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Abstract

The precautionary principle (PP) applied to environmental policy stipulates that, in

the presence of uncertainty, society must take robust preventive action to guard against

worst-case outcomes. It follows that the higher the degree of uncertainty, the more ag-

gressive this preventive action should be. This normative maxim is explored in the case

of a stylized dynamic model of pollution control with uncertain (in the Knightian sense)

stock dynamics, using the robust control framework of Hansen and Sargent [12]. Opti-

mal investment in damage control is found to be increasing in the degree of uncertainty,

thus confirming the conventional PP wisdom. Optimal mitigation decisions, however,

need not always comport with the PP. In particular, when damage-control investment

is both sufficiently cheap and sensitive to changes in uncertainty, damage-control in-

vestment and mitigation may act as substitutes and a PP with respect to the latter

can be unambiguously irrational. The theoretical results are consequently applied to a

linear-quadratic model of climate change calibrated by Karp and Zhang [20]. The anal-

ysis suggests that a reversal of the PP with respect to mitigation, while theoretically

possible, is very unlikely.

Keywords: Knightian uncertainty, robust control, precautionary principle, pollution

control, stock dynamics

JEL classifications: C61, D80, D81
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1 Introduction

A common thread running through much of environmental economics is a reliance on expected

utility as a means of performing cost-benefit analysis and, more broadly, as a normative

criterion. There are many compelling reasons for its primacy: expected utility theory has

solid theoretical underpinnings, going back to the work of von Neumann and Morgenstern [26]

and Savage [29], is conceptually intuitive, and leads to tractable optimization problems.

However, in the case of environmental economics, its attractive qualities often come at a

steep price, primarily due to two basic factors: (a) the high structural uncertainty over the

physics of environmental phenomena which makes the assignment of precise probabilistic

model structure untenable [34], and (b) the high sensitivity of model outputs to controversial

modeling assumptions (for instance, the functional form of the chosen damage function [31,

35] and the value of the social discount rate). As a result, separate models may arrive at

dramatically different policy recommendations, generating significant uncertainty over the

magnitude and timing of desirable policy.1

A general guide for crafting policy under such uncertain conditions can be found in the

formulation of a precautionary principle (PP). In plain English, the PP basically codifies the

age-old mantra “better safe than sorry”. Here is the way it was expressed as Principle 15 of

the Rio Declaration, in the context of the 1992 United Nations Earth Summit:

“In order to protect the environment, the precautionary approach shall be widely ap-

plied by States according to their capabilities. Where there are threats of serious or

irreversible damage, lack of full scientific certainty shall not be used as a reason for

postponing cost-effective measures to prevent environmental degradation.”2

The Wingspread Statement, formulated at the 1998 Wingspread Conference on the Precau-

tionary Principle, goes even further:

1William Nordhaus’ DICE model [27] and the Stern Report [30] are the canonical examples of this deep

divergence within the context of climate change economics.
2http://www.unep.org/Documents.multilingual/Default.asp?DocumentID=78&ArticleID=1163

3



“When an activity raises threats of harm to human health or the environment, precau-

tionary measures should be taken even if some cause and effect relationships are not

fully established scientifically.”3

In our work we focus on yet another variation still, one which involves the adaptation

of policy to changing levels of uncertainty. In particular, we consider an extension of the

PP that prescribes an increase in the stringency of precautionary policy as the degree of

uncertainty grows. While this statement does not necessarily follow from either of the above

formulations of the PP, we believe it to be a defensible extension of its overarching logic.

To ground our study on a rigorous quantitative basis, we take the broad term of “uncer-

tainty” to mean an inability to posit precise probabilistic structure to physical and economic

models. This derives from the concept of uncertainty as introduced by Knight [23] to rep-

resent a situation where a decisionmaker lacks adequate information to assign probabilities

to events. Knight argued that this deeper kind uncertainty is quite common in economic

decisionmaking, and thus deserving of systematic study. Knightian uncertainty is contrasted

to risk (measurable or probabilistic uncertainty) where probabilistic structure can be fully

captured by a single Bayesian prior. There is considerable evidence that it may provide a

more appropriate modeling framework for many applications in environmental economics,

especially climate change [34, 25].

Inspired by the work of Knight and consequently Ellsberg [4], economic theorists have

questioned the classical expected utility framework and attempted to formally model pref-

erences in environments in which probabilistic beliefs are not of sufficiently high quality to

generate prior distributions.4 Klibanoff et al. [21, 22] developed an axiomatic framework,

the “smooth ambiguity” model, in which different degrees of aversion for uncertainty are

explicitly parameterized in agents’ preferences. In their model an act f is preferred to an

3http://www.sehn.org/state.html#w
4The related decision-theoretic literature is both vast and deep so the following remarks are by no means

meant to be exhaustive. We purely focus on the few contributions that are directly relevant for our purposes.
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act g if and only if Epφ(Eπu ◦ f) > Epφ(Eπu ◦ g), where u is a von Neumann Morgenstern

utility function, φ an increasing function, and p a subjective second order probability over a

set Π of probability measures π that the decisionmaker is willing to consider (E denotes the

expectation operator). When φ is concave the decisionmaker is said to be ambiguity averse.

A truly compelling and innovative feature of the smooth ambiguity model is that it allows

for a separation between ambiguity (the set Π and the second-order distribution p) and a

decisionmaker’s attitude (i.e., aversion) towards it, nesting in a smooth fashion the entire

continuum between simple aggregation of the prior π’s (ambiguity neutrality) to absolute

focus on the worst-case (absolute ambiguity aversion). Comparative statics exercises involv-

ing the above are relatively easy to perform (at least in the static version of the model) and

generate rich and insightful results.

In recent years the smooth ambiguity framework has been applied to a number of is-

sues in environmental economics (Gollier and Gierlinger [9], Treich [32], Millner et al. [25],

Lemoine and Traeger [24]). However, despite its prominent role in the recent literature, the

smooth ambiguity model seems (at least to us) to have more of a positive instead of a norma-

tive focus, and questions about how to calibrate agents’ ambiguity aversion in environmental

settings appear difficult to address. As an example, consider global climate-change policy:

it is unclear to us how one could, or even should, use Ellsberg-type thought experiments

to calibrate ambiguity aversion parameters on whose ultimate basis normatively-appealing

emissions trajectories will be determined. An additional, potential, shortcoming of the gen-

eral approach is that it relies on knowledge of second-order probabilities (the distribution p)

when in some instances such knowledge may not be possible or justified. On a final note,

it is worth mentioning that the dynamic version of the smooth ambiguity model [22] seems

to pose nontrivial tractability challenges, so that (at times) only the utility of very simple,

exogenously given, policies can be computed [25].
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Our Focus: Robust Control. In a seminal contribution, Gilboa and Schmeidler [8] de-

veloped the axiomatic foundations of max-min expected utility, a substitute of classical ex-

pected utility for economic environments featuring unknown risk. They argued that when

the underlying uncertainty of an economic system is not well understood, it is sensible, and

axiomatically compelling, to optimize over the worst-case outcome (i.e. the worst-case prior)

that may conceivably come to pass. Doing so guards against possible devastating losses in

any possible state of the world and thus adds an element of robustness to the decision-making

process.

Motivated by the possibility of model misspecification in macroeconomics, Hansen and

Sargent [12] and Hansen et al. [15] extended Gilboa and Schmeidler’s insight to continuous-

time dynamic optimization problems, introducing the concept of robust control to economic

environments. They showed how standard dynamic programming techniques can be modified

to yield robust solutions to problems in which the underlying stochastic nature of the model

is not perfectly known.5 In their work, the degree of misspecification is a model input,

so that decision makers can test the sensitivity of a proposed solution with respect to the

model’s presumed uncertainty. Lacking complex formal characterizations similar to Klibanoff

et al. [21, 22] and Epstein and Schneider [5], the focus of Hansen-Sargent robustness project

seems to be as much practical as it is theoretical, if not more.6

Finally, we should also note that Chen and Epstein [2] and Epstein and Schneider [5]

developed a parallel approach to Hansen and Sargent’s robust control, which they refer to as

5In Section 2 we discuss the relationship of robust control to risk-sensitive control theory, developed earlier

in the engineering and control literature.
6There are, however, some important shortcomings to the robust control framework that bear mention-

ing. In contrast to the smooth ambiguity model, the max-min setting of robust control cannot disentangle

ambiguity and ambiguity attitude (as ambiguity attitude is fixed) and preferences will, in general, be kinked.

Moreover, the basic version of the model that we use does not allow for learning over time so that it is

assumed that a decisionmaker cannot re-adjust his model misspecification to reflect historical data. Later

work by Hansen and Sargent [13] addresses this concern.
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the Recursive Multiple Priors (RMP) model. Similarly inspired by Gilboa and Schmeidler,

this framework differs in subtle ways to robust control, primarily with regard to the set of

restricted priors (it is larger, and therefore more general), and their evolution over time.7

A recent application of RMP in environmental economics can be found in Asano [1], who

studies the optimal timing of environmental policy under ambiguity.

Our contribution. In recent years the Hansen-Sargent framework has slowly begun to

make its way into environmental economics. Gonzales [10] applied robust control to the regu-

lation of a stock pollutant under multiplicative uncertainty introduced by Hoel and Karp [16].

Roseta-Palma and Xepapadeas [28] studied water management under ambiguity, while Var-

das and Xepapadeas [33] did the same in the context of biodiversity management. Funke

and Paetz [7] applied the robust control framework to a numerical model of climate change

while Xepapadeas [37] studied an international game of pollution control under cooperative

and non-cooperative assumptions on countries’ behavior.

The present work can be viewed as a continuation of this nascent literature in the con-

text of pollution control. Our paper expands the standard linear-quadratic model of pollution

control, studied by Dockner and Van Long [3] among many others, to allow for (a) misspeci-

fication of stock dynamics and (b) the possibility of investment in damage-control technology

that alleviates the effects of pollutant stock accumulation. In the context of climate change,

examples of this kind of damage-control investment can be found in the construction of large-

scale civil engineering projects, substantial R & D in geoengineering, and the construction

of new urban environments to accommodate potential forced migration. It is distinct from

direct emissions mitigation, which is traditionally attempted through economic instruments

such as taxes, emissions quotas, and assorted command-and-control measures.

We assume the presence of a benevolent government (or, conversely, a group of cooper-

7For more details the reader is referred to section 5 in Epstein and Schneider [5] and section 9 in Hansen

et al. [15].
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ating countries in a global pollution control problem) which makes a one-time investment in

damage-control technology at time 0, and subsequently decides on a desirable dynamic emis-

sions policy. Adopting the Hansen-Sargent framework, we introduce Knightian uncertainty

into the basic model and study the effect of model misspecification on optimal mitigation

and damage-control decisions. We focus on uncertainty surrounding the pollution stock, and

in particular its accumulation dynamics. Specifically, uncertainty is introduced in the un-

derlying diffusion process, reflecting concerns about our benchmark probabilistic model such

as: (a) a miscalculation of exogenous sources of emissions, (b) a miscalculation of the natu-

ral pollution decay rate, and (c) an ignorance of more complex dynamic structure involving

irreversibility, feedback or hysteresis effects.

In contrast to previous contributions [10, 33, 7, 37] we provide an explicit analytical

solution to the maxmin problem that clarifies the structure of robust feedback policies.8

Moreover, to the best of our knowledge, our paper is the first to (a) completely characterize

and physically interpret the stochastic pollution dynamics that result, and (b) attach a

statistically meaningful, as well as analytically tractable, parameter (entropy bound) on

the degree of model misspecification. These insights prove especially useful in our paper’s

numerical exercise.

Our primary focus is normative. Ex-ante, one may expect a certain kind of precautionary

principle (PP) to hold whereby the greater the degree of uncertainty, the more the government

would choose to both decrease emissions and invest in damage control. Indeed, since higher

8To be fair, [10, 7] studied discrete-time models which do not lend themselves to nice closed-form solutions

and in which even steady-state results are hard to come by (Gonzalez [10]). Along similar lines, Vardas and

Xepapadeas [33] focused on a significantly more complex nonlinear model, which they had to linearize around

the steady state in order to derive some insight into the structure of optimal solutions. Xepapadeas [37]

studied a similar linear-quadratic model as ours but stopped short of the more complete analysis we perform

here, focusing instead on determining the ‘cost of preacaution’, i.e., the welfare loss that Knightian uncertainty

leads to. Finally, Roseta-Palma and Xepapadeas [28] explicitly characterized robust feeback policies for a

different model that addressed rainfall uncertainty.
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uncertainty translates to the possibility of higher damages from pollutant accumulation, such

a finding would not be altogether unreasonable.

However the above conjecture is only partially true. We formally prove that optimal

investment in damage control technology is always increasing in the degree of uncertainty,

thus confirming the conventional PP wisdom. Optimal mitigation decisions, however, need

not always agree with the PP and we provide analytical conditions that sway the relationship

one way or the other. Initially this result may seem strange; why should we ever emit

more as uncertainty over damages increases? But, upon slightly closer examination, the

precautionary result on damage-control technology renders the above not especially surprising

or counter-intuitive. The reasoning9 is simple enough. Keeping uncertainty fixed, emissions

are decreasing in damages whilst, keeping damages fixed, they are decreasing in uncertainty.

It thus stands to reason why as uncertainty increases and investment in damage-control is

ramped up, the net effect on emissions is ambiguous. Indeed, we find that when the cost

of damage control is low enough, damage-control investment and mitigation may act as

substitutes so that a PP with respect to the latter can be unambiguously irrational.

The theoretical results are consequently applied to a linear-quadratic model of climate

change, calibrated by Karp and Zhang [20]. In our simulations we take pains to quantify and

carefully calibrate the uncertainty parameter of our model so that our choices reflect realistic

cases of model misspecification. Our novel calibration and rigorous interpretation of the

numerical results hinge in large part on the theoretical analysis and may be, at least in our

view, of independent interest for robust control applications. Our main policy-relevant finding

is that emissions can be increasing in uncertainty only when damage-control technology is

extremely and most probably unrealistically cheap. Thus, for all practical purposes, when

dealing with uncertainty in stock dynamics a precautionary principle with regard to both

damage control and mitigation will likely be part of a robust climate-change policy.

9elucidated by an anonymous referee
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Paper outline. The structure of the paper is as follows. Section 2 introduces the robust

control model, while Section 3 analyzes its solution for the case in which damage-control

technology is fixed. Section 4 introduces the possibility of damage-control investment and

studies the applicability of a PP with respect to both mitigation and damage control. Section

5 illustrates the theoretical results with a numerical exercise on a calibrated model of climate

change. Section 6 provides concluding remarks.

2 Robust Pollution Control

2.1 Introducing model misspecification and damage control tech-

nology

We adopt the standard linear quadratic model of international pollution control analyzed by

Dockner and van Long [3], among many others. Output is a function of emissions F (E),

where F (·) is strictly concave with F (0) = 0. Emissions contribute to the stock of a global

pollutant P (t). The evolution of the pollution stock is described by the following linear

differential equation,

Ṗ (t) = E −m(P (t)− P̄ ) , P (0) = P0, (1)

where 0 < m < 1 reflects the environment’s self cleaning capacity, and P̄ ≥ 0 the pre-

industrial level of the pollution stock. Utility is given by u(F (E))−D(P ) where D(P ) is a

damage function and

u(F (E)) = − b
2
E2 + aE, a ≥ 0, b > 0. (2)

We modify the standard quadratic damage function D (P ) = g
2
(P − P̄ )2, g > 0 by allow-

ing for the possibility of investment in damage control (note that damages are identically

zero when P = P̄ ). That is, at time 0, the government chooses a level of damage-control
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technology z ∈ [0, 1] that alters the damage function in the following way

D(P, z) = z · g
2

(P − P̄ )2. (3)

Thus, a lower value of z implies a higher investment in damage-control technology. The

cost of making an investment z is modeled by a strictly decreasing and convex function

φ(z) : [0, 1] 7→ <+ that satisfies

φ(1) = 0, lim
z→0

φ(z) =∞, lim
z→0

φ′(z) = −∞.

Risk is introduced to the standard model so that the stock of the pollutant accumulates

according to the diffusion process

dP (t) =
(
E −m(P (t)− P̄ )

)
dt+ σdB(t), (4)

where {B(t) : t ≥ 0} is a Brownian motion on an underlying probabibility space (Ω,F ,

G) . Thus, in a world without uncertainty and with fixed damage-control technology, the

government’s objective is to maximize welfare or

max
E

E
∫ ∞
0

e−ρt
[
aE − bE2

2
− z g

2
(P − P̄ )2

]
dt

subject to: (4), P (0) = P0, (5)

where ρ > 0 is a discount rate. Optimization problem (5) is referred to as the benchmark

model.

If there were no fear of model misspecification solving the benchmark problem (5) would

be sufficient. As this is not the case, following Hansen and Sargent [12], model misspecifi-

cation can be reflected by a family of stochastic perturbations to the Brownian motion so

that the probabilistic structure implied by stochastic differential equation (4) is distorted

and the probability measure G is replaced by another Q. The perturbed model is obtained

by performing a change of measure and replacing B(t) in Eq. (4) by

B̂(t) +
∫ t

0
v(s)ds, (6)
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where {B̂(t) : t ≥ 0} is a Brownian motion and {v(t) : t ≥ 0} is a measurable drift distortion

such that v(t) = v(P (s) : s ≤ t). Thus, changes to the distribution of B(t) are parameterized

as drift distortions to a fixed Brownian motion {B̂(t) : t ≥ 0}. The mesurable process v

could correspond to any number of misspecified or omitted dynamic effects such as: (a) a

miscalculation of exogenous sources of emissions, (b) a miscalculation of the natural pollution

decay rate, and (c) an ignorance of more complex dynamic structure involving irreversibility,

feedback or hysteresis effects. The distortions will be zero when v ≡ 0 and the two measures

G and Q coincide. Pollution dynamics under model misspecification are given by:

dP (t) =
(
mP̄ + E −mP (t) + σv(t)

)
dt+ σdB(t). (7)

As discussed in Hansen and Sargent [12], the discrepancy between the two measures G and

Q is measured through their relative entropy

R(Q) =
∫ ∞
0

e−ρt
1

2
EQ[v(t)2]dt, (8)

where E denotes the expectation operator. To express the idea that even when the model

is misspecified the benchmark model remains a “good” approximation, the misspecification

error is constrained so that we only consider distorted probability measures Q such that

R(Q) =
∫ ∞
0

e−ρt
1

2
EQ[v(t)2]dt ≤ η <∞, (9)

where e−ρt is the appropriate discount factor. By modifying the value of η in (9) the decision-

maker can control the degree of model misspecification he is willing to consider. In particular,

if the decisionmaker can use physical principles and statistical analysis to formulate bounds

on the relative entropy of plausible probabilistic deviations from his benchmark model, these

bounds can be used to calibrate the parameter η.

2.2 Robust control

Under model misspecification the benchmark pollution dynamics (4) are replaced by Eq. (7).

Two robust control problems can be associated with the solution to the misspecified problem:
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(a) a constraint robust control problem which explicitly models a bound on relative entropy,

and (b) a multiplier robust control problem which incorporates a Lagrange multiplier to a

relative entropy constraint.

Formally, the multiplier robust control problem is defined as

V (P0; θ, z) = max
E

min
v

E
∫ ∞
0

e−ρt
[
aE − bE2

2
− z · g

2
(P − P̄ )2 +

θv2

2

]
dt

subject to: (7), P (0) = P0, (10)

while the constraint robust control problem is given by

V (P0; η, z) = max
E

min
v

E
∫ ∞
0

e−ρt
[
aE − bE2

2
− z · g

2
(P − P̄ )2

]
dt

subject to: (7), (9), P (0) = P0. (11)

In both extremization problems, the distorting process vt is such that allowable measures

Q have finite entropy. In the constraint problem (11), the parameter η is the maximum ex-

pected missepcification error that the decision-maker is willing to consider. In the multiplier

problem (10), the parameter θ can be interpreted as a Lagrangean multiplier associated with

entropy constraint R(Q) ≤ η. Our choice of θ lies in an interval (θ,+∞], where the lower

bound θ is a breakdown point beyond which it is fruitless to seek more robustness. This

is because the minimizing agent is sufficiently unconstrained so that he can push the crite-

rion function to −∞ despite the best response of the maximizing agent. Thus when θ ≤ θ,

robust control rules cannot be attained. On the other hand when θ → ∞ or, equivalently

η = 0, there are no concerns about model misspecification and the decision-maker may safely

consider just the benchmark model.

The relationship between the two robust control problems is subtle. For instance, a

particular θ can be associated with no, or even multiple, η’s, while a particular η can map to

multiple θ’s.10 In what follows, we primarily focus on the multiplier problem (10) as it is the

more analytically tractable problem of the two (Fleming and Souganidis [6]). However, it is

10For details the reader is referred to Sections 5 and 7 in Hansen et al. [15].
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worth noting that, in contrast to previous contributions, our subsequent analysis is capable

of providing a connecting thread to the more intuitive, and physically meaningful, constraint

formulation. This is because we are able to explicitly characterize the worst-case perturbed

probability measure Q∗ of a given multiplier problem, to which we then apply Proposition 2

in Hansen and Sargent [12], which establishes the following:

Proposition 1 (Prop. 2, Hansen and Sargent [12]) Suppose V is strictly decreasing in

η, θ∗ ∈ (θ,+∞], and there exists a solution E∗ and v∗ (corresponding to measure Q∗) to the

multiplier problem (10). Then, E∗ also solves the constraint problem (11) for η = η∗ =

R(Q∗).

Relationship to risk-sensitive control. Having defined the multiplier and constraint

robust control problems, we briefly comment on the relationship between robust control and

earlier research in engineering and applied mathematics. A good deal before Hansen and

Sargent’s robustness project, control theorists had developed the concept of risk-sensitive

control for dynamic optimization problems. Risk-sensitive control theory maximizes a some-

what unconventional objective, namely −θ log E[e−U/θ], where U represents an intertemporal

utility function and 1/θ > 0 a risk-sensitivity parameter. Jacobson [17] and Whittle [36] were

the first to show, in a linear-quadratic discrete-time undiscounted finite-horizon model, that

the optimal solution to the risk-sensitive problem is identical to the one for the multiplier

robust control problem (10) we just discussed. Consequently, James [18] and James and

Elliot [19] analyzed continuous-time, nonlinear extensions of the original Jacobson-Whittle

model. Hansen and Sargent later [11] extended Jacobson and Whittle’s analysis to an infinite-

horizon discounted formulation, thus accomodating concerns about time inconsistency of the

orginal solutions. For more details on the influence of control theory (risk-sensitive or oth-

erwise) on the economics literature of robust control the reader is referred to section 3.2 of

Hansen et al. [15] as well as Hansen and Sargent [14].
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3 Robust pollution control with fixed damage control

technology

3.1 Problem solution

We initially focus on solving the multiplier problem (10) for a given level of damage control

technology z ∈ [0, 1]. The Bellman-Isaacs condition (see Fleming and Souganidis [6]) is given

by the following equation:

ρV = max
E

min
v

{
aE − bE2

2
− z · g

2
(P − P̄ )2 +

θv2

2
+ VP (mP̄ + E −mP + σv) +

σ2

2
VPP

}
(12)

Minimizing first with respect to v, we obtain

v∗ = −σVP
θ
,

so that Eq. (12) becomes

ρV = max
E

{
aE − bE2

2
− z · g

2
(P − P̄ )2 + VP (mP̄ + E −mP ) +

σ2

2
VPP −

σ2

2θ
(VP )2

}
.

(13)

Maximizing with respect to E, we have

E∗ =
a+ VP
b

so that the differential equation we need to solve is the following

ρV = a
a+ VP
b
− b

2

(a+ VP )2

b2
− z · g

2
(P − P̄ )2 + VP (mP̄ +

a+ VP
b
−mP ) +

σ2

2
VPP −

σ2

2θ
(VP )2.

(14)

Straightforward algebra shows that the value function satisfying (14) admits the following

simple quadratic form

V (P ; θ, z) = α1(θ, z)P 2 + α2(θ, z)P + α3(θ, z), (15)
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where

α1(θ, z) =
2m+ ρ−

√
(2m+ ρ)2 + 4gz(1

b
− σ2

θ
)

4(1
b
− σ2

θ
)

≤ 0 (16)

α2(θ, z) =
2aα1(θ,z)

b
+ P̄ (g + 2mα1(θ, z))

2α1(θ, z)(σ
2

θ
− 1

b
) + ρ+m

≤ 0 (17)

α3(θ, z) =
1

ρ

[
a2

2b
− zg

2
P̄ 2 + σ2α1(θ, z) + α2(θ, z)(

a

b
+mP̄ ) +

α2(θ, z)2

2

(
1

b
− σ2

θ

)]
(18)

The value function is well-defined for θ > bσ2 and diverges for θ = bσ2. Hence the Hansen-

Sargent breakpoint is equal to θ = σ2b and we from now on only consider

θ > θ = σ2b.

Max-min optimal emissions E∗ satisfy

E∗(P, θ, z) =
a+ VP
b

=
1

b

[
a+ α2(θ, z) + 2α1(θ, z)P

]
, (19)

while the worst-case misspecification v∗ is given by

v∗(P, θ, z) = −σVP
θ

= −σ
θ

(2α1(θ, z)P + α2(θ, z)). (20)

Before we proceed, we note certain properties regarding the curvature of the maxmin value

function V (P, θ, z) = α1(θ, z)P 2 + α2(θ, z)P + α3(θ, z) that will be useful later on. First of

all, we re-write the value function in the following way:

V (P, θ, z) = β1(θ, z)(P − P̄ )2 + β2(θ, z)(P − P̄ ) + β3(θ, z), (21)

where simple algebra implies

β1(θ, z) = α1(θ, z)

β2(θ, z) = α2(θ, z) + 2α1(θ, z)P̄

β3(θ, z) = α3(θ, z) + α1(θ, z)P̄ 2 + α2(θ, z)P̄ . (22)

Lemma 1 Consider the restricted domain P ≥ P̄ . The maxmin value function V (P ; θ, z)

given by Eq. (21) is

16



(a) Strictly increasing and concave in θ.

(b) Strictly decreasing and convex in z. Moreover, the partial derivative Vz is increasing in

θ.

Proof. Part (a) can be establishished either through differentiation, or by referring to Section

5.2 of Hansen et al. [15] and noting that, in our case, Assumption 5.5 holds.

We now turn to part (b). Let ∆(θ, z) =
√

(2m+ ρ)2 + 4gz(1
b
− σ2

θ
). Differentiating

β1(θ, z) with respect to z, yields

∂

∂z
β1(θ, z) =

−g
2∆(θ, z)

< 0 (23)

which is clearly increasing in θ and z. Doing the same for β2(θ, z) we obtain

∂

∂z
β2(θ, z) =

−4ag(ρ+m)

b∆(θ, z)
(
ρ+ ∆(θ, z)

)2 < 0, (24)

which is also increasing in θ and z. Turning to β3(θ, z), we obtain

∂

∂z
β3(θ, z) = −2g

4a2(m+ ρ)2θ + (bgσ2z +mρθ +m2θ)(3ρ+ ∆(θ, z))(θ − bσ2) + b2σ2θ(ρ3 + ρ2∆(θ, z))

b2ρ∆(θ, z)(ρ+ ∆(θ, z))3

(25)

so, recalling that we only consider θ > bσ2, we see that this too is negative. Cumbersome

differentiation, which can be found in the Appendix, establishes that ∂
∂z
β3(θ, z) is increasing

in θ and z.

Eqs.(23), (24), and (25) establish that ∂
∂z
V (P, θ, z) does not diverge at z = 0 so that

lim
z→0

∂

∂z
V (P, θ, z) > −∞. (26)

Moreover, it is easy to see that β1(θ, z) and β2(θ, z) are negative and increasing in θ. Recalling

that

E∗(P, θ, z) =
a+ VP
b

=
1

b

[
a+ β2(θ, z) + 2β1(θ, z)(P − P̄ )

]
, (27)

17



directly suggests the presence of a precautionary principle in emissions mitigation: the greater

the uncertainty over pollution dynamics, the less one chooses to emit at any given pollution

level P ≥ P̄ . Moreover, given a fixed level of misspecification θ, Eq. (27) and the proof of

Lemma 1 establish that a similar result applies (i.e., emissions go down) the less effective

damage-control technology is.

3.2 Characterizing the worst-case pollution accumulation process

Eq. (20) specifies the worst-case misspecification of our model, given a value of θ > σ2b.

Substituting it into our robust pollution dynamics (7) yields

dP (t) =
(
mP̄ −σ

2

θ
α2(θ, z)︸ ︷︷ ︸

Effect 1

+E −
[
m+

2σ2

θ
α1(θ, z)︸ ︷︷ ︸

Effect 2

]
P (t)

)
dt+ σdB(t) (28)

Eq. (28) points to two negative effects of model misspecification. First, there now exists an

additional constant drift term (Effect 1) equal to

−σ
2

θ
α2(θ, z) > 0,

suggesting the presence of exogenous sources of pollution beyond those responsible for pre-

industrial pollution stock P̄ . Second, the environment’s self-cleaning capacity has been re-

duced (Effect 2) by an amount

2σ2

θ
α1(θ, z) < 0.

As we saw earlier, the government reacts to this worst-case scenario by adopting an emissions

strategy E∗ given by Eq. (19). Thus, at optimality the worst-case pollution process, call it

P ∗, is governed by the following stochastic differential equation

dP ∗(t) = (mP̄ + E∗ −mP ∗(t) + σ · v∗(t))dt+ σdB(t), (29)

which, given Eqs. (20) and (19), reduces to

dP ∗(t) = −
[
2α1(θ, z)(

1

b
− σ2

θ
)−m

](
mP̄ + a+ α2(θ, z)(1

b
− σ2

θ
)

−[2α1(θ, z)(1
b
− σ2

θ
)−m]

− P ∗(t)
)

dt+ σdB(t)

(30)
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Stochastic differential equation (30) is an instance of the well-known Ornstein-Uhlenbeck

process with parameters,

µ(θ, z) =
mP̄ + a

b
+ α2(θ, z)(1

b
− σ2

θ
)

−[2α1(θ, z)(1
b
− σ2

θ
)−m]

= P̄ +
a(m+ ρ)

b
(
m2 +mρ+ gz(1

b
− σ2

θ
)
)

ξ(θ, z) = −
[
2α1(θ, z)(

1

b
− σ2

θ
)−m

]
=

√
(2m+ ρ)2 + 4gz(1

b
− σ2

θ
)− ρ

2
.

(31)

As a result, we can establish the following:

Proposition 2 Consider µ(θ, z) and ξ(θ, z) as given by Eq. (31). Stochastic differential

equation (30) has a unique solution given by a Gaussian diffusion process {P ∗(θ, z, t) : t ≥ 0}

where

(a) P ∗(θ, z, t) has expectation

E[P ∗(θ, z, t)] = P̂0e
−ξ(θ,z)t + µ(θ, z)

[
1− e−ξ(θ,z)t

]
,

and variance

Var[P ∗(θ, z, t)] =
σ2

2ξ(θ, z)

[
1− e2ξ(θ,z)t

]2
.

(b) {P ∗(θ, z, t) : t ≥ 0} has a stationary distribution that is N
(
µ(θ, z), σ2

2ξ(θ,z)

)
.

Proposition 2 agrees with our intuition. In steady state, the expected value and variance of

the worst-case pollution levels are decreasing in θ and z.

Given Proposition 2 and the explicit characterization of the first and second moments of

P ∗(θ, z, t), the entropy of our worst-case model misspecification has a closed-form expression:

R(Q∗(θ, z)) =
∫ ∞
0

e−ρt
1

2
EQ∗ [v∗(t)2]dt

=
σ2

2θ2

∫ ∞
0

e−ρt
[
4α2

1(θ, z)
(

(E[P ∗(θ, z, t)])2 + Var[P ∗(θ, z, t)]
)

+4α1(θ, z)α2(θ, z)E[P ∗(θ, z, t)] + α2
2(θ, z)

]
dt. (32)
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Thus, we are able to (via Proposition 1) directly associate an entropy bound η∗ = R(Q∗(θ, z))

to a given ambiguity parameter θ, such that the respective multiplier (10) and constraint (11)

robust control problems admit identical solutions.

4 Solving the optimal investment problem

Suppose that at time 0 a policy maker wants to decide how much to invest in damage-control

technology. In our notation, he or she would like to choose a value of z. Statistical evidence

and basic science suggest a possible model misspecification for the pollution accumulation

dynamics that is captured through an ambiguity parameter θ. The policy maker takes

this misspecification seriously and wishes to guard against it, so that a maxmin criterion is

adopted over future welfare. Recall that V (P0, θ, z) denotes the maxmin value of a constraint

problem mutiplier θ with technology adoption z, at initial pollution P0, given by Eq. (21).

Thus, at time 0, the policy maker wishes to solve the following optimization problem

max
z∈[0,1]

V (P0, θ, z)− φ(z). (33)

Lemma 2 Suppose P0 ≥ P̄ and consider optimization problem (33). There exists a unique

optimal level of damage-control investment z, call it z∗(θ), that satisfies

(a)
∂

∂z
V (P0, θ, z) > φ′(z), for all z ∈ [0, z∗(θ))

∂

∂z
V (P0, θ, z

∗(θ)) = φ′(z∗(θ)),

∂

∂z
V (P0, θ, z) < φ′(z), for all z ∈ (z∗(θ), 1] or,

(b) z∗(θ) = 1

Proof. We distinguish between two cases.

Case 1.

∂

∂z
V (P0, θ, 1) < φ′(1). (34)
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Recall that φ is strictly decreasing and convex, and satisfies φ′(0) = −∞. This fact, in

combination with Lemma 1, Inequality (26), and Inequality (34) establishes that z∗(θ) must

satisfy (a).

Case 2.

lim
θ→∞

∂

∂z
V (P0, θ, 1) ≥ φ′(1). (35)

In this case Lemma 1 and first-order conditions immediately imply z∗(θ) = 1, in accordance

with (b).

We are now ready to prove that optimal investment in damage-control technology is

increasing in model uncertainty and thus consistent with the PP.

Theorem 1 Suppose P0 ≥ P̄ . Optimal damage-control investment increases in model un-

certainty. In other words, z∗(θ) is increasing in θ.

Proof. Consider θ2 > θ1 and the associated optimal investment decisions z∗(θ1) and z∗(θ2).

Suppose first that z∗(θ1) < 1. Then Lemma 2 implies that z∗(θ1) uniquely satisfies

∂

∂z
V (P0, θ1, z

∗(θ1)) = φ′(z∗(θ1)).

Lemma 1 further implies that

∂

∂z
V (P0, θ2, z

∗(θ1)) >
∂

∂z
V (P0, θ1, z

∗(θ1)) = φ′(z∗(θ1)).

Consequently, Lemma 2 leads to the following inequality:

∂

∂z
V (P0, θ2, z, ) > φ′(z), for all z ∈ [0, z∗(θ1)),

so that it must be the case that z∗(θ2) > z∗(θ1).

Suppose now that z∗(θ1) = 1 so that taking derivatives we obtain

∂

∂z
V (P0, θ1, 1) ≥ φ′(z∗(θ1)).

By similar reasoning we can establish ∂
∂z
V (P0, θ2, 1) ≥ φ′(1) implying z∗(θ2) = 1.
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Theorem 1 confirms the PP in the case of damage control investment. We now address

the same question in the context of optimal mitigation policies.

Theorem 2 Suppose P ≥ P̄ and consider a neighborhood of θ, say (θmin, θmax] ⊆ (bσ2,∞].

If z∗(θ) satisfies

(a)

dz∗

dθ
(θ) >

−∂β1
∂θ

(θ, z∗(θ))− 2β2
1(θ,z

∗(θ))σ2

θ2(ρ+m)

∂β1
∂z

(θ, z∗(θ))
, θ ∈ (θmin, θmax], (36)

then robustly-optimal emissions E∗(P ) are unambiguously decreasing in θ in (θmin, θmax];

(b)

dz∗

dθ
(θ) <

−∂β1
∂θ

(θ, z∗(θ))
∂β1
∂z

(θ, z∗(θ))
, θ ∈ (θmin, θmax], (37)

then robustly-optimal emissions E∗(P ) are unambiguously increasing in θ in (θmin, θmax];

(c)

−∂β1
∂θ

(θ, z∗(θ))
∂β1
∂z

(θ, z∗(θ))
<

dz∗

dθ
(θ) <

−∂β1
∂θ

(θ, z∗(θ))− 2α2
1(θ,z

∗(θ))σ2

θ2(ρ+m)

∂β1
∂z

(θ, z∗(θ))
, θ ∈ (θmin, θmax] (38)

then robustly-optimal emissions E∗(P ) will be decreasing in θ for θ ∈ (θmin, θmax] if and

only if current pollution levels are high enough.

Proof. Consider θ and the associated optimal z∗(θ). We begin by showing that the op-

timal solution of optimization problem (33) is such that the values of d
dθ
β1(θ, z

∗(θ)) and

d
dθ
β2(θ, z

∗(θ)) can be positive or negative. In particular, we prove the following:

d

dθ
β1(θ, z

∗(θ)) < 0 ⇔ dz∗

dθ
(θ) >

−∂β1
∂θ

(θ, z∗(θ))
∂β1
∂z

(θ, z∗(θ))
(39)

d

dθ
β2(θ, z

∗(θ)) < 0 ⇔ dz∗

dθ
(θ) >

−∂β1
∂θ

(θ, z∗(θ))− 2β2
1(θ,z

∗(θ))σ2

θ2(ρ+m)

∂β1
∂z

(θ, z∗(θ))
. (40)

We begin with (39) and consider β1(θ, z
∗(θ)). The result immediately follows from differen-

tiating with respect to θ and recalling the negative sign of ∂β1
∂z

(θ, z):

d

dθ
β1(θ, z

∗(θ)) =
∂β1
∂θ

(θ, z∗(θ)) +
∂β1
∂z

(θ, z∗(θ))
dz∗

dθ
(θ). (41)
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Moving on to (40), we refer to Eq. (22). Straightforward differentiation establishes that

d

dθ
β2(θ, z

∗(θ)) =
2(a

b
+mP̄ )

(
d
dθ
β1(θ, z

∗(θ))(ρ+m) +
2β2

1(θ,z
∗(θ))σ2

θ2

)
(

2β1(θ, z∗(θ))(
σ2

θ
− 1) + ρ+m

)2 (42)

The result now may be arrived at through Eqs. (41) and (42).

The theorem now follows immediately from Expressions (39) and (40), and the fact that

(as Eq. (27) suggests) E∗(θ, z, P ) = 1
b
[a+ 2β1(θ, z)(P − P̄ ) + β2(θ, z)].

Remarks. From Theorem 1 we know that dz∗

dθ
(θ) > 0. Moreover, straightforward, if cum-

bersome, algebra establishes that

∂β1
∂θ

(θ, z) ≥ 0,
∂β1
∂θ

(θ, 0) = 0, (43)

while Lemma 1 implies that

∂β1
∂z

(θ, z) < 0,
∂2β1
∂θ∂z

(θ, z) > 0,
∂β1
∂z

(θ, 0) = − g

4m+ 2ρ
. (44)

Therefore, the conditions of Theorem 2 are not generically false so that it is, theoretically,

possible for emissions to increase as uncertainty goes up. Moreover, Eqs. (22), (43), and (44)

imply that the right-hand-side of Eq. (36) is increasing in z∗(θ) and satisfies

lim
z∗(θ)→0

−∂β1
∂θ

(θ, z∗(θ))− 2β2
1(θ,z

∗(θ))σ2

θ2(ρ+m)

∂β1
∂z

(θ, z∗(θ))
= 0.

Hence, we arrive at the following corollary of Theorem 2.

Corollary 1 The right-hand side of Eq. (36) is increasing in z∗(θ), and vanishes at z∗(θ) =

0. Hence, fow high enough levels of optimal damage-control investment (i.e., low enough

z∗(θ)), emissions will be decreasing in θ, provided the rate of change of z∗(θ) is high enough.

In other words, if optimal levels of damage-control investment are both high enough and

sufficiently sensitive to changes in uncertainty, then we observe a reversal of the PP with

regard to mitigation.
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The intuition behind this result can be described in the following way: If damage-control

investment is subtantial and sensitive to θ, then an increase in uncertainty will cause a

large increase in damage-control investment, which in turn will reduce damages from time

0 onwards. If this reduction is sufficiently large then, since more mitigation is also costly,

incentives to mitigate weaken to the extent that mitigation is actually reduced. In this

case we observe that when uncertainty increases, damage-control investment and mitigation

become substitutes.

5 Numerical Results

5.1 Preliminaries

In this section we perform a numerical exercise that provides some context for the theoretical

results. We focus on the following family of cost functions that is consistent with our model

assumptions

φ(z; k) = k
(

1

z2
− 1

)
, k > 0, (45)

so that φ(z; k1) > φ(z; k2) (unless of course z = 0 or 1) and φ′(z; k1) < φ′(z; k2) whenever

k1 > k2. Hence cost (marginal cost) is increasing (decreasing) in k. We begin with a natural

result.

Proposition 3 Suppose P0 ≥ P̄ . Fix a level of uncertainty θ and consider a family of

optimization problems (33), parametrized according to Eq. (45).

(a) Optimal values of z∗(θ; k) are increasing in k. In other words, optimal levels of damage-

control investment are decreasing in the cost of damage control technology.

(b) Suppose P ≥ P̄ . Optimal emissions E∗(P ; k) are decreasing in k. In other words,

optimal levels of mitigation are increasing in the cost of damage-control technology.
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Proof. Part (a) follows from Lemma 2 and the fact that φ′(z; k1) < φ′(z; k2) whenever

k2 > k1. Part (b) follows from part (a) and Eqs. (16) and (17).

Proposition 3 is not surprising at the least. The more expensive damage-control technol-

ogy is, the less we can expect to invest in it. Moreover, this decrease in damage control means

that additional mitigation is necessary, to protect against high pollution concentrations.

5.2 An application to climate change economics

To make the analysis concrete, we focus on a climate-change application of our model and

calibrate the relevant parameters according to Karp and Zhang [20]. The standard deviation

of the carbon accumulation process, σ, is calibrated on data compiled by the US Dept of Com-

merce’s National Oceanic and Atmospheric Administration (NOAA).11 Table 1 summarizes

the values of all model parameters.

Damage Control. We already know from Theorem 1 that optimal damage-control invest-

ment is increasing in uncertainty, i.e., that z∗(θ; k) is increasing in θ, for all cost functions (45).

Indeed this can be readily seen in Figure 1, in which optimal damage-control investment is

plotted as a function of θ for a variety of cost functions. Figure 1 further illustrates Propo-

sition 3: given a level of uncertainty θ, optimal damage-control investment is decreasing in

the cost of technology. The chosen values of k lead to a wide spectrum of damage-control

investments, ranging from the very aggressive to absolutely zero. On the one extreme, when

k = 1000 and damage-control technology is very cheap, investment is very high so that around

90% of damages are directly reduced. As k increases, this investment becomes smaller and

smaller, until we reach k = 25000, at which point there will be positive investment in damage

11See NOAA’s website on Trends in Carbon Dioxide at http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html.

Our value of σ is derived from Mauna Loa data on annual mean growth rates of CO2 for the period 1959 to

2010, which can be found at: ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2 gr mlo.txt.
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Parameter Description Value Unit

P0 base year pollution stock 781 GtC

P̄ pre-industrial pollution stock 590 GtC

g slope of marginal damage 0.0223 109$ / (GtC)2

a intercept of marginal benefit 224.26 $ / tC

b slope of marginal benefit 1.9212 109$ / (GtC)2

m carbon decay rate 0.0083 scalar

σ carbon standard deviation 0.2343 GtC

ρ pure rate of time preference .03 scalar

Table 1: Calibration of model parameters based on Karp and Zhang [20] and NOAA (see text).

When there is no uncertainty or damage control investment (i.e., when θ = ∞ and z = 1), the

calibration results in a steady-state carbon stock of approximately 965 GtC (453 ppm CO2) that,

according to prevailing climate science, is more or less consistent with a 2oC warming stabilization

target.
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Figure 1: Optimal damage-control investment as a function of θ for different k.

control only for extreme, and physically implausible, levels of misspecification.12 A consistent

trend for all k is that dz∗(θ;k)
dθ

is decreasing in θ, with very large values close to the origin

that fast taper off towards 0 for θ > 1. This result suggests that the magnitude of model

misspecification is important primarily when uncertainty is high; when this is not the case,

optimal investment in damage control technology is not all that sensitive to the degree of

model misspecification.

Mitigation. While our choice of k does not affect the PP with regard to damage-control

investment, this is not true in the case of mitigation. Instead we observe an ambiguous

relationship, as predicted by Theorem 2. Throughout the following exercises we calibrate the

multiplier θ, and by extension the relative entropy bound η, by carefully considering the worst-

12Figure 1 shows that for k = 25000 we have z∗(θ) < 1 only for θ ≤ 1. The worst-case model misspecification

corresponding to such low values of θ implies a (nonsensical) negative carbon decay rate of less than -0.00128.
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case misspecified dynamics our choices lead to. In particular, we focus on Eq. (28)’s Effects

1 (an increase in exogenous sources of carbon) and 2 (a decrease in the natural decay rate of

carbon) and pick values of θ that provide reasonable bounds on their worst-case percentage

deviations from the benchmark case. For, recall that (by Propositions 1 and 2) when we

solve the multiplier problem for a particular choice of θ, this is akin to finding a robust policy

for all all probability models having relative entropy less than the distorted model in which,

concentrating on Effects 1 and 2 and Eq. (28), we observe percentage deviations of

[
Effect 1(θ, z∗(θ))

mP̄︸ ︷︷ ︸
% increase of exogenous pollution

,
-Effect 2(θ, z∗(θ))

m︸ ︷︷ ︸
% decrease of carbon decay rate

]

from the benchmark (4). [Note that this entropy will equal R(Q∗(θ, z∗(θ))) as given by

Eq. (32).]

Bearing the above in mind, we set θ in such a way as to provide sensible values for the

following expression:

Deviation(θ) ≡ %Eff1(θ, z∗(θ)) + %Eff2(θ, z∗(θ)) =
Effect 1(θ, z∗(θ))

mP̄
+

-Effect 2(θ, z∗(θ))

m

=
−σ2

θ
α2(θ, z

∗(θ))

mP̄
+
−2σ2

θ
α1(θ, z

∗(θ))

m
. (46)

Eq. (46) grounds our choice of θ to the underlying physics of carbon accumulation through

an aggregation of Effects 1 and 2, and allows for a systematic comparison of model results

across different cost functions. In what follows we choose values of θ that, using the formula

given by Eq. (46), lead to a Deviation(θ) of 0%, 10%, 50%, 100%, and 200%.

We focus on the two lowest cost functions that were presented in Figure 1, corresponding

to k = 1000 and k = 5000. Figures 2 and 3 illustrate part (c) of Theorem 2 and show how,

in both cases, a reversal of the PP with regard to mitigation is in principle possible for high

enough levels of current carbon stock P . The substantive difference between the two lies

in the probability of this reversal ever being observed. When k = 1000 we claim that this

probability is high, whereas for k = 5000 it is negligible.
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Figure 2: Robust emissions policy for k = 1000 and different levels of model misspecification.

θ Deviation %Eff 1 % Eff 2 η∗ z∗ E[P ∗] E[PRmin]

106 0 0 0 0 .1386 2910.5 2910.5

9.4 .1 .069 .031 216 .1376 2947 2860

1.91 .5 .350 .150 5431 .1336 3097.5 2720.9

.96 1 .712 .297 22525 .1288 3301.9 2452.9

.493 2 1.445 .563 93426 .1200 3754 2070.7

Table 2: k = 1000. PRmin denotes approximately minimal steady-state carbon stock under the

robust policy.
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Figure 3: Robust emissions policy for k = 5000 and different levels of model misspecification.

θ η∗ E[PRmax] E[PNRmax] E[PR∞] E[PNR∞ ]

9.4 216 2965.5 2965.5 2911.8 2910.5

1.91 5431 3188.6 3180.8 2917 2910.5

.96 22525 3455 3429.6 2923.7 2910.5

.493 93426 3987.3 3896.2 2937.3 2910.5

Table 3: k = 1000. P
R(NR)
max denote approximately maximal steady-state carbon under robust (non-

robust) policies. PR∞ denote steady-state carbon levels of robust policies under model certainty.
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θ Deviation % Eff 1 %Eff 2 η∗ z∗ E[P ∗]

106 0 0 0 0 .3683 1563.3

13.7 .1 .058 .042 169 .3656 1577.2

2.785 .5 .350 .150 4250 .3548 1634.5

1.41 1 .712 .297 17395 .3419 1710.7

.727 2 1.445 .563 71794 .3181 1876.9

Table 4: k = 5000.

So why is the PP violated with high probability in the case of k = 1000? Notice from

Figure 2 that optimal emissions are increasing in model misspecification in the range of

about P ≥ 2300. Now, take a look at column 7 of Table 2 depicting steady-state values for

the expected value of worst-case carbon stock levels. When θ is very high and there model

certainty, the expected value of the carbon stock is 2910.5 GtC, much higher than 2300. For

positive levels of model misspecification expected carbon levels corresponding to the worst-

case model misspecification pollution stock are higher than the benchmark 2910.5 GtC and

significantly higher than 2300.13

But these values correspond to worst-case outcomes and so do not necessarily provide

adequate insight into the probability of exceeding 2300 GtC, given the set of probability

models (as defined by relative entropy bounds of Eq. 9) we are seeking robustness over. So

for each of our misspecifications, we compute a plausible approximation of the lowest possible

expected level of steady-state pollution given the relevant relative entropy bounds η∗. We

do this in the following way. Given our choices of θ we first consider the optimal damage-

control investment z∗(θ) and the robust feedback policy E∗(θ, z∗(θ)) and entropy bound

η∗(θ, z∗(θ)) ≡ η∗ they lead to (given by Eqs. (19) and (32), respectively). Consequently,

13Steady-state variance levels are very low compared to mean values (generally less than 1GtC) and there-

fore, in light of Proposition 2, unimportant from a practical standpoint. This remains true for all results

reported in Tables 2, 3 and 4.
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we solve for the model misspecification (in the notation of Sections 2 and 3, the control

variable v) that approximately minimizes expected steady-state carbon levels, subject to

the feedback rule E∗ and entropy constraint η∗. Given the broad range of possible model

misspecifications and the generic intractability of stochastic differential equations, performing

this calculation is not in principle a simple matter. But fortunately our problem structure

justifies concentration on a specific class of tractable model missprecifications so that the

resulting optimization problem can be solved efficiently.14 The outcome of these computations

appears in column 8 of Table 2. We see that for Deviations of 10%, 50%, and 100% (i.e.,

θ ∈ {9.4, 1.91, .94}) even approximately minimal expected pollution levels will be significantly

higher than 2300 GtC in steady-state. Moreover, when Deviation(θ) is equal to 200% they

will be around 2070 GtC, only modestly below the threshold.

What this all implies is that, for all the chosen values of θ, it is very likely that en

route to a steady state, carbon levels will exceed 2300 GtC. Hence, we will, with substantial

probability, find ourselves in a range of P for which we observe a reversal of the PP with

respect to mitigation.

Further indications that robust policies are not necessarily precautionary when k = 1000

can be seen by comparing them to their non-robust counterpart. First, using a similar

approach as the one employed for the aforementioned minimizations (described in section

2 of the Appendix) we compute approximate values for the highest possible steady-state

pollution levels subject to the relevant entropy constraints, under both the robust policies

(obtained by plugging in appropriate values of θ and z∗(θ) into Eq. 19) and the non-robust

policy (obtained by plugging in θ = ∞ and z∗(∞) into Eq. 19). These results appear in

columns 3 and 4 of Table 3 and demonstrate that, given the relevant entropy bounds, robust

policies consistently lead to higher worst-case expected pollution. A second sign of the non-

precautionary character of robust policies can be seen when fears of model misspecification are

14Proposition 2 is especially helpful in performing these calculations. For details the reader is referred to

the section 2 of the Appendix. All computations were performed in Mathematica.
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unfounded and we have model certainty. In particular, we calculate the expected steady-state

carbon stock levels that the robust policies E∗(θ, z∗(θ)) lead to when, unbeknownst to the

policy maker, θ =∞ and the benchmark model (4) uniquely captures carbon dynamics. The

results of our computations appear in columns 5 of Table 3. Again, robust policies consistently

lead to higher steady-state carbon stock compared to their non-robust counterparts, and this

difference is increasing in the perceived (yet imaginary) degree of uncertainty.

When k = 5000 the situation is markedly different. Notice from Figure 3 that emissions

again begin being increasing in model uncertainty around P = 2300. Now, take a look

at column 7 of Table 4 depicting steady-state values for the expected value of worst-case

carbon-stock levels. Even when model misspecification is at its highest level, corresponding

to a 200% joint miscalculation of Effects 1 and 2, they will not exceed 1880 GtC. Moreover, a

similar computation as the one that was done for k = 1000 and reported in column 3 of Table

3 establishes that, within the relevant relative maximal entropy bound of 71794, expected

steady state carbon stocks peaks at around 1894 GtC. Thus, for all our chosen values of θ, it

is highly unlikely that carbon levels will ever exceed the threshold of 2300 GtC. We conclude

that when k = 5000, even though theoretically possible, the probability of ever observing a

reversal of the PP with respect to mitigation is negligible.

Results for k ∈ {10000, 15000, 20000} are qualitatively similar to those for k = 5000

and omitted for brevity.15 When k = 25000, the cost of damage-control is so high, and

therefore investment in it so low and/or non-existent, that the reversal of the PP is not

even in principle possible. Indeed, as soon as z∗ hits 1 and the derivative dz∗

dθ
equals 0 (see

Figure 1), common sense, (as well as, more formally, Theorem 2) suggest that it becomes a

mathematical impossibility.

We end this section by generally noting that, as Figures 2 and 3 show, robust policies

do not seem to be very sensitive to changes in θ. This effect is a function of our model

parameters (e.g. the low value of σ) as well as the high investments in damage control,

15Graphs available upon request.
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which, as Eqs. (16) and (17) suggest, serves to temper differences in θ.

6 Conclusion

The present paper analyzed optimal pollution control policy under Knightian uncertainty by

adopting the robust control framework of Hansen and Sargent [12]. Allowing for a one-time

investment in damage-control technology, in addition to gradual emissions mitigation, we

studied the applicability of a precautionary principle with respect to both damage control

and mitigation. Our main finding is that while investment in damage-control technology

is always increasing in uncertainty, optimal mitigation is not. Indeed, if optimal levels of

damage-control investment are both high enough and sufficiently sensitive to changes in

uncertainty, then robust emissions policies can be increasing in model uncertainty.

From a normative standpoint our analysis implies that, depending on the cost of damage-

control technology and the magnitude of uncertainty, it may be preferable to be precautious

now by undertaking large damage-control investment, and not be particularly precautious

with respect to future mitigation policy. When this is the case, current damage-control

investment and future mitigation act as substitutes. On the other hand, when damage-

control investment is costly, it can act as a complement to future mitigation and an increase

in uncertainty induces precaution with respect to both policy actions. The theoretical results

are consequently applied to a linear-quadratic model of climate change, calibrated by Karp

and Zhang [20]. In our simulations we take pains to carefully calibrate the uncertainty

parameter of our model and provide a conceptual link to the actual dynamic process of

carbon accumulation. The methods we employ build on the preceding theoretical analysis

and may be, at least in our view, of independent interest for robust control applications. Our

main policy-relevant finding is that emissions can be increasing in uncertainty only when

damage-control technology is extremely and most probably unrealistically cheap. Thus, at

least within the context of this numerical model, we do not expect our more “controversial”
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theoretical findings to be of much practical relevance.

This work suggests several interesting avenues for future research. A more complete

treatment of the issues presented here would extend the basic model to incorporate dynamic

damage-control investment, more intricate pollution dynamics, and lower bounds on emis-

sions that would reflect concerns about irreversibility.

Appendix

1. Monotonicity properties of ∂β3

∂z

Recall that

∆(θ, z) =

√
(2m+ ρ)2 + 4gz(

1

b
− σ2

θ
)

and that we want to show that ∂β3

∂z is increasing in both θ and z. After simplifying we obtain:16

∂2β3
∂z∂θ

(θ, z) =
f1(θ, z)

f2(θ, z)
, where

f1(θ, z) = 8g2σ2z(θ − bσ2)

[
2gρθzσ2b∆(θ, z) + 2g2σ2z2(θ − bσ2) +mρθgσ2zb+ 4gp2σ2θzb

+ 4m2θgσ2z

]
+ 8g2σ2z

[
2a2(m+ ρ)2θ2(ρ+ 4∆(θ, z)) + b2σ2

[
2m4θ2 + 4m3ρθ2 + ρ4θ2 + ρ3θ2∆(θ, z)

+ 2mρθ
[
2ρ2θ + ρθ∆(θ, z)

]
+ 2m2θ

[
3ρ2θ + ρθ∆(θ, z)

]]]
,

f2(θ, z) = bρθ3∆(θ, z)
[
ρ+ ∆(θ, z)

]4[
4gz(θ − bσ2) + 4m2θb+ 4mρbθ + bρ2θ

]
∂2β3
∂z2

(θ, z) =
g1(θ, z)

g2(θ, z)
, where

g1(θ, z) =
θ − bσ2

z
f1(θ, z)

g2(θ, z) =
ρ

θ
f2(θ, z)

Since θ satisfies θ > σ2b, it is clear that all of the above are strictly postive.

2. Minimization & maximization of steady-state pollution levels given entropy constraints

Given θ > σ2v, consider the optimal damage-control decision z∗(θ) and the consequent optimal emissions

feedback policy E∗(P ) = 1
b

[
a + α2(θ, z∗(θ)) + 2α1(θ, z∗(θ))P

]
. These will lead to a relative entropy bound

η∗(θ, z∗(θ)) ≡ η∗ given by Eq. (32). The optimization problem we ideally wish to solve is the following

min
v

E
[

lim
t→∞

P (t)
]

16Mathematica output available upon request.
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subject to: dP (t) =
[
E∗(P (t))−m(P (t)− P̄ ) + σv

]
dt+ σdB(t)∫ ∞

0

1

2
e−ρtE[v(t)2]dt ≤ η∗, P (0) = P0. (47)

We conjecture that there exists an, at least approximately, optimal solution to the optimization problem (47)

that is linear in P so that v∗(P ) = 1
σ

(
γ1 − γ2P ) for some γ1 and γ2. While a formal investigation of this

statement is beyond the scope of the current paper, we base our intuition on the fact that for any convex

and quadratic function f(·), linear feedback policy E(P ), and discount rate ρ̃, the following optimization

problem:

min
v

E

∫ ∞
0

e−ρ̃tf(P (t))dt

subject to: dP (t) =
[
E(P (t))−m(P (t)− P̄ ) + σv

]
dt+ σdB(t)

1

2

∫ ∞
0

e−ρ̃tE
[
v(t)2

]
dt ≤ η∗, P (0) = P0, (48)

has an optimal solution v that is linear in the state variable.17

With the above in mind, we return to problem (47). To make our domain at least somewhat realistic

we restrict ourselves to misspecifications of the type

v(P ) =
1

σ

[
γ1 − γ2P

]
, where

−mP̄ ≤ γ1 ≤ 10mP̄ , −m ≤ γ2 ≤ 5m. (49)

Plugging in the robust feedback policy E∗(P ) and the above choice (49) for v(·) to the stochastic differential

equation (7), once again leads to an Ornstein-Uhlenbeck process {P (t; γ1, γ2) : t ≥ 0} with parameters:

µ(θ, γ1, γ2) =
mP̄ + a+α2(θ,z

∗(θ))
b + γ1

− 2α1(θ,z∗(θ))
b +m+ γ2

ξ(θ, γ1, γ2)) = −2α1(θ, z∗(θ))

b
+m+ γ2.

This leads to a steady-state distribution that is again N

(
µ(θ, γ1, γ2), σ2

2ξ(θ,γ1,γ2))

)
.18 The values of E[PRmin]

quoted in Table 2 correspond to the optimal values of the following minimization problem:

min
γ1,γ2

µ(θ, γ1, γ2)

17To see this result, note that optimization problem (48) is again linear-quadratic so that the reasoning of

Sections 2 and 3 applies. The only difference is that here we only minimize over v without maximizing over

E.
18Note that setting γ1 = −σ

2

θ α2(θ, z∗(θ)) and γ2 = 2σ2

θ α1(θ, z) recovers our worst-case model misspecifi-

cation as per Eq. (28).
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subject to:

∫ ∞
0

1

2σ2
e−ρtE

[
γ1 + γ2P (t; γ1, γ2)

]2
dt ≤ η∗(θ)

−mP̄ ≤ γ1 ≤ 10mP̄ , −m ≤ γ2 ≤ 5m, P (0) = P0 (50)

Equivalent reasoning applies for the maximization problem and the values of E[PRmax] quoted in Table 3.
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