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Abstract

In matching markets the number of blocking pairs is often used as a criterion
to compare matchings. We argue that this criterion is lacking an economic
interpretation: In many circumstances it will neither reflect the expected
extent of partner changes, nor will it capture the satisfaction of the players
with the matching. As an alternative, we set up two principles which single
out a particularly “disruptive” subcollection of blocking pairs. We propose to
take the cardinality of that subset as a measure to compare matchings. This
cardinality has an economic interpretation: The subset is a justified objection
against the given matching according to a bargaining set characterization of
the set of stable matchings. We prove multiple properties relevant for a
workable measure of comparison.
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For example, an experimental economist who simulates a matching market
in the classroom or in a computer laboratory may find that some of the ex-
periments conducted did not result in stable matchings. In order to interpret
the results, a comparison could be made regarding “how close” they are to
stability. This problem was encountered in Niederle and Roth (2007), and
the authors solved it by taking the number of blocking pairs as a criterion to
compare different matchings.

A related problem occured in Roth and Xing (1997), where the matchings
resulting from a simulation were not generally stable, yet had to be com-
pared with each other. In a similar manner, the number of blocking agents,
i.e. those players who are part of at least one blocking pair, was taken as a
criterion of comparison.!+2

Another necessity for the comparison of unstable matchings emerges when
the matchmaker is not trying to achieve stability, but instead pursues a dif-
ferent goal. If the objective does not single out a unique matching, then one
must be selected from those which fulfill the primary requirement. Typically,
such a situation occurs when the matchmaker primarily wants to maximize
the number of matched pairs, i.e. wants to find a maximal matching. This is
a reasonable objective for numerous markets in which the social benefit or the
matchmaker’s profit hinges on the number of matched players, while stability
is deemed not so important. Biré et al. (2010) describe many such situations
and mention the related literature. One of their examples is an organ ex-
change market, where the maximality of the matching is the primary goal:
The size of the matching determines the number of transplantations, which
have the potential to be life saving. Moreover, blocking pairs existing in the
final matching will not cause further reshuffling as the agents will usually not
undergo additional operations just to resolve blocking pairs. Yet the satis-

ISee in particular pp. 318-320 in their article.

2Roth and Xing (1997) analyze the entry-level labor market for clinical psychologists,
which they do not model as a marriage market, but as a many-to-one matching market. It
is well known that many results derived for marriage markets carry over to many-to-one
matching problems (cf. Roth and Sotomayor (1990), chapter 5). Notably, the problems
associated with counting blocking pairs, which motivate this paper, exist in the same way in
many-to-one models. Therefore the reasoning presented here for marriage markets applies
in the same way to many-to-one models, and the measure of instability advocated here can
be naturally adapted to a many-to-one framework. For the conceptual purposes of this
paper it is unnecessary to cope with the considerably higher complexity of many-to-one
models.



faction the players obtain from the final matching is of utmost importance:
Centralized matching regimes which are not accepted by the agents usually
get undermined.®> The more agents are not satisfied with the matchmaker’s
performance, the higher is the risk that the reputation of the centralized sys-
tem will deteriorate, causing players to search for partners in decentralized
ways.

Other applications mentioned in said article are school placement, assign-
ing students to university projects, a certain bipartite matching problem of
the US Navy, and even the optimal pairing of players in chess tournaments.
For these situations, in which stability is not the most important concern,
Hamada et al. (2009) and Bir6 et al. (2010) develop algorithms which create
maximal matchings with the least number of blocking pairs.?

Finally, there are situations in which stability cannot be achieved for exoge-
nous reasons, and in the absence of a stable matching the matchmaker has
to rank different unstable outcomes. For example, Khuller et al. (1994) de-
velop an “online” matching algorithm for a situation in which all women are
in the market from the start, while the men enter sequentially. As soon as
a man has entered the market, the algorithm must match him to a woman
immediately. No assignments once made can be undone on later stages. Ob-
viously, no algorithm can guarantee that the outcome is stable. Thus Khuller
et al. (1994) design their algorithm so as to minimize the expected number
of blocking pairs for the resulting matching.’

Indeed, counting blocking pairs and taking their number as a criterion to
compare matchings makes a lot of sense at first sight.® A blocking pair is

3Undermining occurs for example through the phenomenon called “unraveling”
(cf. Niederle and Roth (2003)). Also, the history of the NIMP algorithm provides evi-
dence that acceptance by the participants is essential for the survival of a matching regime
(cf. Roth (1984)).

4The paper by Hamada et al. (2009) builds on Bir6 et al. (2010). The latter was already
published preliminarily as a conference proceeding and as a working paper in 2008.

5Real-world matching markets in which stability is practically unattainable are preva-
lent. Uncontrolled influx and outflux of market participants, as modeled by Khuller et al.
(1994), can frequently be observed. In other (decentralized) markets, information deficits
may be the main factor for the absence of stable matchings (cf. Eriksson and Haggstrom
(2008)).

6Without changing the concept qualitatively, one may also divide the number of block-
ing pairs which exist for a matching by the number of all possible pairs, as advocated by



a source of dissatisfaction on the part of its members. Therefore a match-
maker might lose customers and profits if too many players eventually find
themselves in blocking pairs. Moreover, one might consider the number of
blocking pairs as a proxy for the amount of partner changes imminent at a
given state of the market. This interpretation also corresponds in a direct
way with the term “measure of instability”, which is used occasionally in the
literature.

Despite the superficial reasonability of counting blocking pairs, we think that
the concept is problematic. Often there is no connection between the satis-
faction of the players with a certain matching and the number of blocking
pairs. Consider the following example: let 1 be a matching and let %(u) be
the collection of blocking pairs for p. If %(u) is no matching, these block-
ing pairs cannot be satisfied simultaneously.” In the most extreme case, a
given player m € M (or w € W) is member of all pairs in Z(u). Of these
blocking pairs, only one can be resolved. It seems questionable whether such
blocking pairs would generate the same level of dissatisfaction as an equal
number of blocking pairs which actually could be satisfied simultaneously.
In the outlined situation, there may be n different women {wy, ..., w,} who
form blocking pairs with m, but each of these women knows that m, if he
could decide which of the blocking pairs was to be satisfied, would marry
w = max,, {wy,...,w,}. So if the dissatisfaction with the matching is
based on rational considerations, essentially only one woman and one man
would be discontent with the matching p, namely w and m.®

If the set of blocking pairs whose cardinality is counted was a matching, a

Eriksson and Héggstrom (2008). This procedure is only necessary, however, if one wants
to compare matchings from different markets. If the matchings to be compared are within
the same market, as will be assumed throughout this paper, one does not lose anything
by taking the absolute number of blocking pairs.

"In this paper a matching is defined as a collection of pairs such that none of them
share a player, see definition 2 on page 7. This definition was used before (for example in
Blum and Rothblum (2002)) and it is equivalent with the standard function definition in
Roth and Sotomayor (1990).

8Qur point may be further illustrated by the following example: A single super model
forms blocking pairs with thousands of men in a population. But do these blocking pairs
cause discomfort among rational men? We do not believe so. A rational man knows
that the supermodel will by all likelihood not consider him to be the most attractive
partner among those with whom she forms blocking pairs. The blocking pair in which he
participates is rather fantasy than a real option.



feature of the concept we propose, this problem would entirely disappear.
Then the pairs contained in that set could be satisfied in parallel, and all of
these blocking pairs would be forgone opportunities to improve the outcomes
of the participating players. These improvements could have materialized by
these players if they would not have participated in the centralized matching
mechanism, causing justified dissatisfaction with the matchmaker.

Yet it is equally problematic to take the number of blocking pairs as a mea-
sure of the “degree of instability” of a matching. Again, n blocking pairs
which have a player in common cannot be satisfied simultaneously, hence
only one of the n pairs could actually trigger a partner change. For this rea-
son, the instability of matchings which have a high number of “hypothetical”
blocking pairs (blocking pairs which share players with other blocking pairs)
could be overstated by this measure. At the same time, one can construct
examples in which even one single blocking pair may trigger off a vacancy
chain changing the assignments of all players in the market. The instability
of a matching with few but highly disruptive blocking pairs can be drastically
understated by the traditional measure. The connection between the “degree
of instability” of a matching and its number of blocking pairs is very lose at
best.”

This paper offers an alternative measure for comparing matchings. We be-
lieve that certain subsets of the blocking pairs have a particular significance,
both regarding their “disruptive potential” as well as in terms of player sat-
isfaction. We call them permissible sets of blocking pairs for a matching. It
will be shown in proposition 2 on page 12 that all permissible sets of blocking
pairs for a matching have the same cardinality. So their cardinality can be
used as a measure to compare matchings. A matching which has a higher
value according to this measure is expected to show more reshuffling as well
as higher dissatisfaction among the players.

Moreover, we claim that a permissible set of blocking pairs constitutes not
only a possible transformation of the market, but also a likely transformation

9In a model with undisclosed preferences which get disclosed upon random encounters
of the players, the total amount of blocking pairs would be an indicator for the expected
readjustments within a certain time span or in a given amount of stages. This would be
an interesting model, but it would go beyond the setting discussed here. Here we keep to
the assumption that the existence of a blocking pair is known to the players who form it,
as it is standard in most of matching theory.



among shortsighted players. If D(u) is a permissible set of blocking pairs for
a matching p, then our claim is based on the fact that D(u) can be inter-
preted as a justified objection against u according to a bargaining set which
has the appealing property that it coincides with the set of stable matchings.
So if one believes in the empirical relevance of bargaining set concepts and
Gale-Shapley stability, one can conjecture that the blocking pairs which get
satisfied at an unstable matching p comprise a permissible set.!°
Unfortunately, even if the set D(1u) of blocking pairs to be counted comprises
a justified objection against p, its size is just an indicator for the first-order
dynamics emerging from the given matching. The concept proposed here
says nothing about further market transformations which could take place
after the counted blocking pairs were resolved.!! Therefore the use of the
concept presented here as a “measure of instability” is limited. Yet it im-
proves on the simple counting of blocking pairs, which cannot even predict
the first transformation of the market and does not allow for inference on the
n'-order dynamics either. Furthermore, the limitation may not be so severe
if divorces are costly, as it is the case in many practical applications. The
more unattractive partner changes become, the more important becomes the
first transformation of the market, while multistage dynamics will be shorter
and less likely to occur. The example of an organ exchange market, in which
people refrain from undergoing further surgeries in order to resolve blocking
pairs, was already mentioned.

At the core of the approach introduced here is the selection of a matching
to be formed from the set %(u) of blocking pairs for a matching p. This
is not trivial, as usually many matchings can be formed from the elements
in A(u). We offer a rule for this selection. It will be stated and formalized
in Section 3, and the resulting permissible sets of blocking pairs will be
interpreted economically in Section 4. Furthermore, these sets will be shown
to have interesting and useful features in Sections 5, 7, and 8. The most
important of these features is the fact that all permissible sets of blocking
pairs have the same cardinality for a given matching, so that this cardinality
constitutes a well-defined measure of comparison. Section 6 shows how to

19More on empirical support for bargaining sets can be found in footnote 18 on page 11.
"1 The issue of n''-order dynamics emerging from a matching is briefly discussed in
Appendix B on page 26.



find the permissible sets of blocking pairs for a given matching. Section
9 illuminates a connection between the measure put forward here and the
total number of blocking pairs used previously. The paper is concluded with
Section 10. In the Appendix B we look at n'*-order dynamics which can be
derived from the concept of permissible sets.

2. Preliminaries

Definition 1 (Marriage Market). A marriage market is a triplet
(M, W,»), where M and W are disjoint finite sets and = is a set which
contains for each m € M a linear order =, defined over the set {m} U W .12

In the same way, = contains for each w € W a linear order =, defined over
the set {w} U M.

We refer to >= as a preference profile. The item m, over which the preference
order >, is defined, stands for m’s option of being single. Likewise the item
w, over which the preference order >, is defined, stands for w’s option of
being single. For x € M U W, the strict'® order =, is derived from =, by
therulea -, b a>=,b N a#b.

As in Blum and Rothblum (2002), we define a matching to be a set of
pairs, which is equivalent to the usual function definition of matchings:

Definition 2 (Matching). A matching in the marriage market (M, W, =)
is a set p C M x W such that if (m,w), (m,w) € p, then w = w if and only
if m =m.

If for m € M there exists no w € W with (m,w) € p, then we say that m
is single under matching pu. Correspondingly, if for w € W there exists no
m € M with (m,w) € p, then we say that w is single under matching pu.
To ease notation, for a pair (m,w) € p we will write pu(m) to denote m’s
partner under y, i.e. p(m) := w. In this case, we will also write u(w) to
denote w’s partner under pu, i.e. p(w) := m. If there is no pair in p of which
a player z € M U W is a member, then we denote by u(x) the player x
himself, i.e. pu(z) := .

12 inearity of an order means that it fulfills antisymmetry, transitivity, and totality.
Due to antisymmetry, a linear order does not allow for ties between unequal elements: For
z,y € {m} UW with z # y either holds z =,, y or y >, z, but not both.

13 An order is strict if it fulfills irreflexivity, asymmetry, and transitivity.
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Definition 3 (Blocking pair). Let pu be a matching. A pair (m,w) € M x
W with m =, p(w) and w =, u(m) is a blocking pair for the matching pu.

The set of blocking pairs which exist for a matching u is denoted by Z(u).

Definition 4 (Individual Rationality). A matching u is individually ra-
tional if for every player x € M UW holds pu(x) =, x.

Definition 5 (Stability, Gale and Shapley (1962)). A matching p is sta-
ble if it is individually rational and no blocking pairs exist for p.

The following notation will be used throughout the paper: For U C M x W
we denote by p(U) C M UW the set of those players who are member of a
pair in U, formally

pU)={ee MUW | ye MUW : (x,y) €UV (y,x) € U}.

3. Permissible collections of blocking pairs

We denote by D(p) € %B(u) that set of blocking pairs whose cardinal-
ity we propose to take as a measure of comparison. As mentioned in the
introduction, other authors usually set D(u) := Z#(n). D(p) can only be a
possible deviation from the matching p if D(p) is a matching, i.e. D(p) is a
collection of such blocking pairs which can get satisfied simultaneously. This
requirement is stated as:

Principle 1. The set D(u) is a matching.

Of course there are many subsets of %(u) which are matchings, so Principle
1 alone does not give an answer which blocking pairs should be counted. Our
proposal for solving this problem makes use of the concept of domination,
brought forward in Klijn and Masso (2003):

Definition 6. Let (m,w), (m,w) € M x W. Then (/m,w) dominates (m, w)
if one of the following two conditions is fulfilled: 1) m = m and W >, w or
2) W =w and M =, m.

For (m,w) € M xW, denote by dom((m,w)) C M x W the set of pairs which
are dominated by (m,w). Note that the irreflexivity of the relations >, and
= ensures (m,w) ¢ dom((m,w)), ¥(m,w) € M x W. The following simple
lemma on domination is used later:



Lemma 1. Let (m,w) and (m,w) be two different blocking pairs in M x W.
If m =m or w = w, then exactly one of the following statements is true:

L. (m,w) € dom((1n,w))
2. (1, w) € dom((m,w)).

The proof of this lemma is provided in the appendix (page 24). Using dom-
ination, we state

Principle 2. If (m,w) € B(u)\D(u), then (m,w) € dom((m,w)) for some
(m, ) in D(p).

Verbally, a blocking pair (m,w) will not be counted only if another blocking
pair (7, w) which dominates (m,w) will be counted. From an economic
viewpoint, the formation of (m,w) prevails over the formation of (m,w),
because (m,w) and (m,w) share a member who prefers his or her partner in
(7, 1) and thus would refrain from entering (m,w)."

A set of blocking pairs which fulfills the Principles 1 and 2 is referred to as
permissible. In Section 7 will be shown that a permissible set of blocking
pairs for a matching p is empty if and only if x4 is a stable matching.

4. The economic basis of permissible sets of blocking pairs

In this section, we provide an economic motivation for the permissible sets
of blocking pairs defined above. Klijn and Massé (2003) adapt the bargaining
set of Zhou (1994) to marriage markets and prove that it coincides with the
set of weakly stable'® matchings.'® Here we will take a different direction:
We will try to find an economically reasonable definition of a bargaining set

14For another economic interpretation of domination, drawing on the farsightedness of
the players, see Klijn and Masso (2003) p. 94.

15 If all blocking pairs for a matching are dominated by other blocking pairs, then a
matching is called weakly stable. Klijn and Mass6 (2003) show by example that the set
of weakly stable matchings may be a superset of the set of stable matchings, i.e. there are
marriage markets in which a matching p is not stable, but for any (m,w) € Z(u) exists a
pair (m,w) € #(p) with (m,w) € dom((m,w)).

16The Zhou bargaining set is obtained from the bargaining set of Mas-Colell (1989)
by replacing a weak inequality by a strict inequality in the definition of the objection
and imposing further restrictions on the counterobjection. Both bargaining sets have
interesting mathematical properties, a discussion of whom can be found in Peleg and
Sudholter (2007).



for marriage markets which coincides with the set of stable matchings. Why
do we need such a bargaining set?

Our goal is to interpret permissible sets as justified objections of the partic-
ipating players against the given matching. Because the cardinality of the
permissible sets is our measure of matching comparison, it should be 0 if a
matching is stable. This is an indispensable condition for the claim that our
measure indicates the “degree of instability” of a matching in some sense. On
the other hand, if there are blocking pairs for a matching, it is unstable, and
thus our measure should not assume the value 0. In this case, there should be
a nonempty permissible set and thus a nonempty justified objection against
that matching. For these reasons we are looking for a bargaining set with
two properties:

1. There should be no justified objection against a matching if and only
if it is stable.

2. The justified objections against a matching should be the permissible
sets.

Obviously, the bargaining set of Zhou (1994) and its adaptation by Klijn and
Mass6 (2003) does not fulfill our demands: There can be unstable matchings
which are weakly stable, and which are therefore in the bargaining set of
Klijn and Masso (2003). So according to their concept, there exist no justi-
fied objections against these unstable matchings. In contrast, the following
definition of a bargaining set has the desired features:

Definition 7 (Objection). An objection against a matching p is a match-

ing S#0,SC B(u).

Definition 8 (Counterobjection). A counterobjection against an objec-
tion S is a matching T # 0,7 C B(n), T ¢ S, such that for any pair
(m,w) € T and any pair (m,w) € S holds (m,w) ¢ dom((1h,w)).

As it is known from other bargaining set concepts, an objection for which no
counterobjection exists is called justified.

In short, an objection S C %(u) against a matching u is a matching formed
from blocking pairs for . A counterobjection 7" C () is a matching which
is also formed from blocking pairs for p and it consists only of pairs which are
not dominated by pairs of the objection. This is economically reasonable: If
a pair (m,w) € T was dominated by a pair in S, then either m or w would

10



strictly prefer to keep to the objection and the counterobjection could not
form. If, on the other hand, all pairs in T" were not dominated by pairs in
S and hence T was a valid counterobjection, then the supporters of S would
have no arguments against the formation of 7. They would not find a player
participating in 7" whom they could convince to stay in S — all players par-
ticipating in 7" would weakly prefer T" over S.

In accordance with economic intuition, the condition 7" ¢ S rules out the
possibility that an objection can be countered by itself or by a subset of
itself, because in such a situation the counterobjection would yield exactly
the same payoff as the objection to all of its participants.'”

The proof that there exists no justified objection against a matching p if
and only if y is stable is provided in Section 7. The following result validates
the interpretation of a permissible set D(u) as a justified objection of a group
of players against the matching pu.

Proposition 1. D(u) is a permissible set of blocking pairs if and only if it
s a justified objection against L.

The proof, which has no aesthetic value, is given in the appendix on page 25.
In view of the preceding proposition, it becomes clear that our measure is the
cardinality of groups of players who can come together to improve their out-
come independently of the other players. In this way, they form an objection
against a matching. But among such coalitions, only those are considered
which cannot be blocked by counterobjections. If one accepts that in general
bargaining concepts have real world significance, it makes sense to attribute
a strong potential to reshuffle a matching market to those coalitions which
are justified objections.!® Moreover, as this bargaining set coincides with the
set of stable matchings, the conjecture that its justified objections play a

"Remind that S and T are collections of pairs, not players. As the utility of a player is
solely determined by the pair of which he or she is a member, no player in T" would have
a gain from forming a counterobjection 7" against S if T'C S.

18Gection 11 of Maschler (1992) reviews empirical evidence for and against bargaining set
concepts and discusses its validity. The data on which Maschler bases his analysis was both
generated in laboratory experiments (pp. 638-641) and obtained from real world situations
(pp. 641-642). In 1992 the empirical foundation of bargaining sets was controversial but
encouraging. Maschler himself assumes a rather critical standpoint, while authors he cites,
notably Kahan and Rapoport (1984), are very positive about the empirical importance of
bargaining sets.

11



significant role in real world marriage markets is indirectly supported by the
undoubted empirical relevance of Gale-Shapley stability.

Furthermore, dissatisfaction will particularly prevail among players who find
themselves in a justified objection (and not just in a blocking pair). If a
player realizes that he or she is member of a justified objection against a
matching, it does not only mean that an improvement for himself or herself
was left out by the matchmaker. Aggravating would be the fact that without
counterobjections, the improvement would be practically attainable through
decentralized negotiations between the players.

Finally, Ehlers (2007) adapted Von Neumann-Morgenstern stable sets to mar-
riage markets. A set of matchings is a von Neumann-Morgenstern stable set
if it is internally stable and externally stable (for details see Ehlers (2007)).
Without proof, we note that the permissible sets of blocking pairs for a
matching p comprise an internally stable set of matchings.

5. A workable measure to compare matchings

To evaluate the next result correctly, it is important to remind that by
definition, any matching which is a subset of %(u) is an objection. More-
over, even if for some reason all objections were formed by the same set of
players, from the above definition does not follow that the counterobjections
are formed by the same set of players: If a counterobjection 7' against an
objection S contains a pair which is an element of S, it can be included in
T or left out without changing the fact that 7" is a counterobjection against
S. Considering these facts, it is somewhat surprising that every justified ob-
jection against a given matching p is formed by the same set of players, as
will be shown next.

Proposition 2. Let S and T be justified objections against an individually
rational matching . Then p(S) = p(T)."?

Proof. S and T are matchings, so for notational consistency we set ug := 5
and pup := T. Without loss of generality, assume there is a player m € M with
m € p(S)\p(T"). We will now derive a contradiction from this assumption.
First of all, if ug(m) € p(S)\p(T'), then there is no pair in 7" which shares
a member with (m, pug(m)). Consequently, there is no pair (rm,w) € T' with

19For the notation p(U), see page 8.
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(m, ps(m)) € dom((m,w)) and so (m, us(m)) is a counterobjection against
T, contradicting our assumption that 7" is a justified objection. So it must
hold pg(m) € p(T).

Set K :={x e MUW | ug(x) # pr(z) }, i.e. K is the set of players who
do not have the same partners under ug and pp. Note that m € K. Now we
employ a graph-theoretic argument. Construct a graph ¥4 = (K, E) whose
vertices are the elements in the set K. Let there be an edge in £ between
m € K and w € K if (m,w) € pus U up.2® In this graph, players in K who
are single neither under matching pg nor under matching p are members of
two different pairs in pg U pr, hence they have a degree of 2. Players in K
who are single under exactly one of both matchings are member of exactly
one pair in pgUpr, hence they have a degree of 1. (Remind that players who
are singles under both pug and pur and players who have the same partners
under both matchings are not members of K, hence they are not vertices
of the graph ¢.) Because all vertices in ¢ have degree of either 1 or 2, all
connected components of the graph ¢ must be circuits or simple chains.?!
If a component of ¢ is a circuit, all vertices in that component have degree 2.
From m ¢ p(T) follows that m has a degree of 1, so the connected component
of which m is a node must be a simple chain. The proof will be completed
by showing that this simple chain cannot be a component of the graph ¥.22
By contradiction, assume vy, ..., v, to be the simple chain of of players start-

20This graph is similar to the so called bi-choice graph introduced by Klaus and Klijn
(2010). Like the bi-choice (di)graph, which helps its inventors to prove and reprove a
couple of results on roommate problems in Klaus and Klijn (2010) and Klaus et al. (2009),
the graph defined here connects a player z € K with the partners x has under two different
matchings (in Klaus et al. (forthcoming) the bi-choice graph is not used anymore).

21 A simple chain in a graph is a sequence of distinct vertices v, ...,v, with an edge
between each v; and v;11 for 1 <i <n —1. A circuit is a simple chain vy, ..., v, with an
additional edge between v; and v, and all edges which are part of the circuit are distinct
(cf. Roberts and Tesman (2009), p. 135).

22For the proof, one could also use the bi-choice (di-)graph of Klaus and Klijn (2010).
Therefore one would first have to show that in the bi-choice digraph of the matchings pg
and pr, no two players point at each other. This is a requirement needed for Lemma 1 of
Klaus et al. (2009) to hold. Afterwards, from their Lemma 1 follows that there are only
cycles and loops in the bi-choice graph, implying that there is no simple chain.
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ing with m (i.e. v; = m). From (vq,v2) € ug follows inductively:

Vi<ji<n—1:
jisodd = (vj,vj41) € ps, (1)

jis even = (vj41,v;) € pur.
If we walk along the simple chain vy, ..., v,, we recognize another rule:

V1i<j<n:
Jis odd = pg(vj) =, pr(v;), (2)
7 is even = uT(vj) " v; ,U/S(Uj)'

This is shown by induction: Obviously, (2) holds for vy, because m is single
under pp but not under pug. As ug is an individually rational matching, m
prefers his partner under pg over being single under matching p7. By contra-
diction, assume (2) would not be true for all j, and let 1 < j < n be the lowest
integer such that (2) is not fulfilled. Furthermore, assume j to be odd (for
an even j, the argument is symmetrical). Then for v; must hold pg(v;) <y,
pr(v;), while according to (2) for v;_; holds pr(vj_1) =y,_, prs(vj—1). From
(1) follows (v;,vj_1) € ur € %A(p), and both v; and v;_; prefer each other
over their partners under ug. Because in K are only players who have differ-
ent partners under pug and pp, it is ensured that (vj,vj_1) ¢ pg. Although
(vj,vj_1) € B(1)\us, there is no pair in pg which dominates (v, v;_1), con-
tradicting our assumption that ug was a justified objection against p. This
proves the correctness of (2).

Now consider player v,: If v, is odd, then by (1) (v,,v,—1) € pur, while he
is single under pg (otherwise he would not be the last element of the simple
chain). So individual rationality of pr implies pr(v,) =, ps(v,), contra-
dicting (2). In the same way, if v, is even, then by (1) (v,_1,v,) € ps, while
she is single under pr (otherwise she would not be the last element of the
simple chain). So individual rationality of pg implies pg(v,) =, pr(vs),
again contradicting (2). If follows that there can be no component of the
graph ¢ which is a simple chain starting with m € p(S)\p(T), implying that
there exists no player m € p(S)\p(7). O

Herewith it is proved that for a matching p, all sets D(u) have the same

cardinality. So this number is well-defined and can be used as a measure of
comparison.
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6. Finding all permissible sets of blocking pairs for a given match-
ing p

Only if at least one permissible set of blocking pairs for a matching p is
identified, its elements can be counted. For a concept with practical aspira-
tions, it is therefore essential to show how to find a permissible set of blocking
pairs for an arbitrary unstable matching p. Beyond that, further analysis of
the concept may make it necessary not only to identify one permissible set,
but to find all of them. Fortunately, there is a simple way to achieve this
goal.

Let p be an individually rational matching in the market (M, W,>). For
x € MUW we denote by B,,(x) C M UW the set

Bu(z):={ye MUW | (z,y) V (y,x) € B(1)},

i.e. the set of all players with whom z forms a blocking pair for u. Further-
more, for any x € M UW we consider a preference order =, which is defined
on the same domain as =,. =, has the following properties:?3

ZYEB(x) iz y S 2y (3)

and
z¢ B(x) &=, 2. (4)

Those comparisons not determined by the above rules must be chosen arbi-
trarily subject to transitivity and antisymmetry of the resulting order. Given
a market (M, W, >) and an individually rational matching p in this market, a
preference order >, with the above two properties exists for any z € M UW.
This can be seen as follows: Clearly, the preferences >, for x € MU W
already fulfill (3). In two steps we can manipulate =, to make it compatible
with (4). At first, we rank the single option x directly below the element
miny B, (z) and denote the resulting preference order by >!. Afterwards,
we assign to any element y ¢ B, (z) with y >/ x an arbitrary rank below x
(avoiding ties). The resulting preference order fulfills (3) and (4). Further-
more, it is transitive, total, and antisymmetric, because in our manipulation
we did not introduce ties into >, and so the linearity of >, carries over to
>.. We need the following lemma:

23 As before, the relation =, is derived from >, by the rule a=,b < a>,b A a # b.
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Lemma 2. Let ju be a matching in a market (M, W,>) and let (m,w) €
M x W be an individually rational pair® with (m,w) ¢ p. If there is no
(M, w) € p with (m,w) € dom(m,w), then (m,w) is a blocking pair for .

The proof is stated in the appendix on page 25.

Now let ¢ be an unstable but individually rational matching in the market
(M, W, >), and let > be a preference profile which is constructed according
to the conditions (3) and (4) based on the sets B,(x) for all x € M U W.
With these definitions, we can state:

Proposition 3. A set D C ZA(u) is a permissible set of blocking pairs for
the unstable but individually rational matching p in the market ~
(M, W, =) if and only if D is a stable matching in the market (M, W, >).

Proof. Form a stable matching /i in the market (M, W, ). For x € MUW,
the players preferred over the single option according to the preferences =,
are those with whom x forms a blocking pair for p. So from the fact that f
is individually rational under preferences = follows ji C %(u).>> Moreover,
i # 0, because B(u) # (@ and for any pair (m,w) € ZB(u) holds m >, w
and w >, m by condition (4) above. So if i was the empty matching, then
a pair (m,w) € %B(u) would be a blocking pair for ji under preferences =,
conflicting with ji’s stability in the market (M, W, ). With i € %(u) and
it # () we have established that the matching /i is an objection against p in
the market (M, W,>). Next will be shown that f is justified. Assume by
contradiction there would be a counterobjection 7" against . Then because
T ¢ [i, there exists a pair (m,w) € T,(m,w) ¢ fi, such that for no pair
(m,w) € fi holds (m,w) € dom((m,w)). From (m,w) € T C %A(u) follows
that (m,w) is an individually rational pair in the original market (M, W, >),
thus Lemma 2 ensures that (m,w) is a blocking pair for g in (M, W,>).
Hence it holds

m = fi(w) and w =, ji(m). (5)

24This means that both w >,, m and m =, w are fulfilled. Klaus et al. (2009) would
say that m and w are not matched in an individually irrational way (see the proof of their
Theorem 1).

25 As before, the set %(u) is the set of blocking pairs for u in the market (M, W, =).
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But as fi is stable in (M, W,>), it must hold that either m =<, ji(w) or
w <, fi(m). W.Lo.g. assume

m <y fi(w). (6)

From (m,w) € #(u) follows m € B,,(w) and thus m >, w by (4). Therefore
(6) implies fi(w) # w, henceforth (fi(w),w) € . With i C HAB(u) we conclude
(f(w), w) € A(p) and thus also ji(w) € B,(w).

We have shown that m, ji(w) € B,(w). But if this is true, from condition (3)
and the first part of (5) follows

m =y f(w). (7)

Clearly, (6) and (7) contradict each other. Herewith it is shown that every
stable matching in the market (M, W, E) is a permissible set of blocking pairs
for p in the market (M, W, >).

In the other direction, let D be a permissible set of blocking pairs for p in
the market (M, W, >). For notational convenience set pup := D. up C B(u)
and so for any pair (m,w) € pp holds w € B, (m) and m € B, (w). There-
fore condition (4) ensures w >,, m and m >, w, which means that up is
an individually rational matching in the market (M, W, ). Now assume by
contradiction that there exists a blocking pair (m, w) for pp in the mar-
ket (M,W,=). Then [m =y up(w) =g w A W =5 pp(m) =m m], so
by (4) follows [m € B,(w) N w € B,(m)]. It follows (m,w) € A(n) by
the definitions of the sets B,(w) and B,(m). As pp is a permissible set
of blocking pairs for p in the market (M W,>) and (m,w) € B(u), there
must be a pair (m,w) € up with (m,w) € dom((m,w)), and it holds either
[m =1m A W =5 wor[w=1w A m >z m. If[m_m A W =5 W] s
true, then @ € B,(m) because (m,w) € up C %,. But if w,w € B,(m),
from pp(m) =1 =5 w and (3) follows pp(m) = w > w which means that
(7, @) is no blocking pair for pp in the market (M, W, ), contrary to our
assumption. If [0 =w A 1 =4 m] is true, the argument is symmetrical. O

As a consequence, in order to find all permissible sets of blocking pairs for
a matching p, we just have to construct a preference profile &= with regard
to s and then compute the set of stable matchings in the market (M, W, &).
Each of these matchings is a permissible set of blocking pairs for y in the
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market (M, W,>=).2® An algorithm which can be applied to find the set of
stable matchings in the market (M, W, >) was devised by Irving and Leather
(1986). If we are only interested in the cardinality of the permissible sets,
of course it is sufficient to compute just one stable matching in the market
(M, W, ) with the algorithm of Gale and Shapley (1962).

We remark that Proposition 2 on page 12 could also be proved by making
use of the well known result stated as Corollary 3 on page 20 together with
Proposition 3 above. If all permissible sets of blocking pairs for a matching u
in a market (M, W, >) are in fact stable matchings in a manipulated market
(M, W, =) (Proposition 3), then the fact that the set of those players who
are not single is the same at every stable matching in a market (Corollary
3) implies that all permissible sets of blocking pairs must be formed from
the same set of players. However, by proving Proposition 2 independently
of Corollary 3, it becomes clear that Proposition 2 directly follows from the
Principles 1 and 2, through which permissible sets are defined, and does not
depend on a hidden argument from the set of stable matchings.

7. A permissible set of blocking pairs for a matching u is empty if
and only if u is stable

Now we come to the question under which condition nonemptiness of a
permissible set is guaranteed. A permissible set D(u) C %(u) is an empty
set if and only if p is stable. Hence, according to proposition 1 there is no
justified objection against a matching if and only if i is stable. In particular,
p being a weakly stable matching (Klijn and Mass6 (2003)) is not sufficient
for D(u) to be empty. This is an important result, as it proves that the
bargaining set presented in section 4 indeed coincides with the set of stable
matchings.

Corollary 1 (to Proposition 3). There is no justified objection against an
indiwvidually rational matching p if and only if ju is stable.?”

26Qur result reveals an isomorphism between the permissible sets of blocking pairs for a
matching 1 and the set of stable matchings in another marriage market. Similarly, Ehlers
(2007) makes use of the result of Blair (1984) in order to show that there is an isomorphism
between a Von Neumann-Morgenstern stable set in one marriage market and the set of
stable matchings in another market (see Ehlers (2007), Remark 2, p. 544).

2TRemind that by definition an objection is nonempty. Thus empty justified objections
do not exist.
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Proof. “<": 1f u is stable, then there are no blocking pairs and thus there
is no objection. “=": If y is unstable, then let (M,W,>) be a marriage
market where = was constructed with regard to p. In the first part of the
proof of Proposition 3 was shown that any stable matching in (M, W, E) is
a nonempty permissible set of blocking pairs for pu, i.e. a justified objection
against p. U

Corollary 2 (to Corollary 1). If there exists an objection against a match-
ing 1, then there exists a justified objection against .

Proof. 1f there exists an objection S against p, then any pair (m,w) € S is
a blocking pair for p. Thus p is unstable. Hence, Corollary 1 ensures that
there exists a justified objection against p. [

8. Permissible sets of blocking pairs and the set of stable matchings

Proposition 3 showed that for an arbitrary unstable matching p in a mar-
riage market (M, W, ) we can construct another marriage market (M, W, =)
such that the stable matchings in (M, W, &) are the permissible sets of block-
ing pairs for p. Can we reverse the direction of this argument? If we have an
arbitrary market (M, W, >), can we always find a matching u such that the
set of stable matchings of (M, W, =) are the permissible sets of blocking pairs
for 7 In this section that question is answered affirmatively. Surprisingly,
the stable matchings in an arbitrary market (M, W,>) are the permissible
sets of blocking pairs for the empty matching (the matching in which all
players are single) of (M, W, >):

Proposition 4. Let p be the empty matching in the market (M, W,>). A
matching ' is stable in (M, W, %) if and only if it is a permissible set of
blocking pairs for the matching p.

Proof. First assume p' is a stable matching in (M, W, >). Let (m,w) be a
blocking pair for the empty matching such that (m,w) is not an element of
1. To establish that p’ is a permissible set of blocking pairs for u, it must be
shown that (m,w) is dominated by a pair in ¢’. (m,w) cannot be a blocking
pair for 4/ due to the stability of u/. So because of the strict preferences,
it must hold p/(m) >, w or p/(w) >, m (or both), as otherwise (m,w)
would block p/. But then (m,w) is dominated either by (m, u/(m)) € p’ or
by (¢ (w),w) € . In the other direction, assume D is a permissible set of
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blocking pairs for g. Then D is a matching in (M, W,>) (with all players
who are not part of a pair in D being singles), and D is individually rational
because D C %(u1).?® Tt needs to be shown that there exist no blocking pairs
for the matching D. A blocking pair (m,w) for D cannot be dominated by
any pair in D because then either m or w would prefer their partners under
D over the formation of (m,w) and so (m,w) would be no blocking pair. But
if (m,w) is not dominated by any pair in D, then it is a counterobjection
against D. By Proposition 1 D is a justified objection against u, and thus
there exist no counterobjections against ). This establishes that there are
no blocking pairs for D. [J

Using Propositions 4 and 2, a well known result of matching theory can
be proved again:

Corollary 3. Let p, ' be stable matchings in a market (M, W,>=). Then a
player x € M U W who s not single at the matching i is also not single at
the matching '

Proof. By Proposition 4 both u and y/ are permissible sets of blocking pairs
for the empty matching in the market (M, W,>), and thus justified objec-
tions against that matching. So from Proposition 2 follows p(u) = p(y/). O

This result was proved in two different ways for marriage markets in
McVitie and Wilson (1970) (theorem on page 298) and Gale and Sotomayor
(1985) (Proposition 1). It was proved in Roth (1984) (Theorem 9) for the
generalization of many-to-one matching problems.

9. Comparing the cardinalities of the sets D(u) and #(u)

The following example demonstrates that the new measure can be re-
versed to the measures of instability frequently used in previous works, namely
the numbers of blocking pairs.

Example: Consider a market with

M == {m17m27m3} and W = {w17w27w37w47w5}

28Under the empty matching u, all players are singles. So for the members of any
blocking pair (m,w) for p holds m >, p(w) = w and w >,, p(m) = m. Hence from
D C #(u) follows the individual rationality of D.
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and the following preferences:?”

P(wy) = my =y, wy P(my) = wy =y W >y W3 >y My
P(wy) = my >y, wo P(mg) = wy >, Mo

P(ws) = my >y, w3 P(m3) = ws >, m3

P(wy) = mg >y, Wy

P(ws) = m3 >y, ws

Compare two matchings p1, po in this market, defined by

1 = {(ma, wa), (M3, ws)},
p2 = {(m1,wr)}.

Then 2(p1) = {(ma, wr), (M1, we), (M1, w3)} and B(pz) = {(ma, ws), (M3, ws)}.
As |ZB()] = 3 > 2 = |B(u2)|, the matching pu; would be considered less
stable than uy by the traditional measure. In constrast, we have D(u;) =
{(ma1,wi)} and D(pz) = {(ma, wa), (ms, ws)}. So [D(pn)] =1 < 2= [D(ps)].
By the measure proposed here, matching ps would be less stable than .

So the new measure and the number of blocking pairs can be reversed to
each other. But to what extent can they be reversed? It would be at odds
with intuition if one could find two matchings u and y’ in the same market
with B(u) € B(y') and |D(p)| > |D(y')|. In that case a manipulation
of the matching p which would add blocking pairs to Z(u) could lead to
a reduction of the measure. If such matchings p and p' existed, one could
hardly claim that the cardinality of a permissible set is a reasonable estimate
for the “degree of instability” of a matching. Fortunately, this possibility can
be ruled out:

Proposition 5. Let ju and p' be individually rational matchings with B(u) C
B(). Then [D(u)| < | D).

Proof. An injective function which maps D(u) into D(p’) will be constructed.
Such a function only exists if |D(p)| < |D(i')|. For o € D(u), let y(z) :=

29The preferences are only stated down to the single option. Partners who are less
preferred than the single option are irrelevant because both matchings in the example are
individually rational.
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(m,w) be an arbitrary element in D(y') with z € dom((m,w)). Define a
function f: D(u) — D(i') by

x ifx e D(u)N D),
flw) = { y(x) otherwisell,t g

It will be shown that the function f(x) exists and that it is an injection. f(x)
exists because any element x € D(u) which is not in D(x') must be dominated
by an element in D(y') (Principle 2). So y(z) exists for each x € D(u),
x ¢ D(y'). Furthermore, for any x ¢ D(p)ND(y') holds y(x) ¢ D(u)ND(u').
This follows from principle 1: y(z) is a pair which dominates z, which means
that = and y(x) must have a player in common. But as D(u) is a matching
(principle 1), no two pairs in the set D(u) share a player.

Hence, the set D(u)\D (') is mapped into D(u/)\D(u). Consequently, f is
an injection on the domain D(p) N D().

Now assume there would be two pairs x, z € D(u)\D(y') with y(x) = y(z) :=
(m,w). Note that one pair in D(y') cannot dominate two pairs in D(u) via
m, because then m would be a member of both these dominated pairs. But
D(p) is a matching, and there are no two pairs which share a player. (m
can be replaced by w in this argument.) Therefore z is dominated by (m, w)
via m and z is dominated by (m,w) via w (or vice versa). But if this is
the case, m and w prefer the pair (m,w) over the pairs x and z, whence the
pair (m,w) is a blocking pair in #(u). So (m,w), which is not member of
D(u), must be dominated by a pair in D(u) (Principle 2). But m and w
prefer (m,w) over x and z, implying (m,w) can neither be dominated by x
nor by z. Hence, (m,w) is not dominated by any pair in D(u), contradicting
Principle 2. This rules out y(z) = y(z). It follows that f is also an injection
on the domain D(p)\D(y'). O

10. Conclusion

A measure to compare matchings is needed in situations in which Gale-
Shapley stability is not a feasible or appropriate objective. Such situations
can emerge in experimental economics, when the matchmaker pursues goals
other than stability, or when particular market circumstances prevent the
matchmaker from generating a stable matching. The number of blocking
pairs or closely related criteria were deployed in previous papers (Khuller
et al. (1994), Roth and Xing (1997), Niederle and Roth (2007), Hamada
et al. (2009), Bir6 et al. (2010)), and even some general properties on these
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measures of instability were derived in Eriksson and Haggstrom (2008).
Here we argued that instead of counting all blocking pairs which exist for a
matching, one should rather count a set of blocking pairs which comprises
a possible and economically reasonable transformation of the market. This
approach led to two principles for the set of blocking pairs to be counted:
The first made sure that this set was really a matching, which means that it
must not contain two or more pairs sharing a common member. The second
principle was based on economic intuition. It stated that any blocking pair
(m,w) for a matching pu was counted, unless one counted another blocking
pair (m,w) for u which dominated (m,w). The economic argument behind
this principle is that the sole reason a blocking pair would not get satisfied
should be the existence of another, dominating blocking pair which does get
satisfied. Those sets of blocking pairs which fulfilled both principles were
called permussible.

It was then shown that we can characterize the set of stable matchings as a
bargaining set, and that according to this bargaining set the permissible sets
of blocking pairs are justified objections of groups of players against the given
matching. Furthermore, even if multiple different permissible sets of blocking
pairs exist for a matching, they all have the same cardinality. This property
makes the cardinality of permissible sets a practicable measure of matching
comparison. Next, a method was presented to identify all permissible sets of
blocking pairs existing for a matching. Then we established that there is no
unstable matching which has an empty permissible set of blocking pairs, and
no stable matching which has a non-empty permissible set of blocking pairs.
Finally, an example illustrated that for two matchings in the same market,
the measure brought forward in this paper can be conversed to the absolute
and relative numbers of blocking pairs.

In this theoretical work, one important question remained unanswered: Does
the cardinality of a permissible set of blocking pairs empirically capture the
extent of partner changes inherent in an unstable matching?

In order to substantiate such a claim, one could conduct a laboratory ex-
periment and check whether the first blocking pairs which get satisfied at a
given unstable matching are sufficiently often permissible sets. Yet even if
the relevance of permissible sets could be empirically supported, their cardi-
nality would just predict the extent of the first stage of the dynamic.?°

30See Appendix B for a rudimentary analysis of the n**-order dynamics.
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Divorce cost may prevent excessive partner changes and cause dynamics to be
short. Therefore we argued that the costlier divorces are, the more adequate
it is to measure the “degree of instability” by the size of permissible sets.
However, in real world matching markets, the average number of players’
partner changes may be easier observable than divorce costs (which are not
necessarily monetary).3! The lower the average number of partner changes is,
the higher tends to be the share of the market readjustment occuring at the
beginning of the dynamic, and the more relevant is the size of the permissible
sets. Consequently, real world markets with low average numbers of partner
changes would be the first candidates for applying the measure introduced
in this article.

Appendix A. Proofs left out in the main body

Lemma 1 (of page 9). Let (m,w) and (M, w) be two different blocking
pairs in B(p). If m = m or w = 1w, then exactly one of the following
statements 1s true:

1. (m,w) € dom((m,w))
2. (m,w) € dom((m,w)).

Proof. Only the case m = m is considered, as the case w = w can be
treated analogously. First we prove that at least one of the two cases holds.
Assume (m,w) ¢ dom((m,w)). Then m = m implies W ¥, w, and thus the
strict preferences demand w >, W, which means (m,w) € dom((m,w)). By
the same argument, (m,w) ¢ dom((m,w)) implies (m,w) € dom((m,w)).
Now we prove that (m,w) € dom((m,w)) and (m,w) € dom((m,w)) cannot
be true at the same time. Assume (m,w) € dom((rn,w)). The definition of
(m,w) € dom((m,w)) requires that either holds 1) [m = 7 and W >, w|
or 2) lw = w and m >, m|. From m = m follows w # w because of
(m,w) # (m,w), and so not both cases can be fulfilled simultaneously. Thus
only case 1) holds true. m = m and (1h,w) € dom((m,w)) would imply
w >, W, a contradiction. Hence it follows (m,w) ¢ dom((m,w)). O

31For real marriage markets (formed by men and women who want to marry), data about
the number of partner changes, divorce rates, and players’ search efforts were acquired by
sociologists. Frey and Eichenberger (1996) highlight economically interesting facts from
this literature.
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Proposition 1 (of page 11). D(u) is a permissible set of blocking pairs
if and only of it is a justified objection against p.

Proof. Assume that the set D(u) is a justified objection against p. Then
definition 7 ensures that D(u) is a matching (i.e. fulfills Principle 1) and
D(p) € AB(u). It needs to be shown that D(u) also satisfies Principle 2.
By contradiction, if D(u) would not satisfy Principle 2, there would be a
pair (m,w) € B(u)\D(n) for which exists no pair (m,w) € D(u) with
(m,w) € dom((m,w)). But if (m,w) ¢ dom((rn,w)) for any (m,w) € D(u),
the pair (m,w) fits the definition of a counterobjection, generating a con-
tradiction. Hence D(u) must also fulfill Principle 2, whence it follows that
D(p) is a permissible set of blocking pairs. In the other direction, assume
D(u) is a permissible set of blocking pairs but there is a counterobjection
T C AB(u) against D(u). From this we construct a contradiction as fol-
lows: Pick a pair (m,w) € T, (m,w) ¢ D(n). Such a pair must exist since
T ¢ D(u) is ensured by the definition of a counterobjection. Also by the
definition of a counterobjection, no pair (m,w) € D(u) dominates (m,w).
But as (m,w) € A(u)\D(n), Principle 2 demands that there is a pair in
D(p) which dominates (m,w), delivering the contradiction. [J

Lemma 2 (of page 16). Let p1 be a matching in a market (M, W, =) and let
(m,w) € M xW be an individually rational pair’® with (m,w) ¢ u. If there is
no (m,w) € p with (m,w) € dom(m,w), then (m,w) is a blocking pair for .

Proof. Assume by contradiction that an individually rational pair (m,w) €
M x W with (m,w) ¢ p would neither be dominated by any pair in u, nor
would it be be a blocking pair for u. As (m,w) is no blocking pair, it must
hold p(m) >, w or p(w) =, m, implying pu(m) # m or pu(w) # w because
(m,w) is an individually rational pair. For any x € M UW and any match-
ing p holds p(x) # = = (v, p(x)) € pV (u(z),r) € p. Hence at least one
of the pairs (m, pu(m)), (u(w),w) is an element of p. As a consequence, it
holds (m,w) € dom((m,u(m))) or (m,w) € dom((u(w),w)), contradicting
the assumption that (m,w) was not dominated by any pair in p. O

32This means that both w >,, m and m =, w are fulfilled.
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Appendix B. n!*-Order Dynamics

Iteratively identifying permissible sets and satisfying their blocking pairs
leads to a dynamic of matching transformations. It will be shown that the
dynamic does not necessarily converge to a stable matching. Therefore the
size of a permissible set D(u) cannot be interpreted as a “distance from the
set of stable matchings” in a direct sense, i.e. as the length of a sequence
which transforms p into a stable matching. Besides this fact, extending the
analysis to multiple stages of matching transformation yields no insights rel-
evant for the measure discussed in the preceding sections. This is the reason
why we refer to this topic in the appendix.
n'-order dynamics will be just touched here without comprehensive analy-
sis. Nevertheless, the example presented in this section gives rise to some
questions which might inspire future research.

Let 1 be a matching and D(u) be a permissible set of blocking pairs for
f. A new matching o(u) can be defined by

o(p) = D(u) U{(m,w) € p | m,w ¢ p(D(u))}

with p(D(u)) being set of players who are not singles under the matching
D(p) (see the definition on page 8). Verbally, the matching o(4) contains the
permissible set D(u) and those pairs of p which do not share a player with
any pair in D(u). The definition of o(u) implies that a player x who does
not participate in the permissible set D(u), but whose partner p(x) does, is
single under o(u).?® Using the transformation o, one can think about a se-
quence of matchings (11')i—o... ~ such that u’ = o(u'~') for some permissible
set D(pi™1).

By Corollary 1 (page 18), if the sequence (u');—1. o converges, then it
must converge to a stable matching. Unfortunately, it may happen that the
sequence cycles, and even worse, there may not even be a “way out” of the
cycle through choosing a different permissible set of blocking pairs at some

33For satisfying arbitrary single blocking pairs (not permissible sets), this natural way to
transform a matching was formalized in Blum and Rothblum (2002), p. 432. Furthermore,
the matching transformation defined here is a special case of the enforceability notion
defined by Klaus et al. (forthcoming) for roommate problems, where only coalitions are
considered in which all players improve their outcome.
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point. This fact is illustrated by the upcoming example. To understand the
example correctly, the following (trivial) result is useful:

Lemma 3. Let p be a matching. If (u) is a matching, then there exists a
unique permissible set of blocking pairs for p.

Proof. If %(p) is a matching, then no two pairs in %(u) share a player,
hence no pair in #(u) is dominated by any other pair in % (u). Therefore
by principle 2 all pairs in #(u) must be in D(u), i.e. Z(u) € D(u). By
definition holds D(u) C #A(u) (cf. page 8), thus for all permissible sets D(p)
for ;o must hold B(u) = D(u), whence D(p) is a unique set. [

Example: Consider a market with

M = {my,mo,m3} and W = {wy, w, w3}

and the following preferences:**
P(wl) = M3 >, M1 >, W1 P(ml) = W1 7 my W3 >my T
P(?,LJQ) = Mg Py T3 >y W2 P(mg) = W3 7y W2 > my T
P<w3) = My Ppy T2 7y W3 P(mg) = W3 > my W1 7 my M3

The cycle starts with the matching x° in this market, defined by

MO = {(m1, w1), (ma, wa) }.

Then B(u°) = {(ms3,w), (ma,ws)} (the set of blocking pairs for u°). Be-
cause B(p°) is a matching, lemma 3 ensures D(u") = AB(u°) and D(u°) is
unique. By the transformation o we obtain

ﬂl = {(m3z, w1), (Mg, w3)}.

Agaln B(u') = {(m1,w3), (m3,ws)} is a matching, so by lemma 3 follows
D(u') = #(u'). Hence

1* = {(mi,ws), (M3, wa)}.

34 As before, the preferences are only stated down to the single option.
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Again B(p?) = {(my,wy), (mg,wz)} is a matching, so B(u?) = D(u?).
Therefore
p? = {(ma, w1), (ma, wa) }

and p° = p3.

At each step of the transformation, all existing blocking pairs were sat-
isfied simultaneously. So the example demonstrates that stability cannot
always be reached if one satisfies more than one blocking pair at each match-
ing. This is an interesting fact, given a sequence which leads to stability if
one chooses just one blocking pair at a matching always exists (Roth and
Vande Vate (1990)). How do those matchings which can be reached through
any of the sequences starting at x° depend on p®? If one could prove nice
properties of the sequences defined in this section, and empirical support
could be delivered, they might be promising candidates for a genuine model
of matching market microdynamics.
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