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1 Introduction

We live in a connected world. We produce and consume goods and services that have gone through networks.

Airlines, railroads, computer networks, and social networks are a few examples. However, those goods and

services are not always beneficial to everyone. For example, firms may earn less profits because the products

of their rival firms are brought to markets through supply chains. Revenue services may earn less tax revenue

because taxable assets are transferred through financial networks and can be concealed in other countries.

Websites and network service providers may suffer from malicious software sent through the Internet. Coun-

tries and their citizens may suffer from hazardous materials carried through transportation systems. In these

contexts, competing products, concealed assets, malicious software, and hazardous materials are viewed as

bads, as opposed to goods, because they are harmful to some economic agents. The possibility of bads being

carried through networks motivates our model of network interdiction.

There are two players, say an adversary and an agency, interacting strategically in a given network. The

adversary is given a bounded quantity of bads at a base node and plans to carry bads to a target node. The

adversary chooses a flow of bads that specifies a plan for carrying bads through the network from the base

to the target. The agency is operating the network and wishes to stop the transport of bads to the target.

The agency chooses a blockage of arcs that specifies a plan for stopping the transport of bads through the

network. The bads carried to the target cause a target loss while the blocked arcs cause a network loss.

The adversary earns and the agency loses from both target loss and network loss. The adversary incurs the

expense of carrying bads.

In this model we analyze the equilibrium behavior of the players. If the bounded quantity of bads is small,

there are pure strategy Nash equilibria. In these equilibria, the adversary carries bads up to the bounded

quantity in a dispersed way through the network, but the agency does not block any arcs. If the bounded

quantity of bads is either intermediate or large, there are mixed strategy Nash equilibria in which each player

chooses only two pure strategies with positive probability. In these equilibria, the adversary carries no bads

or carries a positive amount of bads to the target. Meanwhile, the agency blocks no arcs or blocks all the

arcs necessary to make the target unreachable through the network. From this analysis we learn which arcs

the agency blocks and how often she blocks them. We also learn how the adversary carries bads through the

network and how often he does.

In these Nash equilibria, the adversary successfully carries bads to the target if and only if the adversary

carries a positive amount of bads to the target and the agency does not block any arcs. By computing the

probability of this joint event, we calculate the equilibrium probability of the target loss. If the bounded

quantity of bads is either intermediate or large, there is a power law relation between the probability and

the extent of the target loss. This theoretical finding is consistent with empirical evidence.1

1In empirical research Bohorquez et al. [5] and Clauset et al. [6] show that the fatality distribution of terrorist events follows

a power law.
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This paper contributes to the game theory literature by introducing noncooperative behavior into a Kalai-

Zemel network flow model. Kalai and Zemel [14] define a (transferable utility) cooperative game, called a

flow game, where the worth of a coalition is defined as the value of a maximum flow in the network restricted

to the members of the coalition.2 Their main result is that a cooperative flow game is totally balanced and

thus has a nonempty core (that is, there are distributions of the total payoff of the game that are stable

against the formation of coalitions). The core of a flow game depends on the structure of a network and the

ownership of arcs in the network. Our framework differs in that players interact strategically. The agency

owns and operates all arcs in a network while the adversary abuses the network.

This paper also contributes to the literature on network interdiction. Washburn and Wood [18] introduce

a zero-sum game, where an evader chooses a path to move through a network and an interdictor chooses an arc

at which to set up an inspection site. If the evader traverses a path that includes the inspected arc, the evader

is detected with some exogenously given positive probability. Otherwise, the evader is not detected. Both

players are allowed to choose mixed strategies. Given a mixed strategy profile, the interdiction probability

is defined to be the average probability of the evader being detected. The evader aims to minimize the

interdiction probability by choosing a path-selection mixed strategy, while the interdictor aims to maximize

the interdiction probability by choosing an arc-inspection mixed strategy. By using linear programming and

network flow techniques, Washburn and Wood [18] study the Nash equilibria of this game. Kodialam and

Lakshman [15] also introduce a related game of network interdiction in the context of network security.3

Our model differs from the existing models on network interdiction in four aspects:

(i) The definition of a network is different in that each arc has a capacity.

(ii) The adversary is endowed with a bounded quantity of bads, which may, in equilibrium, be binding.

(iii) Both players have larger sets of strategies. The adversary chooses a flow rather than a path. If there

are multiple paths in a network, the adversary can use them all at once. The agency chooses a blockage

rather than an arc. That is, the agency can block multiple arcs at once.

(iv) Our network interdiction game is not a zero-sum game nor even a strictly competitive game.

Because of (i), we do not need to take the detection probability as given. In our model this probability is

determined endogenously. By virtue of (ii), we can analyze how the adversary’s resource constraint affects

the adversary’s and the agency’s equilibrium behavior. By virtue of (iii), our model creates a more tractable

environment and gives sharper results on equilibrium behavior. Because of (iv), we need to use a different

2For other studies on cooperative flow games, see Kalai and Zemel [13], Granot and Granot [10], Potters et al. [16], and

Reijnierse et al. [17].

3Other than these papers, most of the literature on network interdiction deals with an interdictor’s optimization problem

subject to some budget constraints. See Cormican et al. [7], Israeli and Wood [11], and Wood [19].
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solution technique to find equilibria. We exploit the idea that in any Nash equilibrium each player is

indifferent between the pure strategies played with positive probability.

Security in network games has attracted significant interest. For example, Ballester et al. [4] study the

interaction between players whose payoffs depend on a network. They obtain a proportional relationship

between how much effort a player exerts and how central the player’s position is in the network. Baccara and

Bar-Isaac [2] study the formation of networks between criminals and terrorists and find optimal policies for

law enforcement agencies. Baccara and Bar-Isaac [3] further study how the choice of interrogation methods

affects the formation of terrorist networks. Goyal and Vigier [9] study the design and protection of networks

robust to attacks from outside on the networks’ nodes.4

The remainder of this paper is organized as follows. Section 2 develops a game-theoretic model of network

interdiction. Section 3 studies the Nash equilibria of the model. Section 4 discusses our theoretical finding,

together with empirical evidence, and also discusses future research topics.

2 The Model

Two players, player 1 and player 2, strategically interact with each other in a given network. Players can be

thought of as firms in the context of market competition, as a taxpayer and a revenue service in the context

of tax evasion, as a malicious hacker and a network operator in the context of network security, or as a

terrorist group and a security agency in the context of national security. Having these security applications

in mind, we call player 1 an adversary and player 2 an agency.

2.1 Networks

We first introduce the definition of networks. A network consists of a set of nodes, N , a set of arcs, A ⊂ N×N ,

and a (row) vector of arc capacities, c := (cij)(i,j)∈A. Each arc is an ordered pair of distinct nodes and has a

positive capacity. For each i, j ∈ N with i 6= j, if (i, j) ∈ A, node i is connected to node j through arc (i, j)

with capacity cij > 0. Formally a network is defined as a collection (N,A, c).

2.2 Strategies

We now introduce the set of strategies for each player.

Player 1, the adversary, is given a bound quantity q > 0 of bads at a node. This node is called base s.

Player 1 plans to carry bads to another node. This node is called target t. Player 1 chooses a flow of bads

specifying a plan for carrying bads through network (N,A, c) from base s to target t.
4For a survey on other literature on networks, see Jackson [12].

3



For each j ∈ N , we denote by IA(j) := {(i, j) : (i, j) ∈ A} the set of the arcs coming into node j and by

OA(j) := {(j, i) : (j, i) ∈ A} the set of the arcs going out from node j.

Formally a flow of bads from base s to target t with bound quantity q in network (N,A, c) is a (column)

vector f := (fij)′(i,j)∈A satisfying the following constraints:

0 ≤ fij ≤ cij for each (i, j) ∈ A, (1)

fis = 0 for each (i, s) ∈ IA(s), (2)∑
(s,i)∈OA(s)

fsi ≤ q and (3)

∑
(i,j)∈IA(j)

fij −
∑

(j,i)∈OA(j)

fji = 0 for each j ∈ N \ {s, t}. (4)

Constraint (1) says that each arc flow is at least zero and at most the arc capacity. Constraint (2) says that

each incoming flow to the base is zero. Constraint (3) says that the total outgoing flow from the base does

not exceed the bound quantity. Constraint (4) says that at each node, except for the base and the target,

the total incoming flow equals to the total outgoing flow. We denote by F (s, t, q,N, A, c) the set of all flows

of bads from base s to target t with bound quantity q in network (N,A, c). When there is no ambiguity,

we write F instead of F (s, t, q,N, A, c). Then the set of pure strategies for player 1 is denoted by F . By

choosing a flow f = (fij)′(i,j)∈A ∈ F , player 1 carries fij amount of bads through arc (i, j).

The value of a flow is defined as the total incoming flow to the target less the total outgoing flow from the

target. Thus, the value of a flow shows how much bads player 1 carries to the target. Let v := (vij)(i,j)∈A

be a (row) vector with vit = 1 for each (i, t) ∈ IA(t), vti = −1 for each (t, i) ∈ OA(t), and vij = 0 for each

(i, j) /∈ IA(t) ∪OA(t). Then the value of a flow f ∈ F is calculated as

v · f =
∑

(i,t)∈IA(t)

fit −
∑

(t,i)∈OA(t)

fti. (5)

Constraints (1) through (4) imply that the value of a flow is non-negative and constrained by the bound

quantity. That is, for each f ∈ F , we have

0 ≤ v · f ≤ q. (6)

We present examples of strategies for player 1. A flow fo ∈ F is the zero flow if fo is the vector of zeros.

A flow fτ ∈ F is trivial if v · fτ = 0. Notice that the zero flow fo is trivial. A flow f∗ ∈ F is a maximum

flow if for each f ∈ F , we have v · f∗ ≥ v · f . Notice that the value of a maximum flow is constrained by the

bound quantity.

Player 2, the agency, wishes to stop the transport of bads to the target. Player 2 chooses a blockage of

arcs specifying a plan for stopping the transport of bads through network (N,A, c) to target t. Formally a

blockage of arcs in network (N,A, c) is a (column) vector b := (bij)′(i,j)∈A with bij ∈ {0, 1} for each (i, j) ∈ A.

We denote by B(N,A, c) the set of all blockages of arcs in network (N,A, c). When there is no ambiguity,

we write B instead of B(N,A, c). Then the set of pure strategies for player 2 is denoted by B. By choosing
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a blockage b = (bij)′(i,j)∈A ∈ B, if bij = 1, player 2 blocks arc (i, j), and if bij = 0, player 2 does not block

the arc. For each b ∈ B, we denote by Ab := {(i, j) ∈ A : b = (bij)′(i,j)∈A and bij = 1} the set of all blocked

arcs.

The capacity of a blockage is defined as the total capacity of the blocked arcs. Thus, the capacity of

a blockage shows how much total arc capacity player 2 blocks in the network. The capacity of a blockage

b ∈ B is calculated as

c · b =
∑

(i,j)∈A

cijbij . (7)

A cut (C,C) in network (N,A, c) is a partition of the node set N with s ∈ C and t ∈ C. For each cut

(C,C), an arc (i, j) ∈ A is a cut arc if i ∈ C and j ∈ C. That is, through a cut arc (i, j), node i in C is

connected to node j in C. For each cut (C,C), we denote by A(C,C) := {(i, j) ∈ A : i ∈ C and j ∈ C} the

set of all cut arcs.

We present examples of strategies for player 2. A blockage bo ∈ B is the zero blockage if bo is the vector

of zeros. A blockage b ∈ B is a cut blockage if there is a cut (C,C) such that A(C,C) = Ab. A blockage

b∗ ∈ B is a minimum cut blockage if for each cut blockage b, we have c · b∗ ≤ c · b.

Players are allowed to choose mixed strategies. The set of mixed strategies for player 1 is denoted by

∆(F ) and the set of mixed strategies for player 2 is denoted by ∆(B).

2.3 Net Flows

Here we want to know how much bads player 1 successfully carries to the target when player 1 chooses a

flow of bads and player 2 chooses a blockage of arcs. To answer this question we introduce the definition of

net flows. For each flow of bads and each blockage of arcs, the net flow of bads to the target is obtained by

(i) decomposing the flow of bads into cycle flows and path flows and (ii) removing all the cycle flows and

all the path flows with blocked arcs. To introduce net flows formally we need the following definitions and

notations.

An s − t path in network (N,A, c) is a sequence of distinct nodes i1, . . . , iK such that (ik, ik+1) ∈ A for

each k ∈ {1, . . . ,K − 1} with i1 = s and iK = t. In this case we say that the s− t path includes arcs (i1, i2),

. . . , (iK−1, iK). A cycle in network (N,A, c) is a sequence of distinct nodes i1, . . . , iK such that (ik, ik+1) ∈ A

for each k ∈ {1, . . . ,K − 1} with (iK , i1) ∈ A. In this case we say that the cycle includes arcs (i1, i2), . . . ,

(iK−1, iK), and (iK , i1). We denote by H the set of all s− t paths and cycles in network (N,A, c).

The arc-path-cycle incidence matrix of network (N,A, c) is a matrix M := (mah)a∈A,h∈H with

mah =

 1 if h ∈ H includes a ∈ A

0 otherwise.

A cycle flow is a flow of bads along a cycle. A path flow is a flow of bads along an s − t path. By the

flow decomposition algorithm, which will be presented in Appendix A, we can decompose a flow of bads into
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cycle flows and path flows.5 Formally, for each f ∈ F , we find a (column) vector x := (xh)′h∈H such that

f = Mx. That is, either along a cycle h ∈ H, or along an s − t path h ∈ H, player 1 carries xh amount of

bads.

For such vector x and each blockage b, let xb := (xb
h)′h∈H be a (column) vector with

xb
h =

 xh if h is an s− t path including no blocked arcs

0 otherwise.

That is, only along an s− t path h ∈ H with no blocked arcs, player 1 successfully carries xb
h = xh amount

of bads to the target.

We are ready to define net flows. For each f ∈ F and each b ∈ B, the net flow of bads to target t under

flow f and blockage b is a (column) vector f b := (f b
ij)

′
(i,j)∈A such that Mxb = f b. Then the value of the net

flow f b is calculated as v · f b, which shows how much bads player 1 successfully carries to the target.

Notice that the net flow f b under a flow f and a blockage b contains no cycle flows. Furthermore, the

net flow f bo

under a flow f and the zero blockage bo contains all path flows but no cycle flows. We say that

a flow f ∈ F is acyclic if f = f bo

. Also notice that the net flow f b under a flow f and a cut blockage b is

the zero flow fo. That is, if b is a cut blockage, for each f ∈ F , we have f b = fo.

The following example shows how to find net flows.

Example 1 Suppose that a network is given as (N,A, c), where N = {s, i1, i2, t} is the set of nodes, A =

{(s, i1), (s, i2), (i1, i2), (i2, t), (t, i1)} is the set of arcs, and c = (csi1 , csi2 , ci1i2 , ci2t, cti1) = (4, 1, 2, 5, 2) is

the vector of arc capacities. A bound quantity is given as q = 3. Suppose that player 1 chooses a flow

f = (fsi1 , fsi2 , fi1i2 , fi2t, fti1)
′ = (1, 1, 2, 3, 1)′. See Figure 1. In network (N,A, c) there are two s − t paths

s, i1, i2, t and s, i2, t and one cycle i1, i2, t, i1. The arc-path-cycle incidence matrix of network (N,A, c) is

M =



1 0 0

0 1 0

1 0 1

1 1 1

0 0 1


where the first column corresponds to path s, i1, i2, t, the second column corresponds to path s, i2, t, and the

third column corresponds to cycle i1, i2, t, i1. By using the flow decomposition algorithm, we find a vector

x = (1, 1, 1)′ such that f = Mx. Each entry of the vector x shows the amount of bads player 1 carries

along path s, i1, i2, t, path s, i2, t, and cycle i1, i2, t, i1, respectively. Now suppose that player 2 chooses a

blockage b = (bsi1 , bsi2 , bi1i2 , bi2t, bti1)
′ = (0, 1, 0, 0, 0)′. Then path s, i1, i2, t is the only s − t path with no

blocked arcs. Thus, xb = (1, 0, 0)′. Therefore, the net flow of bads to target t under flow f and blockage b is

f b = Mxb = (1, 0, 1, 1, 0)′ and the value of this net flow is v · f b = 1. �

5The flow decomposition algorithm is developed by Ford and Fulkerson [8]. For a discussion see Ahuja et al. [1]. In our

model we use this algorithm to find net flows.
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Figure 1 Each solid circle indicates a node; each arrow indicates an arc; in each pair of numbers the first

bold number indicates an arc flow and the second light number indicates the arc capacity.

2.4 Payoff Functions

We introduce the payoff function of each player.

The bads carried to the target cause a target loss. This target loss is determined by the value of the net

flow of bads, v · f b, as well as by the marginal target loss, `t > 0. For each f ∈ F and each b ∈ B, the target

loss amounts to `t(v · f b). Player 1 earns `t(v · f b) and player 2 loses the same amount from the target loss.

The blocked arcs cause a network loss. This network loss is determined by the capacity of the blockage

of arcs, c · b, as well as by the marginal network loss, `k > 0. For each b ∈ B, the network loss amounts to

`k(c · b). Player 1 earns `k(c · b) and player 2 loses the same amount from the network loss.

Player 1 incurs the expense of carrying bads. This expense is determined by the value of the flow of bads,

v · f , as well as by the marginal expense of carrying bads, e > 0. For each f ∈ F , the expense of carrying

bads amounts to e(v · f).

Player 2 earns a constant worth of operating the network, w.

For each (f, b) ∈ F ×B, the payoff function of player 1 is defined as

u1(f, b) = `t(v · f b) + `k(c · b)− e(v · f),

and the payoff function of player 2 is defined as

u2(f, b) = w − `t(v · f b)− `k(c · b).

For each σ = (σ1, σ2) ∈ ∆(F )×∆(B), the expected payoff functions of the players are

u1(σ1, σ2) = Eσ[u1(f, b)] and u2(σ1, σ2) = Eσ[u2(f, b)].

Remark 1 Since expected payoff functions are unique up to an affine transformation, without loss of gen-

erality, we assume that the marginal network loss equals to one, that is, `k = 1.
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3 Results

We analyze the equilibrium behavior of the players in the model. In a Nash equilibrium each player has no

incentive to change his or her strategy.

Definition 1 A strategy profile (σ1, σ2) ∈ ∆(F ) × ∆(B) is a Nash equilibrium if for each σ′1 ∈ ∆(F ) and

each σ′2 ∈ ∆(B), we have u1(σ1, σ2) ≥ u1(σ′1, σ2) and u2(σ1, σ2) ≥ u2(σ1, σ
′
2).

We suppose that the marginal target loss is greater than the marginal expense of carrying bads.6 Then

the adversary has an incentive to carry bads through the network. Given this, we want to answer the

following questions: Does the agency have any incentive to block arcs in the network? Which arcs does the

agency have to block? And how often does the agency have to block the arcs? To answer these questions

we divide our analysis into three cases depending on the bound quantity. We say that the bound quantity q

is small if q ≤ (1/`t)c · b∗, intermediate if (1/`t)c · b∗ < q ≤ c · b∗, and large if c · b∗ < q.

For our analysis we need the following definitions and notations. We denote by fα an acyclic maximum

flow with large bound quantity q in network (N,A, c). Because fα is acyclic,

fα = (fα)bo

. (8)

Because q is large,

v · fα = c · b∗. (9)

That is, the value of an acyclic maximum flow equals to the capacity of a minimum cut blockage. This

equality is called the max-flow min-cut theorem.7

A flow fβ ∈ F is a binding flow if fβ = (q/(c · b∗))fα. Because fα is acyclic, fβ is also acyclic. That is,

fβ = (fβ)bo

. (10)

In addition the max-flow min-cut theorem (9) implies that

v · fβ = q. (11)

That is, the value of a binding flow equals to the bound quantity.

We are ready to start our equilibrium analysis. First we suppose that the bound quantity is small.

We call (fβ , bo) a binding-flow zero-blockage strategy profile. In any binding-flow zero-blockage strategy

profile, if the bound quantity is small, each player has no incentive to change his or her strategy. Thus, we

have the following proposition.
6If the marginal target loss is no greater than the marginal expense of carrying bads, the adversary has no incentive to carry

bads through the network from the base to the target. Given this, the agency has no incentive to block arcs in the network.

Thus, any trivial-flow zero-blockage strategy profile (fτ , bo) is a Nash equilibrium.

7Ford and Fulkerson [8] introduce the maximum flow problem in networks and show the max-flow min-cut theorem. For a

detailed discussion see Ahuja et al. [1].
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Proposition 1 If the bound quantity is small, that is, if q ≤ (1/`t)c ·b∗, then any binding-flow zero-blockage

strategy profile (fβ , bo) is a Nash equilibrium.

The proof of Proposition 1 is presented in Appendix B.

In any binding-flow zero-blockage Nash equilibrium, player 1 carries bads up to the bound quantity in

a dispersed way through the network, but player 2 does not block any arcs in the network. We provide an

example of this equilibrium.

Example 2 Consider network (N,A, c) in Example 1. Notice that fα = (2, 1, 2, 3, 0)′ is the only acyclic

maximum flow and b∗ = (0, 1, 1, 0, 0)′ is the only minimum cut blockage. Also notice that the capacity of

the minimum cut blockage is c · b∗ = 3. Suppose that the marginal target loss is `t = 2, the marginal

expense of carrying bads is e = 1, and the bound quantity is q = 1. Then the binding flow is fβ =

(2/3, 1/3, 2/3, 1, 0)′. Because the bound quantity is small, the binding-flow zero-blockage strategy profile

(fβ , bo) is a Nash equilibrium. However, if player 1 carries bads up to the bound quantity only through arcs

(s, i2) and (i2, t), player 2 has the incentive to block arc (s, i2). �

If the bound quantity is small and player 1 carries bads in a dispersed way through the network, then

player 2 has no incentive to block arcs. However, if the bound quantity is not small, that is, if the bound

quantity is either intermediate or large, then player 2 has an incentive to block arcs in the network. Now

we want to know which arcs player 2 must block and how often she blocks them. Consider the following

example.

Example 3 Consider network (N,A, c) in Example 1. Suppose that player 2 chooses a cut blockage b =

(1, 1, 0, 0, 0)′, that is, suppose that player 2 blocks all the arcs from the base. Then player 2 incurs a network

loss of 5. However, if player 2 chooses the minimum cut blockage b∗ = (0, 1, 1, 0, 0)′, she incurs a network

loss of 3. Since both b and b∗ are cut blockages, for each flow f , the net flow is the zero flow, that is, f b = fo

and f b∗ = fo. Thus, the target loss is zero. Therefore, b is a dominated strategy for player 2. �

In general, if b is a cut blockage but not a minimum cut blockage and b∗ is a minimum cut blockage, then

b is dominated by b∗ for player 2, that is, for each f ∈ F , u2(f, b) < u2(f, b∗). Thus, it may be a dominated

strategy for player 2 to block all the arcs from the base or to block all the arcs into the target. If player 2

blocks arcs, she must block minimum cut arcs in the network.

Now imagine that player 2 blocks minimum cut arcs in the network with probability 1. Then player 1

has no incentive to carry bads through the network because he always fails to reach the target. If player 1

carries no bads to the target with probability 1, player 2 has no incentive to block the arcs. This is because

she wants to avoid the network loss if there is no threat to the target. In turn, if player 2 blocks no arcs with

probability 1, player 1 has an incentive to carry bads. If player 1 carries bads with probability 1, player 2

has an incentive to block arcs. In general, if the bound quantity is either intermediate or large, there is no

pure strategy Nash equilibrium.

9



To study how often to block minimum cut arcs, we examine the mixed strategy Nash equilibria of the

model. Now we suppose that the bound quantity is large.

A mixed strategy σλ
1 ∈ ∆(F ) is a λ-scaled max-flow strategy, or simply a λ-flow strategy, for player 1 if for

some λ ∈ [1/`t, 1], σλ
1 (fτ ) = 1− 1/λ`t and σλ

1 (λfα) = 1/λ`t. By choosing a λ-flow strategy player 1 chooses

a trivial flow fτ with probability 1−1/λ`t and a λ-scaled acyclic maximum flow λfα with probability 1/λ`t.

For example, if λ = 1, player 1 carries no bads from the base to the target with probability 1 − 1/`t and

carries the maximum possible amount of bads through the network with probability 1/`t. Here λ is a scale

to adjust the probability and the amount of bads.

A mixed strategy σ∗2 ∈ ∆(B) is a min-cut strategy for player 2 if σ∗2(b
o) = e/`t and σ∗2(b

∗) = 1 − e/`t.

By choosing a min-cut strategy player 2 chooses the zero blockage bo with probability e/`t and a minimum

cut blockage b∗ with probability 1− e/`t. That is, player 2 blocks no arcs with probability e/`t and blocks

minimum cut arcs with probability 1− e/`t.

We call (σλ
1 , σ∗2) a λ-flow min-cut strategy profile.

Notice that player 1 chooses only two pure strategies fτ and λfα with positive probability. Given that

player 2 chooses a min-cut strategy σ∗2, by choosing a trivial flow fτ , player 1 earns an expected payoff of

u1(fτ , σ∗2) = σ∗2(b
o)u1(fτ , bo) + σ∗2(b

∗)u1(fτ , b∗)

= (1− e/`t)(c · b∗),

because player 1 earns u1(fτ , bo) = 0 with probability σ∗2(b
o) = e/`t and earns u1(fτ , b∗) = c · b∗ with

probability σ∗2(b
∗) = 1 − e/`t. Given a min-cut strategy σ∗2, by choosing a λ-scaled acyclic maximum flow

λfα, player 1 earns an expected payoff of

u1(λfα, σ∗2) = σ∗2(b
o)u1(λfα, bo) + σ∗2(b

∗)u1(λfα, b∗)

= (1− e/`t)(c · b∗), (12)

because player 1 earns u1(λfα, bo) = (`t− e)(v ·λfα) with probability σ∗2(b
o) = e/`t and earns u1(λfα, b∗) =

c · b∗− e(v ·λfα) with probability σ∗2(b
∗) = 1− e/`t. Thus, u1(fτ , σ∗2) = u1(λfα, σ∗2). By choosing a min-cut

strategy σ∗2, player 2 makes player 1 indifferent between the two pure strategies fτ and λfα.

Now notice that player 2 chooses only two pure strategies bo and b∗ with positive probability. Given that

player 1 chooses a λ-flow strategy σλ
1 , by choosing the zero blockage bo, player 2 earns an expected payoff of

u2(σλ
1 , bo) = σλ

1 (fτ )u2(fτ , bo) + σλ
1 (λfα)u2(λfα, bo)

= w − v · fα,

because player 2 earns u2(fτ , bo) = w with probability σλ
1 (fτ ) = 1− 1/λ`t and u2(λfα, bo) = w−λ`t(v · fα)

with probability σλ
1 (λfα) = 1/λ`t. Given a λ-flow strategy σλ

1 , by choosing a minimum cut blockage b∗,

player 2 earns an expected payoff of

u2(σλ
1 , b∗) = w − c · b∗, (13)

10



because player 2 earns w − c · b∗ whichever strategy player 1 chooses. Thus, the max-flow min-cut theorem

(9) implies that u2(σλ
1 , bo) = u2(σλ

1 , b∗). By choosing a λ-flow strategy σλ
1 , player 1 makes player 2 indifferent

between the two pure strategies bo and b∗.

In addition, we can show that for each player, these pure strategies are at least as good as any other

pure strategies. Thus, in any λ-flow min-cut strategy profile, each player has no incentive to change his or

her strategy. Therefore, we obtain the following proposition.

Proposition 2 If the bound quantity is large, that is, if c · b∗ < q, then any λ-flow min-cut strategy profile

(σλ
1 , σ∗2) is a Nash equilibrium.

The proof of Proposition 2 is presented in Appendix B. We provide an example of λ-flow min-cut Nash

equilibria.

Example 4 Consider network (N,A, c) in Example 1. Recall that fα = (2, 1, 2, 3, 0)′ is the acyclic maximum

flow and b∗ = (0, 1, 1, 0, 0)′ is the minimum cut blockage. Suppose that `t = 4, e = 1, and q = 5. Because the

bound quantity is large, any λ-flow min-cut strategy profile (σλ
1 , σ∗2) is a Nash equilibrium. For instance, in a

λ-flow min-cut Nash equilibrium with λ = 1, player 1 chooses the zero flow fo with probability σλ
1 (fo) = 3/4

and the acyclic maximum flow fα with probability σλ
1 (fα) = 1/4, and player 2 chooses the zero blockage bo

with probability σ∗2(b
o) = 1/4 and the minimum cut blockage b∗ with probability σ∗2(b

∗) = 3/4. See Figure 2.
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Figure 2 The bold numbers indicate the acyclic maximum flow; the line segments indicate the minimum

cut blockage.

In any λ-flow min-cut Nash equilibrium there is a power law relation between the probability and the

extent of the target loss. In this equilibrium, player 1 successfully carries bads to the target if and only

if player 1 chooses a λ-scaled acyclic maximum flow λfα and player 2 chooses the zero blockage bo. This

joint event takes place with probability (1/λ`t)(e/`t) = (1/λ)(e)`−2
t . Thus, with this probability, the bads

carried to the target cause the target loss. Therefore, in any λ-flow min-cut Nash equilibrium, the target

loss probability is pλ = (1/λ)(e)`−2
t .
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In any λ-flow min-cut Nash equilibrium, if player 1 successfully carries bads to the target, the target loss

amounts to TLλ = (λ`t)(c · b∗). Because pλ = (1/λ)(e)`−2
t and `t = (1/λ)(1/(c · b∗))TLλ, we have

pλ = (λ)(e)(c · b∗)2(TLλ)−2 (14)

where λ ∈ (1/`t, 1]. Furthermore, if λ = (`t)−θ for some θ ∈ [0, 1), equality (14) can be rewritten as

pλ = (e)(c · b∗)
θ−2
θ−1 (TLλ)

− θ−2
θ−1 (15)

because pλ = (e)(`t)θ−2 and `t = (c · b∗)
1

θ−1 (TLλ)
− 1

θ−1 . Thus, in any λ-flow min-cut Nash equilibrium with

λ = (`t)−θ for some θ ∈ [0, 1), the target loss probability pλ is a negative power function of the target loss

TLλ. However, if λ = 1/`t, we have pλ = (e)`−1
t and TLλ = c · b∗. Thus, if λ = 1/`t, the equilibrium

probability pλ is independent of the target loss TLλ.

Finally we suppose that the bound quantity is intermediate.

A mixed strategy σµ
1 ∈ ∆(F ) is a µ-scaled binding-flow strategy, or simply a µ-flow strategy, for player 1

if for some µ ∈ [(1/`t)(1/q)(c · b∗), 1], σµ
1 (fτ ) = 1 − (1/µ`t)(1/q)(c · b∗) and σµ

1 (µfβ) = (1/µ`t)(1/q)(c · b∗).

By choosing a µ-flow strategy player 1 chooses a trivial flow fτ with probability 1− (1/µ`t)(1/q)(c · b∗) and

a µ-scaled binding flow µfβ with probability (1/µ`t)(1/q)(c · b∗). For example, if µ = 1, player 1 carries no

bads from the base to the target with probability 1 − (1/`t)(1/q)(c · b∗) and carries bads up to the bound

quantity with probability (1/`t)(1/q)(c · b∗). Here µ is a scale to adjust the probability and the amount of

bads.

We call (σµ
1 , σ∗2) a µ-flow min-cut strategy profile.

Notice that player 1 chooses only two pure strategies fτ and µfβ with positive probability. Given a min-

cut strategy σ∗2, by choosing a trivial flow fτ , player 1 earns an expected payoff of u1(fτ , σ∗2) = (1−e/`t)(c·b∗).

Given a min-cut strategy σ∗2, by choosing a µ-scaled binding flow µfβ , player 1 earns an expected payoff of

u1(µfβ , σ∗2) = σ∗2(b
o)u1(µfβ , bo) + σ∗2(b

∗)u1(µfβ , b∗)

= (1− e/`t)(c · b∗), (16)

because player 1 earns u1(µfβ , bo) = (`t− e)(v ·µfβ) with probability σ∗2(b
o) = e/`t and earns u1(µfβ , b∗) =

c · b∗− e(v ·µfβ) with probability σ∗2(b
∗) = 1− e/`t. Thus, u1(fτ , σ∗2) = u1(µfβ , σ∗2). By choosing a min-cut

strategy σ∗2, player 2 makes player 1 indifferent between the two pure strategies fτ and µfβ .

Now notice that player 2 chooses only two pure strategies bo and b∗ with positive probability. Given a

µ-flow strategy σµ
1 , by choosing the zero blockage bo, player 2 earns an expected payoff of

u2(σ
µ
1 , bo) = σµ

1 (fτ )u2(fτ , bo) + σµ
1 (µfβ)u2(µfβ , bo)

= w − c · b∗,

because player 2 earns u2(fτ , bo) = w with probability σµ
1 (fτ ) = 1−(1/µ`t)(1/q)(c·b∗) and earns u2(µfβ , bo) =

w− (µ`t)q with probability σµ
1 (µfβ) = (1/µ`t)(1/q)(c · b∗). Given a µ-flow strategy σµ

1 , by choosing a mini-
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mum cut blockage b∗, player 2 earns an expected payoff of

u2(σ
µ
1 , b∗) = w − c · b∗, (17)

because player 2 earns w − c · b∗ whichever strategy player 1 chooses. Thus, u2(σ
µ
1 , bo) = u2(σ

µ
1 , b∗). By

choosing a µ-flow strategy σµ
1 , player 1 makes player 2 indifferent between the two pure strategies bo and b∗.

In addition, we can show that for each player, these pure strategies are at least as good as any other

pure strategies. Thus, in any µ-flow min-cut strategy profile, each player has no incentive to change his or

her strategy. Therefore, we establish the following proposition.

Proposition 3 If the bound quantity is intermediate, that is, if (1/`t)c · b∗ < q ≤ c · b∗, then any µ-flow

min-cut strategy profile (σµ
1 , σ∗2) is a Nash equilibrium.

The proof of Proposition 3 is presented in Appendix B. We provide an example of µ-flow min-cut Nash

equilibria.

Example 5 Consider network (N,A, c) in Example 1. Suppose that `t = 4, e = 1, and q = 3/2. Notice

that the binding flow is fβ = (1, 1/2, 1, 3/2, 0)′. Because the bound quantity is intermediate, any µ-flow

min-cut strategy profile (σµ
1 , σ∗2) is a Nash equilibrium. For instance, in a µ-flow min-cut Nash equilibrium

with µ = 1, player 1 chooses the zero flow fo with probability σµ
1 (fo) = 1/2 and the binding flow fβ with

probability σµ
1 (fβ) = 1/2, and player 2 chooses the zero blockage bo with probability σ∗2(b

o) = 1/4 and the

minimum cut blockage b∗ with probability σ∗2(b
∗) = 3/4. See Figure 3. �
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Figure 3 The bold numbers indicate the binding flow; the line segments indicate the minimum cut blockage.

In any µ-flow min-cut Nash equilibrium the probability and the extent of the target loss show a power

law relation. In this equilibrium, player 1 successfully carries bads to the target if and only if player 1

chooses a µ-scaled binding flow µfβ and player 2 chooses the zero blockage bo. This joint event takes place

with probability (1/µ`t)(1/q)(c · b∗)(e/`t) = (1/µ)(1/q)(c · b∗)(e)`−2
t . Thus, in any µ-flow min-cut Nash

equilibrium, the target loss probability is pµ = (1/µ)(1/q)(c · b∗)(e)`−2
t .
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In any µ-flow min-cut Nash equilibrium, if player 1 successfully carries bads to the target, the target loss

amounts to TLµ = (µ`t)q. Because pµ = (1/µ)(1/q)(c · b∗)(e)`−2
t and `t = (1/µ)(1/q)TLµ, we have

pµ = (µ)(e)(q)(c · b∗)(TLµ)−2 (18)

where µ ∈ ((1/`t)(1/q)(c · b∗), 1]. Furthermore, if µ = (q)−θ(c · b∗)θ(`t)−θ for some θ ∈ [0, 1), equality (18)

can be rewritten as

pµ = (e)(q)(c · b∗)−
1

θ−1 (TLµ)
− θ−2

θ−1 (19)

because pµ = (e)(q)θ−1(c · b∗)1−θ(`t)θ−2 and `t = (q)−1(c · b∗)
θ

θ−1 (TLµ)
− 1

θ−1 . Thus, in any µ-flow min-

cut Nash equilibrium with µ = (q)−θ(c · b∗)θ(`t)−θ for some θ ∈ [0, 1), the target loss probability pµ is a

negative power function of the target loss TLµ. However, if µ = (1/`t)(1/q)(c · b∗), we have pµ = (e)`−1
t and

TLµ = c · b∗. Thus, if µ = (1/`t)(1/q)(c · b∗), the equilibrium probability pµ is independent of the target loss

TLµ.

4 Discussion

We first relate our results to some empirical studies of terrorist events and then discuss related research in

progress and further directions.

4.1 Fatality Distribution of Terrorist Events

Let z denote the number of fatalities in a terrorist event and let p(z) denote the frequency of a terrorist

event in which the number of fatalities is z. The fatality distribution of terrorist events follows a power law

if for each z ≥ zmin,

p(z) ∝ z−γ

where zmin and γ are the parameters of the distribution. The estimates of the parameters are derived from

data and denoted by ẑmin and γ̂.

Recent empirical studies show that the fatality distribution of terrorist events follows a power law.

Clauset et al. [6] use the database of National Memorial Institute for the Prevention of Terrorism (MIPT)

and conclude that the fatality distribution follows a power law. The estimate of the scaling parameter is

γ̂ = 2.38. Bohorquez et al. [5] construct a data set on insurgent wars and conclude that for each insurgent

war the fatality distribution follows a power law. The estimates of the scaling parameter are clustered around

2.5.

Recall that in any λ-flow min-cut Nash equilibrium with λ = (`t)−θ for some θ ∈ [0, 1), the target loss

probability pλ is a negative power function of the target loss TLλ. Precisely, from equality (15), we have

pλ = (e)(c · b∗)
θ−2
θ−1 (TLλ)

− θ−2
θ−1 ,
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which can be rewritten as

pλ(TLλ) ∝ (TLλ)
− θ−2

θ−1 .

To link this theoretical finding and empirical evidence we make two additional assumptions. Suppose that

the target loss is measured by the number of fatalities and that the target loss probability is proportional to

the frequency of a terrorist event.

Now suppose that the estimate of the scaling parameter, γ̂ ≥ 2, is derived from data. By setting γ̂ = θ̂−2
θ̂−1

and solving for θ̂, we have θ̂ = γ̂−2
γ̂−1 . Notice that θ̂ ∈ [0, 1). Therefore, in the λ-flow min-cut Nash equilibrium

with λ = (`t)−θ̂, the fatality distribution is predicted to be

pλ(TLλ) ∝ (TLλ)−γ̂

and is consistent with data. Similarly, in the µ-flow min-cut Nash equilibrium with µ = (q)−θ̂(c · b∗)θ̂(`t)−θ̂,

the predicted fatality distribution, pµ(TLµ) ∝ (TLµ)−γ̂ , is consistent with data.

4.2 Further Research

This paper presents a strategic model of network interdiction where two players have complete information

and simultaneously choose their strategies. Building on this research we can study a model with incomplete

information where players may not know each other’s type. For example, a security agency may not know

the strategies and payoffs of an adversary. This extension to incomplete information is, in our view, of clear

importance. We can also study a model where players sequentially choose their strategies. For example, a

security agency may observe an adversary’s plots and choose her own strategy conditional on this observation

or, alternatively, the agency may move first in setting up a security system. Both these approaches are

subjects of our current and future planned research.
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Appendix A

In this appendix we provide the flow decomposition algorithm.8 A network is given as (N,A, c). For each

f ∈ F , we find a vector x = (xh)′h∈H such that f = Mx. Initially we are given a flow f and the zero vector

x. At each step we construct a sequence of distinct nodes, and obtain either an s − t path or a cycle. We

then modify vector x and flow f . This algorithm terminates when the modified flow is the zero flow.

Algorithm 1 Flow Decomposition

Let f = (fij)′(i,j)∈A ∈ F be given. Let x = (xh)′h∈H be the vector of zeros.

At Step k = 1, 2, . . . , if f is the zero flow, this algorithm terminates and yields vector x. If f is not the

zero flow, there is an arc (i, j) ∈ A with fij > 0.

(i) We start from base s. If there is (i1, i2) ∈ A with i1 = s and fi1i2 > 0, we begin the construction of a

sequence of distinct nodes with the two nodes i1 and i2. If there is (i2, i3) ∈ A with fi2i3 > 0, we add node i3

to the sequence. Repeat this until we add target t or a previously added node to the sequence. In the former

case, an s− t path is obtained and, in the latter case, a cycle is obtained. We denote the outcome by h ∈ H.

We replace xh = 0 with the minimum flow of the arcs included in h. We then replace fij with fij − xh if h

includes (i, j). We proceed to the next step.

(ii) If there is no (i1, i2) ∈ A with i1 = s and fi1i2 > 0, we find another arc (i, j) with fij > 0. We start

from node i. By applying the argument in (i), we obtain a cycle and modify vector x and flow f . We proceed

to the next step. �

Appendix B

We first establish the following lemmas.

Lemma 1 For each (f, b) ∈ F ×B, we have v · f bo − v · f b ≤ c · b.

Proof. Let f ∈ F be any flow. Because f bo

is the net flow of bads to the target under flow f and the zero

blockage bo, for each (i, j) ∈ A, we have f bo

ij ≤ cij . Thus, blocking arc (i, j) decreases the value of the net

flow by at most cij . Therefore, for each b = (bij)′(i,j)∈A ∈ B, we have v · f bo − v · f b ≤
∑

(i,j)∈A cijbij . �

Lemma 2 If fα is an acyclic maximum flow with large bound quantity q in network (N,A, c), for each

b ∈ B, we have v · fα − v · (fα)b ≤ c · b. Furthermore, if q ≤ (1/`t)c · b∗ and fβ is a binding flow, for each

b ∈ B, we have `t(v · fβ)− `t(v · (fβ)b) ≤ c · b.
8See Ahuja et al. [1] and Ford and Fulkerson [8] for reference.
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Proof. Lemma 1 implies that for each b ∈ B, v · (fα)bo − v · (fα)b ≤ c · b. Because fα = (fα)bo

from

equality (8), we have v · fα − v · (fα)b ≤ c · b. Now multiplying both sides by (`t)(q/(c · b∗)), we have

(`t)(q/(c · b∗))(v · fα − v · (fα)b) ≤ (`t)(q/(c · b∗))(c · b). Because fβ is a binding flow and fβ = (q/(c · b∗))fα,

we have (`t)(q/(c · b∗))(v · fα − v · (fα)b) = `t(v · fβ) − `t(v · (fβ)b). Because q ≤ (1/`t)c · b∗, we have

(`t)(q/(c · b∗))(c · b) ≤ c · b. Thus, for each b ∈ B, we have `t(v · fβ)− `t(v · (fβ)b) ≤ c · b. �

We now present the proofs of the propositions.

Proof of Proposition 1. Suppose that q ≤ (1/`t)c · b∗. We show that in any binding-flow zero-blockage

strategy profile (fβ , bo) each player has no incentive to change his or her strategy. Since (fβ)bo

= fβ from

equality (10) and v ·fβ = q from equality (11), we have u1(fβ , bo) = (`t−e)q. Suppose that player 1 chooses

any flow f . Since v · f bo ≤ v · f and v · f ≤ q,

u1(f, bo) = `t(v · f bo

) + c · bo − e(v · f)

≤ `t(v · f)− e(v · f)

≤ (`t − e)q.

Thus, player 1 has no incentive to change his strategy. Since (fβ)bo

= fβ from equality (10) and v · fβ = q

from equality (11), we have u2(fβ , bo) = w − (`t)q. Suppose that player 2 chooses any blockage b. Since

`t(v · fβ)− `t(v · (fβ)b) ≤ c · b from Lemma 2 and v · fβ = q from equality (11),

u2(fβ , b) = w − `t(v · (fβ)b)− c · b

≤ w − `t(v · fβ)

= w − (`t)q.

Thus, player 2 has no incentive to change her strategy. Therefore, (fβ , bo) is a Nash equilibrium. �

Proof of Proposition 2. Suppose that c · b∗ < q. In any λ-flow min-cut strategy profile (σλ
1 , σ∗2) player 1

chooses only two pure strategies fτ and λfα with positive probability and player 2 chooses only two pure

strategies bo and b∗ with positive probability. In addition each player is indifferent between the two pure

strategies played with positive probability. Thus, to show that (σλ
1 , σ∗2) is a Nash equilibrium, it suffices to

show that (i) for each f ∈ F , u1(λfα, σ∗2) ≥ u1(f, σ∗2) and (ii) for each b ∈ B, u2(σλ
1 , b∗) ≥ u2(σλ

1 , b).

(i) We show that for each f ∈ F , u1(λfα, σ∗2) ≥ u1(f, σ∗2). Let f ∈ F be any flow. Calculate player 1’s

payoffs. Since v · f bo ≤ v · f ,

u1(f, bo) = `t(v · f bo

) + c · bo − e(v · f)

≤ (`t − e)(v · f).
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Since v · f b∗ = 0,

u1(f, b∗) = `t(v · f b∗) + c · b∗ − e(v · f)

= c · b∗ − e(v · f).

Since σ∗2(b
o) = e/`t and σ∗2(b

∗) = 1− e/`t,

u1(f, σ∗2) = σ∗2(b
o)u1(f, bo) + σ∗2(b

∗)u1(f, b∗)

≤ (e/`t)(`t − e)(v · f) + (1− e/`t)(c · b∗ − e(v · f))

= (1− e/`t)(c · b∗).

From (12) we know that u1(λfα, σ∗2) = (1− e/`t)(c · b∗). Thus, for each f ∈ F , u1(λfα, σ∗2) ≥ u1(f, σ∗2).

(ii) We show that for each b ∈ B, u2(σλ
1 , b∗) ≥ u2(σλ

1 , b). Let b ∈ B be any blockage. Calculate player

2’s payoffs. Since v · (fτ )b = 0,

u2(fτ , b) = w − `t(v · (fτ )b)− c · b

= w − c · b.

Since v · (λfα)b = λ(v · (fα)b),

u2(λfα, b) = w − `t(v · (λfα)b)− c · b

= w − λ`t(v · (fα)b)− c · b.

Since σλ
1 (fτ ) = 1− 1/λ`t, σλ

1 (λfα) = 1/λ`t, and v · fα − v · (fα)b ≤ c · b from Lemma 2,

u2(σλ
1 , b) = σλ

1 (fτ )u2(fτ , b) + σλ
1 (λfα)u2(λfα, b)

= (1− 1/λ`t)(w − c · b) + (1/λ`t)(w − λ`t(v · (fα)b)− c · b)

= w − c · b− v · (fα)b

≤ w − v · fα.

Then the max-flow min-cut theorem (9) implies that u2(σλ
1 , b) ≤ w − c · b∗. From (13) we know that

u2(σλ
1 , b∗) = w − c · b∗. Thus, for each b ∈ B, u2(σλ

1 , b∗) ≥ u2(σλ
1 , b).

Therefore, (σλ
1 , σ∗2) is a Nash equilibrium. �

Proof of Proposition 3. Suppose that (1/`t)c·b∗ < q ≤ c·b∗. In any µ-flow min-cut strategy profile (σµ
1 , σ∗2)

player 1 chooses only two pure strategies fτ and µfβ with positive probability and player 2 chooses only two

pure strategies bo and b∗ with positive probability. In addition each player is indifferent between the two

pure strategies played with positive probability. Thus, to show that (σµ
1 , σ∗2) is a Nash equilibrium, it suffices

to show that (i) for each f ∈ F , u1(µfβ , σ∗2) ≥ u1(f, σ∗2) and (ii) for each b ∈ B, u2(σ
µ
1 , b∗) ≥ u2(σ

µ
1 , b).
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(i) We show that for each f ∈ F , u1(µfβ , σ∗2) ≥ u1(f, σ∗2). Let f ∈ F be any flow. Calculate player 1’s

payoffs. Since v · f bo ≤ v · f ,

u1(f, bo) = `t(v · f bo

) + c · bo − e(v · f)

≤ (`t − e)(v · f).

Since v · f b∗ = 0,

u1(f, b∗) = `t(v · f b∗) + c · b∗ − e(v · f)

= c · b∗ − e(v · f).

Since σ∗2(b
o) = e/`t and σ∗2(b

∗) = 1− e/`t,

u1(f, σ∗2) = σ∗2(b
o)u1(f, bo) + σ∗2(b

∗)u1(f, b∗)

≤ (e/`t)(`t − e)(v · f) + (1− e/`t)(c · b∗ − e(v · f))

= (1− e/`t)(c · b∗).

From (16) we know that u1(µfβ , σ∗2) = (1− e/`t)(c · b∗). Thus, for each f ∈ F , u1(µfβ , σ∗2) ≥ u1(f, σ∗2).

(ii) We show that for each b ∈ B, u2(σ
µ
1 , b∗) ≥ u2(σ

µ
1 , b). Let b ∈ B be any blockage. Calculate player

2’s payoffs. Since v · (fτ )b = 0,

u2(fτ , b) = w − `t(v · (fτ )b)− c · b

= w − c · b.

Since v · (µfβ)b = µ(v · (fβ)b),

u2(µfβ , b) = w − `t(v · (µfβ)b)− c · b

= w − µ`t(v · (fβ)b)− c · b.

Since σµ
1 (fτ ) = 1− (1/µ`t)(1/q)(c · b∗), σµ

1 (µfβ) = (1/µ`t)(1/q)(c · b∗), and v · (fβ)b = (q/(c · b∗))(v · (fα)b),

u2(σ
µ
1 , b) = σµ

1 (fτ )u2(fτ , b) + σµ
1 (µfβ)u2(µfβ , b)

= (1− (1/µ`t)(1/q)(c · b∗))(w − c · b) + (1/µ`t)(1/q)(c · b∗)(w − µ`t(v · (fβ)b)− c · b)

= w − c · b− (1/q)(c · b∗)(v · (fβ)b)

= w − c · b− (1/q)(c · b∗)(q/(c · b∗))(v · (fα)b)

= w − c · b− v · (fα)b

≤ w − v · fα.

The last inequality comes from Lemma 2. Then the max-flow min-cut theorem (9) implies that u2(σ
µ
1 , b) ≤

w − c · b∗. From (17) we know that u2(σ
µ
1 , b∗) = w − c · b∗. Thus, for each b ∈ B, u2(σ

µ
1 , b∗) ≥ u2(σ

µ
1 , b).

Therefore, (σµ
1 , σ∗2) is a Nash equilibrium. �

19



References

[1] Ahuja, R.K., Magnanti, T.L., Orlin, J.B., 1993. Network Flows. Prentice-Hall, New Jersey.

[2] Baccara, M., Bar-Isaac, H., 2008. How to organize crime. Review of Economic Studies 75, 1039–1067.

[3] Baccara, M., Bar-Isaac, H., 2008. Interrogation methods and terror networks. Working paper.
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