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ON SHARING THE BENEFITS OF COMMUNICATION

Efthymios Athanasiou∗, Santanu Dey† and Giacomo Valletta‡

Abstract. We put forward a model of private goods with externalities. Agents derive benefit
from communicating with each other. In order to communicate they need to have a language
in common. Learning languages is costly. In this setting no individually rational and feasible
Groves mechanism exists. We characterize the best-in-class feasible Groves mechanism and
the best-in-class individually rational Groves mechanism.

JEL classification: D70; D62; C60.
Keywords: Groves mechanisms, Externality, Budget surplus or deficit, Pareto undominated
mechanisms.

1. Introduction

An agent is associated with one of two platforms. Communication between two agents
requires that they operate on a common platform. Adoption of a new platform is costly. The
cost depends on the agent’s native platform. The benefit of communication depends on a
subjective parameter reflecting the value the agent attaches to the collaborative enterprises
she may engage in by adopting a new platform. The benefit of communication is increasing in
the number of agents one may interact with.

A variety of situations fits this paradigm. Historically, traveling by train between France
and Spain required switching trains at the border. In 2010 the completion of an alternative
high speed line, operating on the french standard, solved the break of gauge problem. The
development of the DVD was made possible only when Philips and Sony abandoned the ”Mul-
timedia Compact Disc” format and joined the camp of Toshiba, Time Warner, Pioneer and
others developing the ”Super Density Disc” format. Finally, to cite a case involving numerous
agents, communication among individuals belonging to different language groups in places such
as Belgium, Canada and Florida makes necessary the adoption of a foreign language.

The model we propose is the simplest one that adheres to these observations. We build
on Selten and Pool [21]. Henceforth, we will use the term language to denote a mode of
operation and the term communication to denote the possibilities of interaction that speaking
a common language affords. Refer to figure 1. Agents are represented by nodes. The set of
agents is partitioned in two language groups. Agent j speaks language α natively. Learning is
depicted by an arrow stemming from a node and pointing to a set of nodes. Individual j learns
language β. This enables her to communicate with two agents speaking β. The benefit each
agents derives from communication is given by the number of ‘foreign’ agents she communicates
with, multiplied by a non-negative real number that encompasses the agent’s willingness to
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Figure 1. The model

communicate. However learning is costly. The cost agent j faces is determined by the language
group she belongs to. The agent’s net benefit is the difference between the benefit and the
cost of communication. This brief description of the model is sufficient to reveal the nature
of an externality that crucially influences the analysis that ensues. Agent j, by learning the
foreign language β, affects the well-being of all agents in Nβ, even those who choose not learn.
Consequently, even agents who are not learning a foreign language are a potential source of
value.

The model depicted in figure 1 will be the backdrop against which we will formulate our
discussion. We are interested in mechanisms. Roughly speaking, these objects associate a
social outcome to the various values the primitives of the model may take. In particular, our
main concern will be to examine the extent to which the following four properties can be
attributed to a mechanism:

(1) Assignment Efficiency : the sum of net benefits should be maximized.
(2) Strategy-Profness : all agents, if asked, should have a dominant strategy to reveal their

willingness to communicate truthfully.
(3) Individual Rationality : no agent should enjoy a level of well-being that is lower than

the level of well-being she would enjoy if she was not a constituent of the economy.
(4) Feasibility : the mechanism should rely exclusively on the resources generated within

the economy, i.e., no outside funding should be permitted.

It turns out that no mechanism satisfies all of the above requirements. There are, however,
mechanisms that satisfy any three of the properties above. We place particular emphasis on
Assignment Efficiency and Strategy-Profness. Both these properties are shown to be inherently
linked with incentives. A mechanism that violates them is prone to deficiencies that undermine
the implementation exercise in a fundamental way.

Appealing to a result due to Holmström [13], embracing Assignment Efficiency and Strategy-
Proofness entails confining our investigation to the family of Groves mechanisms. The litera-
ture discussing such mechanisms does so in three fairly distinct contexts. Pure public goods,
excludable public goods and private goods.

In this paper we study Groves mechanisms in a context of private goods that accounts for
the effect of an externality. It turns out that much of the conventional wisdom on Groves
mechanisms does not carry through to our model. An instance of this phenomenon is the
impossibility stated above. When all agents value the good positively (as is the case in our
framework), the celebrated Pivotal mechanism constitutes an example of a Groves mechanism
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that satisfies the aforementioned properties whether the context is private or public goods1.
More surprisingly, the Pivotal mechanism here fails Feasibility. The nature of the externality
we capture in our model causes the Pivotal mechanism to sometimes assign positive transfers,
something that is disallowed in the framework of either public or private goods.

Our proposal involves two mechanisms. First we look at individually rational Groves mech-
anisms. We show that such mechanisms are often in deficit. We characterize the mechanism
that minimizes the deficit whenever it occurs. Second, we single out the only feasible Groves
mechanism that is not Pareto dominated by another strategy-proof, feasible and anonymous
mechanism. In order to do so we restrict our attention to economies comprising two agents.
Both our proposals involve rules that do not appear elsewhere in the literature and are thus
specific to the model we put forward.

Effectively the objective we pursue is to identify the best-in-class mechanism. When fea-
sibility is out of the picture the criterion that isolates the best mechanism is related to the
incidence of the deficit. We do not focus on the worst case scenario (as in Bailey [2], Cavallo
[3], Guo and Conitzer [10], Moulin [18] ) or on the asymptotic behavior of the deficit (as in Deb
Razzolini and Seo [6], Green and Laffont [9], McAfee [14] and Zhou [24]). Rather we propose
a mechanism that runs a lower deficit than any other mechanism in each economy where the
deficit presents itself.

In order to isolate the best feasible Groves mechanism, we do not base our selection on
sums of utilities but rather on their distribution (as in Guo and Conitzer [11], Athanasiou [1]
and Sprumont [22]). A mechanism Pareto dominates another one if the former generates, in
each economy and for each agent, a higher amount of utility. This criterion turns out to be
sharp enough to select a unique feasible Groves mechanism when the discussion is confined to
two-agent economies.

The analysis is complemented by a discussion of the discrete nature of the problem. In a
separate section, we provide an algorithm that identifies efficient linguistic assignments. Inter-
estingly, at the optimum learning by agents of both linguistic groups (two-sided learning) may
ensue. Moreover, efficient linguistic assignments do not necessarily impose full communication
among agents. At the optimum it may be the case that two agents do not have a language in
common.

Aside from the agenda we pursue in this paper, a parallel literature deals with decentral-
ized outcomes that may arise in situations similar to the ones we explore. In their seminal
contribution Selten and Pool [21] introduce a general model of language acquisition. They
show that an equilibrium of the multi-country multilingual language acquisition model exists.
The characterization of an equilibrium is then studied by Church and King [4]. More recently,
Ginsburgh et al. [8] and Gabszewicz et al. [7] study qualitative properties of such equilibria in
the context of bilingual societies. In our model one may rationalize different Nash Equilibria,
exhibiting both one-sided as well as multi-sided learning. However, the efficient outcome does
not generically come about as a Nash Equilibrium.

Section 2 introduces the model. Section 3 discusses efficiency. Section 4 introduces the
axioms and presents the impossibility. Section 5 discusses individually rational Groves mech-
anism. Section 6 discusses feasible Groves mechanisms. Section 7 concludes.

1Parkes [20] provides sufficient conditions for a Pivotal mechanism to be individually rational in a pure public
good framework. Moulin [18], among others, makes the case in the context of private goods.
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2. The model

The finite set of agents is denoted N ⊆ N. There are two languages, α and β. Each agent
speaks natively one of them. For each λ ∈ {α, β}, Nλ is the set of agents speaking language λ.
Each agent may learn the language that is foreign to her. For instance, if i ∈ Nα, agent i may
choose to either learn language β or not. Learning is represented by the dichotomous variable
li ∈ {0, 1}. The values are li = 1 if she learns, li = 0 otherwise. Let lN = (li)i∈N ∈ {0, 1}N
denote the vector describing the actions taken by each member of the population. The function
γ : N → {α, β} such that for each i ∈ N and for each λ ∈ {α, β},

γ(i) = λ⇔ i ∈ Nλ,

determines the native language of each agent. Consequently, for each i ∈ N , Nγ(i) denotes the
set of agents whose native language is the same as i’s. The cost of learning depends on the
agents native language. Let C = (cα, cβ) ∈ R2

++. For each i ∈ N , cγ(i) is the learning cost
agent i, whose native language is γ(i), faces. We assume that cα, cβ <∞.

The benefit an agent derives from being able to communicate with agents from the other
language group is a linear function of the number of agents she communicates with at a given
assignment lN ∈ {0, 1}N . The willingness to communicate is denoted by the parameter θi ∈ R+.
Hence, for each i ∈ N , at each lN ∈ {0, 1}N , the expression

(2.1) θi
∑

j∈N\Nγ(i)

min
{

1, (1, li) · (lj , 1)
}
,

specifies the gross benefit of agent i. Let θNα ≡ (θi)i∈Nα , θNβ ≡ (θi)i∈Nβ and θN ≡ (θi)i∈N .

An economy is denoted by e =
(
(θNα , θNβ ), C

)
=
(
θN , C

)
∈ RN+2

+ ≡ E .
The definition of the gross benefit incorporates certain assumptions. The linearity assump-

tion facilitates the exposition. Assuming a decreasing marginal benefit from communication
would not alter the nature of our results. It would, therefore, merely complicate derivations
without bringing any particular insight.

In our model agents either learn a language or not. That is, we do not allow for degrees
of knowledge. All our results would hold if we were to qualify this assumption. In fact,
any mathematical difficulty the model presents would remain, even if we were to apply a
convexification, namely letting li take values in an interval, say [0, 1]. The discrete nature of
the problem stems from the min operator (equation 2.1). This operator ensures that even if
two agents have two languages in common, the benefit each derives from communicating with
the other remains unchanged relative to the case of communication through a single language.
Therefore, even if the parameter li was continuous, the problem of maximizing social welfare
would have to be solved under multiple constraints.

The gross benefit does not account for people with whom one shares the same mother tongue.
This value is a constant. Therefore, it does not have any bearing in any individual or social
maximization.

Finally, agents do not care neither with whom they communicate, nor in what language they
do so. For instance, let N = {1, 2, 3, 4} with Nα = {1, 2} and Nβ = {3, 4}. Indeed, as long as
l3 = l4, (1, l1)(l3, 1) = (1, l1)(l4, 1). That is, communicating with agent 3 provides agent 1 with
the same (gross) benefit she obtains by communicating with agent 4. Moreover, no agent may
serve as a translator, that is, communication is only possible through the direct adoption of a
foreign language. These assumptions, although unrealistic, serve to intensify the effect of the
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externality. Since our aim is precisely to study this effect, we have no interest in dampening
its intensity.

For each i ∈ N , the net benefit associated with lN = (li)i∈N is

vi(lN ; θi) = θi
∑

j∈N\Nγ(i)

min
{

1, (1, li) · (lj , 1)
}
− licγ(i),

For each e ∈ E and each lN ∈ {0, 1}N , let π(lN ; e) =
∑

i∈N vi
(
lN ; θi

)
be the sum of net benefits

generated by the linguistic assignment lN .
Accounting for the possibility of an individual transfer ti ∈ R, the final utility of each agent,

at lN ∈ {0, 1}N , becomes
ui(lN , ti; θi) = vi(lN ; θi) + ti.

Preferences are quasi-linear. Let tN = (ti)i∈N ∈ RN . An allocation is a list (lN , tN ) ≡ (li, ti)i∈N
where li is a linguistic assignment for agent i and ti is the transfer she receives. Let Z be the
set of all allocations. A mechanism is a function ϕ defined over E that associates with each
economy an allocation (lN , tN ) ∈ Z. Namely

ϕ : E → {0, 1}N × RN = Z,

so that ϕ(e) = (lN , tN ) and ϕi(e) = (li, ti).

3. efficient linguistic assignments

In this section we discuss the problem of determining efficient linguistic assignments, that
is, assignments that maximize the sum of net benefits. Depending on the particular e ∈ E at
hand, we need to solve the following optimization problem:

P (e) : max
lN∈{0,1}N

∑
i∈N

(
θi
( ∑
j∈N/Nγ(i)

min{1, (1, li) · (lj , 1)}
)
− licγ(i)

)
.

For each e ∈ E , let Σ(e) be the set of linguistic assignments that solve P (e). In what follows
we provide an algorithm that produces for each e ∈ E , one lN ∈ Σ(e).

Each agent has at most 2 alternatives, she either learns the other language or she does not.
There are N agents. Therefore, there are at most 2N candidate solutions. Since the set of
candidate solutions is finite, for each e ∈ E , Σ(e) 6= ∅.

A naive algorithm for determining efficient linguistic assignment is to enumerate all the
candidate solutions. However, such an algorithm is not very efficient since its running time
increases exponentially with the increase in the number of agents in the economy. We next
present a polynomial time algorithm for obtaining an efficient linguistic assignment, that is,
an algorithm whose running time increases as a polynomial function with the increase in the
number of agents in the economy.

The construction of the algorithm is founded on Lemmata 1, 2 and 3 presented below. These
constitute a few properties of an optimal solution, which allows pruning the search to a small
subset of candidates solutions without missing at least one optimal solution.

Lemma 1 states that if at the optimum an agent does not learn, then so do all other agents
in her language group that have a lower willingness to communicate.

Lemma 1. For each e ∈ E, each λ ∈ {α, β} and each i1, i2 ∈ Nλ, if θi1 > θi2, then for each
lN ∈ Σ(e) either

(1) li1 = li2 = 0, or
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(2) if li2 = 1, then li1 = 1.

Proof. Without loss of generality let λ = α. Suppose, by way of contradiction, that there
exists lN ∈ Σ(e) such that li1 = 0 and li2 = 1. Construct an alternative solution l̃N such that

l̃j =

 lj if j 6= i1, j 6= i2
1 if j = i1
0 if j = i2

(3.1)

Let also S ⊆ Nβ, be such that for each i ∈ S, li = l̃i = 0. By construction, π(l̃N ; e) - π(lN ; e)
= (θi1 − θi2)|S|. By assumption, lN is optimal and li2 = 1, with i2 ∈ Nα. If S = ∅ then, for
each i ∈ Nβ, li = 1. But if every agent in Nβ learned, it would be suboptimal for agent i2 to
learn too. Therefore, S 6= ∅. This implies that (θi1 − θi2)|S| > 0, the desired contradiction.

Consider some arbitrary linguistic assignment lN ∈ {0, 1}N such that for some k ∈ Nα,
lk = 0. If agent k were to learn, she would both attain a personal utility gain equal to
θk
(
|N \Nγ(k)|−

∑
j∈N\Nγ(k) lj

)
− cγ(i), namely, her marginal willingness to communicate times

the number of agents from the other language group who have not learned k’s language (j ∈ Nβ

for whom lj = 0), and benefit these very same agents who would be able to communicate with
one more agent. Therefore, agent k, by learning would generate a marginal contribution equal
to

θk
(
|N \Nγ(k)| −

∑
j∈N\Nγ(k)

lj
)

+
∑

j∈N\Nγ(k)

θj(1− lj)− cγ(k).

The following Lemma states two familiar conditions necessary for optimality.

Lemma 2. For each e ∈ E, each lN ∈ Σ(e) and each i ∈ N,
(1) if li = 1, then θi

(
|N \Nγ(i)| −

∑
j∈N\Nγ(i) lj

)
+
∑

j∈N\Nγ(i) θj(1− lj)− cγ(i) ≥ 0,

(2) if li = 0, then θi
(
|N \Nγ(i)| −

∑
j∈N\Nγ(i) lj

)
+
∑

j∈N\Nγ(i) θj(1− lj)− cγ(i) ≤ 0.

Proof. Conditions (1) and (2) are necessary for lN ∈ Σ(e). Indeed, if lN ∈ Σ(e), then for
each i ∈ N unilaterally reducing the amount of communication (first condition), or unilaterally
increasing the amount of communication (second condition) must decrease the sum of utilities.

Finally, we present a consequence of the above two Lemmata.

Lemma 3. For each e ∈ E, each λ ∈ {α, β} and each i∗ ∈ Nλ such that θi∗ ≥ θi for each
i ∈ Nλ, if lN ∈ Σ(e) and li∗ = 0, then

li = 0 for all i ∈ Nλ(3.2)

li =

{
1 if |Nλ|θi +

∑
j∈Nλ θj − cγ(i) > 0

0 otherwise
for all i ∈ N \Nλ(3.3)

Proof. Implication (3.2) follows from Lemma 1. Implication (3.3) follows from Lemma 2.

The algorithm is presented in Table 1. It relies on Lemmata 1 and 3. The algorithm
performs approximately |Nα||Nβ| arithmetic operations2. Using this fact it can be shown that

2The sorting in the first step can be done in approximately |Nα|log2(|Nα|) + |Nβ |log2(|Nβ |) operations.
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for suitably large N , the algorithm takes less than η|N |2 operations where η is some constant
independent of e. Thus the proposed algorithm is a polynomial-time algorithm.

On the left part of figure 3 we elaborate on the algorithm. One may think of the successive
iterations of the algorithm as a move by each agent in Nα, starting from the agent with the
highest willingness to communicate and proceeding in descending order. Each agent may move
in one of two possible directions; she may choose to learn or not to learn. In this vein, any
path from the initial node to any of the m terminal nodes corresponds to a candidate solution.
For each k = 1, ...,m− 1, let lN |k denote any such candidate solution. For instance, at k = 3
we consider the path (l1 = 1, l2 = 1, l3 = 0) that corresponds to a linguistic assignment lN |3
such that l1|3 = l2|3 = 1, for each i ∈ Nα \ {1, 2}, li|3 = 0 and for each i ∈ Nβ, li|3 = l′i, where
l′N solves the problem

P
(
(θNα\{1,2}, θNβ ), C

)
subject to li = 0, for each i ∈ Nα \ {1, 2}.

Lemma 3 provides us with the calculation that determines l′N . Finally, π
((
lN |3; (θNα , θNβ ), C

))
=

M1 + M2 + π
((
l′N ; (θNα\{1,2}, θNβ ), C

))
= M1 + M2 + V3. The longest path (l1 = 1, l2 =

1, . . . , lm−1 = 1) corresponds to the linguistic assignment lN |m − 1, where for each i ∈ Nα,

li|m − 1 = 1 and for each i ∈ Nβ, li|(m) = 0 and π
((
lN |(m); (θNα , θNβ ), C

))
= M1 + M2 +

· · ·+Mm−1.

@
@
@
@
@@













 qq q







@
@
@








s
s

s
s

l1=0 l1=1

l2=0 l2=1

lm−1=0 lm−1=1

2

3

m−1

1

l3=0

V1

V2

V3

Vm−1

∑m−1
i Mi

@
@
@
@
@















s
s

1

2

V1 = 3.8

V2 = 1 M1 +M2 = 3.7

M1 = 2.9

Figure 2

Consider the economy e =
((

(0.8, 0.1), (2, 0.1, 0)
)
, (1.6, 1.1)

)
. The algorithm generates three

candidate solutions. Refer to the right part of figure 3. The corresponding values are V1 = 3.8,
V2 +M1 = 3.9 and M1 +M2 = 3.7. The optimal linguistic assignment is

(
(1, 0), (1, 0, 0)

)
.

The example above, apart from illustrating how the algorithm works, demonstrates two
important points regarding an efficient linguistic assignment. Firstly, at the optimum, full
communication does not necessarily ensue. Secondly, and perhaps more surprisingly, optimal
linguistic assignments may entail that agents from both language groups learn.
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Table 1. The algorithm

(1) Let Nα = {1, . . . ,m−1} and Nβ = {m, . . . , N}. Sort agents so that for each λ ∈ {α, β}
and each i, j ∈ Nλ, i < j if and only if θi ≥ θj . Let Mi = |N \Nγ(i)|θi+

∑
j∈N\Nγ(i) θj−

cγ(i).

(2) Consider the problem P
(
(θNα , θNβ ), C

)
.

(a) By Lemma 1 either agent 1 learns β or no one in Nα learns β. Therefore, create
two subproblems.

(b) In the first subproblem set l1 = 0. By Lemma 1, for each i ∈ Nα we have li = 0.
In this case, the optimal solution is obtained using Lemma 3. Call the resulting
value V1. Save the solution to this subproblem.

(c) In the second subproblem set l1 = 1. This completely determines agent 1’s status.
Save the value M1 := |Nβ|θ1 +

∑
j∈Nβ θj − cα, remove agent 1 from the problem.

(d) Set t = 1.
(3) If m− 1 > t go to step (4). Else go to step (5).
(4) The algorithm treats the problem P

(
(θNα\{1,...,t}, θNβ ), C

)
.

(a) By Lemma 1 either agent t + 1 learns β or no one in Nα \ {1, . . . , t} learns β.
Therefore, create two subproblems.

(b) In the first subproblem set lt+1 = 0. By Lemma 1, for each i ∈ Nα \ {1, . . . , t} we
have li = 0. In this case, the optimal solution is obtained using Lemma 3. Call
the resulting value Vt+1. Save the solution to this subproblem.

(c) In the second subproblem set lt+1 = 1. This completely determines agent t + 1’s
status. Save the value Mt+1 := |Nβ|θt+1 +

∑
j∈Nβ θj− cα, remove agent t+1 from

the problem.
(d) Set t = t+ 1. Go to (3).

(5) The algorithm generates m solutions. Namely, V1, V2 +M1, V3 +M1 +M2, . . . , Vm−1 +
M1 + · · ·+Mm−2,M1 + · · ·+Mm−1. Pick the maximum among them.

4. Axioms

In this section we formally define Strategy-Proofness, Assignment Efficiency and Individ-
ual Rationality and discuss their implications. Although these axioms may be motivated by
appealing to normative considerations, we emphasize here their significance in alleviating the
incentive problem. In our framework a mechanism can be manipulated in three ways:

(1) The agent may misreport relevant information she holds private.
(2) The agent may choose not to conform to the prescriptions of the mechanism.
(3) The agent may refuse to participate.

The axioms we present in this section each tackles one of the issues listed above.
Although the social planner observes the partition of agents in language groups and is aware

of the costs that learning entails, she does not know the agents’ willingness to communicate.
As a consequence, some agents might find it profitable do behave strategically and misreport
it. We require that mechanism induce for each agent a weakly dominant strategy to report
truthfully her willingness to communicate, if asked.
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Strategy −Proofness For each e ∈ E , i ∈ N and θ′i ∈ R+,

ui(ϕi(θN , C); θi) ≥ ui(ϕi(θ′i, θN\{i}, C); θi).

A mechanism is Assignment Efficient if, for each economy in the admissible domain, it se-
lects an allocation that involves a linguistic assignment that maximizes the sum of net benefits.
Assignment Efficiency differs from Pareto Efficiency in that it does not require transfers to
sum up to zero.

Assignment−Efficiency For each e ∈ E , if (lN , tN ) = ϕ(e) then lN ∈ Σ(e).

The way Assignment Efficiency wards against manipulation is not immediately apparent. In
order to make it explicit we need to emphasize one of the implications of the axiom. Assign-
ment Efficiency implies the following axiom.

Home-Schooling Proofness: For each e ∈ E , if (lN , tN ) = ϕ(e), then, for each i ∈ N
and l′i ∈ {0, 1} such that l′i > li,

θi
∑

j∈N\Nγ(i)

[
min{1, (1, lj)(1, (l′i − li))}

]
− (l′i − li)cγ(i) < 0.

Suppose that an allocation is such that Maggie is instructed not to learn. However, given the
pattern of language learning that the allocation envisages, she finds it profitable to unilaterally
deviate and learn3. Even if there is an institution in place that controls whether the agents
comply with the instructions of the social planner, it would be very costly to ensure that Maggie
sticks to the plan. For instance, it would be hard, indeed almost implausible, to monitor her
every step, in order to make sure that her mother, who happens to speak the language, will
not home-school her.

A mechanism satisfies Individual Rationality if no agent is coerced into participation. All
agents must enjoy a positive utility as a result of their participation.

Individual Rationality For each e ∈ E and i ∈ N , ui(ϕi(e); θi) ≥ 0.

Since the domain of preference profiles is convex (and hence smoothly connected) we know
from Holmstrom [13] that a mechanism satisfies Assignment Efficiency and Strategy Proofness
if and only if it belongs to the family of Groves mechanisms (see Groves [12]).

Such mechanisms determine a transfer composed of two parts. First, each agent receives
the total net benefit obtained by all other agents at the assignment chosen by the mechanism.
Second, each agent receives a sum of money that does not depend on her own (announced)

willingness to communicate. Let hi be a real-valued function defined on RN−1+ such that for

each i ∈ N and θN ∈ RN+ , hi depends at most on θN\{i} and in any case does not depend on
agent i’s willingness to communicate.

The Groves Mechanism For each e ∈ E , (lN , tN ) = ϕg(e) if and only if lN ∈ Σ(e) and,

3This could only happen if the linguistic assignment is not efficient.
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for each i ∈ N ,

ti =
∑
j 6=i

vj(lN ; θi)− hi(θN\{i}).

In general, for Groves mechanisms, the sum of the transfers may be either positive or neg-
ative. Generically there is a waste. However, there is a particular difficulty pertaining to a
deficit. A Planner will need to finance the Groves scheme using resources that are not gener-
ated within the economy. Any mechanism, be it Groves or not, by construction, is silent as to
where these outside funds may be found. Feasibility requires that the Planner does not need
to resort to outside funding. Feasible mechanisms are self-sufficient.

Feasibility For each e ∈ E , if (lN , tN ) = ϕ(e) then
∑

i∈N ti ≤ 0.

The exercise we perform in this paper is shaped by the following result. It implies that
the Planner may opt for either an individually rational Groves mechanism, at the expense of
Feasibility, or a feasible Groves mechanism, at the expense of Individual Rationality.

Proposition 1. There exists no mechanism ϕ that satisfies Strategy Proofness, Individual
Rationality, Feasibility and Home Schooling Proofness.

Proof. We construct a counter-example. Suppose that some mechanism ϕ satisfies the
axioms. Consider an economy e consisting of two agents, N = {1, 2}, speaking distinct lan-
guages. We have θ1 = θ2 > cα = cβ > 0 and cα + cβ > θ1, θ2 . By Home Schooling Proofness,
for each (lN , tN ) ∈ ϕ(e) either one of the following must be true:

(1) l1 = 0 and l2 = 0, or
(2) l1 = 0 and l2 = 1, or
(3) l1 = 1 and l2 = 0.

Consider case (1), i.e. let there exist (lN , tN ) ∈ ϕ(e) such that l1 = 0 and l2 = 0. Suppose that
u1(lN , t1; θ1) ≥ θ1 and u2(lN , t2; θ2) ≥ θ2. Therefore,

u1(lN , t1; θ1) + u2(lN , t2; θ2) ≥ θ2 + θ1(4.1)

θ1 − cα + θ2 + t1 + t2 ≥ θ1 + θ2

t1 + t2 ≥ cα

By Feasibility, t1 + t2 ≤ 0 and hence inequality (4.1) constitutes a contradiction, as by as-
sumption cα > 0. The same reasoning applies for cases (2), (3). In conclusion, for each
(lN , tN ) ∈ ϕ(e), either u1(lN , t1; θ1) < θ1 or u2(lN , t2; θ2) < θ2. Without loss of generality,
suppose that for each (lN , tN ) ∈ ϕ(e), u1(lN , t1; θ1) < θ1.

Consider economy e′, to be one that is identical to economy e, except for the fact that θ′1 = 0.
By Individual Rationality and Feasibility, since cα + cβ > θ2, there cannot exist (l′N , t

′
N ) such

that l′1 = 1 and l′2 = 1. Therefore, by Home Schooling Proofness, for each (l′N , t
′
N ) ∈ ϕ(e′),

either l′1 = 1 and l′2 = 0, or l′1 = 0 and l′2 = 1. By Individual Rationality, in the former case
t′1 ≥ cαβ and in the latter t′1 ≥ 0. This implies that from a profile of announcements (θ1, θ2)
agent 1 can profitably deviate to the profile (0, θ2) and obtain a utility level equal to θ1. Thus,
the mechanism ϕ violates Strategy-Proofness, a contradiction.
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Proposition 1 is of interest for an additional reason. It marks a stark difference between our
framework and other economic environments where it is well known that feasible and individ-
ually rational Groves mechanisms exist. Examples of feasible and individually rational Groves
mechanisms are provided by Guo and Conitzer [10] and Moulin [18] (among others) as solu-
tions to the problem of assigning a finite number of identical objects to a greater finite number
of agents. When a public good is involved Groves mechanisms are not in general individually
rational. Nonetheless, under the assumption that all agents value the good positively, as is
the case in our model, the Pivotal mechanism satisfies Individual Rationality. Proposition 1
constitutes, therefore, an early indication suggesting that the conventional wisdom does not
straightforwardly apply to our context.

5. An Individually Rational Groves Mechanism

In this section we focus on Groves mechanisms that satisfy Individual Rationality. As shown
before, such mechanisms violate Feasibility. Among them, we isolate a mechanism that mini-
mizes the deficit whenever it occurs. The natural question to raise next concerns the incidence
of the deficit. We provide conditions on the economy that, when met, imply that any Indi-
vidually Rational Groves mechanism will be in deficit in that economy. Inspection of these
sufficient conditions suggest that the deficit is, indeed, a prevalent phenomenon. In fact, run-
ning simulations we were not able to find any economy in which an Individually Rational
Groves mechanism runs a surplus.

For each e ∈ E and each i ∈ N let ei denote an economy that is otherwise identical to
e, except for the fact that agent i’s willingness to communicate has been set equal to zero.
Formally, if e = (θN , C), then ei =

(
(0, θN\{i}), C

)
. In addition, let liN ∈ Σ(ei).

The Minimal Deficit Mechanism (MDM) For each e ∈ E , (lN , tN ) = ϕmd(e) if and only
if lN ∈ Σ(e) and, for each i ∈ N ,

ti =
∑
j 6=i

vj(lN ; θi)−
∑
j 6=i

vj(l
i
N ; θj)− vi(liN ; 0).

Roughly speaking, the transfer of the MDM constitutes an assessment of the impact each
agent’s willingness to communicate has on the optimal sum of net benefits. In order to accom-
plish that, the mechanism, for each agent i ∈ N , needs to calculate π(liN ; ei). In particular, in
order to obtain the MDM from within the family of Groves mechanisms one needs to set, for
each e ∈ E and each i ∈ N ,

hi(θN\{i}) = π(liN ; ei) =
∑
j 6=i

vj(l
i
N ; θj) + vi(l

i
N ; 0).

We illustrate the MDM with the help of an example. Consider the economy

e =
((

(2, 1, 0.1), (0.8, 0.1)
)
, (1.1, 1.6)

)
.

Refer to figure 3, top left, for a graphical representation. Dots represent agents. They are
partitioned in two columns, each representing a language group. Agents whose mother-tongue
is α are on the left column, while agents whose mother-tongue is β are on the right column.
The numbers in parenthesis are the names of the agents. Moreover, θ1 = 2, θ2 = 1, θ3 = 0.1,
θ4 = 0.8, θ5 = 0.1. The figure depicts also the five economies we obtain by setting, each
time, the willingness to communicate of each agent equal to zero. We call these economies
e1, . . . , e5. An arrow stemming from a node representing agent i ∈ N and pointing to a
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language group stands for li = 1. The absence of an arrow stands for li = 0. The figure
depicts lN ∈ Σ(e), as well as l1N , . . . , l

5
N . For instance, lN = (0, 0, 0, 1, 1). Interestingly a slight

perturbation in the original problem can drastically change the efficient linguistic assignment
as it is made evident by inspecting the figure. Finally, for each i ∈ N , the figure provides
π(liN ; ei) so that it is possible to compute the transfer that the MDM prescribes for e, namely,
tN = (−0.2,−0.2, 0, 0.9, 1.6). Agents 1 and 2 are taxed, while agents 4 and 5 are subsidized.
The MDM produces a deficit equal to 2.1.

Nα

b
r
r Nβ

r
r

�

�

π(l3N ; e3) = 5.5

Nα Nβ

r
r
r

r
b

-

-

π(l4N ; e4) = 4

Nα Nβ

r
r
r

b
r-

-

π(l5N ; e5) = 5.4

Nα

(3) r
(2) r
(1) r Nβ

(4)

r (5)

r
�

�

π(lN ; e) = 5.7

Nα

r
r
b Nβ

r
r

-

�

π(l1N ; e1) = 1.9

Nα

r
b
r Nβ

r
r- �

π(l2N ; e2) = 3.9

Figure 3. An example

The MDM needs to be distinguished from the Pivotal mechanism (see Clarke [5] and Moulin
[16] for a detailed description of the properties of such mechanism in the pure public good
framework). In order to obtain the Pivotal mechanism from the family of Groves mechanisms
one needs to set, for each e ∈ E and each i ∈ N ,

hi(θN\{i}) =
∑
j 6=i

vj(l
′
N\{i}; θj),

where l′N\{i} ∈ Σ(θN\{i}, C). The hi(.) component of the Pivotal transfer is obtained by

removing agent i from the economy altogether and then calculating the optimal sum of net
benefits in her absence. An apparent difference between the Pivotal mechanism and the MDM
is that the former, unlike the latter, by removing the agent from the economy, deprives the
remaining agents from any benefit they may derive from being able to communicate with her.
In the canonical public good provision model whether an agent is removed from the economy
or her valuation of the project is set to zero, amounts to the same effect. In our framework, the
nature of the externality that each agent produces on the other agents is different. An agent is
still a potential source of value for the rest even if her willingness to communicate is equal to
zero. Removing her from the economy amounts to more than deducting her net benefit from
the total sum. This fact has stark implications as the following Lemma demonstrates
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Lemma 4. If for some e ∈ E the MDM generates a deficit then, in the same economy, the
Pivotal mechanism generates a greater or equal deficit.

Proof. By construction, for each e = (θN , C) ∈ E and each lN\{i} ∈ Σ
(
θN\{i}, C

)
,

π
(
(lN\{i}, 0); ei

)
≥ π

(
lN\{i}; (θN\{i}, C)

)
.

If, l′N ∈ Σ(ei), then, by definition,

π(l′N ; ei) ≥ π
(
(lN\{i}, 0); ei

)
.

Therefore, for each e = (θN , C) ∈ E , each lN\{i} ∈ Σ
(
θN\{i}, C

)
and each l′N ∈ Σ(ei),

(5.1) π(l′N ; ei) ≥ π
(
lN\{i}; (θN\{i}, C)

)
.

Let ϕp denote the Pivotal mechanism. For some e ∈ E let (lmdN , tmdN ) = ϕmd(e) and (lpN , t
p
N ) =

ϕp(e). By definition, using inequality 5.1, we obtain, for each i ∈ N , tmdi ≤ tci . Therefore,∑
i∈N

tmdi ≤
∑
i∈N

tpi .

In the canonical public good provision model the transfers associated with the Pivotal mech-
anism are non-positive. It follows from Lemma 4 that this it is no longer the case in our
framework. However, both in the canonical public good provision model and our framework
the Pivotal mechanism satisfies Individual Rationality. The following proposition generalizes
Lemma 4 namely, any individually rational Groves mechanism generates at least as much
deficit as the MDM.

Proposition 2. If for some e ∈ E the MDM generates a deficit then, in the same economy,
any mechanism satisfying Assignment Efficiency, Strategy-Profness and Individual Rationality
generates a greater or equal deficit.

Proof. By Assignment Efficiency and Strategy-Proofness we need to compare our mech-
anism with other mechanisms belonging to the Groves family of mechanisms. Moreover, by
Individual Rationality we need to have, for each e ∈ E and each i ∈ N ,

ui(ϕ
g(e); θi) = vi(lN ; θi) + ti =

∑
i∈N

vi(lN ; θi)− hi(θN\{i}) ≥ 0,

with ∑
i∈N

vi(lN ; θi) =
∑
i∈N

(
θi

∑
j∈N\Nγ(i)

min
{

1, (1, li) · (lj , 1)
}
− licγ(i)

)
,

where lN ∈ Σ(e). Hence, for any given profile θN\{i} ∈ RN−1 the component
∑

i∈N vi(lN ; θi),
which is the sum of net benefits at an efficient linguistic assignment, reaches its minimum
value when agent i’s willingness to communicate is equal to zero. Hence, in order to satisfy
Individual Rationality we need to set, for each e ∈ E , i ∈ N ,

(5.2) hi(θN\{i}) ≤
∑
j 6=i

vj(l
i
N ; θj) + vi(l

i
N ; 0),

where liN ∈ Σ(ei). Moreover,∑
i∈N

ti =
∑
i∈N

∑
j 6=i

vj(lN ; θj)−
∑
i∈N

hi(θN\{i}).
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By equation 5.2,

(5.3)
∑
i∈N

ti ≥
∑
i∈N

∑
j 6=i

vj(l; θj)−
∑
i∈N

∑
j 6=N

vj(l
i; θj)−

∑
i∈N

vi(l
i
N ; 0).

This means that, as soon an individually rational mechanism generates a deficit, it generates
at least as much deficit as in the right-end side of equation 5.3. Hence in order to minimize
the deficit produced by the mechanism we need to set

hi(θN\{i}) =
∑
j 6=i

vj(l
i
N ; θj) + vi(l

i
N ; 0).

We actually conjecture that, for any conceivable economy, any individually rational Groves
mechanism runs a deficit. As a consequence the sum of the transfers pertaining to the MDM
would always be non-negative as well and. While we are unable to prove the statement in
general, first, simulations suggest that it is true and, second, we are able to show it in specific
environments. In particular, we prove it to be the case in subdomains of E that encompass,
inter alia, large economies. This is of interest since, as pointed for example by Deb, Razzolini
and Seo [6], some members of the Groves family are asymptotically balanced as the number of
agents increases in a well-behaved way, for instance by replication. In our framework, if any
feasible Groves mechanism is asymptotically balanced, it would need to be the MDM.

The next two propositions state that in a significant sub-domain of the set of admissible
economies any Groves mechanism satisfying Individual Rationality runs a deficit. More pre-
cisely, Propositions 3 and 4 determine the number of agents that need to have a willingness
to communicate greater than some arbitrary non-negative real number T for an individually
rational Groves mechanism to run a deficit. The actual value of the threshold T depends on
all the parameters of the economy, namely its size, the profile of preferences and costs. Both
Propositions assume, without loss of generality, that cα ≤ cβ. The proofs can be found in
Appendix 1.

For each e ∈ E and each T > 0 let ζ(T, e) = |{i ∈ N | θi < T}|.

Proposition 3. At each e ∈ E such that cα ≤ cβ and |Nα| ≤ |Nβ|, if there exists T > 0 such

that |Nβ| ≥ cα
T +

cβ
T + ζ(T, e) + 1, then any Individually Rational Groves mechanism runs a

deficit.

Proposition 4. At each e ∈ E such that cα ≤ cβ and |Nα| ≥ cβ
cα
|Nβ|, if there exists T > 0

such that |Nα| ≥ cβ
cα

(
ζ(T, e)+ 1

)
+

2cβ
T , then any Individually Rational Groves mechanism runs

a deficit.

The following examples elaborate on Propositions 3 and 4. Consider the economy

e =
((

(3, 2, 1, 0), (3, 3, 2, 2, 1.5, 1.5, 0.5)
)
, (1, 2)

)
.

The number of agents with θi less that 1, i.e., ζ(1, e), is 2. Hence, ζ(1, e) + 1 +
cα+cβ

1 = 6 <

|Nβ| = 7. By Proposition 3, in this economy any individually rational Groves mechanism runs
a deficit. Consider, next, the economy

e =
((

(ε, . . . , ε), (ε, . . . , ε)
)
, (qε, qε)

)
,
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where ε > 0 and q ∈ N. The number of agents with θi less that ε, i.e., ζ(ε, e), is equal to zero.
Moreover, |Nα| = cβ

cα
|Nβ| = |Nβ|. We obtain

qε

qε
(ζ(ε, e) + 1) +

2qε

ε
= 1 + 2q.

Hence, as soon as |Nα| ≥ 1+2q, by Proposition 4, any Individually Rational Groves mechanism
runs a deficit.

Two comments are in line. First, the domain restrictions ‘almost’ do not rely on preferences.
In effect, may be interpreted to concern the number of agents who do not value the possibility
of communication. Secondly, the domain restrictions do not require the economy to be large,
unless both costs are enormous. Even in such a case though, one needs only one language
group to be adequately large for the result to come through.

6. A feasible Groves Mechanism

In this section we drop Individual Rationality in favor of Feasibility. The restriction to feasible
Groves mechanisms reflects a physical constraint often imposed on the implementation effort.
The social planner is not mandated to resort to outside funding. She may only rely on her
power to tax agents which may be, for the purposes of this section, complemented by her
ability to coerce participation.

Given the analysis performed so far, there is a simple class of mechanisms that accomplishes
the task. To retrieve it we need to expand on the discussion that ensued in the previous section.
In particular, we need to take advantage of a feature of the MDM. For each economy, let the set
of linguistic assignments that ensure full communication be denoted Lf (e). Consider within
this set the subset of linguistic assignments that are the least costly. That is, for each e ∈ E ,
let

Lf∗(e) ≡ argmin
lN∈Lf (e)

∑
i∈N

licγ(i) ⊆ Lf (e)

Moreover, for each l∗N ∈ Lf∗(e), let

c =
∑
i∈N

l∗i cγ(i).

Notice that in order to compute the value c one does not need to know the profile of pref-
erences. It turns out that for each economy the total cost pertaining to the efficient linguistic
assignment in that economy will be less or equal to the value c for that economy. The mech-
anism we present below charges all individuals an amount c

N on the top of what they were
charged by the MDM.

The Translated Minimal Deficit Mechanism (TMDM) For each e ∈ E , (lN , tN ) = ϕtmd(e)
if and only if lN ∈ Σ(e) and, for each i ∈ N

ti =
∑
j 6=i

vj(lN ; θi)−
∑
j 6=i

vj(l
i
N ; θj)− vi(liN ; 0)− c

N
,

where liN ∈ Σ(ei).

Relative to the MDM, the TMDM levies an extra amount c that aims at ensuring feasibility.
Moreover, the TMDM collects an equal share of this extra amount from each agent. One
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may imagine alternative ways of distributing this extra burden. However, as long as a Groves
mechanism levies an amount c over the amount the MDM levies, it will satisfy Feasibility. This
is a direct consequence of the following Lemma.

Lemma 5. For each e ∈ E, if (lN , tN ) = ϕmd(e), then∑
i∈N

ti ≤
∑
i∈N

licγ(i).

Proof. For each e ∈ E and each i ∈ N , if lN ∈ Σ(e) and liN ∈ Σ(ei), then

θi
∑

j∈N\Nγ(i)

min{1, (1, li) · (lj , 1)} ≥
∑
i∈N

vi(lN ; θi)−
∑
j 6=i

vj(l
i
N ; θj)− vi(liN ; 0).

If that were not true, by rearranging the terms of the inequality one would obtain

π(liN ; ei) =
∑
j 6=i

vj(l
i
N ; θj)+vi(l

i
N ; 0) <

∑
i∈N

vi(lN ; θi)−θi
∑

j∈N\Nγ(i)

min{1, (1, li)·(lj , 1)} = π(lN ; ei),

which constitutes a contradiction, as, by assumption, liN ∈ Σ(ei). Summing over i ∈ N we
obtain ∑

i∈N
θi

∑
j∈N\Nγ(i)

min{1, (1, li) · (lj , 1)} ≥ Nπ(lN ; e)−
∑
i∈N

π(liN ; ei).

The left-hand side of the previous equation represents the total gross benefit deriving from
communication at lN . A simple algebraic manipulation yields∑

i∈N
licγ(i) ≥ (N − 1)π(lN ; e)−

∑
i∈N

π(liN ; ei) =
∑
i∈N

ti.

Lemma 5 provides a rough idea of the challenge one needs to overcome when designing
feasible Groves mechanisms. If the planner knows for each e ∈ E , with (lN , tN ) = ϕmd(e), the
value

∑
i∈N licγ(i), then she has at her disposal a rough rule of thumb that she may apply in

order to comply with Feasibility. However, Lemma 5 does not do much more than pointing
in the right direction. The value

∑
i∈N licγ(i) varies with the economy and there is no a

priori reason to be hopeful that collecting the information required to calculate it complies
with Strategy-Proofness. The TMDM circumvents this issue by utilizing the fact that for each
e ∈ E , each lN ∈ Σ(e) and each l′N ∈ Lf∗(e), we have

∑
i∈N licγ(i) ≥

∑
i∈N l

′
icγ(i) = c.

At first glance there is nothing outright opposable with the TMDM. It does violate Individual
Rationality, but this is a concession we knew we had to make. Nonetheless, the fact that
the TMDM relies on c, a value insensitive to changes in individual preferences, makes the
TMDM suffer from a fundamental flaw. It is Pareto dominated by another mechanism that
satisfies among other things Strategy-Proofness and Feasibility. This is due to the fact that
the TMDM is generated by a translation of the MDM that does not utilize any information
on the preferences. Can we do better within the confines of Strategy-Proofness?

To facilitate the analysis we assume that Nα = {1} and Nβ = {2}. Moreover, assume
that c = cα < cβ, so that if ever learning is efficient, it is individual 1 that learns ‘beta’. An
economy is denoted e = (θN , c) ∈ R3

+. Figure 6 below depicts the TMDM for this constricted
set of economies, if the domain of economies is reduced to the ones comprising two agents the
space from which profiles of preferences are drawn becomes the non-negative real orthant. We
will adhere to these assumptions for the rest of this section. Although we suspect our analysis
extends to the general case, in order to check that one would need to know precisely how the
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efficient linguistic assignment changes with the economy. For two agents this is immediate.
The combinatorial nature of the problem makes the acquisition of this piece of information
much more difficult in the general case. In what follows we look, in the two agent case, for
feasible Groves mechanisms that are Second-Best efficient.
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Figure 4. The vector of transfers
(ttmd1

ttmd2

)
for each profile (θ1, θ2) ∈ R+ according

to the TMDM in the two agent case. Agent 1 learns if θ1 + θ2 ≥ 0. She does
not otherwise.

In order to build a notion of Second-Best efficiency we will rely on Anonymity. Let τ :
{1, 2} → {1, 2} be such that τ(i) = j for each i, j ∈ N and θπ(N) denote the vector θN
permuted according to τ . In the two-agent setting Anonymity effectively requires that the
distribution of utility that an allocation induces does not depend on the agent specific cost that
learning entails. The axiom constitutes a minimal legitimacy requirement that all mechanisms
should naturally fulfill. Moreover, it focuses the exercise we are about to perform. A dictatorial
mechanism that always assigns all the surplus to a given individual will be Pareto undominated.
A criterion that aims at identifying optimal mechanisms needs to exclude such a perverse
phenomenon.

Anomymity For each e ∈ E , i ∈ N ,

ui
(
ϕi(θN , c); θi

)
= uτ(i)

(
ϕτ(i)(θτ(N), c)

)
.

We may now define the criterion that isolates the best-in-class mechanism. Let Φ be the set of
Strategy-Proof, Anonymous and Feasible mechanisms. For each pair of mechanisms ϕ,ϕ′ ∈ Φ,
ϕ Pareto dominates ϕ′ if and only if, for each e = (θN , c) ∈ R3

+, letting (lN , tN ) = ϕ(e) and
(l′N , t

′
N ) = ϕ′(e),

for each i ∈ N, vi(lN ; θi) + ti ≥ vi(l′N ; θi) + t′i, and
for some j ∈ N, vj(lN ; θj) + tj > vj(l

′
N ; θj) + t′j .

A mechanism ϕ ∈ Φ is Second Best Efficient if and only if there does not exist another
mechanism ϕ′ ∈ Φ such that ϕ′ Pareto dominates ϕ. Now that we have defined the notion we
intend to use to single out the best-in-class mechanism we may go back to the mechanism we
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proposed at the beginning of this section. Clearly the TMDM belongs to Φ but, is it a Second
Best Efficient mechanism? In order to answer this question we provide a simple necessary
condition for a mechanism to be Second Best Efficient.

A mechanism ϕ ∈ Φ satisfies Condition A if and only if for each e = (θN , c) ∈ R3
+ and each

i ∈ N , there does not exist ε > 0 such that(
lN (x), tN (x)

)
= ϕ

(
(x, θN\{i}), c

)
, and

for each x ≥ 0,
∑
j∈N

tj(x) + ε ≤ 0.

The following proposition states that if a mechanism is such that for some profile of pref-
erences no individual in the economy by unilaterally deviating and changing his announced
willingness to communicate can reach a new profile of preferences where the sum of transfers
prescribed by the mechanism is arbitrarily close to zero, then the aforementioned mechanism is
Pareto dominated. What is more, in order to construct the mechanism that Pareto dominates
it, so the proof goes, one needs only perturb the original mechanism ever so slightly.

Proposition 5. A mechanism ϕ ∈ Φ is Second Best Efficient only if it satisfies Condition A.

Proof. Suppose that ϕ ∈ Φ is Second Best Efficient. By way of contradiction let there
exist e′ = (θ′N , c

′) ∈ R3
+ and ε > 0 such that for some j ∈ {1, 2}(

l′N (x), t′N (x)
)

= ϕ
(
(x, θ′N\{j}), c

′), and

for each x ≥ 0,
∑
i∈N

t′i(x) + ε ≤ 0.

Without loss of generality, let j = 1. Consider the mechanism ϕ̂ constructed in the following
way: For each e =

(
(θ1, θ2), c

)
∈ R3

+ if either θ1 6= θ′2 or θ2 6= θ′2 or c 6= c′, then ϕ̂(e) = ϕ(e).

Otherwise, ϕ̂
(
(x, θ′2), c

′) =
(
l̂N (x), t̂N (x)

)
, where, for each x ≥ 0,

(i) l̂N (x) = l′N (x),

(ii) t̂1(x) = t′1(x) + ε and t̂2(x) = t′2(x),

Moreover for each x ≥ 0, ϕ̂
(
(θ′2, x), c′

)
=
((
l̂2(x), l̂1(x)

)
,
(
t̂2(x), t̂1(x)

))
. By assumption, ϕ

satisfies Strategy-Proofness and Anonymity. Hence, by construction, so does ϕ̂. By assumption,
ϕ satisfies Feasibilty. Hence, since the negation of Condition A is true, by construction, so does
ϕ̂. Therefore, ϕ̂ ∈ Φ. By construction, for each e ∈ E and each i ∈ {1, 2},

ui
(
ϕ̂(e); θi

)
≥ ui

(
ϕ(e); θi

)
.

Moreover, by construction, for each x ≥ 0,

u1

(
ϕ̂
(
(x, θ′2), c

′); θj) > u1

(
ϕ
(
(x, θ′2), c

′); θj).
Therefore, ϕ cannot be Second Best Efficient, a contradiction.

Refer to figure 4. It can be readily verified that the TMDM does not satisfy Condition A.
Indeed let us fix θ1 so that θ1 = θ′1 < c. The value of the sum of the transfers prescribed
by the TMDM then only depend on θ2. Compute it, for each θ2 ≥ 0. It is easy to check
that

∑
j∈N t

tmd
j (θ2) < 0. Moreover, the fact that the latter inequality is strict provides the

intuition behind Proposition 5. In fact, it must be possible to build a mechanism ϕ̂
(
(θ′1, x), c

)
=(

l̂N (x), t̂N (x)
)
, in such a way that, for each x ≥ 0, l̂N (x) = ltmdN (x), t̂1(x) = ttmd1 (x) and
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t̂2(x) = ttmd2 (x) + ε, is still feasible, for some ε > 0 and, by construction, Pareto dominates
ϕtmd. Moreover, Proposition 5 can be generalized to the N -agent case where it provides a
useful tool to rule out mechanisms that are Pareto dominated by some other mechanism.
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Figure 5. The vector of transfers
(tsbm1

tsbm2

)
for each profile (θ1, θ2) ∈ R+ according

to the SBM in the two agent case. Agent 1 learns if θ1 + θ2 ≥ 0. She does not
otherwise.

Interestingly, in the two-agent setting, by ruling out all the Pareto dominated mechanisms
we are left with only one Anonymous and Feasible Groves mechanism. For each c ∈ R+ figure
5 defines a Feasible mechanism, call it the Second Best Mechanism, or SBM. The mechanism
violates Individual Rationality at each (θN , c) ∈ E such that either θ1 < c or θ2 < c.

Proposition 6. A mechanism satisfying Strategy-Proofness, Anonymity and Assignment Ef-
ficiency is Second Best Efficient if and only if it is the SBM.

The proof can be found in Appendix 2. The subtlety of Proposition 6 becomes apparent
by comparing the SBM with the TMDM. The Pareto criterion does not rank the two. The
TMDM is preferred to the SBM by agent 1 in economy e = (θN , c) ∈ R3

+ such that θ1 ∈ (0, c2),
θ2 ∈ ( c2 , c) and θ1+θ2 > c. The mechanism that Pareto dominates the TMDM, hence rendering
it not Second Best Efficient, must be itself not Second Best Efficient.

7. Concluding remarks

This paper focuses on Groves mechanisms in a model of private goods with externalities.
Agents need a common language in order to communicate and the procedure that allows them
to acquire such a knowledge is costly. We first provide an algorithm that allows to single
out the set of efficient linguistic assignments (i.e., that maximize the sum of net benefits that
agents derive from communication) and then we tackle the issue of implementing one of such
assignments by mean of a Groves mechanism.

The externality present in the problem radically changes the characteristics of well-known
solutions like the Pivotal Mechanism that, in our framework, is no longer feasible. Indeed we
show that there is no Groves mechanism that is both Individually Rational and Feasible. This
fact forces us to explore two distinct venues.
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We first look at Groves mechanisms that are Individually Rational and among them we
single out the mechanism that minimizes the amount of money necessary to finance it. We
also provide quite general conditions under which an Individually Rational Groves mechanism
needs to resort on outside funding.

We then look at feasible Groves mechanisms. Even if it is relatively simple to find examples of
such mechanisms it proves to be an extremely more demanding task to single out mechanisms
that are Pareto Undominated. By focusing on the simpler but still meaningful domain of
economies comprising only two agents we are able to single out the only second best efficient
and feasible Groves mechanism.

Even if the paper focuses solely on Groves mechanisms, it is worth making the point that
there are interesting mechanisms not belonging to this class that merit further investigation
(see for example Moulin and Shenker [15] or Moulin [17]). To keep things simple let us maintain
the simplifying assumptions we made in the previous section. Consider the following simple
mechanism defined over two agent economies depicted in figure 6.
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Figure 6. The vector of transfers
(
t1
t2

)
for each profile (θ1, θ2) ∈ R+. Agent 1

learns if θ1 ≥ c
2 or θ2 ≥ c

2 . She does not otherwise.

Effectively, the mechanism asks agents to announce their willingness to communicate. If
the announcements are such that either θ1 <

c
2 or θ2 <

c
2 there is no learning and each agent

receives a transfer equal to zero. Otherwise, agent 1 learns and t1 = c
2 = −t2. This simple

mechanism satisfies Strategy-Proofness, Individual Rationality and Feasibility (in fact, the sum
of transfers equals zero in all two-agent economies). Alas, it violates Home-Schooling Proofness
and, thus, Assignment Efficiency. To see that, suppose that θ2 = 0 < c < θ1. The mechanism
prescribes to agent 1 to refrain from learning. Nonetheless, agent 1 can ensure a higher utility if
he deviates from the proposed allocation and learn. Aside from this deficiency, one should not
be hasty in dismissing the mechanism depicted in figure 4. Applying the reasoning employed
in the proof of Proposition 5, it can be demonstrated that it is Second Best Efficient. This
fact alludes to the existence of interesting mechanisms outside the Groves family and it is left
for future research.
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8. Appendix 1. Proofs of Propositions 3 and 4

By inspecting the proof of Proposition 2 (namely the lower bound set by inequality 5.3) the
following fact can be easily deduced. Let ϕ be an individually rational Groves mechanism. For
each e = (θN , C) ∈ E , with (lN , tN ) = ϕ(e), if

(8.1)
∑
i∈N

∑
j 6=i

vj(lN ; θj)−
∑
i∈N

∑
j∈N

vj(l
i
N ; θj)−

∑
i∈N

vi(l
i
N ; 0) = (|N |−1)π(lN , e)−

∑
i∈N

π(liN , e
i) ≥ 0,

then ∑
i∈N

ti ≥ 0.
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In what follows we assume without loss of generality that cα ≤ cβ, that Nα = {1, . . . ,m−1},
Nβ = {m, . . . , |N |} and that, for each λ ∈ {α, β} and for each i, j ∈ Nλ, if i < j, then θi ≥ θj .

Throughout his section lN ∈ Σ(e) and liN ∈ Σ(ei). Moreover, some times it will be more
convenient to denote lN representing explicitly the agents that actually learn at such a linguistic
assignment. So, for each e ∈ E and lN ∈ Σ(e) let I(lN ; e) = {i ∈ Nα|li = 1} and J(lN ; e) = {i ∈
Nβ|li = 1}. With a slight abuse of notation we will just write I(lN ; e) = I and J(lN ; e) = J so
that (I, J) is the set of agents who learn a foreign language at some efficient assignment lN .

Similarly, some times it will be more convenient to denote liN as (Ii, J i). For any Ĩ ⊆ Nα and

J̃ ⊆ Nβ we use z(Ĩ , J̃) to denote the value of such a structure in the economy e, i.e.,

z(Ĩ , J̃) = |Nβ|
∑
i∈Ĩ

θi + |Ĩ|
∑

j∈Nβ\J̃

θj + |Nα|
∑
j∈J̃

θj + |J̃ |
∑

i∈Nα\Ĩ

θi − |Ĩ|cα − |J̃ |cβ.(8.2)

Finally similar to z(Ĩ , J̃), for any Ĩ ⊆ Nα and J̃ ⊆ Nβ we use zi(Ĩ , J̃) to denote the value
of such a structure in the economy ei.

The following Lemmata are needed for the proofs of Propositions 3 and 4.

Lemma 6. For each i ∈ Nα, π(liN ; ei) ≤ π(l1N ; e1) + |Nβ|(θ1 − θi) and for each i ∈ Nβ,
π(liN ; ei) ≤ π(lmN ; em) + |Nα|(θm − θi).

Proof. Let (Ii, J i) be an optimal solution yielding a total surplus of π(liN ; ei). There are
three cases:

(1) i ∈ Ii: Since in ei we set θi to zero, this implies that, by Lemma 1, Ii = Nα and J i = ∅.
Therefore,

π(liN ; ei)− z1(Nα, ∅) = −|Nβ|θi + |Nβ|θ1
which implies

π(liN ; ei) = z1(Nα, ∅) + |Nβ|(θ1 − θi) ≤ π(l1N ; e1) + |Nβ|(θ1 − θi).
(2) i /∈ Ii, 1 ∈ Ii: Then

π(liN ; ei) = |Nβ|
∑
p∈Ii

θp + |Nα|
∑
j∈Ji

θj + |Ii|
∑

j∈Nβ\Ji
θj + |J i|

∑
p∈Nα\(Ii∪i)

θp − |Ii|cα − |J i|cβ.

Moreover

z1((Ii \ {1}) ∪ {i}, J i) = |Nβ|
∑

p∈(Ii\1∪{i})

θp + |Nα|
∑
j∈Ji

θj + |Ii|
∑

j∈Nβ\Ji
θj

+|J i|
∑

p∈Nα\(((Ii\{1})∪{i})∪{1})

θp − |Ii|cα − |J i|cβ.

Therefore,

π(liN ; ei)− z1((Ii \ {1}) ∪ {i}, J i) = −|Nβ|θi + |Nβ|θ1.
Therefore,

π(liN ; ei) ≤ π(l1N ; e1) + |Nβ|(θ1 − θi).
(3) i /∈ Ii, 1 /∈ Ii: Then, by Lemma 3, Ii = ∅. So,

π(liN ; ei) = |Nα|
∑
j∈Ji

θj + |J i|
∑

p∈Nα\{i}

θp − |J i|cβ.
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Moreover,

z1(∅, J i) = |Nα|
∑
j∈Ji

θj + |J i|
∑

p∈Nα\{1}

θp − |J i|cβ.

Therefore
π(liN ; ei)− z1(∅, J i) = |J i|(θ1 − θi).

Therefore,

π(liN ; ei) ≤ π(l1N ; e1) + |J i|(θ1 − θi) ≤ π(l1N ; e1) + |Nβ|(θ1 − θi).
The same argument may be employed for the proof of the second part of the statement.

Lemma 7. If 1 /∈ I1 then, for each i ∈ Nα, z(I1∪{1}, J1)−π(liN ; ei) ≥ |Nβ|θi+
∑

j∈Nβ\J1 θj−
cα. If m /∈ Jm then, for each i ∈ Nβ, z(Im, Jm∪{m})−π(liN ; ei) ≥ |Nα|θi+

∑
j∈Nα\Im θj−cβ.

Proof. If 1 /∈ I1 then, by definition, z(I1∪{1}, J1)−π(l1N ; e1) = |Nβ|θ1+
∑

j∈Nβ\J1 θj−cα.

Moreover from Lemma 6 we have that, for each i ∈ Nα, π(liN ; ei) ≤ π(l1N ; e1) + |Nβ|θ1−|Nβ|θi
and therefore z(I1 ∪{1}, J1)− π(liN ; ei) ≥ |Nβ|θi +

∑
j∈Nβ\J1 θj − cα. Similarly for the second

part of the statement.

An immediate consequence of Lemma 7 is that, If 1 /∈ I1, then
∑

i∈Ĩ(π(lN ; e) − π(ljN ; ei)) ≥∑
i∈Ĩ(z(I

1∪{1}, J1)−π(liN ; ei)) ≥ |Nβ|
∑

i∈Ĩ θi+ |Ĩ|
∑

j∈Nβ\J1 θj−|Ĩ|cα where Ĩ is any subset

of Nα. Similarly, if m /∈ Jm, then
∑

j∈J̃(π(lN ; e) − π(ljN ; ej)) ≥
∑

j∈J̃(z(Im, Jm ∪ {m}) −
π(ljN ; ej)) ≥ |Nα|

∑
j∈J̃ θj + |J̃ |

∑
i∈Nα\Im θi − |J̃ |cβ where J̃ is any subset of Nβ.

Lemma 8. If either I1 = Nα or Jm = Nβ, then any Individually Rational Groves mechanism
runs a deficit.

Proof. Suppose that I1 = Nα. By Lemma 6 we have that for each i ∈ Nα, π(liN ; ei) ≤
π(l1N ; e1) + |Nα|(θ1 − θi). Moreover, since by assumption (I1, J1) = (Nα, ∅), we have that
for each i ∈ Nα, zi(Nα, ∅) = π(l1N ; e1) + |Nα|(θ1 − θi). Combining the two statements we
obtain that for each i ∈ Nα, π(liN ; ei) ≤ zi(Nα, ∅). By definition, liN ∈ Σ(ei), therefore, for
each i ∈ Nα, π(liN ; ei) = zi(Nα, ∅). In turn, this latter fact implies that for each i ∈ Nα,

π(liN ; e) − π(liN ; ei) = |Nβ|θi. Moreover, since lN ∈ Σ(e), we have that for each i ∈ Nα,
π(lN ; e) ≥ π(liN ; e). Therefore, combining the last two steps we obtain∑

i∈Nα

(π(lN ; e)− π(liN ; ei)) ≥ |Nβ|
∑
i∈Nα

θi.(8.3)

Claim: There exists an optimal linguistic assignment for em, (Im, Jm), such that m /∈ Jm.
Suppose, by way of contradiction, that at all the optimal linguistic assignments for the economy
em, m ∈ Jm. Then, by Lemma 1, at any such linguistic assignment we must have Jm = Nβ.
Therefore, zm(Nβ, ∅) ≥ zm(∅, Nα), which is true only if |Nα|cα ≥ |Nβ|cβ. Moreover, since

I1 = Nα, by applying the same reasoning as before, we have that |Nα|cα ≤ |Nβ|cβ. Thus,

|Nα|cα = |Nβ|cβ and therefore the solution Im = Nα, Jm = ∅ is also optimal, a contradiction.
We may therefore apply Lemma 7. It yields∑

j∈Jm∪{m}

(z(Im, Jm ∪ {m})− π(ljN ; ej)) ≥



24 ON SHARING THE BENEFITS OF COMMUNICATION

|Nα|
∑

j∈(Jm∪{m})

θj + |Jm ∪ {m}|
∑

i∈Nα\Im
θi − |Jm ∪ {m}|cβ.(8.4)

Adding (8.3) and (8.4) we obtain∑
i∈Nα

(π(lN ; e)− π(liN ; ei)) +
∑

j∈Jm∪{m}

(z(Im, Jm ∪ {m})− π(ljN ; ej)) ≥ |Nβ|
∑
i∈Nα

θi

+|Nα|
∑

j∈(Jm∪{m})

θj + |Jm ∪ {m}|
∑

i∈Nα\Im
θi − |Jm ∪ {m}|cβ.(8.5)

Case 1. Let Im = Nα. By Lemma 6 we have that for each i ∈ Nβ, π(liN ; ei) ≤ π(lmN ; em) +
|Nα|(θm − θi). Moreover, since by assumption (Im, Jm) = (Nα, ∅), we have that for each
i ∈ Nβ, zi(Nα, ∅) = π(lmN ; em) + |Nβ|(θm − θi). Combining the two statements we obtain

that for each i ∈ Nβ, π(liN ; ei) ≤ zi(Nα, ∅). By definition, liN ∈ Σ(ei), therefore, for each

i ∈ Nβ, π(liN ; ei) = zi(Nα, ∅). In turn, this latter fact implies that for each i ∈ Nβ, π(liN ; e)−
π(liN ; ei) = |Nα|θi. Moreover, since lN ∈ Σ(e), we have that for each i ∈ Nβ, π(lN ; e) ≥
π(liN ; e). Therefore, combining the last two steps we obtain∑

i∈Nβ

(π(lN ; e)− π(liN ; ei)) ≥ |Nα|
∑
i∈Nβ

θi.(8.6)

Combining (8.3) and (8.6) we obtain

|N |π(lN ; e)−
∑
i∈N

π(liN ; ei) ≥ |Nβ|
∑
i∈Nα

θi + |Nα|
∑
i∈Nβ

θi.(8.7)

Clearly, |Nβ|
∑

i∈Nα θi + |Nα|
∑

i∈Nβ θi > π(lN ; e), so that inequality (8.7) becomes inequality
(8.1). This completes the proof for this case.

Case 2. Let Im ⊂ Nα. Therefore, the set Nα \ Im is not empty. At the optimal solution
corresponding to em, (Im, Jm), by resorting to Lemma 3, we obtain that for each i ∈ Nα \ Im,
θi +

∑
j∈Nβ\Jm∪{m} θj − cα ≤ 0. As θi ≥ 0, we get

∑
j∈Nβ\(Jm∪{m}) θj − cα ≤ 0.

By using this latter observation (8.5) becomes∑
i∈Nα

(π(lN ; e)− π(liN ; ei)) +
∑

j∈Jm∪{m}

(z(Im, Jm ∪ {m})− π(ljN ; ej)

≥ |Nβ|
∑
i∈Nα

θi + |Nα|
∑

j∈(Jm∪{m})

θj + |Jm ∪ {m}|
∑

i∈Nα\Im
θi

−|Jm ∪ {m}|cβ + |Im|
∑

j∈Nβ\(Jm∪{m})

θj − |Im|cα

= |Nβ|
∑

i∈Nα\Im
θi + z(Im, Jm ∪ {m}) ≥ z(Im, Jm ∪ {m}).(8.8)

Therefore, we obtain that∑
i∈Nα

(π(lN ; e)− π(liN ; ei)) + |Jm|z(Im, Jm ∪ {m})−
∑

j∈Jm∪{m}

π(ljN ; ej)) ≥ 0.

Since π(lN ; e) ≥ z(Im, Jm ∪ {m}), for each j ∈ N , π(lN ; e) ≥ π(ljN ; ej) and by assumption

|Jm| ≤ |Nβ|−1 we obtain that (|Nα|+|Nβ|−1)π(lN ; e)−
∑

i∈Nα π(liN ; ei)−
∑

j∈Nβ π(ljN ; ej) ≥ 0,

or, put differently, inequality (8.1). This completes the proof for this case.



ON SHARING THE BENEFITS OF COMMUNICATION 25

The same argument may be employed to prove the statement when Jm = Nβ.

Lemma 9. If 1 /∈ I1, m /∈ Jm and either I1∪{1} ⊇ Im or Jm∪{m} ⊇ J1 then any Individually
Rational Groves mechanism runs a deficit.

Proof. Since 1 /∈ I1 and m /∈ Jm then, by Lemma 7,∑
i∈I1∪{1}

(z(I1 ∪ {1}, J1)− π(liN ; ei)) +
∑
i∈J1

(z(Im, Jm ∪ {m} − π(ljN ; ej)))

≥ |Nβ|
∑

i∈(I1∪{1})

θi + |I1 ∪ {1}|
∑

j∈Nβ\J1

θj − |I1 ∪ {1}|cα

+|Nα|
∑
j∈J1

θj + |J1|
∑

j∈Nα\Im
θi − |J1|cβ.(8.9)

Since I1∪{1} ⊇ Im, thenNα\Im ⊇ Nα\(I1∪{1}). Thus |J1|
∑

j∈Nα\Im θi ≥ |J1|
∑

Nα\(I1∪{1}) θi.

Therefore, we may rewrite (8.9) as follows,∑
i∈I1∪{1}

(z(I1 ∪ {1}, J1)− π(liN ; ei)) +
∑
i∈J1

(z(Im, Jm ∪ {m})− π(ljN ; ej))

≥ |Nβ|
∑

i∈(I1∪{1})

θi + |I1 ∪ {1}|
∑

j∈Nβ\J1

θj − |I1 ∪ {1}|cα

+|Nα|
∑
j∈J1

θj + |J1|
∑

j∈Nα\Im
θi − |J1|cβ

≥ |Nβ|
∑

i∈(I1∪{1})

θi + |I1 ∪ {1}|
∑

j∈Nβ\J1

θj − |I1 ∪ {1}|cα

+|Nα|
∑
j∈J1

θj + |J1|
∑

j∈Nα\(I1∪{1})

θi − |J1|cβ

= z(I1 ∪ {1}, J1).(8.10)

Now, since π(lN ; e) ≥ z(I1 ∪ {1}, J1) and, for each j ∈ N , π(lN ; e) ≥ π(ljN ; ej), we obtain that

(|Nα|+ |Nβ| − 1)π(lN ; e)−
∑

i∈Nα π(liN ; ei)−
∑

j∈Nβ π(ljN ; ej) ≥ 0.

The same argument may be employed to prove the statement when Jm ∪ {m} ⊇ J1.

Putting Lemmata 8 and 9 together we obtain that following result.

Lemma 10. If I1 ∪ {1} ⊇ Im or Jm ∪ {m} ⊇ J1 then any Individually Rational Groves
mechanism runs a deficit.

Proof. If i ∈ I1 or m ∈ Jm, then the result follows from Lemma 8. Otherwise, all the
conditions of 9 are satisfied.

Proof of Proposition 3: Let cα ≤ cβ, |Nα| ≤ |Nβ| and assume that for some T > 0,

|Nβ| ≥ ζ(T, e) + 1 + cα
T +

cβ
T . Consider e1. There are three possibilities regarding J1. First,

J1 = ∅. By Lemma 10, the statement is true. Second, J1 = Nβ. Since by assumption
|Nβ|cβ ≥ |Nα|cα this solution yields at most the same surplus as (Nα, ∅). Thus, by Lemma

8, the statement is true. Finally, 1 ≤ |J1| < |Nβ|. This implies that 0 ≤ |I1| < |Nα|. As on
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both sides at least one agent is not learning from Lemma 3 it follows that
∑

k∈Nα\I1 θk ≤ cβ
and

∑
k∈Nβ\J1 θk ≤ cα, or

(8.11)
∑

k∈Nα\I1
θk +

∑
k∈Nβ\J1

θk ≤ cα + cβ.

Let, for each λ ∈ {α, β}, and each T > 0, ζλ(T, e) = |{i ∈ Nλ | θi < T}|. By construction, for
each T > 0, ζα(T, e) = ζα(T, e1) + 1. Therefore, for each T > 0,∑

k∈Nα\I1
θk ≥ T

(
|Nα \ I1| − ζα(T, e)− 1

)
.(8.12)

Similarly, for each T > 0,∑
k∈Nβ\J1

θk ≥ T
(
|Nβ \ J1| − ζβ(T, e)

)
.(8.13)

Combining, (8.11), (8.12) and (8.13) and noting that for each T > 0, ζ(T, e) = ζα(T, e) +
ζβ(T, e), we obtain

ζ(T, e) + 1 +
cα
T

+
cβ
T
≥ |Nα \ I1|+ |Nβ \ J1|.(8.14)

By recasting the previous equation we obtain

|I1|+ |J1| ≥ |Nα|+ |Nβ| − ζ(T, e)− cα
T
−
cβ
T
− 1.(8.15)

By assumption, for some T > 0, |Nβ| ≥ ζ(T, e)− cα
T −

cβ
T − 1, therefore

|I1|+ |J1| ≥ |Nα|.(8.16)

By assumption, cα ≤ cβ, therefore

cα|I1|+ cβ|J1| ≥ cα|I1|+ cα|J1| ≥ cα|Nα|.(8.17)

Therefore, z1(Nα, ∅) ≥ π(l1N ; e1) so that, by the definition of l1N , z1(Nα, ∅) = π(l1N ; e1). By
Lemma 8, the statement is true.

Proof of Proposition 4: Let cα ≤ cβ, |Nα| ≥ cβ
cα
|Nβ| and suppose that for some T > 0,

|Nα| ≥ cβ
cα

(
ζ(T, e) + 1

)
+

2cβ
T . Consider em. There are three possibilities regarding Im. First,

Im = ∅. By Lemma 10 the statement is true. Second, Im = Nα. Since, by assumption,
cα|Nα| ≥ cβ|Nβ| this solution yields at most the same surplus as (∅, Nβ). Thus, by Lemma 8,

the statement is true. Finally, 1 ≤ |Im| < Nα. This implies that 0 ≤ |Jm| < Nβ. As on both
sides at least some agent is not learning, from Lemma 3 it follows that

∑
k∈Nα\Im θk ≤ cβ and∑

k∈Nβ\Jm θk ≤ cα, or, since by assumption cα ≤ cβ,

(8.18) cα
∑

k∈Nα\Im
θk + cβ

∑
k∈Nβ\Jm

θk ≤ 2cαcβ.

Let, for each λ ∈ {α, β}, and each T > 0, ζλ(T, e) = |{i ∈ Nλ | θi < T}|. By construction, for
each T > 0, ζβ(T, e) = ζβ(T, e1) + 1. Therefore, for each T > 0,∑

k∈Nβ\Jm
θk ≥ T

(
|Nβ \ Jm| − ζβ(T, e)− 1

)
.(8.19)
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Similarly, for each T > 0, ∑
k∈Nα\Im

θk ≥ T
(
|Nα \ Im| − ζα(T, e)

)
.(8.20)

Combining, (8.18), (8.19) and (8.20) we obtain

cαT
(
|Nα \ Im| − ζα(T, e)

)
+ cβT

(
|Nβ \ Jm| − ζβ(T, e)− 1

)
≤ 2cαcβ,(8.21)

and after some algebraic manipulations,

cα|Nα| − cα
(
ζα(T, e) + 1

)
+ cβ|Nβ| − cβζβ(T, e) ≤ 2

cαcβ
T

+ cα|Im|+ cβ|Jm|(8.22)

Noting that for each T > 0, ζ(T, e) = ζα(T, e) + ζβ(T, e) and that, by assumption cα ≤ cβ, the
expression above becomes

cα|Nα| − cβ
(
ζ(T, e) + 1

)
+ cβ|Nβ| ≤ 2

cαcβ
T

+ cα|Im|+ cβ|Jm|(8.23)

Finally, dividing both sides by cβ > 0 we obtain

|Nα| −
cβ
cα

(
ζ(T, e) + 1

)
− 2

cβ
T

+
cβ
cα
|Nβ| ≤ |Im|+

cβ
cα
|Jm|(8.24)

By assumption, for some T > 0, |Nα| ≥ cβ
cα

(
ζ(T, e) + 1

)
+

2cβ
T , therefore

cβ
cα
|Nβ| ≤ |Im|+

cβ
cα
|Jm|, or cβ|Nβ| ≤ cα|Im|+ cβ|Jm|.(8.25)

Therefore, zm(∅, Nβ) ≥ π(lmN ; em) so that, by the definition of lmN , zm(∅, Nβ) = π(lmN ; em). By
Lemma 8, the statement is true.

9. Appendix 2. Proof of Proposition 5

Proposition 7. If a mechanism ϕ satisfies Strategy-Proofness, Anonymity and Assignment
Efficiency, then there exists some function f : R+ → R, such that for each e = (θN , c) ∈ E,
with (lN , tN ) = ϕ(e),

t1 =

{
v2(lN ; θ2) + f(θ2) if θ2 ≤ c,

f(θ2) if θ2 > c.

and

t2 =

{
v1(lN ; θ1) + f(θ1) if θ1 ≤ c,

f(θ1)− c if θ1 > c.

Proof. The domain of preference profiles is convex (and hence smoothly connected).
Once more we appeal to Holmstrom’s characterization [13]. A mechanism ϕ satisfies Strategy
Proofness and Assignment Efficiency if and only if there exists some function hi : R+ → R
such that for each e = (θN , c) ∈ E , with (lN , tN ) = ϕ(e), we have lN ∈ Σ(e), and, for each
i ∈ N ,

ti = vN\{i}(lN ; θN\{i})− hi(θN\{i})
Setting

hi(θN\{i}) =

{
−fi(θN\{i}) if θN\{i} ≤ c,

vN\{i}(lN ; θN\{i})− fi(θN\{i}) if θN\{i} > c,

we obtain, for each i ∈ N ,
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(9.1) ti =

{
vN\{i}(lN ; θN\{i}) + fi(θN\{i}) if θN\{i} ≤ c,

fi(θN\{i}) if θN\{i} > c.

Let θ ∈ [0, c2) and (lN , tN ) = ϕ
(
(θ, θ), c

)
. By Assignment Efficiency, lN = (0, 0). Hence,

using (9.1), we obtain u1
(
ϕ(lN , tN )

)
= f1(θ) and u2

(
ϕ(lN , tN )

)
= f2(θ). By Anonymity,

u1
(
ϕ(lN , tN )

)
= u2

(
ϕ(lN , tN )

)
. Hence,

(9.2) for each θ ∈ [0,
c

2
), f1(θ) = f2(θ).

Let θ ∈ [ c2 , c] and (lN , tN ) = ϕ
(
(θ, θ), c

)
. By Assignment Efficiency, lN = (1, 0). Hence, using

(9.1), we obtain u1
(
ϕ(lN , tN )

)
= θ− c+ [θ+ f1(θ)] and u2

(
ϕ(lN , tN )

)
= θ+ [θ− c+ f2(θ)]. By

Anonymity, u1
(
ϕ(lN , tN )

)
= u2

(
ϕ(lN , tN )

)
. Hence,

(9.3) for each θ ∈ [
c

2
, c], f1(θ) = f2(θ).

Let θ ∈ (c,+∞) and (lN , tN ) = ϕ
(
(θ, θ), c

)
. By Assignment Efficiency, lN = (1, 0). Hence,

using (9.1), we obtain u1
(
ϕ(lN , tN )

)
= θ − c + f1(θ) and u2

(
ϕ(lN , tN )

)
= θ + f2(θ). By

Anonymity, u1
(
ϕ(lN , tN )

)
= u2

(
ϕ(lN , tN )

)
. Hence, for each θ ∈ (c,+∞), f1(θ) = f2(θ) + c.

(9.4) for each θ ∈ (c,+∞), f1(θ) = f2(θ) + c.

Setting for each θ ∈ R+, f(θ) = f1(θ) and combining (9.1), (9.2), (9.3), (9.4), we obtain the
desired result.

Let Φg ⊂ Φ denote the set of Anonymous and Feasible Groves mechanisms. Appealing to
Proposition 7 we may associate with any ϕ ∈ Φg some function f : R+ → R. In addition, we
may express the sum of transfers prescribed by any ϕ ∈ Φg, at each profile, in terms of this
function f . For each e =

(
(θ1, θ2), c

)
∈ E , with (lN , tN ) = ϕ(e), we have

t1 + t2 = Sf (θ1, θ2) =


f(θ2) + f(θ1) if θ1 + θ2 ≤ c,

f(θ2) + θ2 + f(θ1) + θ1 − c if θ1 + θ2 > c and θ1, θ2 ≤ c,
f(θ2) + θ2 + f(θ1) if θ1 > c and θ2 ≤ c,

f(θ2) + f(θ1) + θ1 − c if θ1 ≤ c and θ2 > c,
f(θ2) + f(θ1)− c if θ1 > c and θ2 > c.

Proposition 8. Let ϕ ∈ Φg be a Groves mechanism associated with some function f : R+ → R.
If ϕ is Second Best Efficient, then for each c > 0, each θ′, θ′′ ∈ [0, c], with θ′ < θ′′,

f(θ′′) + θ′′ ≥ f(θ′) + θ′

Proof. Suppose not. Let there exist θ′, θ′′ ∈ [0, c], with θ′ < θ′′, and ε > 0 such that

(9.5) f(θ′′) + θ′′ + ε = f(θ′) + θ′.

Consequently, f(θ′)− [f(θ′′) + ε] = θ′′ − θ′. Since, by assumption, θ′′ − θ′ > 0, we obtain

(9.6) f(θ′) > f(θ′′) + ε

Define g : R+ → R to be such that g(θ) = f(θ), for each θ ∈ R+ \ {θ′′}, and g(θ′′) = f(θ′′) + ε.
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Using (9.5) and (9.6), we obtain for each θ1 ∈ R+, Sg(θ1, θ
′′) ≤ Sf (θ1, θ

′). Similarly, for each
θ2 ∈ R+, Sg(θ′′, θ2) ≤ Sf (θ′, θ2). By construction, for each (θ1, θ2) ∈ R2

+ such that θ1 6= θ′′

and θ2 6= θ′′, Sg(θ1, θ2) = Sf (θ1, θ2). By Feasibility, for each (θ1, θ2) ∈ R2
+, Sf (θ1, θ2) ≤

0. Therefore, for each (θ1, θ2) ∈ R2
+, Sg(θ1, θ2) ≤ 0. Let ϕ′ be some Anonymous Groves

mechanism that agrees with ϕ on the linguistic assignment on all economies and, moreover, is
associated with g. The mechanism ϕ′ satisfies Feasibility and, thus, ϕ′ ∈ Φ.
Finally, by construction, ϕ′ Pareto dominates ϕ at each profile (θ1, θ2) ∈ {(θ1, θ2) ∈ R2

+ :
either θ1 = θ′′ or θ2 = θ′′ or both}, while ϕ′ coincides with ϕ otherwise. Hence, ϕ′ Pareto
dominates ϕ, a contradiction.

Lemma 11. Let ϕ ∈ Φg be a Groves mechanism associated with some function f : R+ → R.
If ϕ is Second Best Efficient then, for each θ > c, f(θ) = c

2 .

Proof. Suppose first, by way of contradiction, that for some θ̃ > c, f(θ̃) > c
2 . By

Proposition 7, letting (lN , tN ) = ϕ
(
(θ̃, θ̃), c

)
, Sf (θ̃, θ̃) = 2f(θ̃) − c. By assumption, f(θ̃) > c

2 ,

therefore Sf (θ̃, θ̃) > 0, which contradicts Feasibility.

Suppose then that for some θ̃ > c, f(θ̃) < c
2 . In particular, let f(θ̃) = c

2 − ε, for some ε > 0.

Consider first profile (θ, θ̃), for some θ ∈ [0, c]. By Proposition 7, letting (lN , tN ) = ϕ
(
(θ, θ̃), c

)
,

Sf (θ, θ̃) = c
2 − ε+ f(θ) + θ − c. By Proposition 8,

Sf (θ, θ̃) =
c

2
− ε+ f(θ) + θ − c ≤ c

2
− ε− c+ [f(c) + c] =

c

2
− ε+ f(c).

Note that, by Feasibility, f(c) ≤ − c
2 . Hence,

Sf (θ, θ̃) =
c

2
− ε+ f(c) ≤ c

2
− ε− c

2
= −ε < 0.

Consider, finally, the profile (θ, θ̃), for some θ ∈ (c,+∞). Letting again (lN , tN ) = ϕ
(
(θ, θ̃), c

)
,

and appealing to Proposition 7, we obtain Sf (θ, θ̃) = c
2 − ε + f(θ) − c. We have already

established earlier in the proof that f(θ) ≤ c
2 . Hence, Sf (θ, θ̃) ≤ c

2 − ε + c
2 − c = −ε < 0.

Hence, for each θ ∈ R+, t1 + t2 < 0, which contradicts Condition A, a necessary condition for
Second-Best Efficiency.

Lemma 12. Let ϕ ∈ Φg be a Groves mechanism associated with some function f : R+ → R.
For each θ ∈ ( c2 , c], f(θ) ≤ c

2 − θ.

By Proposition 7, Sf (θ, θ) = 2f(θ)+2θ−c. By Feasibility, Sf (θ, θ) ≤ 0. Hence, f(θ) ≤ c
2−θ.

Lemma 13. Let ϕ ∈ Φg be a Groves mechanism associated with some function f : R+ → R.
If ϕ is Second Best Efficient then, for each θ ∈ [0, c2 ], f(θ) = 0.

Proof. Suppose, by way of contradiction, that there exists some θ̃ ∈ [0, c2 ] such that

f(θ̃) 6= 0. If f(θ̃) > 0 we would obtain Sf (θ̃, θ̃) = 2f(θ̃) > 0, a violation of Feasibility.

Therefore, it must be f(θ̃) < 0.

Step 1. Let θ ∈ (c,+∞). By Lemma 7, using the fact that θ̃ ∈ [0, c2 ] and θ ∈ (c,+∞), we
obtain

Sf (θ̃, θ) = f(θ) + f(θ̃) + θ̃ − c.
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By Lemma 11, using the fact that θ ∈ (c,+∞),

Sf (θ̃, θ) =
c

2
+ f(θ̃) + θ̃ − c = − c

2
+ θ̃ + f(θ̃).

By assumption, f(θ̃) < 0 and − c
2 + θ̃ ≤ 0, hence

for each θ ∈ (c,+∞), Sf (θ̃, θ) < 0.

Step 2. Let θ ∈ [0, c2 ]. By Proposition 7, using the fact that θ̃, θ ∈ [0, c2 ], we obtain

Sf (θ̃, θ) = f(θ) + f(θ̃)

and, in particular Sf (θ, θ) = 2f(θ). By Feasibility, Sf (θ, θ) ≤ 0. Hence, f(θ) ≤ 0. This latter

fact, combined with the assumption that f(θ̃) < 0, yields

for each θ ∈ [0,
c

2
], Sf (θ̃, θ) < 0.

Step 3. Let θ ∈ ( c2 , c]. By Proposition 7, using the fact that θ̃ ∈ [0, c2 ] and θ ∈ ( c2 , c], we obtain

Sf (θ̃, θ) = f(θ) + θ + f(θ̃) + θ̃ − c.
By Lemma 12, substituting for f(θ), we obtain

Sf (θ̃, θ) ≤ f(θ̃) + θ̃ − c

2
.

By assumption, f(θ̃) < 0 and θ̃ ∈ [0, c2 ], hence

for each θ ∈ (
c

2
, c], Sf (θ̃, θ) < 0.

Step 3. From Steps 1-3 we obtain that for each θ ∈ R+, Sf (θ̃, θ) < 0. This constitutes a
violation of Condition A, a necessary condition for Second-Best Efficiency.

Lemma 14. Let ϕ ∈ Φ be a Groves mechanism associated with some function f : R+ → R. If
ϕ is Second Best Efficient then, for each θ ∈ ( c2 , c], f(θ) = c

2 − θ.

Proof. Suppose, by way of contradiction, that there exist some θ̃ ∈ ( c2 , c] such that

f(θ̃) 6= c
2 − θ̃. Lemma 12 rules out f(θ̃) > c

2 − θ̃. Therefore, it must be f(θ̃) < c
2 − θ̃.

Step 1. Let θ ∈ (c,+∞). By Proposition 7, using the fact that θ̃ ∈ ( c2 , c] and θ ∈ (c,+∞), we
obtain

Sf (θ̃, θ) = f(θ) + f(θ̃) + θ̃ − c.
By Lemma 11, using the fact that θ ∈ (c,+∞) and substituting for f(θ), this becomes

Sf (θ̃, θ) = f(θ̃) + θ̃ − c

2
.

By assumption, f(θ̃) < c
2 − θ̃, hence

for each θ ∈ (c,+∞), Sf (θ̃, θ) < 0.

Step 2. Let θ ∈ [0, c] and θ̃ + θ ≤ c. By Proposition 7,

Sf (θ̃, θ) = f(θ) + f(θ̃).
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Since θ̃ + θ ≤ c and θ̃ ∈ ( c2 , c] it must be θ < c
2 . Therefore, by Lemma 13, f(θ) = 0.

Consequently, Sf (θ̃, θ) = f(θ̃). By assumption, f(θ̃) < c
2 − θ̃ and θ̃ > c

2 . Hence,

if θ̃ + θ ≤ c, then for each θ ∈ [0, c], Sf (θ̃, θ) < 0.

Step 3. Let θ ∈ [0, c] and θ̃ + θ > c. By Proposition 7,

Sf (θ̃, θ) = f(θ) + θ + f(θ̃) + θ̃ − c.

By assumption, f(θ̃) < c
2 − θ̃. Hence, substituting for f(θ̃) we obtain

Sf (θ̃, θ) < θ + f(θ)− c

2
.

Since θ ∈ [0, c], by Proposition 8, f(c) + c ≥ f(θ) + θ. Substituting for f(θ) + θ we obtain

Sf (θ̃, θ) < c
2 + f(c). By Lemma 12, f(c) ≤ − c

2 , so that

if θ̃ + θ > c, then for each θ ∈ [0, c], Sf (θ̃, θ) < 0.

Step 4. From Steps 1-3 we obtain that for each θ ∈ R+, Sf (θ̃, θ) < 0. This constitutes a
violation of Condition A, a necessary condition for Second-Best Efficiency.

The function f corresponding to the SBM mechanism is

f(θ) =

 0 if θ ≤ c
2

c
2 − θ if c

2 < θ ≤ c
c
2 if θ > c

The preceding results prove the only if part of Proposition 5. Let us then prove that the
SBM is indeed Second Best Efficient.

Lemma 15. If a mechanism ϕ is Strategy-Proof, then for each profile
(
(θ1, θ2), c

)
∈ E there

exists (p1, p2) ≤ (θ1, θ2) such that for each i ∈ {1, 2},
• if li = 0, letting

(
lN (x), tN (x)

)
= ϕ

(
(x, θN\{i}), c

)
, then for each x ≤ θi, li(x) = li = 0

and ti(x) = ti(0),
• if li = 1, letting

(
lN (x), tN (x)

)
= ϕ

(
(x, θN\{i}), c

)
, then for each x ≥ pi, li(x) = li = 1

and ti(x) = −pi + ti(0).

This lemma is implicit in Holmström [13]. An explicit proof can be found in Nisan et al
[19]. We omit the proof.

Lemma 16. If a mechanism ϕ′ ∈ Φ Pareto dominates the SBM, then ϕ′ ∈ Φ coincides with
the SBM at profiles (θ1, θ2) ∈ R2

+ such that either θ1, θ2 ≥ c
2 or θ1, θ2 ≤ c

2 .

Proof.
This follows straightforwardly from the fact that the SBM prescribes an efficient assignment

and a vector of transfers that sums up to zero at those profiles.

Proposition 9. There does not exist a mechanism ϕ′ ∈ Φ that Pareto dominates the SBM.
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By way of contradiction, suppose that some ϕ′ ∈ Φ Pareto dominates the SBM. By Lemma
16 if ϕ′ Pareto dominates SBM it must be so for some profile (θ1, θ2) ∈ [0, c2) × ( c2 ,+∞).
By Anonymity that will suffice, and we do not need to concern ourselves with (θ1, θ2) ∈
( c2 ,+∞)× [0, c2)?). Define for each c > 0, each θ1 ∈ [0, c2) and each x ≥ 0,(

lθ1N (x), tθ1N (x)
)

= ϕ′
(
(θ1, x), c

)
.

Step 1. Suppose that there exists ẽ =
(
(θ̃1, θ̃2), c

)
∈ [0, c2) × ( c2 ,+∞) × R+, with θ̃1 + θ̃2 > c,

such that
(
(0, 0)), t̃N

)
= ϕ′(e). By Strategy-Proofness and Lemma 15, t̃2 = tθ̃12 (0). By Lemma

16, tθ̃12 (0) = 0, the transfer the SBM prescribes at any economy
(
(θ̃1, 0), c

)
∈ E , with θ̃1 ∈ [0, c2).

Hence, we obtain

u2
(
ϕSBM (ẽ)

)
> u2

(
ϕ′(ẽ)

)
= 0.

This contradicts the fact that ϕ′ Pareto dominates the SBM.

Step 2. Suppose that there exists e =
(
(θ1, θ2), c

)
∈ [0, c2) × ( c2 ,+∞) × R+, with θ1 + θ2 > c,

such that
(
(1, 0)), tN

)
= ϕ′(e). By Lemma 15 there exists p ∈ [0, θ2] such that

• if x < p, then lθ1N (x) = (0, 0) and tθ12 (x) = tθ12 (0), and

• if x ≥ p, then lθ1N (x) = (1, 0) and tθ12 (x) = −p+ tθ12 (0).

By Lemma 16, using the same argument as in step 1, tθ12 (0) = 0. If p > c− θ1, at any profile
(θ1, θ

′
2), with θ′2 > θ2,

u2

(
ϕSBM

(
(θ1, θ

′
2), c

))
= θ′2 + θ1 − c > u2 =

(
ϕ′
(
(θ1, θ

′
2), c

))
= θ′2 − p.

This contradicts the fact that ϕ′ Pareto dominates the SBM.

Suppose then that p < c − θ1. By Lemma 15, there exists some economy e′′ =
(
(θ1, θ

′′
2), c

)
∈

[0, c2)× (p, c− θ1)×R+, such that
(
(1, 0), t′′N

)
= ϕ′(e′′). By Lemma 16 and Strategy-Proofness,

we obtain t′′2 = c
2 . Therefore,

u1

(
ϕ′
(
(θ1, θ

′′
2), c

))
= θ1 −

c

2
.

Moreover,

u1

(
ϕSBM

(
(θ1, θ

′′
2), c

))
=
c

2
− θ′′2 .

By construction, θ1 + θ′′2 < c. A simple algebraic manipulation over this inequality yields

θ1 −
c

2
<
c

2
− θ′′2 ,

which implies that

u1

(
ϕSBM

(
(θ1, θ

′′
2), c

))
> u1

(
ϕ′
(
(θ1, θ

′′
2), c

))
.

This contradicts the fact that ϕ′ Pareto dominates the SBM.

Step 3. Suppose that there exists e =
(
(θ1, θ2), c

)
∈ [0, c2) × ( c2 ,+∞) × R+, with θ1 + θ2 > c,

such that
(
(0, 1)), tN

)
= ϕ′(e). Applying the same reasoning as before, for some p ≥ c

2 and

some c+ ≥ c, we have u2
(
ϕ′(e)

)
= θ2 − c+ − p. We obtain

u2
(
ϕSBM

(
e)
)

= θ1 + θ2 − c > u2
(
ϕ′(e)

)
.
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This contradicts the fact that ϕ′ Pareto dominates the SBM.

Combining steps 1 to 3, the proof is complete.
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