth. Future research could

be directed towards the further study of complexities underlying the RE

equilibrium, the impact of increasing returns, and the explicit introduction

of capital movement across space in pursuit of higher returns.

8 Appendix: Proofs

8.1 Proof of Theorem 1

We use the notation F (x;X) = f(x;X)��x to rewrite the functional to be
maximized as

J(x; x0) := J1(x)+J2(x
0) :=

Z 1

0

Z
O
e�rtF (x;Kx)dzdt��

2

Z 1

0

Z
O
e�rt(x0)2dzdt;

(29)

where the explicit (t; z) dependence of x, X is omitted for simplicity.

To be in line with the standard theory of the calculus of variations, we

consider the equivalent problem of minimizing the functional �J = �J . We
also use the notation �J1(x) = �J1(x), �J2(x0) = �J2(x0) and

�F (x;X) = �F (x;X) = �x� f(x;X):

Clearly, �F is a strictly convex function.

Finally we use the notation xn ! x for strong convergence in H and

xn * x for weak convergence in H.
The following lemma is needed.

Lemma 1. The functional �J1 : H! R is weakly lower semicontinuous and
weakly coercive.

Proof: Since

�J1(x) =

Z
O
(�x� f(x;X))dz; � > 0

34



it is clear that ( �J1(x); x)!1 as jjxjj ! 1, hence �J1 is weakly coercive.
For the weak lower semicontinuity we use Theorem 7.5 of Fonseca and

Leoni (2007, p. 492) (see also Berkovitz, 1974). According to this theorem,

let g : O � R� R! R and de�ne the functional ��(u; v) :=
R
O g(z; u(z); v(z))dz.

Also, let p; q 2 [1;1) and assume that g(z; u; v) � �C(jujp + jvjq) � w(z),

C � 0 and w 2 L1(O). The functional �� is lower semicontinuous with re-
spect to weak convergence of u in Lp(O) and strong convergence13 of v in
Lq(O); if and only if the following three properties hold:

(i) u 7! g(z; u; v) is convex for all z 2 O and for all v 2 R,

(ii) g(z; u; v) � a(z) + b(x; v)u� cjvjq, c > 0 and a 2 L1(O).

(iii) For any two sequences fvng (converging weakly in Lp(O)) and fung
(converging strongly in Lq(O)) and such that supn�(un; vn) < 1;
then the sequence jb(�; vn(�))jp

0
where p0 is the conjugate exponent of

p, is equi-integrable.

We apply this theorem for p = q = 2 and u = x, v = X = Kx. Then if

g(z; u; v) = � �F (u; v); we observe that �(u; v) = �J1(x). Clearly, g satis�es

the properties (i)-(iii) by the properties of f (for property (ii) recall that

any concave function is bounded above by an a¢ ne function).

Consider a sequence un = xn converging weakly in H := L2(O); xn * x.

Then, since K : H ! H is a compact operator, there exists a subsequence

of un = xn such that vn := Kxn converges strongly. Then, an application

of the abovementioned theorem yields the weak lower semicontinuity result.

QED

Proof of Theorem 1: We only provide the proof for � = SO as the RE

case is similar.

(a) Consider a sequence (xn; x0n), n 2 N such that J(xn; x0n) ! M where

M = supJ(x; x0). Clearly this is a minimizing sequence for �J . The real

valued sequence J(xn; x0n) is bounded, so that by the properties of F there

exists a constant C such that
R1
0 e�rt(x0)2dzdt < C, that is x0n is a bounded

sequence in L2((0;1); e�rtdt;H), where H = L2(O). Since the measure

� = e�rtdt is such that �(R+) < 1 and H is a separable Hilbert space,

there exists a weakly convergent subsequence of x0n (denoted the same for

13Meaning that if un * u in Lp(O) and vn ! v in Lq(O), then ��(u; v) �
lim infn ��(un; vn).
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simplicity); there exists a y 2 L2((0;1); e�rtdt;H) such that x0n * y in

L2((0;1); e�rtdt;H). We then set �x(t) := x0 +
R t
0 y(s)ds so that y = �x0

and it can be seen that xn(t)* �x(t) in H uniformly on compact subsets of
(0;1) and xn * �x in L2((0;1); e�rtdt;H).

Since K is a compact operator, the sequence Kxn(t) converges strongly

to K�x(t) in H uniformly on compact subsets of (0;1). An application of
Lemma 1 provides the result that �J1(�x) � limn inf �J1(xn). Furthermore, the
map y 7!

R1
0

R
O e

�rty(t; z)2dzdt is convex and lower semicontinuous;14 it

is also weakly lower semicontinuous, �J2(�x0) � limn inf �J2(x
0
n). Adding up,

and since the minimizing sequence is convergent, we obtain that �J(�x; �x0) �
�M = inf �J(x; x0) which leads to the result that �x is the minimizer for �J ,

hence the maximizer for J .

(b) We now consider the functional J , de�ned in (29), as a functional of

u = x0 and x = x0+
R t
0 u(s)ds (still denoted as J). The �rst order necessary

condition will be of the form (rJ; �) = 0 where r denotes the Gâteaux

derivative and � is a test function in H.15 We proceed to the determination
of the Gâteaux derivative. To this end, �x any direction v 2 H, de�ne
u� = u+ �v, V =

R t
0 v(s)ds and calculate

d

d�
J(u�)

����
�=0

=

Z 1

0

Z
O
e�rt (@xf(x;Kx) + K

�@Xf(x;Kx)V � �V � �uv) dz dt

where K� is the adjoint of operator K, and K� = K by symmetry. In the above

calculation we have used the smoothness Assumption 3 that allows the use

of the Lebesgue dominated convergence theorem, in order to intechange the

limit de�ning the derivative with integration so as to reach the stated result.

Since v = V 0, by integration by parts over t and using the transversality

condition, the �rst order condition becomesZ 1

0

Z
O
e�rt

�
@xf(x;Kx) + K

�@Xf(x;Kx)� �+ �u0 � r�u
�
V dz dt = 0:

This must be true for all v therefore for all V which implies that the �rst

14Mazur�s lemma (according to which out of a weakly convergent sequence we may
construct a subsequence which is a convex combination of the elements of the original
sequence) and convexity play an important role in passing from strong semicontinuity to
weak semicontinuity.
15This is assuming we treat the problem over the whole of H, otherwise it is replaced

by a variational inequality of similar form.
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order condition becomes

@xf(x;Kx) + K
�@Xf(x;Kx)� �+ �u0 � r�u = 0;

(a.e.) and keeping in mind that u = x0; we reach the stated result. QED

8.2 Proof of Theorem 2

The following technical result concerning the operators A� : H ! H, � =
RE;SO, plays an important role in the Proof of Theorem 2.

Lemma 2.

(i) The operators A� : H! H, � = RE;SO are maximal monotone.16

(ii) The operators T� : H! H de�ned by T� := I � A� : H, � = RE;SO,

where I is the identity operator, are pseudocontractive operators, i.e.,

jjT�x1 � T�x2jj2 � jjx1 � x2jj2 + jj(I � T�)x1 � (I � T�)x2jj2;

for all x1; x2 2 H.

(iii) Let K := fx 2 H : x(z) � 0; a:e: z 2 Og. Then, the operators

T� := I �A� : K! H, � = RE;SO, are weakly inward, i.e. they have

the property T�x 2 IK(x) for all x 2 K where IK(x) is the closure of

the inward set of x relative to K, de�ned as

IK(x) = f(1� k)x+ k y : y 2 K; k � 0g:

Proof : (i) The result is immediate for � = SO since ASO is a (sub)di¤erential

of the strictly convex functional �J1, hence it is a maximal monotone oper-
ator (see e.g., Barbu, 2010, Ch. 2, Th. 2.8, p. 47).

The case � = RE is a bit more involved, since ARE cannot be expressed

directly in terms of the (sub)di¤erential of a convex functional but rather as

a perturbation of such an entity. Indeed, note that ARE can be expressed as

ARE = A+B where A = ASO and B = KfX , where A is maximal monotone.

16A possibly nonlinear operator A : H ! H is called monotone if (Ax � Ay; x � y) � 0
for all x; y 2 H and maximal monotone if its graph is not properly contained in the graph
of any other monotone operator. Observe that monotonicity is related to positivity if the
operator is linear.
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We will address the question of maximal monotonicity of A+B. By Corol-

lary 2.1 in Barbu (2010, Ch. 2, p. 35), which states that the sum of a

maximal monotone operator with a hemicontinuous and monotone operator

retains the maximal monotonicity property, it is enough to prove that B

is hemicontinuous and monotone. The hemicontinuity of B is straightfor-

ward by the smoothness properties of the function f . To check monotonicity

we employ a statement of Kachurovskii (1968, Theorem 1.1c), according to

which a necessary and su¢ cient condition for a nonlinear operator B to be

monotone is that B is Gâteaux di¤erentiable, with Gateaux derivative rB
such that (h;rBh) is continuous for every h 2 H and (h;rBh) � 0 for

every h 2 H (at any point in H).
A simple calculation shows that

I := (rBh; h) = (fxX(x;Kx)h;Kh) + (fXX(x;Kx)Kh;Kh)

= (K1=2fxX(x;Kx)h;K
1=2h) + (fXX(x;Kx)Kh;Kh)

where we have used the self-adjoint property of K and the de�nition of the

square root of K. By Assumption 3(a),

(K1=2fxX(x;Kx)h;K
1=2h) � �jjK1=2hjj2;

(fXX(x;Kx)Kh;Kh) � ��jjKhjj2

so that I � � jjK1=2hjj2�� jjKhjj2. The quantity I will always be positive for
all h 2 H if infh2H(� jjK1=2hjj2 � � jjKhjj2) > 0. Note that Kh = K1=2K1=2h
and that the eigenvalues of K are such that �1 � �2 � � � � � 0, so that the
eigenvalues of K1=2 are such that �1=21 � �

1=2
2 � � � � � 0. This implies that

jjK1=2yjj � �
1=2
1 jjyjj for all y 2 H; therefore substituting y = K1=2h in this

inequality we obtain the estimate jjKhjj � �
1=2
1 jjK1=2hjj so that �jjKhjj2 �

��1jjK1=2hjj2. We therefore obtain the estimate

� jjK1=2hjj2 � � jjKhjj2 � (� � ��1)jjK1=2hjj2

which is always positive as long as � � ��1 > 0. Then, the in�mum of the

left hand side will always be greater than or equal to 0. We conclude that

the nonlinear operator B is monotone if �=� < �1; therefore leading to the

stated result.
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(ii) Since A� are monotone operators for � = RE;SO, it holds that

(A�x1 � A�x2; x1 � x2) � 0

for every x1; x2 2 H. Then, a simple calculation, using the Hilbert space
structure of H,

jjT�x1 � T�x2jj2 = ((I � A�)x1 � (I � A�)x2; (I � A�)x1 � (I � A�)x2
= jjx1 � x2jj2 � 2(A�x1 � A�x2; x1 � x2) + jjA�x1 � A�x2jj2;

yields the required result.

(iii) We use the following characterization of weakly inward operators

(see Deimling, 1985, Lemma 18.2, p. 208 and Section 20.4, p. 245), accord-

ing to which if K is a closed and convex cone, then T� is weakly inward if

and only if x 2 @K, x� 2 K� and hx�; xi = 0 implies that hx�;T�xi � 0,

where K� = fx� 2 H� : hx�; xi � 0; x 2 Kg denotes the dual cone and H� is
the dual space of H. By h�; �i we denote the duality pairing between H� and
H. Here, since we are in a Hilbert space setting, we consider H� ' H (by

the Riesz representation) and we identify the duality pairing h�; �i with the
inner product (�; �) on H.

Since H = L2(O), we identify H� = L2(O) so that an element of the dual
space x� is also a square integrable function x� : O ! R. Then

hx�; xi = (x�; x) =
Z
O
x�(z)x(z)dz

so that x 2 @K, and x� 2 K� and (x�; x) = 0 imply that x� is such that

x�(z) � 0 on O+ := fz 2 O : x(z) = 0g (otherwise x� is identically zero).
We now calculate

(x�;TSOx) =

Z
O
(x� �+ fx(x;X) + KfX(x;X))(z)x�(z)dz

=

Z
O+
(��+ fx(0; 0) + KfX(0; 0))x�(z)dz � 0

by the properties of f (Assumption 3(b)). This shows that TSO is weakly
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inward. Similarly

(x�;TREx) =

Z
O
(x� �+ fx(x;X))(z)x�(z)dz

=

Z
O+
(��+ fx(0; 0))x�(z)dz � 0

by the properties of f (Assumption 3(b)), therefore TRE is also weakly in-

ward. Q.E.D.

Proof of Theorem 2 (a) The result for both cases follows by a �xed

point argument. We employ a �xed point theorem (see Joshi and Bose, 1985,

Theorem 4.2.18 and Caristi, 1976, Theorem 2.6), according to which a con-

tinuous,17 pseudo contractive and weakly inward mapping F : K � H ! H
of a nonempty closed and bounded subset K of a Hilbert space H has a �xed
point. By the results of Lemma 2 we apply this theorem to T� , � = SO;RE

to guarantee the existence of a �xed point for the operator T� . But this

�xed point is also a solution of the operator equation A�x = 0, � = SO;RE.

Uniqueness follows by strict monotonicity.

(b) By Lemma 2, operator A� is maximal monotone. We now use Theo-

rem 3.3. of Rouhani and Khatibzadeh (2009) to obtain the stated result.

According to a special case of this theorem a bounded solution of

x
00 � rx0 = A�x

for any initial condition x0, converges weakly as t ! 1 to an element of

A�1� (0), if A� is a maximally monotone. Q.E.D.

8.3 Proof of Proposition 1

Proof of Proposition 1: Follows from a combination of Theorem 2 and

Propositions 3 and 4. Q.E.D.

8.4 Proof of Proposition 2

Proof of Proposition 2: (a) Since K : H! H is a compact operator, by
Fredholm theory we know that the spectrum of K consists only of the point

17Or Lipschitz, if we employ Caristi�s result.
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spectrum (i.e. only of the eigenvalues f�jg of operator K). Furthermore, the
spectrum is at most a countable set, and if it is not �nite the only accumu-

lation point for the sequence fj�j jg is 0. Since K is a bounded self-adjoint
operator, its spectrum is also bounded and real, and the eigenfunctions f�jg
corresponding to the eigenvalues f�jg may be chosen so as to form an or-

thonormal set in H. This set is complete in Ran(K) � H.18 If additionally
K has the property of strict positivity then the spectrum is contained in a

bounded subset of R+ and f�jg is complete in H.
Using the basis of Ran(K) � H de�ned by the eigenfunctions f�jg of

operator K, we can obtain a spectral decomposition of (21) as follows: We

perform a Galerkin approximation of the solution of (21) using the set f�jg.
We consider the sequence of functions x̂n(t; z) =

Pn
i=1 c�;i(t)�i(z) and we

insert this into (21). Projecting along �j , j = 1; : : : ; n we obtain the system

of second order ODEs

c00�;j � rc0�;j + ��;jc�;j = 0; � = RE;SO; j = 1; : : : ; n (30)

with ��;j as given in the statement of the proposition. Assume that the

initial conditions x̂(0); x̂0(0) 2 Ran(K) � H. By the completeness of the
orthonormal basis f�ng there exists an expansion x̂(0; z) =

P
j aj�j(z),

x̂0(0; z) =
P
n bn�n(z) where the series converge in H. Therefore, solv-

ing system (30) with initial conditions c�;j(0) = aj , c0�;j(0) = bj ; we ob-

tain an approximation of the solution in terms of the Galerkin expansion.

The Galerkin expansion transforms the in�nite dimensional systems (21),

which characterize RE and SO equilibria respectively, into a countable set

of �nite dimensional problems (22), each problem corresponding to a mode

j = 1; :::; n. Using a priori estimates and weak convergence arguments, we

may pass to the limit as n ! 1 in a standard fashion. The conditions for

agglomeration emergence can be determined by looking at the exact solution

of (22) for each mode j.

(b) The solutions are characterized by the roots of the characteristic

polynomial �2 � r� + ��;j = 0. The roots are easily found to be

�1;2 =
r

2
�
��r
2

�2
� ��;j

�1=2
:

18By Ran we denote the range of the operator K; while the overline denotes closure.
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A quick inspection shows that if ��;j < 0; then �1 < 0 and �2 > r
2 which

is the usual saddle point stability. Furthermore, if 0 < ��;j < ( r2)
2 then we

obtain two real eigenvalues 0 < �1 <
r
2 < �2. Finally in the case ��;j � ( r2)

2,

�1;2 =
r

2
� i

������r2�2 � ��;j
�����1=2

so that we have modes growing with exponential growth rate r
2 :
19 Q.E.D.

8.5 Proof of Proposition 3

Proof of Proposition 3: (a) By Assumption 2(c) on the production

function s11 < 0, s22 < 0 and s12 > 0. This leads to the observation that

�RE;j > 0 if �j > � s11
s12

and �RE;j �
�
r
2

�2 if �j � 1
s12

�
r
2

�2 � s11
s12
.

(b) �SO;j � 0 implies �js11j+2s12�j �js22j�2j > 0, i.e., �j must lie between
the two real roots of this quadratic polynomial. However, strong concavity

of the production function implies s11s22 � s212 > 0 , therefore �SO;j keeps

the sign of �js22j for all values of �j so that �SO;j < 0 for all j, which

implies stability. Q.E.D.

8.6 Proof of Proposition 4

Proof of Proposition 4: (a) For every x 2 H there exists a Fourier

expansion in terms of Fourier series as x(z) =
P1
`=�1 x` exp(i`�z=L) with

x` given by x` = 1
2L

R L
�L x(z) exp(i`�z=L)dz, where the convergence is in the

L2(O) sense. A similar expansion exists for the kernel function w, w(z) =P1
m=�1wm exp(im�z=L). The condition for x to be real is x�` = �x�`

where � denotes the complex conjugate. To verify that the eigenfunctions
are the Fourier modes, it su¢ ces to observe that

(K�n)(z) =
1p
2L

X
`

w` exp(i`�z=L)

Z L

�L
exp(i(n� `)�s=L)ds

=
p
2L
X
`

w` exp(i`�z=L)�n;` =
p
2Lwn exp(in�s=L) =Wn�n(z)

where Wn = 2Lwn. This calculation shows that the Fourier basis are eigen-

functions of K with eigenvalue �n = Wn at mode n. Note that this set

19This is compatible with the well posedness of the functional J , and/or with the
transversality conditions.
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of eigenfunctions forms a complete basis of H. The symmetry of the ker-
nel shows that only the cosine part of the eigenfunctions corresponds to

nontrivial eigenvalues.

(b) The action of K on the �at state �x is as follows:

K�x = �x

Z L

�L

X
`

w` exp(i`�(z � s)=L)ds = 2Lw0�x;

therefore the �at state generates spillovers which remain uniformly distrib-

uted in space. QED
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