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Abstract

Optimal R&D investment is defined by deep uncertainty that can only partially be addressed

through historical data. Thus, expert judgments expressed as subjective probability distribu-

tions are seen as an alternative way of assessing the potential of new technologies. In this paper

we propose a simple decision-theoretic framework that takes into account ambiguity over expert

opinion and helps decision makers visualize the full range of R&D outcomes given a particular

level of ambiguity. Our model is intuitive, captures decision makers’ ambiguity attitudes, and

enables simple sensitivity analysis across levels of ambiguity. We apply our framework to original

data from a recent expert elicitation survey on solar technology. The analysis suggests that am-

biguity plays an important role in assessing the potential of a breakthrough in solar technology

given different R&D investments.
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1 Introduction

Innovation is an uncertain process. The history of public R&D programs is paved with failures and

dead ends and, eventually, successes. Failures can derive from a funding tap closed too early, or from

the plain fact that the technology ultimately proves to be technically or economically infeasible. The

bottom line is that making decisions over competing R&D programs under budget constraints is an

important but considerably complex task. Above all, it is a task that needs to take into account

uncertainty.

Addressing the uncertainty of R&D programs is complicated by the fact that probabilities

of success are very hard to estimate. They tend to be functions of R&D investment itself, and

this endogeneity adds formidable challenges to their econometric estimation. Nonetheless, there

exists a vast literature, studying patent numbers and/or productivity levels, that provides empirical

support to the idea of a positive and strong relationship between R&D funding and innovation

both in general purpose innovation (Grossman and Helpman [15]) and more specifically in energy

innovation (Newell et al. [21], Popp [24]).

Although the positive relationship between R&D and technological breakthroughs is well es-

tablished, characterizing the probability of success given different levels of R&D expenditure is a

question that can only partially be addressed by past data. Historical information on costs, patents,

and R&D expenditure may be used to get an idea of the general trends, but research programs differ

vastly and are, most of the time, not reproducible. Therefore, to account for the uncertainty of

specific R&D programs it is often necessary to resort to expert judgments and subjective probabil-

ities. Structured expert judgment, pioneered in the Rasmussen Report on risks of nuclear power

plants (Rasmussen et al. [25]), derives probabilistic input for decision problems through experts’

quantification of their subjective uncertainties (Morgan and Henrion [19], Cooke [10], O’Hagan et

al. [23]). Experts’ probability distributions are elicited via transparent protocols and treated as

scientific data (Cooke [10]). The employed elicitation techniques involve recognizing and removing,

as much as possible, known psychological biases in judgment (Tversky and Kahneman [27, 28]).

They further incorporate consistency checks and structure the variables to be estimated in such a

way that experts are called to respond to cognitively simple assessment questions.

Expert elicitation methods have been used in a variety of contexts (Cooke [10]). Numerous

studies have attempted to elicit climate scientists’ opinions to characterize the probability associ-

ated to reactions of the climatic system as well as to climatic impacts (Nordhaus [22], Morgan et

al. [20], Vaughn and Spouge [29]). Recently, expert elicitation surveys have also been pursued in the
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assessment of energy technologies in relation to R&D budgets (the empirical focus of the present

paper). Baker et al. [1, 2], Baker and Keisler [3], and Curtright et al. [11] use expert elicitation to

investigate the uncertain effects of R&D investments on the prospect of success of carbon capture

and storage, hybrid electric vehicles, cellulosic biofuels, and solar PV technologies.

Despite its compelling features, expert elicitation often generates widely-divergent opinions

across experts, implying fundamentally different and competing views of how the innovation process

works. To overcome this difficulty, researchers typically aggregate over expert estimates in some

fashion and consider their average. Indeed, there is a rich decision-theoretic literature that studies

the many different ways such aggregations may be performed. In a critical survey of the literature,

Clemen and Winkler [8] broadly distinguish between (i) mathematical approaches and (ii) behavioral

approaches. Mathematical aggregation methods are primarily concerned with constructing a single

probability distribution on the basis of individual elicited distributions. This is usually pursued

either through axiomatic treatments of mathematical formulas of aggregation, or, where possible,

through Bayeasian statistical methods. A formidable amount of research has been pursued on

such mathematical methods of aggregation and the reader is referred to Clemen and Winkler [9]

for a comprehensive review. By contrast, behavioral approaches to expert aggregation involve the

direct interaction between experts in order to reach consensus on a single “group” estimate. This

interaction can be structured in a number of different ways according to the particular application

at hand. More information on this literature can be found in Clemen and Winkler [8].

We take a fundamentally different approach to the ones outlined above. Our model is inspired

by economic-theory advances in models of decision making under ambiguity and as such is not

concerned with determining a single probability distribution reflecting expert opinion. Instead,

it nests in a parametric fashion simple averaging and best/worst-case analysis and allows for an

expression of decision-makers’ beliefs regarding, and attitude towards, the underlying ambiguity in

expert opinion. Our paper is, to the best of our knowledge, the first attempt to develop and apply

a model of ambiguity aversion to the standard expert elicitation process.

Decision-theoretic models of ambiguity are designed to address situations in which a decision

maker is unable to posit precise probabilistic structure to physical and economic models. This

framework derives from the concept of uncertainty as introduced by Knight [17] to represent a

situation in which a decision maker lacks adequate information to assign probabilities to events.

Knight argued that this deeper kind of uncertainty is quite common in economic decision-making,

and thus deserving of systematic study. Knightian uncertainty is contrasted to risk (measurable or

probabilistic uncertainty) where probabilistic structure can be fully captured by a single Bayesian
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prior.1

In a seminal contribution, Gilboa and Schmeidler [14] developed the axiomatic foundations of

maxmin expected utility (MEU), a substitute of classical expected utility for economic environments

featuring unknown risk. They argued that when the underlying uncertainty of an economic system

is not well understood, it is sensible, and axiomatically sound, to optimize over the worst-case

outcome (i.e. the worst-case prior) that may conceivably come to pass. Ghirardato et al. [12] took

a step further and axiomatized a generalization of the Gilboa and Schmeidler model. A compelling

special example of their framework is their α-MEU model in which a decision maker’s preferences

are captured by a convex combination of the worst- and best-case expected payoffs over a set of

uncertain priors. The assigned weights vary parametrically, so that the more weight is placed on

an agent’s minimum payoff, the more ambiguity averse he is considered to be (when there is zero

weight on the best case we recover Gilboa and Schmeidler [14]).

The decision-theoretic model we propose in this work borrows from simplified versions of [14]

and [12]. It begins by positing a benchmark second-order distribution over expert opinion that as-

signs equal weight to each expert. Subsequently, we consider intuitive and mathematically straight-

forward enlargements of the set of possible second-order distributions by parametrizing over an

ambiguity parameter. This parameterization admits a practical interpretation in terms of the

maximum possible weight that can be assigned to a single expert. Next, given a metric of R&D

effectiveness, we calculate the best-and worst-case expected outcomes of a given level of R&D in-

vestment, subject to the feasible set of second-order distributions that is implied by assigned levels

of ambiguity. Finally, we follow Ghirardato et al. [12] and consider a convex combination of best

and worst-case expected outcomes as a reasonable way to model decision makers’ preferences under

ambiguity.

Our model’s simple mathematical structure allows for sharp quantitative insights and we inves-

tigate its theoretical properties in considerable depth. Using results from convex optimization and

duality theory, we are able to provide a closed-form expression for the best- and worst-case value

functions and establish their differentiability in the ambiguity parameter. These results may be of

independent mathematical interest and enable simple sensitivity analysis across different levels of

ambiguity and ambiguity attitude.

Before discussing the empirical application of our model, we would like to emphasize that we

1The interested reader is referred to Gilboa and Marinacci [13] for a comprehensive survey of the literature of

decision-making under ambiguity, a field of economic theory that is both vast and deep. In what follows, we focus

purely on the contributions that are directly relevant to our purposes.
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do not wish to oversell its theoretical virtues. Unlike the more fundamental literature on ambiguity

aversion (such as [14, 12, 16]) we do not pursue an axiomatic characterization of our framework.

Instead, we see the primary advantages of our approach as being those of transparency, intuitiveness,

and practicality. Admitting simple mathematical structure and easy interpretation/calibration, it

is a straightforward way of modelling ambiguity in expert elicitation, that managers and policy

makers alike may find useful in visualizing the set of possible alternatives and making informed

decisions given their particular beliefs about, and attitude towards, ambiguous expert opinion.

We base the empirical analysis of our paper on the ICARUS expert elicitation (for more infor-

mation see www.icarus-project.org and Bosetti et al. [5]) in which sixteen leading European experts

from the academic world, the private sector, and international institutions were interviewed to assess

the potential of R&D investments in solar technologies, both Photovoltaic (PV) and Concentrated

Solar Power (CSP). We use an integrated assessment model [6] to calculate the benefits of R&D

investment (in the form of lower future solar-electricitly costs) and use these estimates to inform

our assesment of the relevant R&D investment alternatives. Our subsequent analysis suggests that

ambiguity plays an important role in assessing the potential of a breakthrough in solar technology.

The policy implication we are able to cautiously draw is that more aggressive investment in solar

technology R&D is likely to yield significant dividends, even (or perhaps especially) after taking

ambiguity into account.

2 Expert Elicitation under Ambiguity

Consider a set N of N technological experts indexed by n = 1, 2, ..., N . R&D investment is denoted

by a variable r and the technology’s cost by c. An expert n’s probability distribution of the future

cost of technology given investment r is captured by a random variable Cn(r) having a probability

distribution function

πn(c|r).2 (1)

Expert beliefs over the economic potential of R&D investment may, and usually do, vary signifi-

cantly. The question thus naturally arises: How do we make sense of this divergence when studying

optimal R&D investment? In the absence of data that could lend greater credibility to one expert

2Note that the decision variables of our model (R&D investment) directly affect the subjective probability dis-

tributions of the technology’s costs. This means that our setting is not amenable to standard decision-theoretic

frameworks going back to Savage [26]. In particular, we cannot use the increasingly influential smooth ambiguity

model of Klibanoff et al. [16].
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over another and form the basis of a Bayesian analysis, one straightforward way would be to simply

linearly aggregate over all pdfs πn as given by Eq. (1), so that we obtain an “aggregate” joint pdf

π̄, where

π̄(c|r) =
N∑
n=1

1

N
πn(c|r). (2)

This approach inherently assumes that each and every expert is equally likely to represent reality,

and makes use of simple but powerful linear aggregation. While this is standard practice in the

expert elicitation literature, a great deal of information may be lost in such an averaging-out process,

especially when there are huge differences among experts.

Thus, we move beyond simple averaging and develop an intuitive decision-theoretic framework

based on second-order probabilities, associated to experts. Our model enhances transparency and

conveys a better and deeper understanding of the collected distributions, facilitating extensional

reasoning and shedding light on the credibility of the simple average.3 In addition, it allows for an

expression of decision makers’ attitude towards ambiguity.

In our framework each expert n’s pdf πn(c|r) is weighted by the decision maker through a

second-order probability pn. The set of admissible second-order distributions p depends on the

amount of ambiguity the decision maker is willing to take into account, a model input. Specifically,

we consider the set of second-order distributions P(b) over a set of n experts, parametrized by

b ∈ [0, N−1N ] where

P(b) =

{
p ∈ <N : p ≥ 0,

N∑
n=1

pn = 1,
N∑
n=1

(
pn −

1

N

)2

≤ b
}
. (3)

Here, the set P(b) measures the ambiguity of the experts’ subjective beliefs. Setting b = 0 implies

complete certainty and adoption of the equal-weight singleton, while b = N−1
N complete ambiguity

over the set of all possible second-order distributions.4

We now briefly explain the practical interpretation of an ambiguity level b in our model. Con-

sider the benchmark equal-weight distribution p = 1
N eN , where eN is a unit vector of dimension

N . Now take any expert ñ and begin increasing the second-order probability attached to her esti-

3Indeed, Larrick and Soll [18] argue that “The benefits of averaging may be appreciated at a deep level by careful

extensional reasoning –by imagining the space of possible outcomes and their implications.” Our hope is that our

contribution accomplishes exactly this purpose by providing a useful guide around the space of possible outcomes and

ultimately improving the understanding and appreciation of the average of experts’ judgments.
4The latter statement holds in light of the fact that values of b > N−1

N
cannot enlarge the feasible set. This is

because the maximizers of
∑N

n=1

(
pn − 1

N

)2
over the set of probability vectors concentrate all probability mass on

one expert, leading to an ambiguity level of
(
1− 1

N

)2
+ (N − 1) ·

(
1
N

)2
= N−1

N
.
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mate by an amount εb ≥ 0 so that pñ = 1
N + εb. The convexity of the feasible set P(b) implies that,

in order to maximize the value of εb (over the feasible set P(b)), we need to offset the increase of εb

in pñ by decreasing equally all pn n 6= ñ by an amount εb
N−1 . Subsequently, inclusion in P(b) implies

ε2b + (N − 1)

(
εb

N − 1

)2

≤ b ⇒ εb ≤

√
N − 1

N
b.

Thus, we are able to provide a tight upper bound on the maximum second-order probability p∗(b;N)

that can be placed on the estimate of any single expert, as a function of b:

p∗(b;N) = max
p∈P(b)

max
n∈N

pn =
1

N
+

√
N − 1

N
b. (4)

To provide a sense of what this would mean, increasing b from zero to 0.1 would imply a maximum

second-order probability p∗(b;N) of 0.48, 0.4, and 0.35 for N = 5, 10, and 20 experts, respectively.

Denote our cost domain by D and define the real-valued function

f (Cn(r), r) : D ×<+ 7→ <, n ∈ N ,

as representing a metric of the economic impact of investment r, under expert n. Individual metrics

across experts are collected in the vector-valued function

f = {f(C1(r), r), f(C2(r), r), ..., f(CN (r), r)}.

An example of a possible metric we could consider is:

f (Cn(r), r) = 1{Cn(r) ≤ z}, (5)

where 1 is an indicator function. In expectation it will be equal

E[1{Cn(r) ≤ z}] = Pr[Cn(r) ≤ z] =

∫
c∈D:c≤z

πn(c|r)dc,

which represents the probability of the cost the technology being less than or equal to a value z.

A different metric we could consider could be the net payoff of an investment r. Denoting the

payoff associated to a technology cost c by the function g(c), this would be given by

f(Cn(r), r) = g(Cn(r))− r. (6)

Now, given R&D investment r, metric f , and the set of second-order distributions P(b) introduced

in (3), we can calculate the worst- and best-case expected outcomes of our investment decision given

ambiguity b. This provides a measure of the spread, as measured by metric f , between the worst

7



and best-cases, given a “willingness” to stray from the benchmark equal-weight distribution that is

constrained by b. More formally, we calculate the value functions

Vmax(r|f, b) = max
p∈P(b)

N∑
n=1

pnE [f (Cn(r), r)] (7)

Vmin(r|f, b) = min
p∈P(b)

N∑
n=1

pnE [f (Cn(r), r)] . (8)

Plotting functions (7) and (8) over b ∈ [0, (N−1)/N ] gives decision makers a comprehensive picture

of the effectiveness of R&D investment r (as measured by metric f), and could potentially provide

novel insights that are not normally captured by simple averaging.

The value functions (7)-(8) fix a level of ambiguity b and subsequently focus on the absolute

best and worst-cases. As such they capture extreme attitudes towards ambiguity. To express more

nuanced decision-maker preferences we consider the following function

V (r|f, b, α) = α · Vmin(r|f, b) + (1− α) · Vmax(r|f, b) α ∈ [0, 1], (9)

representing a convex combination of the worst- and best-cases. The parameter α above captures

the decision maker’s ambiguity attitude. It measures his degree of pessimism given ambiguity b:

the greater (smaller) α is, the more (less) weight is placed on the worst-case scenario. Eq. (9) is

reminiscent of the α-maxmin model of Ghirardato et al. [12] and could operate as an objective

function when searching for optimal investment decisions.

3 Theoretical Analysis

In this section we focus on the decision maker’s optimization problems (7) and (8) and analyze

the behavior of functions Vmax and Vmin as we vary ambiguity levels b. Using results from convex

optimization and duality theory we are able to derive relatively simple closed-form expressions for

these functions and establish their differentiability in b. To the best of our knowledge these results

are novel, and could be of independent mathematical interest.

To avoid cumbersome notation, throughout this section we suppress dependence on f and r by

fixing a metric and an investment level as defined below:

xn ≡ E [f (Cn(r))] ,

Vmax(r|f, b) ≡ Vmax(b) = max
p∈P(b)

N∑
n=1

pnxn (10)

Vmin(r|f, b) ≡ Vmin(b) = min
p∈P(b)

N∑
n=1

pnxn. (11)
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Optimization problems (10) and (11) are conic programs with a simple structure and thus

amenable to rich analysis. We begin by proving that their optimal cost functions are continuous,

monotonic, and concave/convex in b.

Proposition 1 The function Vmax(b) (Vmin(b)) defined in Eq. (10) (Eq. 11) is increasing (decreas-

ing) and concave (convex) in b. Both functions are continuous in b.

Proof. See Appendix.

Before we state our next result we need to introduce some new notation. First, let Nk denote

the set of experts sharing the k’th order statistic of {x1, x2, ..., xN}. There are a total of kN such

sets where, depending on the problem instance, kN can be any number in {1, 2, ..., N}, and we

define Nk = |Nk|. Furthermore, let N+
k =

⋃kN
i=kNi, N

−
k =

⋃k
i=1Ni and N+

k =
∣∣∣N+

k

∣∣∣, N−k =
∣∣∣N−k ∣∣∣.

Our model structure enables us to easily show the following Lemma.

Lemma 1 Consider the optimization problems (10) and (11). Define ambiguity levels b∗max ≡
1

NkN
− 1

N and b∗min ≡ 1
N1
− 1

N . Vmax(b) is strictly increasing in [0, b∗max] and equal to maxn∈N xn in

[b∗max,
N−1
N ]. Vmin(b) is strictly decreasing in [0, b∗min] and equal to minn∈N xn in [b∗min,

N−1
N ].

Proof. See Appendix.

Lemma 1 suggests that b∗max and b∗min are important thresholds. They represent the level

of ambiguity above which the set P(b) allows for the maximum/minimum expert estimate to be

attained in the optimal solution of (10)/ (11). The closer b∗max and b∗min are to 0, the less relevant

the issue of ambiguity is. Our next result establishes that for levels of ambiguity smaller than

these extreme values, the optimal solutions of problems (10) and (11) will be unique and bind the

quadratic ambiguity constraint associated with set P(b).

Proposition 2 Suppose b ∈ [0, b∗max] and consider the optimization problem (10). There exists a

unique optimal solution pmax(b) and it must satisfy the quadratic ambiguity constraint with equality.

Equivalent results apply to the minimization problem (11).

Proof. See Appendix.

The following Lemma formalizes an straightforward property of the optimization problems we

are concerned with.

Lemma 2 Consider the optimization problem (10) for b1 ∈ [0, b∗max] and let pmax(b1) denote its

unique optimal solution. The following holds for any n ∈ N

pmaxn (b1) = 0 ⇒ pmaxn (b) = 0, for all b > b1. (12)
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If a level of ambiguity b > b∗max admits multiple optima, the above relation is understood to hold for

all optimal solutions pmax(b). Equivalent results apply to the minimization problem (11).

Proof. See Appendix.

Before stating our next result we define the following levels of ambiguity

bmax(k) = min
{
b : pmaxn (b) = 0, ∀n ∈ N−k

}
, k ∈ {1, 2, ..., kN − 1}, (13)

bmin(k) = min
{
b : pminn (b) = 0, ∀n ∈ N+

kN−k+1

}
k ∈ {1, 2, ..., kN − 1}. (14)

Lemma 2 implies that bmax(k) and bmin(k) can be interpreted in the following way. In the case of

problem (10), bmax(k) denotes the minimum level of ambiguity such that for all b ≥ bmax(k) no probability

mass is ever allocated to experts having an xn that is less than or equal to the k’th order statistic

of the xn’s. Conversely, in the case of problem (11), bmin(k) denotes the minimum level of ambiguity

such that for all b ≥ bmin(k) no probability mass is allocated to experts having an xn that is greater

than or equal to the (kN − k + 1)’th order statistic of the xn’s. Lemma 3 formalizes an intuitive

result with regard to these levels of ambiguity and the optimal solutions of (10) and (11).

Lemma 3 Ambiguity levels bmax(k) and bmin(k) , defined in Eqs. (13)-(14), are strictly increasing in k.

Proof. See Appendix.

We are now ready to prove the paper’s first main result. Theorem 1 formally establishes the

existence of a first derivative for functions Vmax(b) and Vmin(b) and provides a set of differential

equations that they must satisfy.

Theorem 1 The function Vmax(b) is differentiable on [0, b∗max) ∪ (b∗max, (N − 1)/N ]. Consider b ∈

(0, b∗max) and let pmax(b) denote the unique optimal solution of Vmax(b). Suppose that nk ∈ Nj.

Vmax(b) satisfies the following differential equation:

2
d

db
Vmax(b)

(
pmaxnk

(b)− 1

N
− b
)

= xnk
− Vmax(b), b ∈

[
0, bmax(j)

)
. (15)

Equivalent results apply for the function Vmin(b).

Proof. See Appendix.

Proposition 1, the argument in the proof of Lemma 2, and Theorem 1 lead to an immediately

corollary.
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Corollary 1 (a) Consider the optimization problem (10) for b ∈ (0, b∗max), and let pmax(b) denote

the unique optimal solution of Vmax(b). For any n ∈ N we have

xn > Vmax(b) ⇔ pmaxn (b) >
1

N
+ b. (16)

(b) Consider the optimization problem (11) for b ∈ (0, b∗min), and let pmin(b) denote the unique

optimal solution of Vmin(b). For any n ∈ N

xn > Vmin(b) ⇔ pminn (b) <
1

N
+ b. (17)

Now, recall the notation we introduced earlier regarding the sets Nk,N+
k , and N−k and their

cardinalities. Consider the following two systems of nonlinear equations, which play a central role

in the subsequent analysis.

System 1 (V ariables : C+, b+)

Case 1: kN ≥ 3.∑
n∈N xn

N
+ C+

1

√
b+1 =

∑
n∈N+

2
xn

N+
2

+ C+
2

√
N+

2 b+1 −
N−1
N

(18)

C+
1√
b+1

=
C+

2 N+
2√

N+
2 b+1 −

N−
1
N

(19)

∑
n∈N+

k
xn

N+
k

+ C+
k

√
N+

k b+k −
N−k−1

N
=

∑
n∈N+

k+1
xn

N+
k+1

+ C+
k+1

√
N+

k+1b
+
k −

N−k
N

, k = 2, 3, ..., kN − 2

(20)

C+
k N+

k√
N+

k b+k −
N−

k−1

N

=
C+

k+1N
+
k+1√

N+
k+1b

+
k −

N−
k
N

, k = 2, 3, ..., kN − 2 (21)

∑
n∈N+

kN−1
xn

N+
kN−1

+ C+
kN−1

√
N+

kN−1b
+
kN−1 −

N−kN−2

N
= max

n∈N
xn (22)

b+kN−1 = b∗max =
1

N+
kN

− 1

N
(23)

Case 2: kN = 2. ∑
n∈N xn

N
+ C+

1

√
b+1 = max

n∈N
xn (24)

b+1 = b∗max =
1

N+
2

− 1

N
(25)
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System 2 (V ariables : C−, b−)

Case 1: kN ≥ 3.∑
n∈N xn

N
+ C−1

√
b−1 =

∑
n∈N−

kN−1
xn

N−kN−1

+ C−2

√
N−kN−1b

−
1 −

N+
kN

N
(26)

C−1√
b−1

=
C−2 N−kN−1√

N−kN−1b
−
1 −

N+
kN
N

(27)

∑
n∈N−

kN−k+1
xn

N−kN−k+1

+ C−k

√
N−kN−k+1b

−
k −

N+
kN−k+2

N
=

∑
n∈N−

kN−k
xn

N−kN−k

+ C−k+1

√
N−kN−kb

−
k −

N+
kN−k+1

N

k = 2, 3, ..., kN − 2 (28)

C−k N−kN−k+1√
N−kN−k+1b

−
k −

N+
kN−k+2

N

=
C−k+1N

−
kN−k√

N−kN−kb
−
k −

N+
kN−k+1

N

, k = 2, 3, ..., kN − 2 (29)

∑
n∈N2−

xn

N−2
+ C−kN−1

√
N−2 b−kN−1 −

N+
3

N
= min

n∈N
xn (30)

b−kN−1 = b∗min =
1

N1
− 1

N
(31)

Case 2: kN = 2. ∑
n∈N xn

N
+ C−1

√
b−1 = min

n∈N
xn (32)

b−1 = b∗min =
1

N−1
− 1

N
(33)

Proposition 3 Systems 1 and 2 admit unique real-valued solutions (C+, b+) and (C−, b−).

Proof. See Appendix.

We are now ready to state our second main result and provide a closed-form expression for

functions Vmax(b) and Vmin(b).

Theorem 2 Consider the optimization problems (10) and (11) and denote the unique solution of

systems 1 and 2 by (C+, b+) and (C−, b−), respectively. The vectors b+ and b− satisfy

b+k = bmax(k) k ∈ {1, 2, ..., kN − 1}

b−k = bmax(k) , k ∈ {1, 2, ..., kN − 1}

12



where bmax(k) and bmin(k) are defined in Eqs. (13)-(14). The functions Vmax(b) and Vmin(b) are equal to

Vmax(b) =



∑
n∈N xn

N + C+
1

√
b b ∈ [0, b+1 )∑

n∈N+
k

xn

N+
k

+ C+
k

√
N+
k b−

N−
k−1

N b ∈
[
b+k−1, b

+
k

)
, k = 2, 3, ..., kN − 1

maxn∈N xn b ∈
[
b+kN−1,

N−1
N

]
,

(34)

Vmin(b) =



∑
n∈N xn

N + C−1
√
b b ∈ [0, b−1 )∑

n∈N−
kN−k+1

xn

N−
kN−k+1

+ C−k

√
N−kN−k+1b−

N+
kN−k+2

N b ∈
[
b−k−1, b

−
k

)
, k = 2, 3, ..., kN − 1

minn∈N xn b ∈
[
b−kN−1,

N−1
N

]
.

(35)

Proof. See Appendix.

Theorem 2 shows that Vmax and Vmin will be concatenations of properly-defined square-root

functions. These concatenations occur at levels of ambiguity bmax
(·) , bmin

(·) defined by Eqs. (13)-(14),

which can be computed through Systems 1 and 2.

We verify and illustrate Theorem 2 for the simple case in which kN = 2. We focus on Vmax

as the argument for Vmin is completely symmetric. That Vmax(b) = maxn∈N for b ≥ b∗max follows

by Lemma 1 so we proceed by considering b ∈ [0, b∗max). In this case, by first principles it is easy

to see that the optimal solution of (10) will increase the probability share of all experts n ∈ N2 by

an equal amount ε, which in turn will be offset by a uniform decrease in the probability shares of

experts n ∈ N1. Since by Proposition 2 the quadratic ambiguity constraint will bind, ε must satisfy

N2
ε2

N2
2

+ (N −N2)

(
εN2

N1

)2

= b ⇒ ε =

√
N1b

NN2
.

Thus, we may deduce that

Vmax(b) = N2

(
1

N
+

√
N1b

NN2

)
max
n

xn +N1

(
1

N
− N2

N1

√
N1b

NN2

)
min
n
xn

=

∑
n∈N xn
N

+

√
N1N2

N

(
max
n∈N

xn − min
n∈N

xn

)√
b, b ∈ [0, b∗max). (36)

On the other hand, solving for C+
1 in Eqs. (24) and (25), we obtain

C+
1 =

√
N1N2

N

(
max
n∈N

xn − min
n∈N

xn

)
,

so that Theorem 2 implies

Vmax(b) =

∑
n∈N xn
N

+

√
N1N2

N

(
max
n∈N

xn − min
n∈N

xn

)√
b, b ∈ [0, b∗max), (37)

which is consistent with Eq. (36).
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4 Empirical Application to Solar R&D

During the course of 2010-2011, the ICARUS survey collected expert judgments on future costs and

technological barriers of different Photovoltaic (PV) and Concentrated Solar Power (CSP) tech-

nologies.5 Sixteen leading European experts from academia, the private sector, and international

institutions took part in the survey. The elicitation collected probabilistic information on (1) the

year-2030 expected cost of the technologies; (2) the role of public European Union R&D invest-

ments in affecting those costs; and (3) the potential for the deployment of these technologies (both

in OECD and non-OECD countries). We refer readers interested in the general findings of the

survey to Bosetti et al. [5] and we focus here on the data on future costs as they form the basis of

our analysis.

Computing the subjective probability distributions. Current 5-year EU R&D investment in

solar technology is estimated at 165 million US dollars. The ICARUS study elicited the probabilistic

estimates of the 16 experts on the 2030 solar electricity cost (2005 c$/kWh) under three future

Scenarios: (1) keeping current levels of R&D constant until 2030, (2) increasing them by 50%,

and (3) increasing them by 100%. Experts were asked to provide values for the 10th, 50th, and

90th percentile of their distributions for the 2030 cost of solar technology conditional for all three

scenarios. In addition, they were asked to provide values for the probability of this cost being

less than or equal to the following three values: 11.3, 5.5, and 3c$/kWh. These “threshold” cost

levels correspond to projections of the costs of electricity from fossil fuels or nuclear in 2030. The

first (11.27 c$/kWh) corresponds to the 2030 projected cost of electricity from traditional coal

power plants in the presence of a specific policy to control CO2 emissions (thus effectively doubling

electricity costs from fossil sources). The second threshold cost (5.5 c$/kWh) is the projected cost

of electricity from traditional fossil fuels in 2030, without considering any carbon tax. Finally, the

third (3 c$/kWh) reflects a situation in which solar power becomes competitive with the levelized

cost of electricity from nuclear power.

Asking experts the follow up question on the likelihood of reaching threshold cost targets

allowed the survey authors to guard against the cognitive pitfalls associated with direct elicitation of

subjective probabilities, to increase the amount of elicited information, and to deepen the discussion

with the expert, hence improving their perception of the experts’ beliefs. In cases where the two

5The survey is part of a 3-year ERC-funded project on innovation in carbon-free technologies (ICARUS - Innova-

tion for Climate chAnge mitigation: a study of energy R&D, its Uncertain effectiveness and Spillovers www.icarus-

project.org).
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sets of answers (percentile values and threshold probabilities) were inconsistent, experts were asked

follow-up questions in order to obtain coherent estimates. Finally, each expert was requested to

give values for the upper and lower limits of his/her distribution’s support in order to pinpoint the

intervals over which his/her implied probability distributions range.

Such corrected estimates were obtained from 14 out of the original 16 experts, and therefore

the analysis that follows focuses solely on them. Among the respondents, not all provided values on

the left and right endpoints of their distributions’ support. As a result, we deduced between 6 and 8

points of 14 experts’ cumulative distribution functions (cdf) of the 2030 cost of solar electricity, given

the aforementioned three R&D investment Scenarios. From these points a probability distribution

function (pdf) was constructed using linear interpolation in the following way. First of all, and in

accordance with the experts’ answers, we considered cost levels c lying in [2c$/kWh, 30c$/kWh]

and discretized this interval on a scale of 0.5. Now, suppose an expert reported the values of

his/her cdf Fn at two successive points c1 and c2 where c2 > c1 and gave no further information

on cost levels between c1 and c2. Assuming right-continuity of Fn we took the probability mass

Fn(c2)−Fn(c1) to be distributed uniformly among the cost levels {c1 + .5, c1 +1, ..., c2}. For experts

who did not provide values for the lower limit of their distribution’s support we assumed that

whatever probability mass remained to be allocated (always less than .1) was distributed uniformly

between the smallest argument of the cdf and two cost levels below it. For example, if an expert

only indicated that cl was his y’th percentile and gave no further points of the cdf below this, we

assumed that a probability mass of y was distributed evenly across {cl − 1, cl − .5, cl}. In the case

of an unknown upper limit, if an expert only indicated that cu was his yth percentile and gave no

further arguments for the cdf above it, we assumed that a probability mass of 1− y was distributed

evenly across {cu + .5, cu + 1}.

Following this procedure we arrived at a probability distribution function (pdf) for each expert

n ∈ {1, 2, ..., 14}, given the three relevant levels of R&D investment (Scenarios) denoted by r ∈

{r1, r2, r3} (here ri refers to Scenario i). We use these pdfs as our subjective probability distributions

of the cost of technology as denoted in Eq. (1). Figure 1 plots the cumulative distribution functions

(cdfs) implied by these pdfs as well as the cdf that the aggregate pdf (2) leads to, under all three

Scenarios.

[FIGURE 1 here]

As one can see in Figure 1 there is considerable disagreement between experts over the potential

of solar technology. This disagreement is particularly acute under Scenario 1, and diminishes as R&D
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levels increase. Nonetheless, the breakthrough nature of innovation and the need to cross certain

firm cost thresholds, means that ambiguity in expert estimates remains an important concern, even

under Scenario 3.

Determining the breakthrough cost level. Expected returns on solar technology R&D invest-

ments are quantified via a general equilibrium intertemporal model of the economy that can account

for a range of macro-economic feedbacks and interactions. These include the effects of energy and

climate change policies, the competition for innovation resources with other power technologies, the

effect of growth, as well as a number of other factors.6 The integrated assessment model (IAM) is

run over the whole range of possible 2030-costs of solar power we are considering (recall that our

cost domain is D = {2, 2.5, 3, ..., 29, 29.5, 30}). Subsequently, simulation results are compared to the

benchmark case in which the cost of solar power is so high that the technology is not competitive

with alternative production modes. For each possible 2030 solar-power cost, the payoff to the EU

is quantified by the discounted EU-consumption improvement with respect to the case where solar

technology is not competitive. Table 1 summarizes the results.

2030 solar-power cost Payoff

(2005 USc$/kWh) (US$ 109)

2 160

2.5 143

3 125

3.5 108

4 90

4.5 73

5 54

5.5 36

6 17

6.5 16

7 7

7.5 1

8 0.5

> 8 0

Table 1: EU discounted consumption improvement as a function of 2030 solar-power cost

6The analysis is carried out using the World Induced Technical Change Hybrid (WITCH) model (Bosetti et al. [6]),

an energy-economy-climate model that has been used extensively for economic analysis of climate change policies.

See www.witchmodel.org for a list of applications and papers.
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Three important assumptions are at the basis of the numbers reported here. First, as the

survey concentrated on public EU R&D investment and the effects of increasing it, we disregard

spillovers and technological transfers to the rest of the world and consider only the consumption

improvement for Europe. Second, we evaluate the benefit of alternative 2030 costs of solar power

assuming that no carbon policy is in place and that no special constraints on other technologies

are imposed (e.g., a partial ban on nuclear technology). Third, we are assuming a specific value

for the discount rate. Although our choice is well in the range of discount rates adopted for large

scale public projects, it is important to note that the cost threshold for positive payoffs is robust

for a wide range of more myopic discount rate values.7 In addition, the first two assumptions are

in the direction of minimizing the benefits of R&D investments so that our results would be (most

probably substantially) reinforced when one or both assumptions are relaxed.

Averaging across experts. We begin our analysis by focusing on the aggregate probability

distribution described by Eq. (2) as applied to our context. We measure the effectiveness of R&D

through a number of different metrics and their expected values: technology cost, probability of

breakthrough, payoff g(C) (measured as EU discounted consumption improvement, as per Table 1),

and internal rate of return IRR(C). Table 2 summarizes our results.

Metric f(C, r) Expected Value Units Scenario 1 (r1) Scenario 2 (r2) Scenario 3 (r3)

C E[C] USc$/kWh 11.67 9.58 7.76

1 {C ≤ 7.5} Pr[C ≤ 7.5] pure number .146 .341 .530

g(C) E[g(C)] US$ 109 2.8 8.6 19.2

IRR(C) E[IRR(C)] pure number .056 .124 .235

Table 2: Expected R&D effectiveness under Scenarios 1,2, and 3, as measured by different metrics,

using aggregate pdf (2).

Given that the maximum (discounted) R&D expenditures we consider (under Scenario 3) are

approximately equal to 1.4 109 US$8 it is clear that all three Scenarios imply a positive net return

on investment. Doubling current R&D efforts results in an expected internal rate of return greater

than 20%, much larger than the 5.6% return for the status quo level of investments. However, a

word of caution is warranted. Although we decided to adopt a conservative set of assumptions in

7We discount cash flows using a 3% discount rate. Although using higher discount rates, say 5%, would obviously

lead to lower cash flows, results would not change in qualitative terms as the threshold for positive payoffs remains

8c$/kWh.
8We arrive at this number by considering Scenario 3’s implied 5-year levels of R&D expenditure (330 million

2005US$) and taking their discounted (at 3%) sum over 5 time periods.
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evaluating these alternative investment prospects, we should stress that we are assessing them from

a social planner, rather than firm level, perspective. Hence, it is relatively unsurprising that the

long-term social benefits of a possible breakthrough in solar technology significantly outweigh their

cost. That said, public R&D spending has to face tough competition from other public programs, as

opportunity costs are large. In order to decide to double spending, policy makers might decide not

to trust their average effectiveness as captured by (2), but rather consider alternative possibilities,

e.g. by weighting more conservative or pessimistic experts, in order to avoid planning fallacies. They

may therefore wish to use a tool that helps them grasp the full picture of their investment decisions,

rather than considering one single probabilistic estimate. This is what our simple decision-analysic

framework aims at.

Modeling ambiguity. Up to this point we have simply averaged across experts and used the

average distribution of Eq. (2) to obtain the results presented in Table 2. We now shift the focus of

our analysis to explicitly account for ambiguity in expert opinion and adopt the decision-theoretic

model introduced in Section 2. We focus on a specific metric, i.e. the probability of a breakthrough

in the cost of solar electricity, as described by Eq. (5). However, we note that an equivalent analysis

can obviously be undertaken for any other metric f , such as for example those quoted in Table 2.

As we observed earlier in Table 1, our IAM analysis suggests that, under a set of conservative

assumptions, a breakthrough takes place once the cost of solar electricity reaches a threshold of

z =7.5 c$/kWh. Once this cost target has been attained and surpassed, solar technology begins to

be adopted in a big way, generating huge gains in EU welfare and consumption.

So let us see how different levels of R&D investment fare in helping the EU attain this break-

through cost target, given the inherent ambiguity of experts’ estimates.9 To wit, Figure 2 plots

best- and worst-case breakthrough probabilities, as given by Eqs. (7) and (8) applied to metric (5)

for z = 7.5c$/kWh. We focus first on Scenario 1 and verify that, in agreeement with Table 2, pure

aggregation of expert opinion (corresponding to an ambiguity b = 0) yields a breakthrough proba-

bility of approximately 0.15. Subsequently we see that the worst-case probability reaches its lowest

point of 0 relatively quickly at b ≈ .2 (p∗(b;N) ≈ 50%), whereas the best-case one peaks at 0.45 at

b ≈ 0.3 (p∗(b;N) ≈ 60%). This means that all uncertainty regarding the worst- and best-cases has

been resolved once b exceeds 0.3: at that level of ambiguity the tradeoffs become completely clear

and a decision-maker with preferences consistent to Eq. (9) will not care to consider higher levels of

ambiguity. Under Scenario 2, the unambiguous probability of breakthrough rises to a value of about

9We perform all computations in Mathematica.
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0.34. Subequently, we see that the worst-case probability of breakthrough drops sharply between

b = 0 and b = 0.15 (p∗(b;N) ≈ 44%) from 0.34 to around .04, at which point it keeps decreasing

at a small rate until it reaches zero at around b ≈ .4. Conversely the best-case probability rises

sharply to about 0.7 for b ≈ .2 (p∗(b;N) ≈ 50%) at which point it continues to rise at a smaller

rate until it reaches a value of 0.9 at the maximum ambiguity level of b = 13/14. Under Scenario

3 the unambiguous probability is around 0.53, significantly higher than both other Scenarios. The

worst-case probability drops relatively smoothly to a minimum value of 0.05 for b = 13/14, whilst

the best-case one rises to 0.9. It is evident that ambiguity is still important under Scenario 3, for

both the worst- and best-case probability of breakthrough, albeit less so than under Scenarios 1

and 2. This fact is particularly interesting in light of Panel c in Figure 2, which shows experts’ cdfs

clustered relatively close to one another.

[FIGURE 2 here]

We bring attention to the three points of the best and worst-case curves of Figure 2 at which they

intersect each other, denoted by P1, P2, and P3. Denote the x-coordinates of these points by b̂1, b̂2,

and b̂3 respectively. At point P1 the best-case breakthrough probability under Scenario 1 is equal

to the worst-case probability under Scenario 2. This implies that for levels of ambiguity satisfying

b ≤ b̂1 ≈ .015 (p∗(b;N) ≈ 19%) the investment decision of Scenario 1 can never be preferable

to that of Scenario 2. Conversely, at point P2 the best-case probability of a breakthrough under

Scenario 2 is equal to the worst-case one under Scenario 3. Thus, for levels of ambiguity satisfying

b ≤ b2 ≈ .012 (p∗(b;N) ≈ 17%) investment under Scenario 3 is unambiguously preferred to that of

scenario 2. Finally, point P3 suggests that investment under scenario 3 will always be preferable to

that of 1 for ambiguity b ≤ b3 ≈ .089 (p∗(b;N) ≈ 36%).

We briefly comment on the potential policy implications of Figure 2. Policy makers are in-

terested in a breakthrough that would make solar technology competitive with most other power

technologies. Let us suppose that probability of success of 20% represents a kind of a minimum

cutoff point that any public investment should satisfy. Under the aggregate distribution (2), the

investment decision of Scenario 1 would fail to meet this requirement. At this point one could

conceivably claim that by only looking at the probability averaged across experts one is being too

severe with Scenario 1. Looking at Figure 2, however, these reservations are rapidly dispelled. Even

for an ambiguity level b = .3, which implies the possibility of granting to a single expert a weight of

almost 60%, the best-case probability of breakthrough is only around 40%. Conversely, the worst-

case probability drops to zero much more rapidly. Thus the decision to reject this R&D program
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on the basis of the 20% probability of success threshold seems robust. In Scenario 2, focusing

on the simple average can indeed be misleading, as the aggregatte probability of breakthrough of

around 35% could lead to overly optimistic conclusions. For this level of R&D expenditure, expert

consensus is very small and allowing for even small levels of ambiguity leads to very different policy

recommendations, depending on the decision maker’s ambiguity attitude. On the other hand, the

picture is much clearer under Scenario 3. Here, the worst-case breakthrough probability decreases

much more slowly so that it falls below 20% only for b ≥ 0.27 (p∗(b;N) ≈ 57%), at which point the

respective best-case probability exceeds 75%. Hence the 20% probability of success threshold seems

to be a relatively safe bet under Scenario 3.

We now consider the comprehensive effect of Scenarios 1, 2, and 3 given all possible levels of

ambiguity b and ambiguity attitude α. Figure 3 plots the value function (9) for all three Scenarios

over all b ∈ [0, (N − 1)/N ] and α ∈ [0, 1]. This allows policy makers to visualize the effects of

all three R&D investment decisions on the probability of breakthrough over the entire range of

possible ambiguity levels and ambiguity attitudes. The picture that emerges confirms our earlier

claims. Scenario 3 fares much better than both 1 and 2 over a very wide range of b and α. Moreover,

it results in significantly less variation across α than Scenario 2, suggesting that it represents a more

robust policy decision.

[FIGURE 3 here]

We conclude this section with a necessary qualification of our results. Focusing purely on

breakthrough probabilities as a metric of R&D effectiveness means that we are only considering the

potential benefits of R&D investments, and not their costs. It is thus no surprise that Scenario 2

outperforms Scenario 1 and Scenario 3 outperforms both 1 and 2. In theory, different metrics that

explicitly consider the cost of R&D investments could very well yield more complex tradeoffs and

therefore more complex versions of Figures 2 and 3. However, for the application at hand, even

considering metrics such as net payoff, as defined in Eq. (6), would yield results qualitatively similar

to those presented above. The main reason behind this fact is that, as we mentioned earlier, the

cost of the R&D programs, even under the more aggressive Scenario 3, is greatly exceeded by the

potential long-term benefits to society of reducing the cost of solar power (recall Table 1).
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5 Conclusion

Determining the optimal portfolio of government R&D is an important task, especially at times of

public funding scarcity. As R&D programs imply uncertain returns, it is important to assess these

investments using probabilistic tools. Expert elicitation can play an important role in this process

if used to capture in a transparent and objective way subjective probabilities that can be used as

scientific data. At the same time, gathered information can vary substantially across experts. In

particular, if the elicitation is designed correctly is should exactly aim at covering all prevailing

“visions” about that specific technology. The different backgrounds and perspectives that experts

bring to the elicitation process imply that collected subjective probability distributions could, more

often than not, span a wide spectrum.

Averaging across experts’ probability distributions is a widely-used procedure in addressing

such divergence in expert opinion. Still, condensing all of the problem’s uncertainty into one single

average probability distribution, especially in cases where Bayesian learning methods cannot be

applied, may conceal important imformation and yield policy recommendations that are not robust.

To deal with this issue, in this paper we proposed and analyzed a simple decision-theoretic framework

inspired by the economic-theory literature on ambiguity aversion. Our model helps decision makers

visualize the full range of outcomes associated with a particular R&D investment and make informed

decisions given their particular beliefs about, and attitude towards, ambiguous expert opinion. We

applied our framework to original data from a recent expert elicitation survey on solar technology.

The analysis suggested that more aggressive investment in solar technology R&D is likely to yield

substantial benefits even (or rather especially) after ambiguity over expert opinion has been taken

into account.

We conclude by noting that, while this paper has been motivated by the issue of R&D allocation,

the model and analysis presented herein are general and can be applied to any context of decision

making under ambiguity.

Appendix

Proof of Proposition 1. We prove the Proposition for Vmax(b) (the argument for Vmin(b) is

exactly analogous). That Vmax(b) is increasing in b follows by definition. Consider the optimization

problems given by the right-hand-side of Eq. (10) for b1 ∈ [0, N−1N ] and b2 ≥ b1 and denote their
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optimal solutions by pmax(b1) and pmax(b2) respectively. By feasibility we may note the following:

N∑
n=1

(
pmaxn (b1)−

1

N

)2

≤ b1,
N∑
n=1

(
pmaxn (b2)−

1

N

)2

≤ b2. (38)

Consider a convex combination of b1 and b2 given by b(λ) = λb1 + (1− λ)b2 for some λ ∈ [0, 1] and

the optimization problem

Vmax(b(λ)) = max
p∈P(b(λ))

N∑
n=1

pnxn. (39)

To prove concavity of Vmax in b it suffices to show that

Vmax(b(λ)) ≥ λVmax(b1) + (1− λ)Vmax(b2).

To this end, consider the probability vector given by

p(λ) = λpmax(b1) + (1− λ)pmax(b2).

Dy feasibility of pmax(b1) and pmax(b2) we immediately deduce that p(λ) ≥ 0 and that
∑N
n=1 pn(λ) =

1. Now we may write

N∑
n=1

(
pn(λ)− 1

N

)2

=
N∑
n=1

(
λ

(
pmaxn (b1)−

1

N

)
+ (1− λ)

(
pmaxn (b2)−

1

N

))2

triangle ineq.

≤

λ( N∑
n=1

(
pmaxn (b1)−

1

N

)2
) 1

2

+ (1− λ)

(
N∑
n=1

(
pmaxn (b2)−

1

N

)2
) 1

2


2

(38)

≤
[
λ
√
b1 + (1− λ)

√
b2
]2 concavity of

√
·

≤
[√

λb1 + (1− λ)b2

]2
= b(λ). (40)

By Eq. (40) and the observations immediately preceding it we can conclude that p(λ) is feasible for

optimization problem (39). Thus we may write

Vmax(b(λ)) ≥
N∑
n=1

p(λ)nxn = λ
N∑
n=1

pmaxn (b1)xn + (1− λ)
N∑
n=1

pmaxn (b2)xn

= λVmax(b1) + (1− λ)Vmax(b2),

where the last equality follows from the assumed optimality of pmax(b1) and pmax(b2). We now

proceed to show continuity. By concavity Vmax(b) will be continuous on the open interval (0, N−1N )

so we need only consider the endpoints 0 and N−1
N . Since Vmax(b) is increasing in b we must have

limb→(N−1
N

)− Vmax(b) ≤ Vmax(N−1N ). However, if limb→(N−1
N

)− Vmax(b) < Vmax(N−1N ) then we reach

a contradiction if we apply concavity to (N − 1)/N and other values of b.

22



To prove continuity at b = 0 consider an ε > 0. Now let δ > 0 and write

|Vmax(δ)− Vmax(0)| = Vmax(δ)− Vmax(0) =
N∑
n=1

(
pmaxn (δ)− 1

N

)
xn

≤ max
n∈N
|xn|

N∑
n=1

∣∣∣∣pmaxn (δ)− 1

N

∣∣∣∣
Hölder’s ineq.

≤ max
n∈N
|xn|

[
N∑
n=1

(
pmaxn (δ)− 1

N

)2
] 1

2

≤ max
n∈N
|xn|
√
δ.

Thus, any choice of 0 < δ < ε2

(maxn∈N |xn|)2 will ensure that |Vmax(δ)− Vmax(0)| < ε, completing the

proof.

Proof of Lemma 1. The function Vmax(b) is bounded above by xn for any n ∈ NkN . This upper

bound is attained by a probability vector p if and only if it satisfies∑
n∈Ñ

pn = 1, for some Ñ ⊆ NkN (41)

Denote by P̃ the set of all probability vectors satisfying (41). Consider the vector p∗ ∈ P̃ satisfying

(recall that |Nk| = Nk)

p∗n =


1

NkN
n ∈ NkN

0 otherwise,
(42)

By convexity of the ambiguity constraint it is clear that p∗ = argminp∈P̃
∑N
n=1

(
pn − 1

N

)2
, so that

min
p∈P̃

N∑
n=1

(
pn −

1

N

)2

=
∑

n∈NkN

(
1

NkN

− 1

N

)2

+
∑

n/∈NkN

1

N2

= NkN

(
1

NkN

− 1

N

)2

+ (N −NkN )
1

N2
=

1

NkN

− 1

N
≡ b∗max.

It is clear that for b > b∗max this same vector p∗ will remain feasible for optimization prob-

lem (10), and thus optimal. Hence Vmax(b) will be equal to maxn∈N xn on b ≥ b∗max. Now consider

b < b∗max and the optimal solution pmax(b). As b < b∗max there must exist a j 6= NkN such that

pmaxj (b) > 0. Now consider increasing b by an amount ε. For δ > 0 small enough the solution p̃max

in which p̃j = pmaxj − δ and p̃k = pmaxk + δ for some k ∈ NkN will be feasible and result in a strictly

greater objective value, so that Vmax(b + ε) > Vmax(b). Equivalent reasoning applies to the Vmin

case.
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Proof of Proposition 2. Suppose first that b = b∗max. It is clear here that the unique optimal

solution is given by pmax such that pmaxn = 1/NkN for all n ∈ NkN and pmaxn = 0 otherwise. The

quadratic ambiguity constraint binds by the definition of b∗max.

Consider now the case b < b∗max and suppose there exists an optimal solution pmax such that

the quadratic ambiguity constraint is slack. As b < b∗max there must exist an j 6= NkN such that

pmaxj (b) > 0. For ε > 0 small enough the solution p̃max in which p̃j = pmaxj − ε and p̃k = pmaxk + ε

for some k ∈ NkN will be feasible and result in a strictly greater objective value, contradicting

pmax’s optimality. Thus, all optimal solutions must satisfy the quadratic ambiguity constraint with

equality.

We now prove uniqueness. Suppose there exist two optimal solutions pmax,1 and pmax,2. By

the preceding argument they must bind the quadratic ambiguity constraint. Consider the set of

probability vectors given by their convex combinations

p(λ) = λpmax,1 + (1− λ)pmax,2, λ ∈ [0, 1].

For λ ∈ (0, 1), p(λ) will satisfy the ambiguity constraint with strict inequality, since:

N∑
n=1

(
pn(λ)− 1

N

)2

=
N∑
n=1

(
λ

(
pmax,1n − 1

N

)
+ (1− λ)

(
pmax,2n − 1

N

))2

strict convexity

<
N∑
n=1

[
λ

(
pmax,1n − 1

N

)2

+ (1− λ)

(
pmax,2n − 1

N

)2
]

= λ
N∑
n=1

(
pmax,1n − 1

N

)2

+ (1− λ)
N∑
n=1

(
pmax,2n − 1

N

)2

= λb+ (1− λ)b = b.

Thus all solutions p(λ) are feasible. That they are optimal follows trivially by the assumed opti-

mality of pmax,1,pmax,2 and the linear objective function of (10). But this is a contradiction as all

optimal solutions must satisfy the quadratic ambiguity constraint with equality.

Proof of Lemma 2. Suppose b1 ≤ b∗max, consider Vmax(b1)’s unique optimal solution pmax(b1),

and define the set N0(b1) = {n ∈ N : pmaxn (b1) = 0}. By optimality, we must have that

max
n∈N0(b1)

xn < min
n6∈N0(b1)

xn. (43)

If the above were not true we could pick an expert n 6∈ N 0(b1) satisfying xn < maxn∈N0(b1) xn

and give his entire probability mass to the expert in N0(b1) with the maximum xn. This would
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maintain feasibility and strictly increase the objective function value. Eq. (43) implies that for

values b > b1, which represent enlargements of the feasible set and thus admit solutions that assign

zero probability to all n ∈ N0(b1), it will never be optimal to assign positive probability to experts

in N0(b1).

Proof of Lemma 3. Follows immediately from Eq. (43) and the reasoning in the proof of

Lemma 2.

Proof of Theorem 1. We prove the result for Vmax; the argument for Vmin is exactly analogous.

For convenience, we begin by restating the optimization problem (10):

Vmax(b) = max
p

N∑
n=1

xnpn

subject to:

N∑
n=1

(
pn −

1

N

)2

≤ b

N∑
n=1

pn = 1

p ≥ 0. (44)

Introducing Lagrangian multipliers we write the Karush-Kuhn-Tucker (KKT) conditions:

xn − 2λ

(
pn −

1

N

)
+ µ+ νn = 0, n ∈ {1, 2, ..., N} (45)

λ

(
N∑

n=1

(
pn −

1

N

)2

− b

)
= 0, λ ≥ 0 (46)

N∑
n=1

(
pn −

1

N

)2

≤ b,
N∑

n=1

pn = 1, p ≥ 0 (47)

νnpn = 0, νn ≥ 0, n ∈ {1, 2, ..., N}. (48)

Since our problem is concave with affine equality constraints and satisfies Slater’s condition (see

section 5.2.3 in [7]), strong duality holds and the KKT conditions (45)-(48) will be necessary and

sufficient for both primal and dual optimality. In other words, the duality gap is zero and the

vector (p∗,ν∗, λ∗, µ∗) satisfies (45)-(48) if and only p∗ and λ∗,ν∗, µ∗ are primal and dual optimal

respectively (see section 5.5.3 in [7]).

From Proposition 2 we know that there exists a unique primal optimal solution p∗. Since

strong duality holds, the Lagrangean dual problem admits an optimal solution, and we refer to it

by λ∗,ν∗, µ∗. We now argue that this dual optimal solution will also be unique. Since b < b∗max
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there must exist at least two experts n1 and n2 such that min{p∗n1
, p∗n2

) > 0 and p∗n1
6= p∗n2

. Thus,

the complementary slackness conditions (48) immediately imply ν∗n1
= ν∗n2

= 0. Applying Eq. (45)

to n = n1 and n = n2 yields a nondegenerate linear system of two equations with two unknowns,

which uniquely define the optimal dual variables λ∗ and µ∗.10 Subsequently, applying Eqs. (45)

and (48) to all n /∈ {n1, n2} uniquely determines ν∗n for all n /∈ {n1, n2}.

With the above in mind, consider b ∈ (0, b∗max) and let (pmax(b),νmax(b), λmax(b), µmax(b))

denote the unique primal and dual optimal solutions for problem (44). Since the primal problem

is a quadratically constrained quadratic program (QCQP) its Lagragean dual will admit a similar

structure as the one presented in Equation 5.29 in [7] and its objective function is linear and

thus convex and differentiable in b. The above facts, in combination with the uniqueness of the

optimal dual variables for any choice of b ∈ (0, b∗max), imply that we can apply Danskin’s theorem

(see Proposition B.25 in Bertsekas [4]) to deduce that the optimal cost of the Lagrangean dual is

differentiable in b in the open interval (0, b∗max).11 Thus, by strong duality Vmax(b) will also be

differentiable at all b ∈ (0, b∗max) (that it is differentiable at the left endpoint of the domain b = 0

follows by continuity). Now let us restrict ourselves to the open interval (0, b∗max). Since Vmax(b)

is differentiable and strong duality holds we follow Section 5.6.3 in Boyd and Vandenberghe [7] to

deduce the following simple relation:

d

db
Vmax(b) = λmax(b), b ∈ (0, b∗max). (49)

Eq. (49) means that we can now focus on calculating the Lagrange multiplier λmax(b). Before we

do so we note the following useful identity

N∑
n=1

(
pmaxn (b)− 1

N

)2

=
N∑
n=1

pmaxn (b)

(
pmaxn (b)− 1

N

)
− 1

N

N∑
n=1

pmaxn (b)︸ ︷︷ ︸
=1

+
N∑
n=1

1

N2

=
N∑
n=1

pmaxn (b)

(
pmaxn (b)− 1

N

)
. (50)

Multiplying both sides of Eq. (45) by pmaxn (b) and then summing over all n = 1, 2, .., N obtains

N∑
n=1

xnp
max
n (b)− 2λmax(b)

N∑
n=1

pmaxn (b)

(
pmaxn (b)− 1

N

)
+ µmax(b)

N∑
n=1

pmaxn (b) = 0

10Note how this argument fails in the case of b ∈ {0, b∗max}.
11The attentive reader will note that the Lagrangean dual’s domain as given in Equation 5.29 of [7] is unbounded

and thus not compact, so that we cannot directly invoke Danskin’s theorem as stated in Bertsekas [4]. But the absence

of compactness here is not a problem because of the special structure of the set of primal-dual optimal solutions that

must satisfy (45)-(48), so that the proof of Bertsekas [4] carries through with only one or two minor modifications.

Details available upon request.
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(50)⇒
N∑
n=1

xnp
max
n (b)− 2λmax(b)

N∑
n=1

(
pmaxn (b)− 1

N

)2

+ µmax(b) = 0

Prop. 2⇒ µmax(b) = 2λmax(b) · b−
N∑
n=1

xnp
max
n (b) (51)

Now we consider Eq. (45) for expert nk ∈ Nj . By Eq. (13) and Lemma 2 we must have pmaxnk
(b) >

0 for b ∈
[
0, bmax(j)

)
. Substituting the value of µmax(b) obtained in Eq. (51), and applying the

complementary slackness condition (48) we obtain

xnk
− 2λmax(b)

(
pmaxnk

(b)− 1

N

)
=

N∑
n=1

xnp
max
n (b)− 2λmax(b) · b

(49)⇒ 2
d

db
Vmax(b)

(
pmaxnk

(b)− 1

N
− b
)

= xnk
− Vmax(b), b ∈

[
0, bmax(j)

)
. (52)

Proof of Proposition 3. We focus System 1; the argument for System 2 is exactly analogous.

The result is trivially true for kN = 2 so we focus on the case of kN ≥ 3. We prove the result by

backwards induction. The base case of j = kN − 1 is immediate as Eqs. (22) and (23) uniquely

determine C+
kN−1 and b+kN−1. Now, suppose that the result is true for all j ≥ kN−k+1 and consider

j = kN − k. We distinguish between two cases.

Case 1: k < kN − 1. In this case, kN − k > 1 and Eqs. (20) and (21) apply. By the induction

hypothesis C+
kN−k+1 is uniquely determined. Focusing on Eq. (21) for kN −k and solving for C+

kN−k

yields:

C+
kN−k =

√
N+
kN−kb

+
kN−k −

N−
kN−k−1

N

N+
kN−k

C+
kN−k+1N

+
kN−k+1√

N+
kN−k+1b

+
kN−k −

N−
kN−k

N

. (53)

Plugging (53) into Eq. (20) for kN − k yields:

C+
kN−k+1

√
N+

kN−k+1b
+
kN−k −

N−kN−k

N

1−
N+

kN−k+1

N+
kN−k

·
N+

kN−kb
+
kN−k −

N−
kN−k−1

N

N+
kN−k+1b

+
kN−k −

N−
kN−k

N

 =

∑
n∈N+

kN−k
xn

N+
kN−k

−

∑
n∈N+

kN−k+1
xn

N+
kN−k+1

.

(54)

After some algebra Eq. (54) leads to the following equation, which uniquely determines b+kN−k:

C+
kN−k+1N

+
kN−k+1

N

N−
kN−k−1

N+
kN−k

−
N−

kN−k

N+
kN−k+1√

N+
kN−k+1b

+
kN−k −

N−
kN−k

N

=

∑
n∈N+

kN−k
xn

N+
kN−k

−

∑
n∈N+

kN−k+1
xn

N+
kN−k+1

. (55)
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Note that Eq. (55) is well-defined since∑
n∈N+

kN−k
xn

N+
kN−k

−

∑
n∈N+

kN−k+1
xn

N+
kN−k+1

< 0,
N−kN−k−1
N+
kN−k

−
N−kN−k
N+
kN−k+1

< 0.

Moreover, Eq. (55) implies that

b+kN−k >
N−kN−k

NN+
kN−k+1

⇒ b+kN−k >
N−kN−k−1
NN+

kN−k
. (56)

Solving Eq. (55) for b+kN−k and plugging in the result to (53) yields a unique real-valued solution

also for C+
kN−k.

12

Case 2: k = kN−1. In this case, kN−k = 1 and Eqs. (20) and (21) apply. An identical argument

as the one for Case 1 establishes the uniqueness of b+1 and C+
1 .

Proof of Theorem 2. We focus on on Vmax and System 1; the argument for Vmin and System 2

is exactly analogous. Recall the definition of bmax(k) of Eq. (13). Consider first b ∈ (0, bmax(1) ) so that

pmaxn (b) > 0 for all b ∈ (0, bmax(1) ) and n ∈ N . Adding Eqs. (52) for all n ∈ N yields the following

differential equation

−2Nb
dVmax(b)

db
= −NVmax(b) +

∑
n∈N

xn, b ∈ (0, bmax(1) ). (57)

Solving differential equation (57) leads to the following expression:

Vmax(b) = C1

√
b+

∑
n∈N xn
N

, b ∈ [0, bmax(1) ), (58)

where C1 is a constant. Consider now b ∈ [bmax(k−1), b
max
(k) ) for k ∈ {2, 3, ..., kN − 1}. In this range of

b we will have pmaxn (b) > 0 if and only n ∈ N+
k . Adding Eqs. (52) for all such n ∈ N+

k yields the

following differential equation

2

(
N−k−1
N
−N+

k b

)
dVmax

db
=

∑
n∈N+

k

xn −N+
k Vmax(b), b ∈ [bmax(k−1), b

max
(k) ) (59)

Solving differential equation (59) gives the following:

Vmax(b) =

∑
n∈N+

k
xn

N+
k

+ Ck

√
N+
k b−

N−k−1
N

, b ∈
[
bmax(k−1), b

max
(k)

)
, (60)

12Note that (56) ensures that C+
kN−k will be real-valued.
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where Ck is a constant, for k ∈ {2, 3, ..., kN − 1}. Finally since bmax(kN−1) = b∗max we use Lemma 1 to

conclude

Vmax(b) = max
n∈N

xn, b ∈
[
bmax(kN−1),

N − 1

N

]
. (61)

Putting together Eqs. (58) (60) and (61) we see that Vmax will equal

Vmax(b) =



∑
n∈N xn

N + C1

√
b b ∈

[
0, bmax(1)

)∑
n∈N+

k
xn

N+
k

+ C+
k

√
N+
k b

+
k −

N−
k−1

N b ∈
[
bmax(k−1), b

max
(k)

)
, k = 2, 3, ..., kN − 1

maxn∈N xn b ∈
[
bmax(kN−1),

N−1
N

] (62)

for appropriately chosen constants (C1, C2, ..., CkN−1) and (b(1), b(2), ..., b(kN−1). By Proposition 1

and Theorem 1, Vmax is continuous everywhere and differentiable in
[
0, bmax(kN−1)

)
. Thus, the vectors

(C1, C2, ..., CkN−1) and (b(1), b(2), ..., b(kN−1) must fulfill these criteria of continuity and differentia-

bility and are thus uniquely determined by the system of equations (18)-(23).
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Figure 1: Expert and aggregate cdfs of the 2030 cost of solar technology under the three R&D

Scenarios. Recall that the cdf’s domain is {2, 2.5, ..., 29, 29.5, 30}
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Figure 3: Plotting Eq. (9), applied to breakthrough probability under the three R&D Scenarios, as

a function of ambiguity b and ambiguity attitude α.
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