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Abstract

We study rational expectations equilibrium problems and social
optimum problems in infinite horizon spatial economies in the con-
text of a Ramsey type capital accumulation problem with geographi-
cal spillovers. We identify sufficient local and global conditions for the
emergence (or not) of optimal agglomeration, using techniques from
monotone operator theory and spectral theory in infinite dimensional
Hilbert spaces. Our analytical methods can be used to systematically
study optimal potential agglomeration and clustering in dynamic eco-

nomics.
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1 Introduction

This paper shows how monotone operator theory can be used to study ra-
tional expectations equilibrium problems and social optimum problems in
infinite horizon, infinite dimensional spatial economies. Our analysis is ap-
plied to an illustrative infinite horizon, infinite dimensional spatial Ramsey
type capital accumulation problem where borrowing and lending on world
capital markets at a rate of interest equal to the rate of discount on sub-
jective utility are the same and quadratic adjustment costs penalize rapid
movements of capital. We locate sufficient conditions on primitives that
may cause potential agglomerations to form and to not form for both prob-
lems. Furthermore, we show how the spectral theory of compact operators
allows decomposition of the infinite dimensional problem into a countable
collection of tractable finite dimensional problems. Using this technique we
provide explicit local stability criteria for the linearized system.

Related literature includes work by Krugman (1996), Fujita et al. (2001),
Lucas (2001), Quah (2002), Desmet and Rossi-Hansberg (2007), Ioannides
and Overman (2007), Lucas and Rossi-Hansberg (2007), and others. How-
ever, to our knowledge, no one has yet provided a concise framework in which
the combination of monotone operator theory, the theory of compact oper-
ators, and the decomposition techniques we develop here can be applied to
infinite horizon, infinite dimensional spatial economies to study endogenous
agglomeration (or non-agglomeration) for rational expectations equilibrium
and the social optimum in terms of local and global analysis as we do here.

There is a large literature in mathematical biology (e.g., Murray, 2003)
that studies spatial agglomeration problems in infinite dimensional spaces.
However, as far as we know, none of this literature deals with optimiza-
tion problems as we do here. There are many differences between the
“backward-looking” dynamics in mathematical biology problems and other
natural science problems, and the “forward-looking” dynamics of economic
problems. It is not just a simple adaptation of dynamical systems tech-
niques to two-point boundary value problems in analogy with the familiar
phase diagrams in textbook analysis of Ramsey type optimal growth prob-
lems and Ramsey type rational expectations problems in finite dimensional
spaces. For example, our development of techniques from operator theory

mentioned above allows us to locate sufficient conditions on primitives for



all potential agglomerations to be removed in infinite horizon optimization
problems. Intuitively this is a generalization of classical turnpike theory of
finite dimensional economic models to infinite dimensional spatial models.
Thus, contrary to the spirit of the Turing instability which provides local
results for the linearized dynamical systems, we obtain global results valid
for the fully nonlinear optimized dynamical system. Global analysis based
on monotone operator theory, combined with local analysis based on spec-
tral theory, provides valuable insights regarding the endogenous emergence
(or not) of optimal agglomerations at a rational expectations equilibrium
and the social optimum of dynamic economic systems. The possibility of
a potential agglomeration at a rational expectations equilibrium is related
to the incomplete internalization of the spatial externality by optimizing
agents, while the “no agglomerations” result at the social optmum stems
from the full internalization of the spatial externality by a social planner
and the strict concavity of the production function.

The paper is organized as follows: Section 2 introduces the model and
Section 3 characterizes equilibria with spatial spillovers. Sections 4 and 5
provide global and local analysis for the emergence (or not) of optimal po-
tential agglomerations while Section 6 presents a detailed analytic and nu-
merical example. Section 7 discusses intuition, shows how our methods can
be used to study generalizations to spatial domains of similarly structured,
economic problems - in this case the well known investment problem of the
firm with adjustment costs - and outlines other ways in which the present
paper can be extended. So as not to disrupt the flow of the presentation,

all proofs are contained in Section 8 which serves as an Appendix.

2 Geographical Spillovers in Forward-Looking Op-

timizing Economies

Consider a spatial economy occupying a bounded domain @ C R%. Tt is
worth noting that space may be considered as either geographical (phys-
ical) space or as economic space (space of attributes related to economic
quantities of interest). Without loss of generality we may assume d = 1.
Capital stock is assumed to be a scalar quantity that evolves in time
and depends on the particular point z of the domain O under consideration.

Thus capital is described as a function of time ¢ and space z,i.e. z: I xO —



R where I = (0,7) is the time interval over which the temporal evolution
of the phenomenon takes place. We assume an infinite horizon model, i.e.
I = R4, and denote the capital stock at point z € O at time ¢ by z (¢, 2).
The spatial behavior of z is modelled by assuming that the functions z(t,-)
belong for all ¢ to an appropriately chosen function space H. Therefore, as
is common in the abstract theory of evolution equations, we assume that x
is described by a vector-valued function & : I — H, where I = (0,7), and
H is the function space that describes the spatial properties of the function
x.! Different choices for H are possible. A convenient choice is to let H be a

Hilbert space,? e.g., H = L?(0O), the space of square integrable functions on

O, or an appropriately chosen subspace, e.g. LZQM(O), the space of square
integrable functions on O = [—L, L] satisfying periodic boundary conditions

(this would model a circular economy).

Consumption is assumed to be a local procedure and modeled by a vector
valued function ¢ : I — H interpreted in a similar fashion to the capital
stock function z discussed above. By the scalar quantity c(t,z) we denote
consumption at time ¢ € I at the spatial point z € 0. Consumption is
associated with a utility function U : I x H — R. The utility of consumption
at time ¢ € I and at point z € O is given by U(c(t, 2)).

Production at each location is determined by local inputs and by nonlocal
procedures. At time ¢, output production at each location z is described
by the production function f with inputs being capital z(¢, z) and labour
L(t, z), at this location, and also spatial effects describing the effect that
capital stocks on locations s € O at time ¢t have on production at location z.
Without loss of generality and to concentrate on the impact of geographical
spillovers, we assume that labour input is normalized to unity £(¢, z) = 1.

Spillover effects play a very important role in this study. We adopt the
notation X (t,z) for the spillover effects at time ¢ on site z. Production at
time ¢ and site z is given by the production function f : R xR — R in terms

of f(x(t,2), X(t,2)).

'This function is defined such that (&(t))(z) := z(t, z); to avoid cumbersome notation
in the sequel we denote the H-valued function & using the same notation = and therefore
by z(t) we denote an element of H, which is in fact a function z(¢t) : @ — R which describes
the spatial structure of the capital stock at time ¢.

?Other choices are possible, where H is a Banach space, e.g., H = C(O) the set of
continuous functions on O or H = LP(O), p # 2, 1 < p < oo, the set of p-integrable
functions on O. In the present paper, we restrict our attention to Hilbert spaces, though
many of our results may be extended to Banach space.



Clearly the modelling of spillover effects is crucial. We will adopt two

alternative ways:

(a) as exogenously given X (t,z) = X¢(t,2) where X¢: I — H is a known

function or

(b) as endogenously determined by the state of the system, i.e. X(t,2) =
(Tx)(t,z) where T : H — H is a mapping (operator) taking the state of
the system at time ¢, z(¢,.) € H and providing the spillovers X (¢, -) €
H.

If we regard spillovers as the spatial externality case, (b) indicates in-
ternalization of the externality. When adopting modelling strategy (b),
spillover effects at time ¢ and site z are given by the intermediate quan-
tity:

X(t,2) = /O w(z, $)x(t, 5)ds (1)

where w : OxO — R is an integrable kernel function modeling the effect that
position s has on position z. This introduces nonlocal (spatial) effects, and
may be understood as defining a mapping which takes an element z(¢,-) € H
and maps it to a new element X (¢, -) € H such that (1) holds for every z € O.
This mapping is understood as an operator T : H — H.

Some comments are due on the interpretation of the intermediate vari-
able X. The quantity X (¢,z) will have different interpretations in differ-
ent contexts. If X(¢,z) represents a type of knowledge which is produced
proportionately to capital usage, it is natural to assume that the kernel
w(¢),( = z — s is single peaked bell-shaped, with a maximum at ¢ = 0, and
with w(¢) — 0 for sufficiently large (. If X (¢, z) reflects aggregate benefits
of knowledge produced at (t,s) for producers at (¢, z) and damages to pro-
duction at (¢, z) from usage of capital at (¢, s), then non-monotonic shapes
of w, with for example a single peak at ( = 0 and two local minima located
symmetrically around ¢ = 0, with negative values indicating damages to
production at z from usage of capital at s, are plausible. This production
function could be considered as a spatial version of a neoclassical produc-
tion function with Romer (1986) and Lucas (1988) externalities modelled by
geographical spillovers given by a Krugman (1996), Chincarini and Asherie
(2008) specification.



Let us now fix a time ¢ and consider a site z € O. Let z(t,z) be the
capital stock at this site and X (t,z) the spillover effects at site z from all
the other sites in O. We treat the site as analytically equivalent to an agent
located on the site who has access to valuable technology f (x (t,2), X(t, z))
that generates rents. The individual (or the site) has access to the world
capital market and can borrow = at an exogenous interest rate r (t) against
the present value of future rents from operating f (:c (t, 2) ,X(t,z)). The
5 [axgt’z)] 2, to adjusting the capital

stock and experiences geographical spillovers X, while the capital stock de-

agent faces quadratic adjustment costs,

preciates at a fixed rate n. The instantaneous budget constraint facing the

individual or the site, z, at ¢ can therefore be written as:

oz (t, z)

2
c(t,z)—i—T:f(x(t,z),X(t,z)) —nx(t,z)—% [&Ug;‘;z)] . (2)

Assuming for simplicity constant r, the lifetime budget constraint expressed
in present discounted value form for the agent is obtained if (2) is multiplied

" integrated over t from t = 0 to oo (assuming momentarily the ex-

by e~
istence of exponentially bounded solutions of (2)) and all debts are required

to be paid off.? Defining?

Oz

)‘:T+T77 u(tuz)zat

(t,z) =2 (t,2)

leads to a reformulation of the instantaneous budget constraint in a static

$We assume that the agent (or the site) has discounted future income greater than any
desired borrowing at any point in time. Thus the capitalized, at the rate r, sum of the
site’s future income is large enough to pay off the debt incurred by borrowing. To put it
differently, we assume that each site z has enough capital so that it is “solvent” in the
present value sense at each point in time. If for example initial capital is zero and initial
bonds are zero, then the solvency condition is obtained by multiplying both sides of (2)
by e”" and using z (0,2) = b(0, z) = 0, as:

/Ooo ot {f (z(t,2), X(t,2)) — (r +n) z(t, 2) — g%(t,z) dt >0

where b (t, z) is “bonds” held by z at time ¢, b (¢, z) < 0 is debt, and b (¢, z) > 0 is assets.
"By’ we denote the derivative with respect to time of the Hilbert space valued function
z: [ —H.



form as:

0=C(2) := ®)
| e im0+ £ (20, X2) = Xt 2) = et 2) = G

which holds a.e. in @. The same constraint over the whole domain O takes

the form:
0=C0 = (4)
/ / e_rt[ﬂ) + f (:U(t, Z)a X(f,, Z)) B Ax(tv Z) - C(t’ Z) - %u2(t7 z)]dtdz'
O Jo

To summarize, in this model the use or production of capital on a site
affects other sites through the geographical spillovers, while a site can borrow
or lend capital using the world capital markets. Depending on the type
of the agent we can specify X accordingly. An individual located at z
treats geographical spillovers as parametric and exogenously given, X (t,2) =
X¢(t, z), while a social planner fully internalizes geographical spillovers so
that X (t,2) = = Jow(z — s)x(t,s)ds.

3 Equilibria with Geographical Spillovers

3.1 Rational expectations and social optimum equilibria

The objective is to maximize the utility of consumption either locally or
globally. Both cases are considered in this work: the maximization of local
consumption when spillovers are exogenous will be called a rational expec-
tations (RE) problem, while the maximization of global utility with endoge-
nous spillovers will be called a social optimum (SO) problem.

Given the (local) utility function U we now define the functionals Jrp :
H — R and Jso : H — R whose action on the consumption function c is as

follows:
(Jre(e))(2) = /wemUu 2)dt, (5)

Jso(c /w )(Jse)( dz—// “Plp(2)U (c(t, 2))dtdz.  (6)

The functional Jrp provides the discounted - by a subjective utility



discount rate p > 0 - utility of consumption c(¢, z) in the infinite horizon at
location z. On the other hand, the functional Jgo provides the discounted
utility of consumption averaged over the whole domain O, with a weight
function 1 which will be set to one without loss of generality.

We are now in a position to define the two optimization problems faced
by either an arbitrary representative agent at location z (RE problem) or a

social planner (SO problem).

Definition 1 (RE and SO problems).

RE problem: max Jre subject to (3) with X (t,2) = X (t,2) (7)

ce
SO problem: max Jso subject to (4) with X (t,2) = X (¢, 2) (8)
ce

where Jrg and Jso are the functionals defined in (5) and (6) respectively
and A is the acceptable consumption set (typically c(t,z) > 0 a.e. in O

would suffice).

3.2 Standing assumptions

In developing our model we make the four assumptions below, which will
be assumed to hold through the paper unless explicitly stated otherwise.
Note that some of these assumptions can be relaxed considerably for some
of our results. To simplify the exposition, we assume the stronger conditions
that guarantee that all of our results hold uniformly, and we make specific
remarks concerning the possibility of relaxing them in the particular cases
where this is feasible.

When RE equilibria are concerned, we need to make an assumption on
Xe.

Assumption 1. The exogenously given spillover function X¢ € H.
We make the following assumptions on the primitives of the economy.

Assumption 2. Assume that

(a) The influence kernel function w : O x O — R is continuous and sym-

metric, i.e. w(z,8) =w(s,z) =w(z — s).

(b) The production function f : R xR — R is a strictly increasing, strictly

concave function of the (real) variables (z, X).



(¢) The utility function U : Ry — R is an increasing and strictly concave

C? function in consumption ¢ and satisfies the Inada conditions®

lim 0.U (¢) = +o0, lim 0.U (¢) = 0.
c—0 c—+00
Under Assumption 2(a), equation (1) defines an integral operator K :

H — H whose action on a function z is defined as:
(Kz)(t, 2) ::/ w(z — s)xz(t, s)ds. 9)
O

Since O is a bounded domain, the continuity assumption leads us to the
result that w € L?(0) so that by standard results in the theory of integral
operators, K is a compact bounded operator which, furthermore, by the
symmetry of the kernel function w, is a self-adjoint operator.

We impose the following smoothness assumptions on the production

function.

Assumption 3.

(a) The production function is a C? function of the (real) variables (x, X)

such that f,x, fxx are uniformly bounded below in O,

—u:= inf , &= inf fox, p,&eR,.
Iz (x’)lgeRQfxx 3 (z,)lfrﬁeszX w € € Ry

(b) Furthermore, it holds that

lim  fy(x,X) > C, and lim  fx(z,X)>C,
(z,X)—(0,0) ( ) (z,X)—(0,0) X( )

for a positive constant C.

The positive constant C' in Assumption 3(b) will be chosen typically
larger than A (in the RE case, or a multiple of that depending on the choice of
the kernel w in the SO case). This will be needed to guarantee the existence
of steady-state solutions (see Theorem 2 and its proof). Assumption 3(b)
holds for typical production functions, e.g., for the Cobb-Douglas production

function.®

5w, Ouvd denote first and second order partial derivatives of a function ¢, with respect
to variables u, v.
®Tn fact for the Cobb-Douglas, these limits are infinite.



Finally, we impose a positivity assumption on the spillover operator K.
This assumption is needed for the monotonicity results that are important
in the study of the global behaviour of the system. This assumption is not

imposed in Section 5, where the local behaviour is studied.

Assumption 4.

(a) The operator K : H — H is strictly positive.”

(b) It holds that p/€ < 1 where uy is the largest (positive) eigenvalue of

operator K.

The economic interpretation of positivity is that spatial spillovers have
overall positive effects. This observation stems from the interpretation of
the inner product (Kz,z) as the total (average) spillovers over the whole
domain O. Note that the positivity of the operator does not rule out the
possibility of a negative spillover effect locally. In fact the kernel function
may also assume negative values locally, but the overall (average over the
whole domain) spillover effect will have to be positive. The positivity of the

operator K is related to the positivity of its eigenvalues.

3.3 The rational expectations and social optimum equilibria

The RE and SO equilibrium problems, (7) and (8) respectively, can be re-
formulated into a form which is more convenient to handle, using a gen-
eralization of the Fisher separation principle, for this infinite dimensional
economy.

The optimization problem (7) can be broken down, by expressing the
associated Lagrangian in a separable form, into two distinct but interre-
lated sub-problems: A problem corresponding to the choice of the agent’s
consumption, c(t,z), to maximize discounted lifetime utility subject to a
lifetime budget constraint; and a problem corresponding to the choice of
the agent’s investment, u(s,z) = z (¢, z), to maximize the agent’s interests
in the economy by maximizing the location’s present value. This is essen-
tially a generalization of the Fisher separation principle for a single-owner

firm which implies that if the optimization problem (7) admits a solution

"K is a positive operator if (Kh,h) > 0 for all h € H, and strictly positive if furthermore
(Kh, h) = 0 implies h = 0.

10



(c*,x*), then there exists a A : O — R such that the solution of this prob-
lem can be split into two separate problems:
(a) A consumption optimization problem which, upon choice of A, assumes

the form

f:??;)(/ e (Ul(e(t,z) — A(z)e "c(t, z))dt. (10)

(b) An investment optimization problem independent of the choice of A,
according to which x(¢, z) = zo(z) + fo u(s, z)dz is chosen so as to solve

> —rt e ~\alt. 2 _a x’ 2))2
max [ (0,9, X 00) < Nelt, ) - S (D

with A = r + 1. As the following remark shows, it is reasonable to assume

that r = p.

Remark 1. The first order necessary condition for problem (10) is U’ (¢ (¢, 2))
— e(P~"A (2). Since A(2) is positive and independent of time, we see that
marginal utility goes to infinity, i.e. ¢ (t,z) goes to zero, if the individual
discounts the future higher than r and vice versa if the consumer discounts
the future less than r. Thus, if we want to study a steady state for ¢(t, z),

we can assume that the consumer discounts at the same rate as r.

Similarly an application of the Fisher separation to the social planner
problem (8) shows that the solution of this problem may be obtained by the
solution of two separate problems:

(a) A consumption optimization problem which upon choice of A® € R,

independent of z assumes the form
[ee]
max/ / e "t (¢(2)U(c(t, z)) — A¢(t, z)) dzdt. (12)
¢ Jo Jo

(b) An investment optimization problem, independent of the choice of A?,

where wu is chosen so that x(t,2) = zo(z) + fo s, z)ds solves

H;EILX//e_M (f(a:(t,z),(Kx)(t,z)) —a(t,z) — %(ml(t, z))2) dzdt. (13)

The above results can be easily shown, e.g., for the RE problem, by using
the Lagrangian £ (z) = [;° e P'U (¢)dt + A (2) C (2).

11



We note that in both cases only the solution of the second problems (11)
and (13) respectively, which are independent of the choice of the Lagrange
multiplier A, is required to characterize the spatial structure of the capital
stock. This problem is essentially equivalent to a calculus of variations

problem. At this point the following definition is required:

Definition 2 (The RE and SO problems).
(i) RE problem:
n(1a>§/ e " f(x(t, 2), XO(t, ) — Ma(t, 2) — %(m,(t, 2))?}dt, Vz € O.
z(-2) Jo
(14)

(ii) SO problem:

mgx//e_” (Falt,2), (Ka)(t, 2)) — At 2) — (& (1,2))?) dz .
00 5)

Note that the RE problem is a calculus of variations problem where for

each fixed z € O we find a function z(-,z) : Ry — R that maximizes the

functional
Jre(x(-, 2);2) = /e_rt{f(x(t, 2), X(t,z)) — Ax(t, z) — %(azl(t, z))2}dt.
0

On the other hand the SO problem is a calculus of variations problem where

we find a vector valued function z : R, — H that maximizes the functional

Jso(z() = /Ooo/e—” (f(:p(t,z),(Kas)(t, 2)) — Ax(t, z) — %(azl(t,z))Z) dz dt.
(@]

3.4 Existence of equilibria and first order conditions

We now discuss the existence of RE and SO equilibria. The following oper-

ators will be needed.

Definition 3. Define the nonlinear operators 4, : H — H, A, : H — H,

12



v = RE, SO, by

Appr = —a N (fo(z, X) — ), X = X¢,
Agor = —a N (fo(z, X) + Kfx(z, X) = \), X =Kz

and

Appz = —a ' (fo(z, X) - ), X =Kz,
Asor == —a H(fu(z, X) + Kfx(z,X) = )), X =Kuz.

Note that the operators Aso and Ago coincide, but we include both for

notational consistency.

Theorem 1.

(a) The optimization problems (14) and (15) admit a solution.

(b) The first order necessary condition for problems (14) and (15) is of
the form

!’

¢ —ra — Ayx =0, v=RE, SO (16)
where A, are the nonlinear operators of Definition 3. The first order
necessary conditions have to be complemented with the transversality
condition

tliglo e Maa! = tli)rgo %e*”(mZ)’ =0. (17)
Remark 2. This theorem does not require the positivity Assumption 4 on
K. The existence part of the theorem (claim (a)) requires only Assumption
2 (and Assumption 1 as well for the case v = RFE) along with a mild growth
condition on the production function to ensure that the supremum is finite.
The extra smoothness of the data imposed by Assumption 3 is required for
the first order conditions (Euler-Lagrange) to hold (claim (b)). Furthermore,
if the maximization is performed on a close convex subspace of H then the

first order condition (16) must be replaced by a variational inequality.

Remark 3. An alternative would be to use the maximum principle, in terms

13



of the current value Hamiltonian H,, v = RE, SO where

Hre = f(z,X) f)\:vf%u2+pu, X = X¢, (18)
Hso :z/(f(x,X)—Am—jﬁ—i—pu)dz, X = Kuz. (19)
@

Applying the Pontryagin maximum principle formally and maximizing over

u, the Hamiltonian equations are easily seen to be equivalent to (16).

The form of the first order conditions (16) motivates the following defi-

nition:

Definition 4 (RE and SO equilibrium). A solution z : I — H, if it exists,

of the nonlinear integro-differential equation
2 —rd' —Ax =0 (20)

is called an RE equilibrium if ¥ = RE and an SO equilibrium if v = SO.

Remark 4. Note that in the RE equilibrium we use the operator Agrg
rather than the operator Agg. This means that the agent makes her decision
locally using X = X*¢ but her decision changes the background spillovers to
X =Kaz.

4 Optimal Agglomerations in the Long Run: Global
Analysis

Having defined the RE equilibrium and the SO equilibrium in the context of
geographical spillovers, we turn to the study of the long-run characteristics
of these equilibria. These characteristics will provide information about the
potential emergence of optimal agglomerations as long-run equilibria, as well
as information about potential differences in the long run between the RE
equilibrium and the SO. Analyzing these issues requires global analysis to
study existence, uniqueness and stability regarding both types of equilibria.

The long-term behavior of the system will be provided by the steady-
state solutions of the equilibrium equations given in Definition 4. These are
solutions without any temporal variability, and are given as solutions of the

nonlinear operator equations A,z = 0, v = RE, SO. In general, the solution

14



of this operator equation presents spatial variability, i.e., x = z(z), but if
operator K has the following property (which we will henceforth refer to as
Property P),

K7 is independent of z, if z is independent of z,  (P)

then the solution of A,z = 0 may be uniform in space. We will call such
an equilibrium a flat equilibrium. Property P holds in the case of periodic
boundary conditions (see Proposition 4) so that a flat steady state always
exists when periodic boundary conditions are taken into account. The flat
steady state is the solution of an algebraic nonlinear equation.

If a flat steady state exists, it is globally stable and if, furthermore, the
steady states of the system are unique, then the dynamics of the system pre-
clude the emergence of spatially varying solutions in the long run; therefore,
they preclude the emergence of spatial pattern formation in the economy.
We will refer to such patterns as potential “agglomeration patterns” to be
in accordance with the terminology of economic geography. Furthermore,
since such spatial patterns may occur as a result of optimizing behaviour,
we will henceforth refer to them as “optimal agglomeration”.

The following theorem provides important information on the long-run

dynamics.

Theorem 2.

(a) The operator equations Ayxz =0, v = RE, SO, have unique solutions.

(b) All bounded solutions of " — ra’ — A,z = 0 have as weak limit the

solution of A,z =0, v = RE,SO.

Remark 5. The results of Theorem 2 hold for SO without Assumption
4. Assumption 4 is a sufficient condition for Theorem 2 to hold in the
RE case. Therefore, convergence to the RE steady state depends on the
strength of diminishing returns with respect to spatial spillovers (fxx),
the strength of the complementarity between the capital stock and spatial
spillovers in the production function (f,x), and the structure of the spatial
domain as reflected in the largest eigenvalue of K. Furthermore, relaxing the
monotonicity assumption on operator K, there may exist multiple solutions

for the RE steady-state equation for appropriate values of A.
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Remark 6. We only consider solutions of (20) that satisfy the condition
that sup,cg, [|[z(t)|| < co. This is a very reasonable restriction; since (20)
arises from an optimal control problem, it exhibits a saddle-point-like struc-
ture and the boundedness condition restricts us on the bounded manifold,
i.e. the manifold of the bounded solutions, which is the class of solutions of

interest to economic theory.

Example 1. To provide an illustration of what these operator equations
look like, let us consider as an example the case v = RFE under the sim-
plified assumption that the production function is separable f(z, X) =
Fi(z)F2(X). We also assume that operator K (as well as the production
function f) satisfies the standing assumptions employed in this work.

In this special case this operator equation can be transformed to a Ham-
merstein type nonlinear integral equation. By straightforward algebra we see
that Agrgpx = 0 is equivalent to the integral equation Kz = @2(%) where
®, is the inverse function of F5. In terms of the new variable y = Qg(ﬁ),
this assumes the Hammerstein form KN (y) = v, in terms of the nonlinear
function N, defined by N(y) := d)l(%(y)), where ¢ is the inverse of the
function Fi,. By the properties of the production function it can be seen
that N is non-decreasing; therefore by Li et al. (2006) it admits a unique

solution.

An application of Theorem 2 in the periodic boundary conditions case
allows us to rule out the emergence of optimal agglomeration in the SO case

or for certain parameter values in the RE case. In particular,

Proposition 1. Assume periodic boundary conditions, and assume that a

flat steady state T exists and define
=192 s K o —192 - K o —142 - KA
si = 05, f(Z,KT), s :=a 0xxf(Z,KT), si2:=a 0;xf(z,KZT).

(a) If u/& < p1 < |s11|/s12 holds, then no agglomeration patterns will

arise in the fully nonlinear RE equilibrium.

(b) No agglomeration will arise in the fully nonlinear SO equilibrium.

At this point we summarize and comment upon our global results as
stated in the above theorem and proposition, focusing on their economic

meaning.
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For strictly concave production functions f, if the steady state equation
Asox = 0 admits a flat solution then all bounded solutions of the time
dependent system will finally tend weakly to that flat solution as t — oc.
Thus agglomeration is not a socially optimal outcome in this case. The
uniqueness of the solution of Agpz = 0 precludes the existence of any steady
state other than the flat steady state as long as total spillover effects are
the same across all sites of the spatial domain. Then the socially optimal
spatial distribution of economic activity is the uniform distribution in space.
This is always true in the case of periodic boundary conditions, when « is
independent of z. This result is a generalization of classical turnpike theory
to infinite dimensional spatial models.®

When the long-run behavior of the RE and the SO are compared, we
note that:

(i) Convergence to the RE steady state is not guaranteed by the strict
concavity of the production function, as in the SO case, but depends,
according to Theorem 2(a), on the relation between diminishing re-

turns, complementarities, and the spatial geometry;

(ii) If a unique globally stable RE steady state exists it will be flat. Hence
for both the RE and SO the unique steady state is the flat steady

state.?

(iii) If the conditions of Theorem 2(a) are not satisfied, a more complex
behavior is expected in the RE equilibrium. In this case, multiple
RE steady states cannot be eliminated, and a potential agglomeration
at the RE equilibrium takes the form of instability of the flat steady

state.10

Therefore to study the emergence of agglomeration at the RE in terms of

the stability of a RE equilibrium flat steady state, we turn to local analysis.

1t should be noted that we obtain global asymptotic stability results for the SO,
which are independent of r, whereas some results in classical turnpike theory obtain global
asymptotic stability when r is close enough to zero.

9The RE and SO steady states will in general be different from each other, which calls
for spatially dependent economic policy if the SO steady state is to be attained.

10Note that we work on a symmetric space throughout so that any agglomeration that
arises is due to endogenous forces, not to any kind of exogenous imposition of structure
on the problem.
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5 Agglomeration Emergence and Local Spillover
Induced Instability

In the event that a flat steady state T exists, and the conditions of Theorem
2(a) are not satisfied at the RE equilibrium (in particular Assumption 4
is waived), the emergence of potential agglomeration may be studied in
terms of the linear stability of Z with respect to spatially inhomogeneous
perturbations. The question we seek to answer is what will happen to an
initial condition of the form x(0,2) = = + €(0, z), for € small, under the
action of the dynamical system z” — rz’ — A,z = 0? Since we are interested
in local results, in this section we do not necessarily assume that Assumption
4 holds, unless explicitly stated.

If the initial spatial inhomogeneity is suppressed in time, then the flat
steady state is stable, thus leading to a new flat steady state and no agglom-
eration. If it grows in time, then this corresponds to a precursor instability,
which may lead to pattern formation and agglomeration in the long run. We
call this type of instability, which in the context of economic geography may
lead to equilibrium agglomeration, optimal spillover induced instability.

The linearized stability of the flat equilibrium is determined by the spec-

tral theory of the following linear operators:

Definition 5. For a flat steady state Z, let

s11 0= P02, f(Z,KT), s9:=a 0% f(7,KZ), s12:=a 102 f(Z,KZ) >0,
and define the linear bounded operators L, : H — H by!!

Lre® := s112 + s12KZ
Lsod := 5118 + 2512K# + 592K?3.
A typical linearization argument shows that these operators govern the
behaviour of spatio-temporal perturbations, &, from the flat steady state Z:

Inserting the ansatz © = Z + €z into (20) and expanding in €, we obtain the

linearized equation for the evolution of the perturbation Z(t, z) as follows:

& —ri' +L,2 =0, v=RE, SO. (21)

"By the standard theory of integral operators, K? is in turn an integral operator.
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From the point of view of pattern formation, a spectral decomposition
of (21) may provide detailed results concerning the onset and development

of instability.

Proposition 2. Let {u;} be the eigenvalues of operator K and {¢;} the

corresponding eigenfunctions. Then,

(a) An arbitrary initial perturbation of the flat steady state of the form
£(0,2) = Z aj(bj(z)? {%,(07 z) = Z bj¢j(z)7
J J
evolves under the linearized system (21) to

y(t,2) = Z cu,j ()5 (2)

where {c, j(t)} is the solution of the countably infinite system of ordi-

nary differential equations

cZ’j — rc’m +A,jcj =0, v=RE SO, jeN (22)

CVJ'(O) == aj, C:,’j(O) == bj
where

AREj = s11 + S12445

Aso,j = s11 + 2812445 + 822Mj2‘~

(b) There are three possible types of dynamic behaviour, depending on the

values of Ay j:

1. If A, j <0, then ¢, j(t) = Aje”*" + B;e" where o1 < 0 < L <oy
(saddle path behaviour).

2. If0 <Ay < (%)2 , then ¢, j(t) = Aje?'t + Bje! where 0 < o1 <

5 < 02 (unstable solutions).

3. If (%)2 < Ay, then c;(t) = st (A; cos(ot) + Bjsin(ot)), o € R

and flj, Bj are constants related to the initial conditions.
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The above general form of the linearized solutions clarifies possible pat-
tern formation patterns that may arise from small perturbations of the flat
steady state. Assume for example that for every mode ¢; we have that
Ay, ; < 0. Then, according to the standard saddle path arguments, the
control procedure will lead the state of the system to the stable manifold
and we will observe exponential decay of the initial perturbation #(0, z) to
0. That is, the system will return to the flat steady state. Therefore, in
case A, ; < 0 for all j, we do not expect spatially varying patterns in the
long run. In all other cases, we lose the saddle path property in the lin-
earized system. Such cases may destabilize the system and take it away
from the flat equilibrium state . How this is done depends on the type
of initial perturbation. If the initial perturbation contains modes for which
0<A;< (%)2, then for generic initial conditions we will have the linear
combination of two (increasing) exponentials, one with rate larger than r/2
and one with rate smaller than r/2. Clearly such a general combination
will not satisfy the transversality condition (17) and its general validity is
doubtful. However, for particular initial conditions (such that B; = 0) the
remaining part satisfies the transversality condition and will lead to pattern
formation with a mechanism that resembles Turing instability. Note that
for a randomly selected initial perturbation #(0, z), it is not expected that
Bj = 0 so this mechanism for pattern formation will lead to patterns as long
as the initial perturbations from the flat steady state are carefully selected.
One the other hand, if the initial perturbation contains modes j such that
(%)2 < A, j, then we obtain a spatio-temporal pattern which satisfies the
transversality conditions (17) for any choice of initial conditions. There-
fore, for “generic” initial perturbations from the flat steady state, we obtain
patterns which are compatible with the transversality conditions and corre-
spond to temporal growth accompanied with temporal oscillations. This can
be compared to a Turing-Hopf-type pattern formation mechanism. We then
obtain spatio-temporal growing, oscillatory patterns, which may correspond
to the onset of spatio-temporal cyclic economic behaviour.

To summarize:

e The perturbations from the flat steady state which contain modes ¢;
such that A, ; < 0 will die out and the system will converge to the flat

steady state — no possible agglomeration is expected.

20



e The perturbations from the flat steady state which contain modes ¢;
such that A, ; > 0 will turn unstable and lead to possible potential
agglomeration spatial patterns, either monotone in time or oscillatory

in time.

Remark 7. This instability can be contrasted with the celebrated Turing
instability mechanism (Turing, 1952), which leads to pattern formation in
biological and chemical systems. The important differences here are that:
(a) in our model the instability is driven not by the action of the diffusion
operator (which is a differential operator) but rather by a compact integral
operator that models geographical spillovers, and (b) contrary to the spirit
of the Turing model, here the instability is driven by optimizing behavior, so
it is the outcome of forward-looking optimizing behavior by economic agents
and not the result of reaction diffusion in chemical or biological agents. It
is the optimizing nature of our model which dictates precisely the type of
unstable modes which are “accepted” by the system, in the sense that they
are compatible with the long-term behaviour imposed on the system by the
policy maker. In some sense local spillover induced instability is a mixture

of Turing- and Hopf-type instabilities.

We now turn to the comparison of stability of the RE and the SO flat
equilibrium. A relevant question is under what conditions we might expect

possible agglomeration to emerge.

Proposition 3.

(a) At the RE equilibrium, agglomeration is possible for the modes for
which p; > —34

s12”

(b) At the SO equilibrium, since the production function is strictly concave,

agglomeration is never possible.

Remark 8. The above proposition confirms and further clarifies the results
of global analysis. The SO has a locally-stable flat steady state which by
the global analysis is unique. Thus no agglomeration is possible at the SO
with strictly concave production function. However, the flat steady state

of the RE system can be locally unstable and this locally instability may

|s11]
s12

is directly comparable with the “no agglomeration” condition of Proposition

induce agglomeration. Note that the local instability condition, j; >
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1 of the global analysis, in the sense that if the global “no agglomeration”
condition is satisfied, the local instability condition is not satisfied for all
modes, and the flat RE equilibrium is locally stable and unique. On the other
hand if the global “no agglomeration” condition is not satisfied, that is p; =
[|K|| > %, this means local instability of the flat RE equilibrium steady
state by Proposition 3 (a), and the possibility of endogeous agglomeration
emergence for the RE. Thus theorem 2 and Proposition 1 allow us to link
the global nonlinear picture of the system with the linearized picture we

obtained in this section using the Turing-type analysis.

Remark 9. Furthermore concerning the RE equilibrium, if —K is a positive
operator (negative spillovers) then agglomeration is never possible, whereas
if K is a positive operator (positive spillovers) then agglomeration is pos-
sible only if u; = ||K|| > % The economic intuition behind this is that
agglomeration can occur if the spillover effects (as measured by the eigenval-
ues of operator K) are strong enough as compared to the ratio % (which
is determined by the production function and gives the relative strength of

diminishing returns with respect to complementarity effects).

Remark 10. Note the important qualitative difference between the case
considered in this paper (where K is a symmetric bounded compact op-
erator) as compared to models commonly used in biology or chemistry -
including Turing’s own seminal contribution (where K is a symmetric un-
bounded operator, e.g., K = —A, the Laplacian). In the latter case the
spectrum of operator K is unbounded (|u;| — o00). This means that if K
is an unbounded symmetric positive operator, there will always be a mode

which turns unstable.

An important special case is that of periodic boundary conditions. In
this case the eigenfunctions and the eigenvalues of operator K are obtained
very easily in terms of the Fourier basis, thus leading to very general and
easy to implement results. The main general results in this case are summa-
rized in Proposition 4 (where the symmetry of the kernel is explicitly used).
Proposition 4 is elementary and is only included here as a reminder, and for

completeness of the paper.

Proposition 4 (Periodic Boundary Conditions). Assume periodic boundary
conditions, i.e., H = Lype, (O), O = [—L, L]. Then,
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(a) The eigenfunctions of operator K are the Fourier modes ¢, (z) = cos(nmz/L),
. , . L

n € N with corresponding eigenvalues Wy, = [, w(z) ¢n(2)dz.

(b) The action of operator K on a flat state returns a flat state, Kz =

i:f_LLw(z)dz.

Therefore, the onset of instability (i.e., the particular modes which are
likely to become unstable) is determined by the Fourier expansion of the
kernel w. For specific classes of kernels the calculation of the eigenvalues
can be made explicit, thus leading to detailed results on the unstable modes
and the shape of the patterns created near the onset of the instability (in
the linear regime). The general result is that if certain modes are to become
unstable, these will be the low modes, since W), is expected to decay to 0 as

n — Q.

6 An Illustrative Example: Cobb-Douglas-Type
Production with Spillover Effects

In this section we provide an illustrative example of the general theory pro-
vided in this paper, using a Cobb-Douglas type production function with
spillover effects. We assume periodic boundary conditions and for simplicity
we assume the spillovers to be described by exponential kernels. The rea-
son for this choice is twofold: First, kernels of this type were employed by
Krugman (1996) in his modelling of spillover effects and second, this type
of kernels allows for some closed form expressions for the spectrum of the
integral operator K.

We illustrate our general theoretical results through a detailed analysis
of the modes that may turn unstable, and some results for the evolution
of possible agglomeration patterns obtained by numerical analysis of the

system.

6.1 The primitives of the economy and the Euler-Lagrange
equation

Consider a standard Cobb-Douglas production function

fz,X)=CozX, a+b<1,
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where Cj is a constant. This production function takes into account local
effects (modelled by the x contribution) and nonlocal effects (modelled by
the X contribution) in the production.

The nonlocal effects are modelled by the integral operator K, defined by

the composite exponential kernel function

N
w(z) = ZC’Z- exp(—vilz]), 7 >0, C; €R. (23)
i=1

The coefficients ; give a measure of the spatial decay of spillover effects.
The larger ~; is, the faster the spillover effects are decaying as distance
increases. These effects may be positive or negative depending on the sign
of the corresponding coefficient C;.

The operators Agrg and Ago become

Arp = —a 1 (aCoz® ' (Kz)’ = \),
Aso == —a ' (aCoz® (Kz)? + bCoK (m“ (Km)bil) —-A)
and the steady-state equations are nonlinear integral equations.

Under the assumption of periodic boundary conditions, the action of
operator K on a flat state T renders a flat state. Since Kz = W Z where
W is known (see next section for a closed form expression), we have that
the flat steady state for the RE is the solution of the nonlinear algebraic

equation
aWlza =1 X =0

whereas for the SO it is the solution of
awb:i,aﬁ*b*l + bwbia+b71 _ 5\ — 0’
where \ = CAO These immediately yield
5\ 1
a+b—1 b
= (2) s,
a
— 1
A a+b—1 W* b
j e —_— a+b—1
50 <a + b>

Note that Zgo > ZTrg since b > 0 and a+b < 1. In the case where spillovers
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play no role (b = 0), these steady states coincide.

6.2 The spectrum of operator K

The spectrum of operator K, for periodic boundary conditions, can be cal-
culated analytically, in closed form using Proposition 4.

Consider first the case where N = 1 in (23). Then, setting v1 = ~
and Cy = C, a straightforward application of Proposition 4 shows that the

eigenfunctions of K are the Fourier modes ¢,, = cos (%) with eigenvalues

L*y AL
pon (7) = Wy, = 20712772 ey (1 —e " cos(nm)),
for n € N. Furthermore, W = puo = W(0).
Consider now a composite kernel as in (23), for N # 1. Clearly K is
a linear combination of operators generated by simple exponential kernels.
Using the linearity of the operators it is clear that the Fourier modes ¢,,, for

n € N, are eigenfunctions of K with corresponding eigenvalue

N
My =Y Cipin (71) (24)

=1

and W = Mj.

6.3 Local spillover induced instability

As already mentioned, our general results preclude emergence of agglomera-
tions in the SO case. However, agglomeration emergence, via local spillover
induced instability, is possible under certain conditions for the RE problem.

The emergence of this instability is governed by the linearized system

"

¢ —rz +Lgpz =0, (25)

with initial conditions (0, z), ' (0, z) where z now denotes a small pertur-
bation from the flat steady state T := Trp and Lgrg is the linear operator
defined by

LREI' =811 + 812K:L‘,
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where s11, s12 are the constants

S11 — a(a - 1)00Wb Zfa+b_2,

s12=abCy Wl gotb=2,

The knowledge of the eigenvalues in combination with Proposition 2
allows us to determine unstable modes and draw some general conclusions.
Consider first the case where the kernel consists of a single exponential
(N =1) with 99 = v and C; = C. Then, the instability condition yields

that a mode n is unstable if

a—1 n L272
b n2r2 4 422

LQ,.YQ

The expression I(n) = m(l — e " cos(nm)) attains its maximum

value for n = 0 so that

a—1 L?~?

L a+b_1
< —
b +n2772+’)/2L2 -

b

(1—e " cos(nn)) < L;l+1—e_7 <0,
since a + b < 1 so that the instability condition is never satisfied and all
modes are stable.

The situation is more interesting when composite kernel functions are
taken into account. Consider for example a kernel function as in (23), with
N =2and~y; =0.3,C1 = 2,7 =0.1, Cy = —0.75. In this case the influence
of neighboring locations on local state is a weighted average of the state at
neighboring locations, but the influence from nearby locations is positive,
while the influence is negative from relatively more distant locations. The
kernel function chosen is similar to the one employed by Krugman (1996) in
the modelling of a market potential function. The shape of the composite
kernel function is shown in the left panel of Figure 1.

The operator K associated with the specific composite spillover is pos-
itive, so Assumption 4(a) is satisfied. Furthermore, the spectrum of this
operator is available in closed form (see equation (24)) so that using the
spectrum, we can readily check for the existence of unstable modes, for
which spillover induced instability is possible. Since the spectrum depends
on the parameters a, b and L in the right panel of Figure 1, we plot the num-

ber of unstable modes that emerge as a function of the ratio PT‘Z and the
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1.4

# of modes

Figure 1: The shape of the composite kernel for v; = 0.3, C; = 2, 79 = 0.1,
Cy = —0.75 (left panel). The number of unstable modes for this choice of
kernel function, as a function of the parameter 177“ and L (right panel).
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length of the domain L. We remark first that low modes may turn unstable
(as a result of the monotonicity of the spectrum and its boundness; recall
that K is a compact operator). That means that when, e.g., one mode is
unstable, this is the first mode corresponding to n = 1, when two modes are
unstable, this means that these are the modes n = 1 and n = 2, etc. One
observes from our results that as L increases, more modes become unstable,
as the increased length of the system can then accomodate more modes.
This will lead to different spatial patterns that emerge as the length of the
domain increases. The spatial complexity increases with the increase of L,
and this is essentially a bifurcation phenomenon.

To display the wealth and variety of possible spatio-temporal agglomera-
tion patterns that may emerge, we solve numerically the linearized equation
(25) for the chosen kernel, and for the parameter values a = 0.8, b = 0.1,
for various choices of L. We assume a small random perturbation from the
flat steady state and we leave this perturbation evolving by solving (25), in
order to determine the T + 2(t, z) which is an approximation of the optimal
path for the full system. The results are shown in Figure 2. In the first
panel, where I = 10, no modes can become unstable and the perturbation
dies out, and we revert to the flat steady state and no agglomeration oc-
curs. In the second panel, L = 15 and according to our analysis only the
first mode n = 1 is unstable. This leads to an agglomeration pattern whose
spatial structure resembles that of the first eigenfunction of operator K. In
the third panel, L = 18 and in this case two modes, n = 1 and n = 2, are
unstable, a fact that leads to agglomeration patterns with spatial structure
resembling linear combinations of the first two eigenfunctions of operator
K. Finally, in the fourth panel, L. = 20 and more modes become unstable
leading to the occurence of more complex spatio-temporal agglomeration

patterns.

6.4 The existence of patterns in the fully nonlinear model

We close this section by showing that the agglomeration patterns predicted
by the linear stability analysis exist in the fully nonlinear case, by using a
variational argument based on the mountain pass argument. We consider
the steady-state equation Agrgpax = 0, which in this case is a nonlinear integral

equation of the form

az® 1 (Kz)® = X (26)
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L=10 L=15

Figure 2: Emerging patterns from the instability for different domain sizes.
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which, as we saw earlier on, has a unique flat steady-state solution
— 1
A a+b—1 b
TRE = | — W™ atb-1,
a

We solve (26) in terms of X = Kz and rewrite this integral equation as

— 1
b —a
Kz = <)\> ze
a

We write x = Trg + v and define the new variable

1—a

u:(v—i-i'RE) b

Using (27), (26)assumes the equivalent form

KuTa = <X> % u (28)

a

which is in the standard form of a Hammerstein nonlinear integral equation.
Since a + b < 1, we see that % < 1, so this is a sublinear Hammerstein
equation. Clearly it admits the trivial solution v = 0 which is not acceptable
on economic grounds since it leads to a flat steady state which is negative.

Furthermore, it also admits a unique nontrivial flat solution @ such that

l1—a

A b(a+b—1) l1—a

u = — Wﬁ a+b—1
a

which by undoing the transformation of variables (27) is easily seen to co-
incide with Zgrg.

The question that arises is whether the Hammerstein equation (28) ad-
mits other solutions apart from these two. If it does, then this must be
a non-flat solution, which corresponds to agglomeration. This is a fully
nonlinear agglomeration pattern. By the linear analysis performed in the
previous section, this fully nonlinear pattern must in the appropriate linear
limit coincide with the patterns predicted by the linear stability analysis.

There is a well-developed theory concerning the solution of such Ham-
merstein equations. This theory, which is based on the powerful techniques

of critical point theory, allows detailed results on the number and nature of
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nontrivial solutions. The following proposition provides an answer to the
question we have set.

1

Proposition 5. There exists a A, such that for (%)E > A, the Hammer-
stein equation (28) admits at least two nontrivial solutions. Since one of
these is the unique flat steady state u, the other corresponds to a nonlinear

agglomeration pattern.

The proof of the proposition follows the proof of Theorem 7 of Faraci
and Moroz (2003) with minor modifications and is omitted for the sake of
brevity. The critical value A, can be estimated in terms of the primitives
of the problem. A full account of the nonlinear bifurcation theory for the
steady states is beyond the scope of the present paper and will be addressed

in future work.

7 Discussion, Extensions and Concluding Remarks

This paper develops a fairly general approach to the study of infinite dimen-
sional, infinite horizon, intertemporal recursive dynamic optimization mod-
els in continuous spatial settings. Using the theory of maximal monotone
operators for global analysis and spectral theory of compact operators for
local analysis, we studied the spatiotemporal long-run behavior of the ra-
tional expectations equilibrium and the social optimum associated with a
Ramsey-Fisher-type optimal growth model. We show, in the context of
global analysis, that strong concavity of the production function implies
convergence of the SO to a unique flat steady state, while similar conver-
gence of the RE equilibrium requires stronger conditions. The possibility of
a potential agglomeration at the RE equilibrium induced by instability of
the flat steady state led us to local analysis. In the local analysis, we derived
conditions for local stability and spillover-induced instability associated with
the RE equilibrium which could signal agglomeration emergence. Since both
our local and global conditions depend on primitives such as the strength of
diminishing returns and complementarities in the production function, the
characteristics of the spatial spillovers and the spatial geometry, our results
are easily interpretable and potentially testable.

Our global results can be associated with general turnpike theorems in

infinite dimensional spaces, which means that they allow the study of the
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long-run behavior of dynamic systems that include explicit spatial interac-
tions - e.g. spatial spillovers - among economic agents.!? The global asymp-
totic stability of the SO, obtained by using monotone operator theory, can
be related to global asymptotic stability results obtained by Scheinkman
(1978) about the stability of separable Hamiltonians in finite dimensional
settings. From (18) and (19) we can write our problem in terms of separable

Hamiltonians as:

H,(p,z, X) = H(p) + H:(z,X) ,v = RE, SO

Hpp(p) = max {—% («)? +pw’} ,

Ho(p) := max {/0 {—% (:B')2 ~|—p:r'] dz}

This implies that the global long-run behavior of infinite dimensional op-
timization problems that give rise to Hamiltonians which are separable in
the above sense, can be analyzed using the theory of monotone operators
developed in this paper, while local results can be obtained using spectral
theory.

For example, the well-known problem of investment theory of the firm
with convex adjustment costs (Lucas 1967a,b), which has been analyzed in
terms of separable Hamiltonians by Scheinkman (1978), can be extended us-
ing our methods in a spatial setting. In a simplified set-up, consider a large
number of firms which occupy a spatial domain O, sell a homogeneous out-
put at an exogenous price, face quadratic adjustment costs with respect to
net investment, and experience knowledge spillovers which generate spatial

interactions among them. The RE and SO problems can be written as:

12 An interesting paper by Boucekkine et al. (2010) studies optimal dynamic social
welfare, e.g., an analog of our SO problem in an AK type model with a trade balance
on a circular space where capital is mobile across space and growth occurs. It would be
interesting to model the effect of introducing spillover externalities like ours as well as
introducing growth and trends like Boucekkine et al. (2010) and comparing the solutions
for SO and RE as we do in our paper. Unfortunately this is beyond the scope of the
current paper.

32



oo

RE: max/e_” (lf(x X —q (2’ +nz) - %(ml)2> dt

SO: max// lf z,Kz) — g (2 + nz) —%( ’)2) dz dt,

where [ is the exogenous output price, and ¢ is the unit price of capital,
both assumed independent of time. In this case the nonlinear operators of

Definition 5 become

Arpz = —a Y fo(z, X) —q(n—71)), X =Kuz,
Asox == —a Y fu(z, X) + Kfx(z X') qg(n—r)), X =Kuz.

and Theorem 1 suggests that the first order necessary condition for problems

RE and SO are, respectively,

2 —rx — Az = 0, v=RE,SO.

Therefore with a strictly concave production function, the flat steady
state of SO is globally asyptotically stable, independent of the value of r, and
no agglomeration is possible at the SO. On the other hand by Propositions
1 and 3, agglomeration might be possible at the RE.

The factor that could potentially differentiate the spatial structure of
the SO and RE in the long run is the way in which the optimizing agent
takes into account the spatial spillover. As seen from Propositions 1 and 3,
the important quantity for characterizing RE is the ratio |s11|/s12. If this
quantity is less than the largest eigenvalue of operator K, then agglomeration
is possible. If the production function is separable in x and X, then s19 =0
and no agglomeration is possible at the RE. For agglomeration to be a pos-
sibility, s12 should be sufficiently large in relation to the diminishing returns
on x. In this case the optimizing agent treats the spillover X as exogenous
and takes into account only its complementarity with x which is reflected
in s12. At the SO, however, the optimizing agent - e.g., the social planner -
by treating X as endogenous, takes into account the diminishing returns of

the spillover, in addition to the complementarity. With a strictly concave
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production function, this diminishing returns implies a maximal monotone
operator Agp and equivalently Agp ; < 0 for all modes j in local analysis,
and thus no agglomeration at the SO. Therefore it is the full internalization
of the spatial externality that prevents the emergence of agglomerations.
We feel that the methods developed in this paper provide insights about
the spatial structure of dynamic economic models that could provide a direct
link between economic geography and optimal growth. Future research could
be directed towards the further study of complexities underlying the RE
equilibrium, the impact of increasing returns, and the explicit introduction

of capital movement across space in pursuit of higher returns.

8 Appendix: Proofs

8.1 Proof of Theorem 1

We use the notation F(z, X) = f(x, X) — Az to rewrite the functional to be

maximized as
J(z,2") = Ji(z)+J2(2) ::/ /e_TtF(:E, Kx)dzdt—a/ /e_rt(x')dedt,
o Jo 2Jo Jo
(29)

where the explicit (¢, z) dependence of z, X is omitted for simplicity.

To be in line with the standard theory of the calculus of variations, we
consider the equivalent problem of minimizing the functional J = —J. We
also use the notation Ji(z) = —Ji(z), Jo(2') = —Jo(2') and

F(z,X)=—-F(z,X) = Xz — f(z, X).

Clearly, F is a strictly convex function.
Finally we use the notation x, — x for strong convergence in H and
xy, — x for weak convergence in H.

The following lemma is needed.

Lemma 1. The functional Jy : H — R is weakly lower semicontinuous and

weakly coercive.

Proof: Since

Ji(z) = /O()\x—f(a:,X))dz, A0
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it is clear that (Ji(z),x) — oo as ||z|| — oo, hence .J; is weakly coercive.

For the weak lower semicontinuity we use Theorem 7.5 of Fonseca and
Leoni (2007, p. 492) (see also Berkovitz, 1974). According to this theorem,
let g : O x R x R — R and define the functional ®(u, v) := [, g(z,u(2),v(z))dz.
Also, let p,q € [1,00) and assume that g(z,u,v) > —C(Jul’ + |[v|?) —w(z),

C >0 and w € L}(O). The functional ® is lower semicontinuous with re-
spect to weak convergence of u in LP(Q) and strong convergence'? of v in

L%(0), if and only if the following three properties hold:

(i) u+ g(z,u,v) is convex for all z € O and for all v € R,
(i) g(z,u,v) > a(2) + b(x,v)u — clv|?, ¢ > 0 and a € L} (0).

(iii) For any two sequences {v,} (converging weakly in LP(Q)) and {u,}
(converging strongly in L(O)) and such that sup,, ®(un,v,) < 00,
then the sequence \b(',vn('))\p/ where p’ is the conjugate exponent of

p, is equi-integrable.

We apply this theorem for p = ¢ = 2 and u = z, v = X = Kz. Then if
g(z,u,v) = —F(u,v), we observe that ®(u,v) = Ji(z). Clearly, g satisfies
the properties (i)-(iii) by the properties of f (for property (ii) recall that
any concave function is bounded above by an affine function).

Consider a sequence u,, = x,, converging weakly in H := L2(0); z,, — .
Then, since K : H — H is a compact operator, there exists a subsequence
of u, = x, such that v, := Kz, converges strongly. Then, an application
of the abovementioned theorem yields the weak lower semicontinuity result.
QED
PROOF OF THEOREM 1: We only provide the proof for v = SO as the RE
case is similar.

(a) Consider a sequence (xy,x}), n € N such that J(z,,z),) — M where
M = supJ(z,2'). Clearly this is a minimizing sequence for J. The real
valued sequence J(z,,x]) is bounded, so that by the properties of F there
exists a constant C' such that [;° e " (2)dzdt < C, that is ], is a bounded
sequence in L2((0,00), e "tdt; H), where H = L?(O). Since the measure
pu = e "dt is such that u(R™) < co and H is a separable Hilbert space,

there exists a weakly convergent subsequence of z/, (denoted the same for

13Mea{ling that if w, — w in LP(O) and v, — v in L%(0O), then ®(u,v) <
liminf, ®(un, vn).
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simplicity); there exists a y € L2((0,00), e "dt; H) such that x/, — y in
L2((0,00),e"dt; H). We then set z(t) := x¢ + fo s)ds so that y = 7/
and it can be seen that x,(¢) — Z(¢) in H uniformly on compact subsets of
(0,00) and z,, — Z in L2((0,00), e~"tdt; H).

Since K is a compact operator, the sequence Kz, (t) converges strongly
to KZ(t) in H uniformly on compact subsets of (0,00). An application of
Lemma 1 provides the result that J;(Z) < lim,, inf J; (). Furthermore, the
map y — fo Joe e Ty(t, z)?dzdt is convex and lower semicontinuous;'* it
is also weakly lower semicontinuous, Jo(7') < lim,, inf Jo(z},). Adding up,
and since the minimizing sequence is convergent, we obtain that J(z,z’) <
—M = inf J(z,2") which leads to the result that z is the minimizer for J,
hence the maximizer for J.

(b) We now consider the functional J, defined in (29), as a functional of

u=2aand x = xo+ fo s)ds (still denoted as J). The first order necessary

condition will be of the form (VJ,¢) = 0 where V denotes the Gateaux

derivative and ¢ is a test function in H.'"> We proceed to the determination

of the Géateaux derivative. To this end, fix any direction v € H, define
=u+t+ev, V= fo s)ds and calculate

d

@’ / / L (0cf (z,Kz) + K*Ox f (2, Kz)V = AV — auv) dz dt

where K* is the adjoint of operator K, and K* = K by symmetry. In the above
calculation we have used the smoothness Assumption 3 that allows the use
of the Lebesgue dominated convergence theorem, in order to intechange the
limit defining the derivative with integration so as to reach the stated result.
Since v = V', by integration by parts over ¢ and using the transversality

condition, the first order condition becomes
/ / " (0xf (z, Kz) + K Ox f(z,Kz) — A + o’ — rau) Vdzdt = 0.

This must be true for all v therefore for all V' which implies that the first

MMazur’s lemma (according to which out of a weakly convergent sequence we may
construct a subsequence which is a convex combination of the elements of the original
sequence) and convexity play an important role in passing from strong semicontinuity to
weak semicontinuity.

'5This is assuming we treat the problem over the whole of H, otherwise it is replaced
by a variational inequality of similar form.
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order condition becomes
O f(z,Kz) + K*0x f(z,Kz) — A+ av’ — rau =0,
(a.e.) and keeping in mind that u = 2/, we reach the stated result. ~QED

8.2 Proof of Theorem 2

The following technical result concerning the operators A, : H — H, v =

RE, SO, plays an important role in the Proof of Theorem 2.

Lemma 2.

(i) The operators A, : H — H, v = RE, SO are mazimal monotone.'®

(i) The operators T, : H — H defined by T, :=1 —A, : H, v = RE, SO,

where I is the identity operator, are pseudocontractive operators, i.e.,
ITan = Toms|* < o1 — @ + ||(I = Ty)z1 — (1 = Ty)aal?,

for all x1, x5 € H.

(i) Let K := {x € H : z(z) > 0, a.e. z € O}. Then, the operators
T,:=1-A,:K—H, v=RE, SO, are weakly inward, i.e. they have

the property T, x € Ix(x) for all x € K where Ix(x) is the closure of

the inward set of x relative to K, defined as

Ix(z) ={(1—k)z+ky : y€ K, k>0}.

Proof: (i) The result is immediate for v = SO since Agp is a (sub)differential
of the strictly convex functional —J;, hence it is a maximal monotone oper-
ator (see e.g., Barbu, 2010, Ch. 2, Th. 2.8, p. 47).

The case v = RE is a bit more involved, since Arp cannot be expressed
directly in terms of the (sub)differential of a convex functional but rather as
a perturbation of such an entity. Indeed, note that Agrr can be expressed as

Arg = A+ B where A = Agp and B = Kfx, where A is maximal monotone.

Y6 A possibly nonlinear operator A : H — H is called monotone if (Az — Ay,z —y) > 0
for all z,y € H and maximal monotone if its graph is not properly contained in the graph
of any other monotone operator. Observe that monotonicity is related to positivity if the
operator is linear.
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We will address the question of maximal monotonicity of A+ B. By Corol-
lary 2.1 in Barbu (2010, Ch. 2, p. 35), which states that the sum of a
maximal monotone operator with a hemicontinuous and monotone operator
retains the maximal monotonicity property, it is enough to prove that B
is hemicontinuous and monotone. The hemicontinuity of B is straightfor-
ward by the smoothness properties of the function f. To check monotonicity
we employ a statement of Kachurovskii (1968, Theorem 1.1c), according to
which a necessary and sufficient condition for a nonlinear operator B to be
monotone is that B is Gateaux differentiable, with Gateaux derivative VB
such that (h, VBh) is continuous for every h € H and (h,VBh) > 0 for
every h € H (at any point in H).

A simple calculation shows that

I:= (VBhv h) = (f:CX(x7 K.%')h, Kh) + (fXX(xa K$)Kh7 Kh)
= (K2 fox (2, Kz)h, KY2h) + (fx x (2, Kz)Kh, Kh)

where we have used the self-adjoint property of K and the definition of the
square root of K. By Assumption 3(a),

(KY2 f,x (2, Kz)h, KY2R) > €]|KY/2h]|2,
(fxx(z, Kz)Kh, KR) > —pu||Kh]|?

so that T > £ [|KY2h||2 = 1 ||KA||?. The quantity I will always be positive for
all h € H if infp,e (€ [|KY2h||? — p||KR|[?) > 0. Note that Kh = K1/2K/2h
and that the eigenvalues of K are such that p; > puo > -+ > 0, so that the
eigenvalues of K'/2 are such that ,ui/z > ,u;/z > --- > 0. This implies that
[[KY/2y| < u}/Q |ly|| for all y € H; therefore substituting y = K'/2h in this
inequality we obtain the estimate ||Kh|| < ,ui/QHKlﬂhH so that —||Kh||? >
—u1||[KY/2h||2. We therefore obtain the estimate

ENKY2RIP = p|[KA|® = (€ = pm)|IK 2

which is always positive as long as & — ppug > 0. Then, the infimum of the
left hand side will always be greater than or equal to 0. We conclude that
the nonlinear operator B is monotone if p/€ < p1, therefore leading to the

stated result.
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(ii) Since A, are monotone operators for v = RE, SO, it holds that
(A,/.Tl — A,/.’L’Q,.Tl — 332) Z 0

for every z1,29 € H. Then, a simple calculation, using the Hilbert space

structure of Hi,

||TV$1 - TVQ:?HZ = ((I - Au)xl - (I - Au)$2a (I - Au)xl - (I - Al/)xQ

= [|lz1 — z2])* — 2(Av21 — Ayxa, 1 — 22) + ||Ayz1 — Ayzal]?,

yields the required result.

(iii) We use the following characterization of weakly inward operators
(see Deimling, 1985, Lemma 18.2, p. 208 and Section 20.4, p. 245), accord-
ing to which if K is a closed and convex cone, then T, is weakly inward if
and only if x € JK, z* € K* and (z*,z) = 0 implies that (z*, T, z) > 0,
where K* = {z* € H* : (z*,2) > 0, x € K} denotes the dual cone and H* is
the dual space of H. By (-, -) we denote the duality pairing between H* and
H. Here, since we are in a Hilbert space setting, we consider H* ~ H (by
the Riesz representation) and we identify the duality pairing (-,-) with the
inner product (-,-) on H.

Since H = L?(0), we identify H* = L?(O) so that an element of the dual

space z* is also a square integrable function z* : © — R. Then

(x*, ) = (z%,2) = / x*(2)x(z)dz

o

so that z € JK, and z* € K* and (z*,z) = 0 imply that z* is such that
z*(z) > 0on OF := {2z € O : z(z) = 0} (otherwise z* is identically zero).

We now calculate
(@ Tson) = [ (2= A+ fila, X) + K@ X)) ()" (2)dz

- /@ (A £2(0,0) + KFx(0,0)5" (2)dz > 0

by the properties of f (Assumption 3(b)). This shows that Tgo is weakly
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inward. Similarly

(", T ) = /O (2 — A+ Falm, X))(2)a" (2)d=

_ / (“A+ £(0,0))2* (2)dz > 0
O+

by the properties of f (Assumption 3(b)), therefore Trg is also weakly in-
ward. Q.E.D.

PrROOF OF THEOREM 2 (a) The result for both cases follows by a fixed
point argument. We employ a fixed point theorem (see Joshi and Bose, 1985,
Theorem 4.2.18 and Caristi, 1976, Theorem 2.6), according to which a con-
tinuous,'” pseudo contractive and weakly inward mapping F : K C H — H
of a nonempty closed and bounded subset K of a Hilbert space H has a fixed
point. By the results of Lemma 2 we apply this theorem to T,,, v = SO, RE
to guarantee the existence of a fixed point for the operator T,. But this
fixed point is also a solution of the operator equation A,x =0, v = SO, RE.
Uniqueness follows by strict monotonicity.

(b) By Lemma 2, operator A, is maximal monotone. We now use Theo-
rem 3.3. of Rouhani and Khatibzadeh (2009) to obtain the stated result.

According to a special case of this theorem a bounded solution of
r —rx = A x

for any initial condition x(, converges weakly as ¢ — oo to an element of
A, 1(0), if A, is a maximally monotone. Q.E.D.
8.3 Proof of Proposition 1

PRrROOF OF PROPOSITION 1: Follows from a combination of Theorem 2 and
Propositions 3 and 4. Q.E.D.

8.4 Proof of Proposition 2

PROOF OF PROPOSITION 2: (a) Since K : H — H is a compact operator, by

Fredholm theory we know that the spectrum of K consists only of the point

170r Lipschitz, if we employ Caristi’s result.
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spectrum (i.e. only of the eigenvalues {s;} of operator K). Furthermore, the
spectrum is at most a countable set, and if it is not finite the only accumu-
lation point for the sequence {|x;|} is 0. Since K is a bounded self-adjoint
operator, its spectrum is also bounded and real, and the eigenfunctions {¢;}
corresponding to the eigenvalues {s;} may be chosen so as to form an or-
thonormal set in H. This set is complete in Ran(K) C H.'® If additionally
K has the property of strict positivity then the spectrum is contained in a
bounded subset of Ry and {¢;} is complete in H.

Using the basis of Ran(K) C H defined by the eigenfunctions {¢;} of
operator K, we can obtain a spectral decomposition of (21) as follows: We
perform a Galerkin approximation of the solution of (21) using the set {¢;}.
We consider the sequence of functions &, (t,2) = Y ;" ci(t)¢i(2z) and we
insert this into (21). Projecting along ¢;, j = 1,...,n we obtain the system
of second order ODEs

. rc'yhj +A,jcj=0, v=RE SO, j=1,...,n (30)

vj

with A, ; as given in the statement of the proposition. Assume that the
initial conditions #(0),#/(0) € Ran(K) C H. By the completeness of the
orthonormal basis {¢,} there exists an expansion #(0,z) = >_;a;¢;(2),
#(0,z) = >, budn(z) where the series converge in H. Therefore, solv-
ing system (30) with initial conditions ¢, ;(0) = a;, ¢, ;(0) = bj, we ob-
tain an approximation of the solution in terms of the Galerkin expansion.
The Galerkin expansion transforms the infinite dimensional systems (21),
which characterize RE and SO equilibria respectively, into a countable set
of finite dimensional problems (22), each problem corresponding to a mode
7 =1,...,n. Using a priori estimates and weak convergence arguments, we
may pass to the limit as n — oo in a standard fashion. The conditions for
agglomeration emergence can be determined by looking at the exact solution
of (22) for each mode j.

(b) The solutions are characterized by the roots of the characteristic

polynomial 02 — ro + A, ; = 0. The roots are easily found to be

=5 ()

8By Ran we denote the range of the operator K, while the overline denotes closure.

1/2
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A quick inspection shows that if A, ; < 0, then 01 < 0 and o > 5 which
is the usual saddle point stability. Furthermore, if 0 < A, ; < (%)? then we

obtain two real eigenvalues 0 < o1 < % < 2. Finally in the case A, ; > (%)2’

- g L (‘(;>2 —Al,yj >1/2

so that we have modes growing with exponential growth rate %.19 Q.E.D.

8.5 Proof of Proposition 3

PROOF OF PROPOSITION 3: (a) By Assumption 2(c) on the production
function s11 < 0, s99 < 0 and si;2 > 0. This leads to the observation that
Arpy > 0if 1y > =% and Agpp; > ()% if py > & (5)° — 21,
(b) Aso; > 0 implies —|s11|+ 2512445 — ]322|uj2- > 0, i.e., u; must lie between
the two real roots of this quadratic polynomial. However, strong concavity
of the production function implies s11822 — 525 > 0 , therefore Aso,j keeps
the sign of —|sga| for all values of p; so that Ago; < 0 for all j, which

implies stability. Q.E.D.

8.6 Proof of Proposition 4

PrROOF OF PROPOSITION 4: (a) For every z € H there exists a Fourier
expansion in terms of Fourier series as x(z) = > ;2 zgexp(ilmz/L) with
¢ given by 7y = 5+ f_LL x(z) exp(ilmz/L)dz, where the convergence is in the
L?(O) sense. A similar expansion exists for the kernel function w, w(z) =
Yo oo Wmexp(immz/L). The condition for  to be real is 2 = —x_

where * denotes the complex conjugate. To verify that the eigenfunctions

are the Fourier modes, it suffices to observe that

1
V2L
= \/ﬁz wypexp(ilmz/L)0n ¢ = V2Lw, exp(inms/L) = Wydn(z)

0

L
(Kon)(2) = ng exp(i&rz/L)/ exp(i(n — €)ws/L)ds
7 ~L

where W,, = 2Lw,,. This calculation shows that the Fourier basis are eigen-

functions of K with eigenvalue u, = W, at mode n. Note that this set

YThis is compatible with the well posedness of the functional .J, and/or with the
transversality conditions.
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of eigenfunctions forms a complete basis of H. The symmetry of the ker-

nel shows that only the cosine part of the eigenfunctions corresponds to

nontrivial eigenvalues.

(b) The action of K on the flat state Z is as follows:

L
Kz = x/ Z wyexp(ilm(z — s)/L)ds = 2LwyZ,

therefore the flat state generates spillovers which remain uniformly distrib-

uted in space. QED
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