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1 Introduction

In this paper we consider a stylized game of contribution to a discrete local public good

where the range of externalities is defined by a network. With a small probability players

may fail to play their best response and we analyze which equilibria are most stable to such

errors. In particular, we show that the nature of the mistake has a fundamental role in

determining the characteristics of such stable equilibria.

Let us start with an example.

Example 1. Ann, Bob, Cindy, Dan and Eve live in a suburb of a big city and they all have

to take private cars in order to reach downtown every working day. They could share the

car but they are not all friends together: Ann and Eve do not know each other but they

both know Bob, Cindy and Dan, who also don’t know each other. The network of relations

is shown in Figure 1. In a one–shot equilibrium (the first working day) they will end up

sharing cars. Any of our characters would be happy to give a lift to a friend, but we assume

here that non–linked people do not know each other and would not offer each other a lift.

No one would take the car if a friend is doing so, but someone would be forced to take it if

none of her/his friends is doing so. There is a less congestioned equilibrium in which Ann

and Eve take the car (and the other three take somehow a lift), and a more polluting one in

which Bob, Cindy and Dan take their car (offering a lift to Ann and Eve, who will choose

one of them).

Cindy

Bob

Dan

Ann Eve

Figure 1: Five potential drivers in a network of relations.

Imagine to be in the less congestioned equilibrium. Now suppose that, even if they all
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agreed on how to manage the trip, in the morning Ann finds out that her car’s engine is

broken and she cannot start it. She will call her three friends, who are however not planning

to take the car and will not be able to offer her a lift. As Ann does not know Eve, and Eve

will be the only one left with a car, Ann will have to wait for her own car to be repaired

before she can reach her workplace. Only if both cars of Ann and Eve break down, then

Bob, Cindy and Dan will take their cars, and we will shift to the inefficient equilibrium. It

is easy to see that if we start instead from the congestioned equilibrium, then we need three

cars to break down before we can induce Ann and Eve to get their own. In this sense the

bad equilibrium is more stable, as it needs a less likely event in order to be changed with

another equilibrium. �

In this paper we analyze the best shot game:1 in a fixed exogenous network of binary

relations, each node (player) may or may not provide a local public good. The best response

for each player is to provide the good if and only if no one of her neighbors is doing so.

In the previous example we have described an equilibrium where each player can take one of

two actions: take or not take the car. Then we have included a possible source of error : the

car may break down and one should pass from action ‘take the car’ to action ‘not take the

car’. Clearly we can also imagine a second type of error, e.g. if a player forgets that someone

offered her/him a lift and takes her/his own car anyway. We think however that there are

situations in which the first type of error is the only plausible one, as well as there can be

cases in which the opposite is true, and finally cases where the two are both likely, possibly

with different probabilities.

What we want to investigate in the present paper is how the likelihood of different kinds

of error may influence the likelihood of different Nash Equilibria. Formally, we will analyze

stochastic stability (Young, 1998) of the Nash equilibria of the best shot game, under different

assumptions on the perturbed Markov chain that allows the agents to make errors.

What we find is that, if only errors of the type described in the example are possible,

that is players can only make a mistake by not providing the public good even if that is their

best response in equilibrium, then the only stochastically stable Nash equilibria are those

that maximize the number of contributors. If instead the other type of error (i.e. provide the

good even if it is a dominant action to free ride) is the only one admitted, or it is admitted

with a relatively high probability, then every Nash equilibrium is stochastically stable.

The best shot game is very similar to the local public goods game of Bramoullé and

Kranton (2007): they motivate their model with a story of neighborhood farmers, with

1This name for exactly the same game comes from Galeotti et al. (2010), but it stems back to the
non–network application of Hirshleifer (1983).
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reduced ability to check each others’ technology (this is the network constraint), who can

invest in experimenting a new fertilizer. They assume that the action set of players is

continuous on the non–negative numbers (how much to invest in the new risky fertilizer),

they define stable equilibria as those that survive small perturbations, and they find that

stable equilibria are specialized ones, in which every agent either contributes an optimal

amount (which is the same for all contributors) or free rides, so that their stable equilibria

look like the equilibria of the discrete best shot game.

The main difference between our setup and the one of Bramoullé and Kranton (2007)

is that in the best shot games that we study actions are discrete, errors, even if rare, are

therefore more dramatic and the concept of stochastic stability naturally applies. We think

that our model, even if stark, offers a valid intuition of why typical problems of congestion

are much more frequently observed in some coordination problems with local externalities.

Most of these problems deal with discrete choices. Traffic is an intuitive and appealing

example,2 while others are given in the introduction of Dall’Asta et al. (2010). In such

complex situations we analyze those equilibria which are more likely to be the outcome of

convergence, under the effect of local positive externalities and the possibility of errors.

In next section we formalize the best shot game. Section 3 describes the general best

response dynamics that we apply to the game. In Section 4 we introduce the possibility of

errors thus obtaining a perturbed dynamics, and we present the main theoretical analysis of

the effects of different perturbation schemes. Finally, a brief discussion is in Section 5.

2 Best Shot Game

We consider a finite set of agents I of cardinality n. Players are linked together in a fixed

exogenous network which is undirected and irreflexive; this network defines the range of a

local externality described below. We represent such network through a n × n symmetric

matrix G with null diagonal, where Gij = 1 means that agents i and j are linked together

(they are called neighbors), while Gij = 0 means that they are not. We indicate with

Ni the set of i’s neighbors (the number of neighbors of a node is called its degree and is

also its number of links). A path between two nodes i and j is an ordered set of nodes

(i, h1, h2 . . . h`, j) such that Gih1 = 1, Gh1h2 = 1, . . . , Gh`j = 1. A connected subset J ⊆ I

2Economic modelling of traffic have shown that simple assumptions can easily lead to congestion, even
when agents are rational and utility maximizers (see Arnott and Small, 1994). Moreover, if we consider the
discretization of the choice space, the motivation for the Logit model of McFadden (1973) were actually the
transport choices of commuting workers.
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is such that, for any i, j ∈ J , there is a path between i and j where all the elements of the

path are members of J . Finally, a subset H ⊆ I is surrounding a subset J ⊆ I if, for any

h ∈ H, we have that h /∈ J and there is j ∈ J such that Gjh = 1.

Each player can take one of two actions, xi ∈ {0, 1} with xi denoting i’s action. Action 1

is interpreted as contribution, and an agent i such that xi = 1 is called contributor. Similarly,

action 0 is interpreted as defection, and an agent i such that xi = 0 is called defector.3 We

will consider only pure strategies. A state of the system is represented by a vector x which

specifies each agent’s action, x = (x1, . . . , xi, . . . , xn). The set of all states is denoted with

X.

Payoffs are not explicitly specified. We limit ourselves to the class of payoffs that generate

the same type of best reply functions.4 In particular, if we denote with bi agent i’s best reply

function that maps a state of the system into a utility maximizer, then:

bi(x) =

{
1 if xj = 0 for all j ∈ Ni ,

0 otherwise.
(1)

We introduce some further notation in order to simplify the following exposition. We

define the set of satisfied agents at state x as S(x) = {i ∈ I : xi = bi(x)}. Similarly, the set

of unsatisfied agents at state x is U(x) = I \ S(x). We also refer to the set of contributors

as C(x) = {i ∈ I : xi = 1}, and to the set of defectors as D(x) = {i ∈ I : xi = 0}. We also

define intersections of the above sets: the set of satisfied contributors is SC(x) = S(x)∩C(x),

the set of unsatisfied contributors is UC(x) = U(x) ∩ C(x), the set of satisfied defectors is

SD(x) = S(x)∩D(x), and the set of unsatisfied defectors is UD(x) = U(x)∩D(x). Finally,

given any pair of states (x,x′) we indicate with K(x,x′) = {i ∈ I : xi = x′i} the set of agents

that keep the same action in both states, and we indicate with M(x,x′) = I \K(x,x′) the

set of agents whose action is modified between the states.

The above game is called best shot game. A state x is a pure strategy Nash equilibrium

of the best shot game if and only if S(x) = I and consequently U(x) = ∅. We will call all

3As will be clear below, we are dealing with a local public good game, so probably free rider would be a
more suitable term than defector. Nevertheless, in the public goods game also “defector” is often used.

4Note that it would be very easy to define specific payoffs that generate the best reply defined by (1):
imagine that the cost for contributing is c and the value of a contribution, either from an agent herself
and/or from one of her neighbors (players are satiated by one unit of contribution in the neighborhood), is
V > c > 0. There are however many other payoff functions that could have the same best reply function (see
Bramoullé et al. (2010) for other examples). As we consider the whole class we are not entering a discussion
about welfare (i.e. aggregate payoffs – that could differ between the specific cases), but discuss only the issue
of congestion (i.e. the aggregate number of contributors).
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the possible Nash equilibria in pure strategies, given a particular network, as N ⊆ X.

The set N is always non–empty but typically very large. It is an NP–hard problem

to enumerate all the elements of N ,5 and to identify, among them, those that maximize

and minimize the set C(x) of contributors. For extensive discussions on this point see

Dall’Asta et al. (2009) and Dall’Asta et al. (2010). Here we provide two examples, the

second one illustrates how even very homogeneous networks may display a large variability

of contributors in different equilibria.

Example 2. Figure 2 shows two of the three possible Nash equilibria of the same 5–nodes

network, where the five characters of our introductory example have now a different network

of friendships. �

Ann

Bob

Cindy

Dan

Eve

(a)

Ann

Bob

Cindy

Dan

Eve

(b)

Figure 2: Two Nash equilibria for a 5–nodes network. The dark blue stands for contribution,

while the light blue stands for defection.

Example 3. Consider the particular regular random network, of 20 nodes and homogeneous

degree 4, that is shown in Figure 3. The relatively small size of this network allows us to

count all its Nash equilibria. There exist 132 equilibria: 1 with 4 contributors (Figure 3, left),

17 with 5 contributors, 81 with 6 contributors, 32 with 7 contributors, 1 with 8 contributors

(Figure 3, right). �

5In particular, all maximal independent sets can be found in time O(3n/3) for a graph with n vertices
(Tomita et al., 2006).
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Figure 3: Two Nash equilibria for the same regular random network of 20 nodes and degree

4. The dark blue stands for contribution, while the light blue stands for defection. Picture

is obtained by means of the software Pajek (http://pajek.imfm.si/).

3 Unperturbed Dynamics

We imagine a dynamic process in which the network G is kept fixed, while the actions x of

the nodes change.

At each time, which is assumed discrete, every agent best replies to the previous state

of the system with an i.i.d. positive probability β ∈ (0, 1), while with the complementary

probability (1− β) her action remains the same. If we denote with x the current state and

with x′ the state at next time, we can then formalize as follows:

x′i =

{
bi(x) with i.i.d. probability β ,

xi with i.i.d. probability 1− β .
(2)

By so doing, a Markov chain (X,T ) turns out to be defined, where X is the finite state

space and T is the transition matrix6 resulting from the individual update process in (2).

We note that T depends on β.

It is easy to check that the Markov chain (X,T ) satisfies the following property, which

formalizes the idea that all and only the unsatisfied agents have the possibility to change

action:7

Txx′ > 0 if and only if M(x,x′) ⊆ U(x) . (3)

6Txx′ denotes the probability to pass from state x to state x′.
7It is the generalized property (3) that we exploit in all the following propositions. Our results on the

unperturbed dynamics hold with any transition matrix satisfying that property. Note also that the Markov
chain defined in (3), and hence in (2), is aperiodic because, as M(x,x) = ∅ for all x, then Txx > 0 for all x.
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We introduce some terminology from Markov chain theory following Young (1998). A

state x′ is called accessible from a state x if there exists a sequence of states, with x as first

state and x′ as last state, such that the system can move with positive probability from each

state in the sequence to the next state in the sequence. A set E of states is called ergodic

set (or recurrent class) when each state in E is accessible from any other state in E , and no

state out of E is accessible from any state in E . If E is an ergodic set and x ∈ E , then x is

called recurrent. Let R denote the set of all reccurrent states of (X,T ). If {x} is an ergodic

set, then x is called absorbing. Equivalently, x is absorbing when Txx′ = 1. Let A denote the

set of all absorbing states of (X,T ). Clearly, an absorbing state is recurrent, hence A ⊆ R.

In the next two propositions we show that in our setup the set N of Nash equilibria is

equivalent to all and only the absorbing states (Proposition 1), and that there are no other

recurrent states (Proposition 2).

Proposition 1. A = N .

Proof. We prove double inclusion, first we show that N ⊆ A.

Suppose x ∈ N . Since by (3) we have that Txx′ > 0 with x′ 6= x only if U(x) 6= ∅, then

Txx′ = 0 for any x′ 6= x, hence Txx = 1 and x is absorbing.

Now we show that A ⊆ N .

By contradiction, suppose x /∈ N . Then U(x) 6= ∅. Consider a state x′ where x′i = xi if

i ∈ S(x), and x′i 6= xi otherwise. We have that x′ 6= x and, by (3), that Txx′ > 0, hence

Txx < 1 and x is not absorbing.

Proposition 2. A = R.

Proof. The first inclusion A ⊆ R follows from the definitions of A and R.

Now we show that R ⊆ A.

We prove that every element x which is not in A is also not in R. Suppose that x /∈ A. We

identify, by means of a recursive algorithm, a state x̂ such that x̂ is accessible from x, but x

is not accessible from x̂. This implies that x /∈ R.

By Proposition 1 we know that A = N . Then x /∈ N and we have that U(x) 6= ∅. If

UC(x) 6= ∅, we define x′ ≡ x and we go to Step 1, otherwise we jump to Step 2.

Step 1. We take i ∈ UC(x′) and we define state x′′ such that x′′i ≡ 0 6= x′i = 1 and

x′′j ≡ x′j for all j 6= i.

Note that ||UC(x′′)|| < ||UC(x′)||. This is because of two reasons: first of all, i ∈ UC(x′) and

i /∈ UC(x′′); the second is that UC(x′′) ⊆ UC(x′), otherwise two neighbors contribute in x′′

and do not contribute in UC(x′), but that is not possible because C(x′′) ⊂ C(x′). Moreover,
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by (3) we have that Tx′x′′ > 0.

We redefine x′ ≡ x′′. Then, if UC(x′) = ∅ we pass to Step 2, otherwise we repeat Step 1.

Step 2. We know that UC(x′) = ∅. We take i ∈ UD(x̂) and we define state x′′ such that

x′′i ≡ 1 6= x′i = 0 and x′′j ≡ x′j for all j 6= i.

Note that ||UD(x′′)|| < ||UD(x′)||. This is because of two reasons: first of all, i ∈ UD(x′) and

i /∈ UD(x′′); the second is that UD(x′′) ⊆ UD(x′), otherwise two neighbors do not contribute

in x′′ and do contribute in UC(x′), but that is not possible because D(x′′) ⊂ D(x′).

We also note that still UC(x′′) = UC(x′) = ∅, since only i has become contributor and all i’s

neighbors are defectors.

By (3) we have that Tx′x′′ > 0. Finally, if UD(x′′) 6= ∅ we redefine x′ ≡ x′′ and repeat Step

2, otherwise it means that x̂ = x′′ and we have reached the goal of the algorithm.

The sequence of states we have constructed shows that x̂ is accessible from x.

Since U(x′) = ∅, we have that Tx̂x̂ = 1 by (3), and hence x is not accessible from x′.

An immediate corollary of Propositions 1 and 2 is that R = A = N .

Ann

Bob

Cindy

Dan

Eve

(c)

Figure 4: A non-Nash (non-absorbing) state for the same network of Figure 2. Here Bob

and Cindy are contributing, while Ann, Dan and Eve are not.

Example 4. Consider the network from Figure 2: both states (a) and (b) shown there are

absorbing, as they are Nash equilibria. Consider now the new state (c) on the same network,

shown in Figure 4: the satisfied nodes here are only the defectors Ann, Dan and Eve. Both

states (a) and (b) are accessible from state (c), but through different paths. To reach (a) from
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(c), the unsatisfied contributor Cindy should turn to defection, so that Eve would become

(the only) unsatisfied and would be forced to become a contributor. To reach (b) from (c),

both the unsatisfied contributors Bob and Cindy should simultaneously turn to defection,

then all the five nodes would be unsatisfied. If we now turn to contribution exactly Ann,

Dan and Eve, we reach state (b). �

The following Lemma 3 and Lemma 4 adapt the results in Lemma 2 of Dall’Asta et al.

(2010) to our setup, as the dynamics employed there is different from ours. Both of them

play an important role in the analysis of the perturbed dynamics that we develop in Section

4.

Lemma 3 states that if we start from a Nash equilibrium, we impose to an agent i a change

from contribution to defection, and we let the dynamics T operate, then in no way agents

that are neither agent i, nor neighbors of agent i, will ever change their action. In other

words, under the above conditions the best reply dynamics is restricted to the neighborhood

of agent i.

Lemma 3. Suppose x ∈ N and xi = 1. Define x′ such that x′i = 0 and x′j = xj for all j 6= i.

Then, for every state x′′ that is accessible from x′ through T we have that if x′′j 6= x′j then

either j = i or j ∈ Ni.

Proof. Call J ≡ U(x′), J contains i (by assumption) and all and only nodes j ∈ Ni (hence

x′j = 0) such that there exists no k ∈ Nj, such that x′k = 1. Define H ≡ {h ∈ I : h ∈
S(x′), ∃j ∈ U(x′) such that h ∈ Nj}, that is the set of all satisfied agents that are neighbors

of some unsatisfied agent in x′. In the topology of the network, J is a connected subset and

H is the surronding set of J , so that any path between any node j ∈ J and k ∈ I \ (J ∪H)

contains at least a node h ∈ H. Note that for any h ∈ H we have that x′h = 0, and then h

has at least a contributing neighbor k ∈ I \ (J ∪H). Then h is satisfied independently of the

action of any j ∈ J . As T allows only unsatisfied agents to update their action, this proves

that for any x′′ that is accessible from x′ through T , U(x′′) ⊆ U(x′) = J . As J contains

only i and neighbors of i the statement is proven.

Lemma 4 states that if we start from a Nash equilibrium, we impose to an agent i a

change from defection to contribution, and we let the dynamics T operate, then in no way

agents that are neither agent i, nor neighbors of agent i, nor neighbors of neighbors of agent

i, will ever change their action. In other words, under the above conditions the best reply

dynamics is restricted to the neighborhood of neighbors of agent i.
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Lemma 4. Suppose x ∈ N and xi = 0. Define x′ such that x′i = 1 and x′j = xj for all j 6= i.

Then, for every state x′′ that is accessible from x′ through T we have that if x′′j 6= x′j then

either j = i or j ∈ Ni or j ∈ Nk for some k ∈ Ni.

Proof. Call J ′ ≡ U(x′), J ′ contains i (by assumption) and all and only nodes j′ ∈ Ni such

that x′j′ = 1. Call now J the set of all those nodes j ∈ I such that there exists a node

j′ ∈ J ′ \ {i} for which j′ ∈ Nj (hence x′j = 0) and such that there exists no k ∈ Nj \ J ′, such

that x′k = 1. We can now define, as in the proof of Lemma 3, the subset H ⊆ I surrounding

J . The proof proceeds analogously. As J contains only i and neighbors of neighbors of i the

statement is proven.

4 Perturbed Dynamics

Given the multiplicity of Nash equilibria, we are uncertain about the final outcome of (X,T ),

that depends in part on the initial state and in part on the realizations of the probabilis-

tic passage from states to states. In order to obtain a sharper prediction, which is also

independent of the initial state, we introduce a small amount of perturbations and we use

the techniques developed in economics by Foster and Young (1990), Young (1993), Kandori

et al. (1993). Since the way in which perturbations are modeled has in general important

consequences on the outcome of the perturbed dynamics (see Bergin and Lipman, 1996), we

consider three specific perturbation schemes, each of which has its own interpretation and

may better fit a particular application.

We introduce perturbations by means of a regular perturbed Markov chain (Young, 1993,

see also Ellison, 2000), that is a triple (X,T, (T ε)ε∈(0,ε̄)) where (X,T ) is the unperturbed

Markov chain and:

1. (X,T ε) is an ergodic Markov chain, for all ε ∈ (0, ε̄);

2. limε→0 T
ε = T ;

3. there exists a resistance function r : X × X → R+ ∪ {∞} such that for all pairs of

states x,x′ ∈ X, limε→0
T εxx′

εr(x,x
′) exists and is strictly positive if r(x,x′) <∞ ;

T εxx′ = 0 for sufficiently small ε if r(x,x′) =∞ .

The resistance r(x,x′) is part of the definition and can be interpreted informally as the

amount of perturbations required to move the system from x to x′ with a single application
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of T ε. It defines a weighted directed network between the states in X, where the weight of

the passage from x to x′ is equal to r(x,x′). If r(x,x′) = 0, then the system can move from

state x directly to state x′ in the unperturbed dynamics, that is Txx′ > 0. If r(x,x′) = ∞,

then the system cannot move from x directly to x′ even in the presence of perturbations,

that is T εxx′ = 0 for ε sufficiently small.

Even if T and r are defined on all the possible states of X, we can limit our analysis

to the absorbing states only, which are all and only the recurrent ones (Proposition 2).

This technical procedure is illustrated in Young (1998) and simplifies the complexity of the

notation, without loss of generality. Given x,x′ ∈ A, we define r∗(x,x′) as the minimum

sum of the resistances between absorbing states over any path starting in x and ending in

x′.

Given x ∈ A, an x-tree on A is a subset of A×A that constitutes a tree rooted at x.8 We

denote such x-tree with Fx and the set of all x-trees with Fx. The resistance of an x-tree,

denoted with r∗(Fx), is defined to be the sum of the resistances of its edges, that is:

r∗(Fx) ≡
∑

(x,x′)∈Fx

r∗(x,x′) .

Finally, the stochastic potential of x is defined to be

ρ(x) ≡ min{r∗(Fx) : Fx ∈ Fx} .

A state x is said stochastically stable (Foster and Young, 1990) if ρ(x) = min{ρ(x) : x ∈ A}.
Intuitively, stochastically stable states are those and only those states that the system can

occupy after very long time has elapsed in the presence of very small perturbations.9

We first consider two extreme types of perturbations in Subsections 4.1, 4.2. Then we

address cases that lie in between those extrema in Subsection 4.3.

4.1 Perturbations affect only the agents that are playing action 0

We assume that every agent playing action 0 can be hit by a perturbation which makes her

switch action to 1. Each perturbation occurs with an i.i.d. positive probability ε ∈ (0, 1).

No agent playing action 1 can be hit by a perturbation. We define a transition matrix P 0,ε

– that we call perturbation matrix – starting from individual probabilities, in the same way

8By tree we will refer only to this structure between absorbing states, and in no way to the topology of
the underlying exogenous undirected network on which the best shot game is played.

9For a formal statement see Young (1993).

12



as we defined T from (2). We indicate with x the state prior to perturbations and with x′

the resulting state:

x′i =


xi if xi = 1 ,{

1 with i.i.d. probability ε ,

0 with i.i.d. probability 1− ε
if xi = 0 .

(4)

The perturbation matrix P 0,ε collects the probabilities to move between any two states in

X when the individual perturbation process is as in (4). We assume our perturbed Markov

chain to be such that first T applies and then errors can occur through P 0,ε. We now check

that (X,T, (T 0,ε)ε∈(0,ε̄)), with T 0,ε = P 0,εT , is indeed a regular perturbed Markov chain.10

1. (X,T 0,ε) is ergodic for all positive ε: this can be seen applying the last sufficient

condition for ergodicity in Fudenberg and Levine (1998, appendix of Chapter 5), once

we take into account that i) A = R by Proposition 2, and ii) r∗(x,x′) < ∞ for all

x,x′ ∈ A by the following Lemma 5.

2. limε→0 T
0,ε = T , since limε→0 P

0,ε is equal to the identity matrix.

3. The resistance function11 is

r0(x,x′) =

{
||SD(x) ∩M(x,x′)|| if SC(x) ∩M(x,x′) = ∅
∞ otherwise

(5)

In fact,

(a) if r0(x,x′) = ∞, then SC(x) ∩M(x,x′) 6= ∅ and there is no way to go from x

to x′, since no satisfied agent can change in the unperturbed dynamics and no

contributor can be hit by a perturbation, hence T εxx′ = 0 for every ε;

(b) if r0(x,x′) <∞, then T 0,ε
xx′ has the same order of εr(x,x

′), when ε approaches zero;

in fact, the agents in U(x)∩M(x,x′) can change independently with probability

β when T is applied, the agents in SD(x) ∩M(x,x′) can change independently

10We follow Samuelson (1997) when we derive the perturbed transition matrix T 0,ε by post-multiplying
the unperturbed transition matrix T with the perturbations matrix P 0,ε. If we exchange the order in the
matrix multiplication some details should change (since matrix multiplication is not commutative), but all
our results would still hold (as we iterate T 0,ε and matrix multiplication is associative).

11The necessary assumption for our results is to have a regular perturbed Markov chain whose resistance
function is as in (5). By deriving it from an individual perturbation process (defined in (4)) and from an
individual update process (defined in (2)), we show that there exists at least one significant case satisfying
this property.
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with probability ε when P 0,ε is applied (and only then), and no agent is left since

SC(x) ∩M(x,x′) = ∅.

In the next remark we provide a lower bound for the resistance to move between Nash

equilibria under this perturbation scheme, and we then use such remark in Proposition 6.

Remark 1. When (5) holds, r∗0(x,x′) ≥ 1 for all x,x′ ∈ N .

The following lemma, which is of help in the proof of Proposition 6, shows that under this

perturbation scheme any two absorbing states are connected through a sequence of absorbing

states, with each step in the sequence having resistance 1.

Lemma 5. When (5) holds, for all x,x′ ∈ A, x 6= x′, there exists a sequence x0, . . . ,xs, . . . ,xk,

with xs ∈ A for 0 ≤ s ≤ k, x0 = x and xk = x′, such that r∗0(xs,xs+1) = 1 for 0 ≤ s < k.

Proof. Since x 6= x′, we have that k ≥ 1. We set x0 = x. Suppose xs is an element of the

sequence, and take is ∈ C(x′) ∩D(xs).

We define state x̃ such that x̃is ≡ 1 6= xsis = 0 and x̃j ≡ xsj for all j 6= is. Note that

r0(xs, x̃) = 1. We define state x̃′ such that x̃′j ≡ 0 for all j ∈ Nis and x̃′k ≡ x̃k for any

other node k. We define state xs+1 such that xs+1
k = bk(x̃

′) for all k ∈ Nj, j ∈ Nis , and

xs+1
` ≡ x̃′` for any other node `. By Lemma 4 and Proposition 1, xs+1 ∈ A. We note that

xs+1 is obtained from x̃ applying only the unperturbed dynamics T , hence the resistance

r∗0(xs,xs+1) = 1.

Note that, since is /∈ D(xs+1) and (j ∈ Nis ⇒ j ∈ D(x′)), then neither node is nor any

of her neigbors is in the set C(x′) ∩ D(xt), for all t ≥ s + 1. As the network is finite, this

sequence reaches x′ in a finite number k of steps.

Next proposition provides a characterization of stochastically stable states under (5). We

use a known result by Samuelson (1994) to obtain stochastic stability from single-mutation

connected neighborhoods of absorbing sets.

Proposition 6. When (5) holds, a state x is stochastically stable in (X,T, (T 0,ε)ε∈(0,ε̄)) if

and only if x ∈ N .

Proof. We first show that x ∈ N implies x stochastically stable. Theorem 2 in Samuelson

(1994) implies that if x′ is stochastically stable, x ∈ A, r∗(x′,x) is equal to the minimum

resistance between recurrent states, then x is stochastically stable. Since at least one re-

current state must be stochastically stable, Proposition 2 implies that there must exist an

absorbing state x′ that is stochastically stable. For any x ∈ N , if x = x′ we are done. If
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x 6= x′, then by Proposition 1 we can use Lemma 5 to say that there exists a finite sequence

of absorbing states from x′ to x, where the resistance between subsequent states is always

1. Remark 1, together with Propositions 1 and 2, implies that 1 is the minimum resistance

between recurrent states. A repeated application of Theorem 2 in Samuelson (1994) shows

that each state in the sequence is stochastically stable, and in particular the final state x.

It is trivial to show that x stochastically stable implies x ∈ N . By contradiction, suppose

x /∈ N . Then, by Propositions 1 and 2, x /∈ R, and hence cannot be stochastically stable.

Proposition 6 tells us that, under the perturbation scheme considered in this subsection,

stochastic stability turns out to be ineffective in selecting among equilibria.

4.2 Perturbations affect only the agents that are playing action 1

Now we assume that every agent playing action 1 is hit by an i.i.d. perturbation with prob-

ability ε ∈ (0, 1), while no agent playing action 0 is susceptible to perturbations. Again

we indicate with x the state prior to perturbations and with x′ the resulting state, and we

formalize the individual perturbation process as follows:

x′i =


xi if xi = 0 ,{

0 with i.i.d. probability ε ,

1 with i.i.d. probability 1− ε
if xi = 1 .

(6)

We denote with P 1,ε the perturbations matrix resulting from (6). We check that (X,T, (T 1,ε)ε∈(0,ε̄)),

with T 1,ε = P 1,εT , is indeed a regular perturbed Markov chain.

1. (X,T 1,ε) is ergodic for all positive ε by the same argument of the corresponding point

in the previous Subsection 4.1, once we replace Lemma 5 with Lemma 7.

2. limε→0 T
1,ε = T , since limε→0 P

1,ε is equal to the identity matrix.

3. The resistance function is

r1(x,x′) =

{
||SC(x) ∩M(x,x′)|| if SD(x) ∩M(x,x′) = ∅
∞ otherwise

(7)

In fact, analogously to what happens for Subsection 4.1,

(a) if r1(x,x′) = ∞, then SD(x) ∩M(x,x′) 6= ∅ and there is no way to go from x

to x′, since no satisfied agent can change in the unperturbed dynamics and no

defector can be hit by a perturbation, hence T εxx′ = 0 for every ε;
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(b) if r1(x,x′) <∞, then T 0,ε
xx′ has the same order of εr(x,x

′) when ε approaches zero;

in fact, the agents in U(x)∩M(x,x′) can change independently with probability

β when T is applied, the agents in SC(x) ∩M(x,x′) can change independently

with probability ε when P 1,ε is applied (and only then), and no agent is left since

SD(x) ∩M(x,x′) = ∅.

This remark plays the same role of Remark 1.

Remark 2. When (7) holds, r∗1(x,x′) ≥ 1 for all x,x′ ∈ N .

The following lemma shows that the resistance between any two absorbing states is equal

to the number of contributors that must change to defection. This result is less trivial than

it might appear: it shows that there is no possibility that by changing only some of the

contributors to defectors, the remaining ones are induced to change by the unperturbed

dynamics. The lemma could be proven directly from Lemma 3, but we find more intuitive

the argument below.

Lemma 7. When (7) holds, for all x,x′ ∈ A, r∗1(x,x′) = ||C(x) ∩D(x′)||.

Proof. We first show that r∗1(x,x′) ≥ ||C(x)∩D(x′)||. By contradiction, suppose r∗(x,x′) <

||C(x) ∩D(x′)||. Then, some i ∈ C(x) ∩D(x′) must switch from contribution to defection

along a path from x to x′ by best reply to the previous state. This requires that in the

previous state there must exist some j ∈ Ni that contributes. However, j ∈ D(x) and j

can never change to contribution as long as i is a contributor, neither by best reply nor by

perturbation when (7) holds.

We now show that r∗1(x,x′) ≤ ||C(x)∩D(x′)||. Define state x̃ such that x̃i ≡ 0 6= xi = 1

for all i ∈ C(x) ∩D(x′), and x̃i ≡ xi otherwise. Note that r(x, x̃) = ||C(x) ∩D(x′)||. Note

also that bi(x̃) = 1 for all i ∈ C(x′) ∩ D(x̃). This means that r(x̃,x′) = 0, and therefore

r∗(x,x′) ≤ r(x, x̃) + r(x̃,x′) = ||C(x) ∩D(x′)||.

We now use Lemma 7 to relate algebraically the resistance to move from x to x′ to the

resistance to come back from x′ to x.

Lemma 8. When (7) holds, for all x,x′ ∈ A, r∗(x,x′) = r∗(x′,x) + ||C(x)|| − ||C(x′)||.

Proof. From Lemma 7 we know that r∗(x,x′) = ||C(x)∩D(x′)||. Note that ||C(x)∩D(x′)|| =
||C(x)|| − ||C(x) ∩ C(x′)||. Always from Lemma 7 we also know that r∗(x,x′) = ||C(x′) ∩
D(x)|| = ||C(x′)|| − ||C(x) ∩C(x′)||, from which ||C(x) ∩C(x′)|| = C(x′)− r∗(x′,x), which

substituted in the former equality gives the desired result.
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We are now ready to provide a characterization of stochastically stable states under (7).

Proposition 9. When (7) holds, a state x is stochastically stable in (X,T, (T 1,ε)ε∈(0,ε̄)) if

and only if x ∈ arg maxx′∈N ||C(x′)||.

Proof. We first prove that only a state in arg maxx′∈N ||C(x′)|| may be stochastically stable.

Ad absurdum, suppose ||C(x)|| /∈ arg maxx′∈N ||C(x′)|| and x is stochastically stable. There

must exist x′ such that ||C(x′)|| > ||C(x)||. Take an x-tree Fx. Consider the path in Fx

going from x′ to x, that is the unique {(x0,x1), . . . , (xk−1,xk)} such that x0 = x′, xk = x,

and (xi,xi+1) ∈ Fx for all i ∈ {0, k − 1}. We now modify Fx by reverting the path from x′

to x, so we define Fx′ ≡ (Fx \ {(xi,xi+1) : i ∈ {0, k − 1}}) ∪ {(xi+1,xi) : i ∈ {0, k − 1}},
which is indeed an x′-tree. It is straightforward that r∗1(Fx′) = r∗1(Fx)−

∑k−1
i=0 r

∗
1(xi,xi+1) +∑k−1

i=0 r
∗
1(xi+1,xi). Applying Lemma 8 we obtain r∗1(Fx′) = r∗1(Fx) +

∑k−1
i=0 (||C(xi+1)|| −

||C(xi)||), that simplifies to r∗1(Fx′) = r∗(Fx)+ ||C(x)||− ||C(x′)||. Since ||C(x′)|| > ||C(x)||,
then r∗1(Fx′) < r∗1(Fx). In terms of stochastic potentials, this implies that ρ(x′) < ρ(x),

against the hypothesis that x is stochastically stable.

We now prove that any state in arg maxx′∈N ||C(x′)|| is stochastically stable. Since

at least one stochastically stable state must exist, from the above argument we conclude

that there exists x ∈ arg maxx′∈N ||C(x′)|| that is stochastically stable. Take any other

x′ ∈ arg maxx′∈N ||C(x′)||. Following exactly the same reasoning as above we obtain that

ρ(x′) = ρ(x). Since ρ(x) is a minimum, ρ(x′) is a minimum too, and x′ is hence stochastically

stable.

Previous proposition is the main point of this work: it provides a characterization of

stochastically stable equilibria which is much more refined than the one obtained in Propo-

sition 6. Next section analyzes the stability of this result, and generalizes to a wider class of

possible sources of errors.

4.3 Perturbations affect all agents

We have obtained different results about stochastic stability in the extreme cases when

perturbations hit exclusively agents playing either contribution or defection. We are now

interested in understanding what happens when we allow both types of perturbation. In

particular, we assume that every agent playing action 1 is hit by an i.i.d. perturbation

with probability ε ∈ (0, 1), and every agent playing action 0 is hit by an i.i.d. perturbation
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εm, where m is a positive real number.12 Formally, with x denoting the state prior to

perturbations and x′ the resulting state:

x′i =



{
1 with i.i.d. probability εm ,

0 with i.i.d. probability 1− εm
if xi = 0 ,

{
0 with i.i.d. probability ε ,

1 with i.i.d. probability 1− ε
if xi = 1 .

(8)

We denote with Pm,ε the perturbations matrix resulting from (8).

We check that (X,T, (Tm,ε)ε∈(0,ε̄)), with Tm,ε = Pm,εT , is indeed a regular perturbed

Markov chain.

1. (X,Tm,ε) is ergodic because if a state x′ is accessible from a state x in (X,T 0,ε) or in

(X,T 1,ε), then the same is true in (X,Tm,ε).

2. limε→0 T
m,ε = T , since limε→0 P

m,ε is equal to the identity matrix.

3. The resistance function is

rm(x,x′) = ||SC(x) ∩M(x,x′)||+m||SD(x) ∩M(x,x′)|| (9)

In fact, the agents in U(x) ∩M(x,x′) can change independently with probability β

when T is applied; the agents in SC(x) ∩ M(x,x′) can change independently with

probability ε when Pm,ε is applied (and only then); and the agents in SD(x)∩M(x,x′)

can change independently with probability εm when Pm,ε is applied (and only then).

The usual kind of remark sets a lower bound to the resistance between any two absorbing

states.

Remark 3. When (9) holds, r∗m(x,x′) ≥ min{1,m} for all x,x′ ∈ N .

We are ready for the last result: what happens when all agents are affected by perturba-

tions.

Proposition 10. When (9) holds:

12We might have used ηm0 for the probability that a perturbation hits a defector and ηm1 for the probability
that a perturbation hits a contributor. Here we adopt, without loss of generality, the normalization that
ε ≡ ηm0 and m ≡ m1/m0.
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1. if m ≤ 1, then a state x is stochastically stable in (X,T, (T k,ε)ε∈(0,ε̄)) if and only if

x ∈ N ;

2. if m ≥ maxi∈I{||Ni||}, then a state x is stochastically stable in (X,T, (Tm,ε)ε∈(0,ε̄)) if

and only if x ∈ arg maxx′∈N ||C(x′)||.

Proof. Suppose m ≤ 1. Following the proof of Lemma 5, we obtain that when (9) holds, for

all x,x′ ∈ A, x 6= x′, there exists a sequence x0, . . . ,xs, . . . ,xk, with xs ∈ A for 0 ≤ s ≤ k,

x0 = x and xk = x′, such that r∗(xs,xs+1) = m for 0 ≤ s < k. This result and Remark

3 allow us to follow the proof of Proposition 6 and use m instead of 1, obtaining the same

result as in Proposition 6.

Suppose now that m ≥ maxi∈I{||Ni||}. We show that the resistances are the same as in

Subsection 4.2, i.e., for all x,x′ ∈ A, r∗m(x,x′) = ||C(x) ∩D(x′)||. Therefore Lemma 8 and

Proposition 10 apply here too, and the result is obtained.

Lemma 3 and Lemma 4 imply that there is only one way to change the agents in C(x)∩
D(x′) from contribution to defection, other than letting each of those agents be hit by a

perturbation. This way is to let some neighbors of all the agents in C(x) ∩ D(x′) be hit

by a perturbation changing their action from defection to contribution. This amounts to

having at least ||C(x) ∩D(x′)||/maxi∈I{||Ni|} perturbations, each of which costs m. Since

m ≥ maxi∈I{||Ni|} by assumption, this way of reaching x′ from x has at least a cost of

||C(x) ∩D(x′)||. This shows that r∗m(x,x′) = ||C(x) ∩D(x′)||.

In the next examples we give the stochastically stable sets of the game, for the whole

range of values of m, for a very simple network. Even if the example is simple, it may give

a hint on the complexity of situations that may arise in general, for values of m between 1

and maxi∈I{||Ni||}.

Example 5. Consider the network from introductory Figure 1. This network has two Nash

equilibria, one in which the two peripheral nodes Ann and Eve contribute (call it NE2),

another one in which the three central nodes Bob, Cindy and Dan do so (call it NE3).

Imagine that we want to find the stochastically stable equilibria deriving from (8), and

hence (9), as ε→ 0.

To pass from NE2 to NE3 we need that at least one of the central nodes starts contributing

(with probability εm) or both Ann and Eve stop contributing (with probability ε2). This

event happens with a probability of order min{m, 2}, this number is the resistance from NE2

to NE3. To pass from NE3 to NE3 we need that at least one between Ann and Eve starts

contributing (with probability εm) or altogether Bob, Cindy and Eve stop contributing (with

probability ε3). This event happens with a probability of order min{m, 3}, the resistance
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from NE3 to NE2.

Summing up, the two equilibria are both stochastically stable if m ≤ 2, as in this case the

two resistances are equal. If instead m > 2, then only NE3 is stochastically stable, as the

resistance from NE3 to NE2 is min{m, 3}, while the one from NE2 to NE3 is 2. �

5 Discussion

The best shot game is a very stark model, and clearly misses the details of any specific

real–world situation. We think however that, as the model in Schelling (1969) has done for

the issue of residential segregation, this model is able to describe the backbone structure of

incentives in many problems of local contribution, as discussed in the introduction. The best

shot game has multiple equilibria, so a refinement is needed to understand which outcomes

are likely to emerge.

As we deal with discrete actions, the natural candidate for selection is stochastic stability:

it selects the equilibria that are more likely to be observed in the long run, in the presence

of small errors occurring with a vanishing probability. It is well known (Bergin and Lipman,

1996) that different equilibria can be selected depending on the assumptions on the relative

likelihood of different types of errors, as indeed it occurs in our model (see the detailed

discussion in Section 4). Blume (2003) focuses on finding sufficient conditions for the errors,

in a perturbed dynamic on a discrete action space, such that stability gives always the same

prediction. This dependence of stochastically stable states on the type of perturbations

is often interpreted as a limitation of the predictive efficacy of stochastic stability, since

essentially any equilibrium can be selected by means of stochastic stability with proper

assumptions on the errors. We think instead that what enriches the analysis is exactly this

dependence of the selected equilibria on the nature of errors. Our model is in principle very

general, but if we try to apply it to a particular situation, it can adapt itself to the object

of analysis and give specific predictions (as has been done, for a very different model, by

Ben-Shoham et al., 2004). In particular, we derive interesting results for the case in which

errors that stop contribution are much more frequent than errors that make contribution

arise. We think that this is a property of many real–world situations in which the action of

contributing involves much more individual effort than the action of non contributing, but

also requires some external factor to be carried out (such as a car in order to give a lift).

However, such an external factor may accidentally be damaged (e.g. a car engine may break

down). The counter–intuitive result is that, exactly in those cases, the selected equilibrium

will be the one with highest congestion, i.e. the number of contributors is the highest among
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equilibria.13

We leave for future research the analysis of more general models of network games, in

which the effort of a player is substitute to the effort of her neighbors (for a formal definition

see Galeotti et al., 2010). This is clearly the case of the best shot game, but possibly some

of the results achieved in this paper could be generalized. Bramoullé et al. (2010) consider

a particular class of games in which actions are continuous and neighbors’ efforts are linear

substitutes, and they analyze asymptotic stability as defined in Weibull (1995). It would be

interesting, in more general games with a discrete strategy space, to compare and possibly

generalize their findings with the results that we obtain for stochastic stability.
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