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Abstract

In a continuous-time framework we study the technology and in-
vestment choice problem of a continuous co-digestion biogas plant
dealing with randomly �uctuating relative convenience of input factor
costs. Input factors enter into the productive process together mixed
according to a given initial rule. Being inputs relative convenience
stochastically evolving, a successive revision of the initial rule may be
desirable. Hence, when the venture starts the manager may or may
not install a �exible technology allowing for such option. Investment
is irreversible and �exibility is costly. The problem is solved deter-
mining in the light of future prospects the optimal revision and then
playing backward �xing the investment timing rule.
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1 Introduction

Consider a product which is produced by mixing together two input factors
according to a given rule. Such product may be provided getting on forever
with the initial productive mode or by switching to a revised rule as soon as
future changes in the relative input convenience makes it worth still keeping
the option to reverse. This �exibility option does not come for free and
its cost depends on the �distance�between the initial and the revised rule.
Thus, for a given starting mode a set of technologies providing with the
option to di¤erently revise such rule are available at di¤erent costs. Assume
such cost is sunk in nature. The problem for the manager is then the choice
of the technology maximizing the value of the venture according to future
prospects.
This kind of problem may arise in di¤erent situations. Biogas plants

provide methane by the anaerobic digestion of biomass, both residual as in
the case of manure or sewage, municipal waste, by-products from agriculture
and energy crops. The composition of the feedstock to be fermented into the
digester plays a crucial role on the design of the plant operation and on �nal
biogas yield (Chynoweth 2004; Amon et al. 2007a, 2007b). Technological
progress allows today for digesters able to process almost any biodegradable
material and process simultaneously two or more input materials. Needless
to say that the choice of the feeding mixture plays a crucial role to reduce
the costs of the biogas produced (Callaghan et al., 2002; Gerin et al., 2008;
Schievano et al., 2009). However, the relative economic convenience of a fac-
tor is a¤ected by di¤erent sources of uncertainty such as market, regulatory
and technological uncertainty. Under changing circumstances, a technology
allowing a revision of the initial diet is clearly an advantage. But such tech-
nology may also be more expensive to install. The plant manager must then
decide under which conditions such investment is worth. Or consider �exible
fuel engines (FFEs) which run with blends of di¤erent proportions of gaso-
line and either ethanol or methanol.1 Randomly �uctuating fuel prices and
changes in transport regulations due to environmental concerns may justify
the adoption of more costly FFEs or the R&D investment on more �exible
engines. Finally, changing perspective and focusing on the role of �exibility
for vertical arrangements a¤ecting �rm integration, one may think of the
initial rule as a determined vertical structure where only part of the input

1A complete description is available at http://en.wikipedia.org/wiki/Flexible_fuel.
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factor required is outsourced.2 The question is then how to rearrange such
structure in the light of unpredictable changes in the outsourcing convenience
and however holding the option to switch back to the original set-up. In this
respect, solving the problem sketched above would represent a generalization
of the model proposed by Moretto and Rossini (2008).3

The value of �exibility and its role on investment under uncertainty and
irreversibility has been deeply investigated in the last two decades. For ex-
ample, Kulatilaka (1988), Triantis and Hodder (1990) and He and Pindyck
(1992) apply option theory to assess the value of �exibility on manufactur-
ing. In particular, Kulatilaka (1988) uses a stochastic dynamic programming
model to evaluate the options in a �exible production process considering the
e¤ects of switching costs. Triantis and Hodder (1990) analyses the invest-
ment on a technology allowing for the production of a k-variety of products
with no cost at the switching nodes. Capacity constraints are considered
and their model also allows for temporary shut down and restart operation.
He and Pindyck (1992) highlights the relationship between technology and
capacity choice. In that light, they studies output �exibility determining in
a stochastic frame �rst the degree of �exibility in the technology and then
the capacity to be installed.
In this paper, di¤erently from previous contributions where the stand-

point has been mainly represented by product, process and volume �exibil-
ities, we propose to investigate the relationship between the value added by
�exibility and the choice of adjustments to the initial productive or organi-
zational mode.4

For the sake of a better illustration of the model and convinced that
2By keeping in-house some portion of input production, a �rm may be able to avoid

the loss of control of the entire vertical production process and/or the quick obsolescence

of a speci�c know-how embodied in some inputs (Bernard, Jensen, Redding and Schott,

2008).
3Recent contributions provide a theoretical analysis of partial outsourcing by consid-

ering levels of vertical integration which vary continuously over the unit interval (Alvarez

and Stenbacka, 2007; Wang, Liu and Wang, 2007). However, in these models the selection

of the degree of vertical integration is still seen as an irreversible step.
4To characterize the operating technology, the scholars quoted above use the concept

of a "mode of operation" to describe a mutual exclusive �exibility, i.e. "invest" vs "wait

to invest", "use gas" vs. "use oil", or " continuous operations" vs "shut down" or vs.

"abandon project" and so on (Brennan and Schwartz, 1985; Kulatilaka,1988).
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our analysis may shed new light on investment in renewable energy we will
develop the analysis of a biogas plant operation.
We propose a continuous-time model considering the optimal choice prob-

lem of both entry timing and revision of the initial feedstock composition
whenever it makes sense according to economic conditions. At time zero, the
manager determines the timing of investment in a plant where the technology
installed allow to revise the initial digester diet. The technology installed is
chosen in order to optimally revise the initial mixture according to future
prospects about a randomly �uctuating input factor convenience. Once in-
vestment has been undertaken, the plant provides biogas exploiting the most
convenient diet while the manager always hold the option to switch to an
alternative diet as soon as it is worth.
The paper reminder is organized as follows. In the next section the basic

set-up is presented. In section 3 and 4 we respectively determine the value
of �exibility and the optimal adjustment policy. In section 5 we solve for the
timing of the investment in the optimal technology. In section 6 by numer-
ical simulations and graphical illustrations we provide additional insight on
the problem letting uncertainty and cost parameters vary. The last section
concludes.

2 The basic set-up

A biogas plant consists, in general, of two main components: a digester (or
more digesters) and a gas holder. The digester is a water proof container
where the fermentable mixture is introduced in the form of slurry. For the
sake of simplicity we assume that to feed the digester in order to produce 1
m3 of biogas a mixture of two types of materials is needed as input factor.5

5Raw material to feed the digester may be obtained from a variety of sources such as

livestock and poultry wastes, night soil, crop residuals, paper wastes, aquatic weeds, water

hyacinth and seaweed. Yet, residues from the agricultural sector such as spent trawl, hay,

cane trash, corn maize and plant stubble, etc. Succulent plant material produces more

gas than dried material and hence materials like brush and weeds need semi-drying. We

simplify the analysis considering two composite inputs: one formed by dry material and

the other by liquid material. In this respect, experience has shown that the raw-material

ratio to water must be 1:1. (National Academy of Sciences, 1977; Da Silva, 1979; Amon

et al., 2007a,b)
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We denote by D1 such mixture and we assume that it is initially composed
by a share, � 2 (0; 1), of a biological material which market price is ct, and
a share, 1� �; of material which price is dt.6 Indicating with pt the market
price of 1 m3 of biogas and assuming perfect substitutability7 between the
two inputs, the instantaneous pro�t function when D1 is adopted can be
expressed as:8

pt � C1 = pt � [�ct + (1� �) dt]
= pt � dt + � (dt � ct)

Further, depending on the relative economic convenience of each material
with respect to the other, we allow for a successive revision of D1 obtained
by costlessly switching9 to D2 if the latter turns out to be more pro�table.
In D2 the shares are adjusted and are respectively given by �0 and 1 � �0;
where �0 = 
� with 
 2 [0; 1=�] :10 Then, once the adjustment parameter 


6This assumption could be justi�ed by the existence of regulative or technological con-

straints which impose to start with a de�ned diet. In many cases, the price of the inputs is

the opportunity cost faced by the plant holder for disposing of such raw materials to accom-

plish with regulations. For instance, according to Commission Regulation 208/2006/EC,

this is the case with manure (Gerin et al., 2008; Devenuto and Ragazzoni, 2008; Schievano

et al., 2009).
7As suggested by Callaghan (2002), in the appendix A.3 we open a window on the

imperfect substitutability case where alfa indicates the share of total cost dedicated to

input ct.
8As said before, production of biogas is ine¢ cient if fermentation materials are too

diluted or too concentrate. To maintain the right total solid concentration, water may

be added to the slurry before the anaerobic action starts. Therefore, without loosing in

generality, we may assume perfect substitutability between the inputs, adding the cost of

water to the cost of one of them (Singh, 1971; National Academy of Sciences, 1977; Da

Silva, 1979).
9Switching costs are essentially related to the time needed for the production process to

resume to the standard performance after a change in the diet. To consider the presence

of other switching costs would only add complexity to the analysis without giving more

insight.
10Amon et al, (2007a) analyses crop rotation as a di¤erent example of changing diet to

optimise biogas production.
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has been chosen, the instantaneous pro�t function under D2 is:11

pt � C2 = pt � [�0ct + (1� �0) dt]
� pt � dt + 
� (dt � ct)

We also consider that operation of the biogas project can be temporarily
suspended, under both the regimesD1 andD2, when the instantaneous pro�t
falls below a maintenance cost mt. This could represent the per period
maintenance expenditure the �rm incurs to keep the project ready to be
resumed. If operation restarts, a reactivation cost, FR, must be paid. Finally,
at a cost equal to FS > FR we provide the manager also with the option of
scrapping the project previously mothballed.12

Taking D1 as given13 and accounting for the option to switch between
diets and for the option to mothball the project, the instantaneous pro�t
function is equal to:

�t = max f�mt; max [(pt � C1) ; (pt � C2)]g (1)

= max f�mt; pt � dt +max [� (dt � ct) ; �0(dt � ct)]g

To simplify the analysis, we assume that the market price of a unit of
biogas is certain and taken as given,14 i.e. pt = p, the maintenance cost,mt, is
constant and equal to m; and �nally that the price of the input dt is constant
and equal to d > 0 . The price of the other input ct is stochastic15 and

11Note that by this assumption one may rearrange over all the feasible range:


 = 0! �0 = 0! C2 = d


 =
1

�
! �0 = 1! C2 = c

12Note that we consider a plant of �xed size, then all costs are expressed per unit of

output.
13This assumption could be justi�ed by the initial market price of the two factors and/or

by the existence of regulative or technological constraints which impose to start with a

de�ned diet.
14The price of 1 m3 of biogas may be constant due to regulation and/or to trading

Renewable Energy Certi�cates (RECs). See Directive 2001/77/EC on the promotion of

electricity from renewable energy sources in the internal electricity market.
15We may alternatively assume that dt is uncertain while ct is not. However, this would

not in�uence our conclusions.
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randomly �uctuates according to the trendless geometric Brownian motion16

dct
ct
= �dzt (2)

where � is the volatility of the market price and dzt is the increment of a
Wiener process satisfying the conditions E [dzt] = 0; E [dz2t ] = dt: Finally, we
set FR = p �T . This could be justi�ed assuming that it takes T time-periods
as �time-to-resume�the operation and that, even bearing the inputs�cost,
any unit of outcome can be produced and sold over that period.17

3 A �exible input mixture technology

Accounting only for the option to switch between diets, by (1) we get that
D1 is adopted only if C1 < C2: Conditionally on the choice of 
, this relation
holds when ct > d if 
 > 1 or when ct < d if 
 < 1: In both cases, the plant
manager produces biogas with the initial diet D1 and keeps open the option
to switch to D2: On the contrary, if C1 > C2 it is optimal to adopt D2 (this
holds when ct < d with 
 > 1 or when ct > d with 
 < 1), knowing that
however it is possible to switch back to D1.
Therefore, to asses the value of investing in a biogas plant with �exible

diet for the digester, we must then distinguish between two scenarios or in
other words between the two possible directions in which �exibility could be
valuable. Under the �rst scenario a revision of the initial diet D1 is desirable
if ct falls under d by choosing 
 2 [1; 1=�]. If this is the case it is in fact
optimal to adopt a D2 with a larger share of the biodegradable material
which cost is ct: Under the second scenario instead, if ct rises above d the
initial D1 needs to be adjusted decreasing � and then rearranging for a more
convenient D2, i.e. by choosing 
 2 [0; 1] :
16By this simple form we are practically assuming that the uncertainty driven by tech-

nological and regulative change is processed on the market place and re�ected by price

dynamics. A more general GBM with Poisson jumps capturing technological and regu-

lative shocks a¤ecting ct, may be considered without adding substantial insight to our

results.
17If the reactivation cost due to the needed "time-to-resume" is given by the revenue

foregone, it is easy to show that FR =
R T
0
pe�r�d� = (1 � e�rT )pr . Hence, given that

e�rT ' 1� rT + :::, it follows FR ' pT:
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Furthermore, if ct is too high and the technology adopted is not �exible
enough to allow for the needed adjustment, the plant manager may also
consider to suspend temporarily the production and later decide to resume
or abandon the project.
Finally, since the decision to increase or decrease the presence of a factor

in the diet is state-contingent, the two scenarios may be seen as symmetric.18

We proceed then the analysis assuming d as numeraire19 and derive the value
of the �exible technology for ct > d: As said before, in this case a diet D2 is
available for coping with uncertainty on ct and the plant manager can hedge
against the input prices volatility by increasing the share of the input ct; i.e.
�xing the adjustment parameter 
 2 [1; 1=�] :

3.1 The value of the �exible technology

Since for 
 2 [1; 1=�] ; the condition C1 < C2 holds when ct > d , the value
of the value of the biogas plant functioning with the original diet D1 is given
by the solution of the following dynamic programming problem (Dixit, 1989;
Dixit and Pindyck, 1994):

1

2
�2c2t

@2V (D
1)(ct; �; 
)

@c2t
� rV (D1)(ct; �; 
) = � [p� d+ � (d� ct)] (3)

for d < ct < cM

and with diet D2:

1

2
�2c2t

@2V (D
2)(ct; �; 
)

@c2t
� rV (D2)(ct; �; 
) = � [p� d+ 
� (d� ct)] (4)

for ct < d

where V (D
1) and V (D

2) are respectively the value of the plant under diet D1

and D2, cM is the level of ct where mothballing the project is optimal and

18If one sets as original diet D1 = ( 12 ;
1
2 ); by �xing 
 =

3
2 the plant manager holds the

option to switch to D2 = (34 ;
1
4 ). However, in the state c < d; if one sets D1 = (

3
4 ;

1
4 ); by

�xing 
 = 2
3 the plant manager may switch to D2 = (

1
2 ;

1
2 ). Therefore, in both states the

plant manager may switch on and back between the same two diets.
19Setting d = 1 would not a¤ect our results.
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r is the riskless interest rate.20 In addition, we have to consider the value
of the plant when production is temporally suspended, this is given by the
following di¤erential equation:

�2c2t
2

@2V (S)(ct; �; 
)

@c2t
� rV (S)(ct; �; 
) = �m for cR � ct � cS (4bis)

where V (S)(ct; �; 
) is the value of the plant when the project is mothballed.
The levels of ct at which the project may be resumed or abandoned are
respectively given by cR and cS. The general solution of the di¤erential
equations (3), (4) and (4bis) takes respectively the form:

V (D
1)(ct; �; 
) =

p� d
r

+ �
(d� ct)
r

+ bA1c�1t + bA2c�2t for d < ct < cM (5)

V (D
2)(ct; �; 
) =

p� d
r

+ 
�
(d� ct)
r

+ bB1c�1t for ct < d (6)

and

V (S)(ct; �; 
) = �
m

r
+ cM1c

�1
t + cM2c

�2
t for cR � ct � cS (6bis)

where �1 > 1 and �2 < 0 are the roots of the characteristic equation � (�) =
1
2
�2� (� � 1)� r. In (5) the term p�d

r
+� (d�ct)

r
indicates the present value of

producing biogas forever using D1; bA2c�2 represents the value of the option
to switch to D2 and bA1c�1 is the value attached to the temporary suspension.
Instead in (6); p�d

r
+
� (d�ct)

r
is the present value of producing biogas forever

adopting D2, while bB1c�1 is the value of the option to switch back to D1.21

Finally, in (6bis), �m
r
+cM1c

�1
t +cM2c

�2
t is the value of the �rm when operation

is mothballed. The �rst term represents the present value of the �ow of
suspension costs. The second term is the value of the option to abandon the
project and the third term is instead the value of the option to reactivate the
biogas production.

20An interest rate incorporating a proper risk adjustment can be used taking the ex-

pectation with respect to a distribution of ct adjusted for risk neutrality (Cox and Ross,

1976).
21Note that under D2 the general solution to (4) should have the form

V (D
2)(ct; �) =

p�d
r + 
� (d�ct)r + bB1c�1t + bB2c�2t . However, as ct ! 0; the option to

switch to D1 is valueless and should go to zero. But this holds only if bB2 = 0.
9



To determine the constants bA1; bA2; bB1; cM1; cM2 and the critical levels
cM , cR, cS at every switching point value-matching and smooth-pasting con-
ditions must be satis�ed. At ct = d

V (D
1)(d; �; 
) = V (D

2)(d; �; 
)

V
(D1)
c (d; �; 
) = V

(D2)
c (d; �; 
)

then at ct = cM

V (D
1)(cM ; �; 
) = V (S)(cM ; �; 
)

V
(D1)
c (cM ; �; 
) = V (S)c (cM ; �; 
)

and �nally at22 cR and cS

V (S)(cR; �; 
) = V (D
1)(cR; �; 
)� FR

V (S)c (cR; �; 
) = V
(D1)
c (cR; �; 
)

V (S)(cS; �; 
) = �FS
V (S)c (cS; �; 
) = 0:

The system of eight equations provides a complete frame for the analysis of
the project operation. The real options literature posits that the availability
of strategic options always increase the value of a project.23 Hence, all the
constants bA1; bA2; bB1; cM1; cM2 must be non-negative (Dixit, 1989).
However, according to empirical evidence once set up biogas projects are

rarely mothballed or abandoned. This may be due to both low maintenance
and scrapping costs and long time to resume operations. In fact, we state
and prove

Proposition 1 Provided that m
r
� FS and T is high enough, as FS ! 0 and

m! 0 the option to mothball, to reactivate and to abandon may be neglected.

Proof. See section A.1 in the appendix for the proof and a deep discus-
sion.
22Note that if cR < d then the value-matching and smooth-pasting conditions should be

V (S)(cR; �; 
) = V
(D2)(cR; �; 
)� FR; V (S)c (cR; �; 
) = V

(D2)
c (cR; �; 
).

23See Dixit and Pindyck 1994 (chs. 6 and 7) for a exhaustive discussion.
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If the value attached to such options has small impact on the investment
choice then only the �exibility driven by the option to switch between the
two diet regimes should matter. This in turn allows reducing the system
above to the �rst two equations which solution is given by:

bA2 = (
 � 1)A = (
 � 1) �

r (�1 � �2)
d1��2 � 0

bB1 = (
 � 1)B = (
 � 1) �

r (�1 � �2)
d1��1 � 0

Substitution into (3) and (4) �nally gives

V (D
1)(ct; �; 
) =

p� d
r

+ �
(d� ct)
r

+ (
 � 1)Ac�2t for d < ct <1 (7)

V (D
2)(ct; �; 
) =

p� d
r

+ 
�
(d� ct)
r

+ (
 � 1)Bc�1t for ct < d (8)

Note that bA2; bB1 are positive as long as 
 > 1. For 
 = 1, the options to
switch on and back between D1 and D2 are not available and their value is
null as it should be.
Finally, as evident from (7), for the investment decision to be sensible we

assume p > (1��)d. In fact, as it will become clear later, this is a necessary
condition for the existence of a positive time trigger for the investment.24

Formally this requires to introduce a restriction on the set of D1 such that
p=d > 1� �:

4 Optimal 
 with a �exible diet technology

When the current cost ct is such that d < ct <1; the manager�s problem is
to de�ne the optimal 
 by which to revise D1 in order to bene�t from a fall

24A similar analysis can be developed also for 
 2 [0; 1] where C1 < C2 holds when

ct < d: However, it should be noted that having assumed p > (1 � �)d; the expected
net present value over the range ct < d is higher than over ct > d: This may induce as

desirable diet revision the extreme 
 = 0 where the sole input d is used. In this case the

value of the option to mothball, to reactivate and to abandon should vanish even faster due

to the option to switch diets potentially allowing for a complete hedge against �uctuations

on ct. This is an issue which would deserve further attention but it is beyond the scope

of this paper.
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of ct in the future: In other words, the plant is producing biogas by using the
original diet D1 but the manager holds the option to switch to a new diet D2

if ct �uctuates below d: In D2, where 
 > 1; the presence of the factor ct is
increased. This implies that the decision to increase or decrease the presence
of a factor in the diet is state-contingent.
The optimal 
 must maximize (8) minus the cost of setting up such a

�exible productive technology:


� = argmaxNPV (ct; �; 
) s:t: 
 > 1 for d < ct <1

where NPV (ct; �; 
) = V (D
1)(ct; �; 
)� I (�; 
) ; and I(�; 
) is the sunk cost

of developing the �exible biogas plant which allows to revise the diet from
D1 to D2:
Being our analysis focused on the cost of the �exibility, we model I(�; 
)

as an increasing cost-to-scale Cobb-Douglas quadratic in (
 � 1), i.e.:25

I (�; 
) =
K (�)

2
(
 � 1)2 (9)

where K (�) is a unit installation cost accounting for the storage capacity of
both the gas-holder and the digester.26

The function I (�; 
) is convex on 
 and satis�es I (�; 1) = 0, I
 (�; 
) > 0
when 
 > 1 and I
 (�; 1) = 0: In other words, the cost of setting up a �exible
technology is normalized to zero for 
 = 1, and it increases according to the
initial diet (D1) and the "distance" between D2 and D1.27 Being [1; 1=�] the
feasible range for 
, to guarantee some symmetry of the cost for revising D1

25A �xed investment cost K0 independent on 
 may be included. However, Devenuto

and Ragazzoni (2008) and Maeng et al. (1999) respectively report that scale economies

and technological progress have importantly reduced such cost over the last decade.
26The digester reactors can be constructed by using brick, cement, concrete and steel,

while the gas holder is normally an airproof steel container. For Rubab and Kandpal

(1996) the diet composition in�uences the cost of the storage capacity and, in particular,

the cost of the digester capacity.
27An e¢ cient anaerobic digestion requires that both the liquefaction and gasi�cation

steps are properly balanced. In fact, when the methane bacteria are absent, the digestion

process may start only by liquefying the material. On the other hand, if liquefaction

occurs at a faster rate the resultant accumulation of acids may inhibit the process as well

(National Academy of Sciences, 1977; Da Silva, 1979).

12



over that set, we assume that the organization cost is K (�) = k �
1�� with

k 2 R+:28
Finally, the assumption of a quadratic cost function is a matter of realism.

Without convexity we would get extreme outcomes, i.e., either the use of d
or ct as sole input (
 = 0 or 
 = 1=� ). Convexity provides the most realistic
view to accommodate non-modal choices.29

Given (9) we state

Proposition 2 The optimal �exible technology when investing at ct 2 (d;1)
is


� =

(
1 + A

K(�)
c
�2
t for bc � ct <1

1
�

for d < ct < bc (10)

where A = �
r(�1��2)

d1��2 and bc = � k
A

�1=�2 :
Proof. See section A.2 in the appendix for the proof.
Proposition (1) shows that if ct is high it is worth to have less �exibility.

In fact, as ct ! 1; it is easy to verify 
� ! 1: This means that as ct rises
it becomes less likely have a fall which magnitude is su¢ cient to justify an
investment in �exibility. In other words, it does not make sense to invest in
technology which �exibility is probably going not to be exploited. Note that
for bc � d the manager always chooses 
� < 1

�
:

Further, by simply substituting (10) into NPV (ct; �; 
) we rearrange the
state-contingent net present value of the adopted technology as

NPV (ct; �; 

�(ct)) =

8<: p�C1
r
+

�
Ac

�2
t

�2
2K(�)

for bc � ct <1
p�C1
r
+ 1

K(�)

�
Ac

�2
t � 1

2

�
for d < ct < bc (11)

28Note that K (�) = k �
1�� is assumed to capture the greater cost of operating with a

digester when the initial diet is mainly based on one of the two input factors.
29Note that the quadratic form has been assumed for simplicity. A more general form

for the investment cost such as I (�; 
) = K(�)
� (
 � 1)� with � > 1 may be assumed.

However, this would only add complexity without altering the results obtained in this

paper.
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5 The optimal timing of investment

In this section we derive the value of the option to invest in the plant pro-
ducing biogas with �exible diet for the digester as well as the optimal timing
rule. In the speci�c we assume that once installed the plant produces biogas
using the original diet D1, while keeping the �exibility to move to a new
one, D2; every time ct �uctuates above (below) the cost of the other input
d. Hence, for any given diet D1; it makes sense to assume that the plant
manager �xes the optimal diet revision (i.e. how much to diverge from D1),
at the time the investment in the �exible biogas plant is undertaken.
Denoting by F (ct); the value of the option to invest in the plant, this is

given by the solution of the following di¤erential equation:

1

2
�2c2t

@2F (ct)

@c2t
� rF (ct) = 0 (12)

which general solution is

F (ct) = H1c
�1
t +H2c

�2
t : (12bis)

and where �1 > 1 and �2 < 0 are the roots of � (�).
Let consider �rst the option to invest in the region d < ct < 1 where

1 < 
� < 1=�. Since for ct ! 1 the value of the option to invest in such a
technology, F (ct), should vanish, the boundary condition limct!1F (ct) = 0
is required: It follows that for such condition to hold H1 must be null and
the general solution should take the form

F (ct) = H2c
�2
t for d < c� < ct (13)

where c� is the threshold where it is e¢ cient to activate the technology.
As standard in the optimal investment literature the constant H2 and the

optimal investment trigger c� can be derived attaching to (13) the following
matching value and smooth pasting conditions:

F (c�) = NPV (c�; �; 
� (c�)) (14)

F 0(c�) = NPV (c�; �; 
� (c�)) (15)

where NPV is given by (11).30

30Totally di¤erentiating F (c�) one obtain F 0(c�) = NPVc(c
�; �; 
� (c�)) +

NPV
(c
�; �; 
� (c�))d


�

ct
: But being 
 optimally chosen then NPV
(c�; �; 
� (c�)) = 0:
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Since by (11), within the region d < ct < 1 we may get two optimal
solutions for the diet adjustment parameter 
�; the value of the option to
invest F (ct); the constantH2 as well as the optimal investment trigger c� must
be evaluated separately in the two subsets bounded by bc > d: In particular
we may get:

Proposition 3 1) If d < c� < bc; the optimal investment trigger for the
�exible technology is given by

c� =
�2

�2 � 1

�
p� (1� �) d

�
� r

2�K (�)

�
where c� 2 (d;bc): (16)

2) If c� � bc; the optimal investment trigger for the �exible technology is
given by the solution of the following implicit equation

c� =
�2

�2 � 1

�
p� (1� �) d

�
� r

2�K (�)

�
Ac��2

�2�
where c� 2 [bc;1)

(17)

Proof. See below for (the proof) and a deep discussion.
Let consider �rst the case where d < c� � bc: Since in this range the

plant manager will invest in a technology adopting 
� = 1=�; substituting
this value into (14) and (15) after some substitutions we obtain

c� =
�2

�2 � 1

�
p� (1� �) d

�
� r

2�K (�)

�
H2 =

�
p� (1� �) d� c�

r
+
Ac��2 � 1

2

K (�)

�
c���2

Now, de�ne g(ct) = 2[
p�(1��)d��ct(1� 1

�2
)

r
]K (�) : Being p � (1� �) d > 0;

conditions such that c� 2 (d; bc) require that c� < bc is satis�ed i¤ g(bc) < 1;
and d < c� i¤ g(d) > 1:
Finally, by (13) and (14), the optimal value of the option to invest is given

by

F (ct) =

8<:
h
p�(1��)d��c�

r
+

Ac��2�� 1
2

K(�)

i �
ct
c�

��2 for c� < ct < bc
p�C1
r
+

Ac
�2
t � 1

2

K(�)
for ct � c�

(18)

15



On the contrary, if c� � bc; the plant manager invests adopting 
� = 1+ Ac
�2
t

K(�)
:

Again, substituting this value into (14) and (15) after some manipulation we
obtain: �

Ac��2
�2

= 2K (�)

�
p� (1� �) d

r
�
�
1� 1

�2

�
�

r
c�
�

H2 =

"
p� (1� �) d� �c�

r
+

�
Ac��2

�2
2K (�)

#
c���2

where c� is the solution of an implicit equation. Although the equation should
be solved numerically, it is easy to note that it has two positive solutions for
the investment trigger c�. This is clear in �gure 1 where f(ct) = (Ac

�2
t )

2:
Then, for an optimal solution one needs F

00
(c�) > 0. Checking, it is easy to

realize that only the highest trigger satis�es this condition.31

Furthermore, by (13) and (14), the value of the option to invest is given
by

F (ct) =

8><>:
�
p�(1��)d��c�

r
+
(Ac��2)

2

2K(�)

� �
ct
c�

��2 for c� < ct

p�C1
r
+

�
Ac

�2
t

�2
2K(�)

for bc � ct � c� (19)

Since bc = � k
A

�1=�2 then it follows f(bc) = k2: It is then easy to show that a
su¢ cient condition for c� � bc is g(bc) � k2. See �gure 2. To �x conditions for
the existence of the triggers will become crucial to interpret the outcomes of
numerical simulations contained in the next section.

31Further, as the cost of the input ct decreases, we assume ct su¢ ciently high to guar-

antee that the �rst trigger met is always the highest.
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Figure 1

Figure 2
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6 Numerical simulations

The scenario chosen is given by a biogas plant under a 1 MW capacity using
a Combined Heat and Power (CHP) system to burn biogas and produce
electricity.32 Output price33 and maintenance/operating cost34 are chosen
consistently with evidence from Italy. To show the properties of the time
triggers de�ned above, we �x as initial diet,35 D1 = (0:3; 0:7), and then
study the e¤ect of changes in the volatility (�) and investment cost (k) on
the optimal thresholds.

a 0.1 0.2 0.3

K1 4.274917218 2.436491673 1.843709624

K2 ?3.274917218 ?1.436491673 ?0.843709624
K2

K2?1 0.7660773416 0.5895738077 0.457615241

Table 1: r = 0:07

In table 2, we check the e¤ect of input price uncertainty on the timing for
investment for three di¤erent levels of uncertainty (�). Fixing the output
price net of operating cost, p = 1:3; we note that on both intervals, (d; bc)
and [bc; 1), c� increases as � soars.36 In expected terms, this implies that
starting from a ct > c�, the investment occurs earlier as volatility decreases.
Allowing for a lower price, p = 1:2, this outcome is still con�rmed: This
result is in line with the conventional insight in the real option literature
positing that as uncertainty on future prospect increases the value of the

32Utilised for CHP production 1 m3 of biogas provides 21 MJ. By the equiv-

alence 3.6 MJ=1 kWh and, for instance, allowing a thermal e¢ ciency of 89%,

1 m3 of biogas corresponds to 5.18 kWh electricity. For further details see

http://en.wikipedia.org/wiki/Cogeneration.
33In Italy, according to legislative decree 159/2007, for plants under a 1 MW capacity

a 0.3 euro/kWh rate is paid on the electricity provided. The rate includes bene�ts from

RECs�trade.
34Boschetti (2006) reports maintenance/operating costs in a range of 0:025 to 0:040

euro/kWh depending on the plant scale. Thus, not accounting for the options to mothball

and abandon the project makes sense.
35See Callaghan et al. (2002) assessing performances for di¤erent feed regimes.
36Since 1 m3 of biogas corresponds to 5.18 kWh and a kWh is paid 0.3 euro, we get

p = 1:554 euro/m3 gross of operating costs.
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option to invest increases as well. This in turn implies that the exercise of
the option should be postponed to bene�t from information collection and
reduce regret for rushing. In table 3, letting k increase the e¤ect of � on the
thresholds is again con�rmed. In table 2, one may note that for p = 1:3,
the optimal adjustment is 
� = 3:333 with � = 0:2, while it importantly
decreases with � = 0:1 where 
� = 1:33. This is justi�ed by the need for
hedging against uncertainty. The investor requires a technology allowing for
a substantial change in the original diet in order to be �exible enough to
respond to �uctuations in the input relative convenience. This advantage
clearly comes at a greater cost. In fact, as shown in table 3, 
� decreases as
k increases and one needs to trade o¤ bene�t and cost of having a �exible
technology. However, as illustrated by all cases in both table 2 and table 3,
the �exible technology we have drawn is a desirable device against uncertainty
in that as uncertainty increases the NPV (c�; �; 
� (c�)) increases as well.

a 0.1 0.2 0.3

RANGE d < c t<
åc åc² c t d < c t<

åc åc² c t d < c t<
åc åc² c t

åc 0.8412203934 1.073036703 1.738737671

p = 1.3

cD ? 1.527972123 1.018652523 1.073036703 1 ?

^ÝcDÞ ? 0.1416083631 0.2944042431 0.2780889891 0.3 ?

LDÝcD Þ ? 1.330445451 3.333333333 3.333333333 3.333333333 ?

NPVÝcD ,J,LÝcD ÞÞ ? 2.046375372 5.553453968 5.139366510 6.840089657 ?

p = 1.2

cD ? 1.262171830 1 ? 1 ?

^ÝcDÞ ? 0.1213484510 0.2 ? 0.2 ?

LDÝcD Þ ? 1.617885368 3.333333333 ? 3.333333333 ?

NPVÝcD ,J,LÝcD ÞÞ ? 1.815359799 4.272465089 ? 7.902232939 ?

Table 2: � = 0:3; k = 1; d = 1; r = 0:07

To complete our analysis and make clearer the way our model works
we discuss two cases with plots. Take � = 0:3; k = 1; d = 1; r = 0:07;
� = 0:2: In this case bc = 1:073036703 > d = 1: This means that both
regions (d; bc) and [bc; 1) exist. The thresholds should be respectively given
by c� = 1:018652523 and c� = 0:9544704060: As one can note the former
solution is correctly elicited in that 1 < 1:018652523 < 1:073036703: On the
contrary, 0:9544704060 < 1, and this contradicts conditions for the existence
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in that c� should belong to [bc; 1): This implies that the threshold for the
exercise of the option to invest in the region [bc; 1) is given by the lowest
value in the interval and then c� = bc: In �gure 3 we plot g(ct) and f(ct) to
illustrate this case.

a 0.1 0.2 0.3

RANGE d < c t<
åc åc² c t d < c t<

åc åc² c t d < c t<
åc åc² c t

k = 1
åc 0.8412203934 1.073036703 1.738737671

cD ? 1.527972123 1.018652523 1.073036703 1 ?

^ÝcDÞ ? 0.1416083631 0.2944042431 0.2780889891 0.3 ?

LDÝcD Þ ? 1.330445451 3.333333333 3.333333333 3.333333333 ?

NPVÝcD ,J,LÝcD ÞÞ ? 2.046375372 5.553453968 5.139366510 6.840089657 ?

k = 5
åc 0.5146102617 0.3499719715 0.2580985265

cD ? 1.531330113 ? 1.153039880 ? 1

^ÝcDÞ ? 0.1406009661 ? 0.2540880360 ? 0.3

LDÝcD Þ ? 1.065615659 ? 1.420867610 ? 1.744208408

NPVÝcD ,J,LÝcD ÞÞ ? 2.013198174 ? 3.819610741 ? 4.879120880

k = 10
åc 0.4164458732 0.2160101205 0.1134990327

cD ? 1.531938254 ? 1.166522537 ? 1

^ÝcDÞ ? 0.1404185238 ? 0.2500432389 ? 0.3

LDÝcD Þ ? 1.032765197 ? 1.206948814 ? 1.372104204

NPVÝcD ,J,LÝcD ÞÞ ? 2.008279393 ? 3.663820152 ? 4.582417583

Table 3: � = 0:3; p = 1:3; d = 1; r = 0:07

Note in table 3 that bc < d for � = 0:1 and for every � when k = 5
and k = 10: This implies that the time trigger for the exercice of the option
to invest should belong to the region (d; 1) and is given by the solution
to (17). This is not always the case as one can see for � = 0:3 and k = 5,
k = 10 where c� =2 (d; 1) and then c� = 1: Finally, for � = 0:3 and k = 1,
we have bc > d but a solution to (17) does not exist at all and any trigger is
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de�ned on the region bc � ct.

Figure 3

Figure 4

In Figure 4 we plot the net present value NPV (ct; �; 
� (c�)) and the value
of the option to invest F (ct): At the optimal trigger, c� = 1:018652523;
determined by imposing smooth-pasting, the two curves are tangent. If the
price of the input, ct; is below the trigger it is optimal to invest, otherwise
one should wait. This is e¤ectively illustrated by �gure 4 where up to the
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optimal trigger, NPV (ct; �; 
� (c�)) lies below the dash-dot line representing
F (ct): However, even if this seems to completely resemble to the standard
�nding in the real option literature, we want to stress that the net present
value function, NPV (c�; �; 
� (c�)) is de�ned only at c� where the optimal
adjustment, 
� (c�) ; is chosen.37

Now, let analyse the case where � = 0:3; k = 5; d = 1; r = 0:07;
� = 0:2; r = 0:07: Here, bc = 0:3499719715 < d = 1: This means that

� is always lower than 1=� and c� 2 (d; 1): The optimal threshold is
c� = 1:153039880: See �gure 5 to have a general picture. As above in �gure
6 we plot NPV (ct; �; 
� (c�)) and F (ct) and the same discussion applies.

Figure 5

37We remind that the decision to increase the presence of a factor in the diet is state-

contingent.
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Figure 6

Now, let clarify the point raised in the previous section on the non-optimality
of a second solution to (17). In �gure 7 we plot NPV (ct; �; 
� (c0)) and
F (ct) relative to the second solution c0 = 0:345336790: At c0 the two curves
are tangent but as shown in the �gure, F (ct) intersects NPV (ct; �; 
� (c0))
before and lies below NPV (ct; �; 


� (c0)) from that point on. This is an
evident contradiction in that it would imply an earlier exercise of the option
and allow us to characterize c0 as not optimal.

Figure 7
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7 Conclusions

In this paper we analyses the e¤ect of �exibility on decision-making from a
novel perspective. In a dynamic uncertain frame, we model a problem where
inputs are substitute but di¤erently from He and Pyndick (1992) they need
to be mixed together to provide output. The choice of the technology is taken
in the light of the option to adjust the initial rule if economic circumstances
require it. The option to switch between two combinations of the input fac-
tors adds value to the project in that it provides a device for hedging against
�uctuations in the input relative convenience. The "distance" between the
initial rule and a desirable alternative is a technologically feasible but costly
requirement. This allows developing an innovative analysis where the ex-
tent of initial investment is traded o¤ with the advantage in terms of pro�t
smoothing coming from the �exible technology optimally chosen.
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A Appendix

A.1 On the negligibility of option to mothball, reacti-
vate and abandon

We substitute (5), (6) and (6bis) in the conditions needed for characterizing
a �exible technology. Rearranging we derive the following system:� bA1 � bB1� d�1 + bA2d�2 = 0 (a)� bA1 � bB1� �1

�2
d�1 + bA2d�2 = (1� 
) �d

r�2
(b)� bA1 � cM1

�
cM +

� bA2 � cM2

�
cM (c)

= �p� d(1� �)� �cM +m
r� bA1 � cM1

� �1
�2
cM +

� bA2 � cM2

�
cM =

�cM
r�2

(d)� bA1 � cM1

�
cR +

� bA2 � cM2

�
cR (e)

= �p(1� rT )� d(1� �)� �cR +m
r� bA1 � cM1

� �1
�2
cR +

� bA2 � cM2

�
cR =

�cR
r�2

(f)

cM1cS + cM2cS =
m

r
� FS (g)

cM1
�1
�2
cS + cM2cS = 0 (h)

From (g) and (h) cM1 and cM2 should have the same sign. Suppose now
that m

r
< FS. This would imply that cM1 and cM2 should be negative.

This makes economic sense considering that if m
r
< FS then the suspen-

sion regime is always preferred to the abandon. In other words, the option to
scrap the project is never considered by the manager and could be dropped
out of the problem. Finally, consider FS ! m

r
: By the boundary condition

limct
cM1c

(
>1)�1
t + cM2c

(
>1)�2
t = 0 it follows that cM1 ! 0, cS ! 1 andcM2 > 0: Hence, for FS su¢ ciently high (e.g. FS � m

r
) the opportunity of

abandoning the project is never taken (cS !1):
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Now, we consider the subsystem including (c), (d), (e) and (f). De�ne

W (ct) = V (D
1)(ct; �; 
)� V (S)(ct; �; 
) (A.1.1)

= Q1c
�1
t +Q2c

�2
t +

p� d(1� �)� �ct +m
r

where Q1 =
� bA1 � cM1

�
and Q2 =

� bA2 � cM2

�
: The value matching and

smooth past conditions can be rearranged in terms of W (ct) as follows:

W (cM) = 0; W (cR) = pT (A.1.2)

Wc(cM) = 0; Wc(cR) = 0 (A.1.3)

The function W (ct) can be drawn as shown in �gure 8. Heuristically, we
have adjusted Q1 and Q2 until W (ct) has become tangent to the line pT in
cR and to 0 in cM . Hence, Q1 � 0; Q2 � 0, Wcc(cM) > 0 and Wcc(cR) < 0.
Subtracting (4bis) by (3) we get

1

2
�2c2tWcc(ct)� rW (ct) = � (p� d(1� �)� �ct +m) (A.1.4)

Evaluating (A.1.4) using conditions in (A.1.2) and (A.1.3) we get �rst

1

2
�2cMWcc(cM) = � (p� d(1� �)� �cM +m) > 0

which implies that

cM >
p� d(1� �) +m

�
(A.1.5)

and second

1

2
�2cRWcc(cR)� rpT = � (p� d(1� �)� �cR +m) < �rpT

from which it follows that

cR <
p(1� rT )� d(1� �) +m

�
< cM (A.1.6)
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Figure 8

Note that as T ! 0, both cRand cM converge toward the same limit
p�d(1��)+m

�
:

On the contrary, if T > p�d(1��)+m
rp

, the project is never resumed as cR < 0:
For a complete analysis, suppose T changes by dT . Di¤erentiating the con-
ditions in (A.1.2) we get38

WQ1(cM)dQ1 +WQ2(cM)dQ2 = 0

WQ1(cR)dQ1 +WQ2(cR)dQ2 = pdT

We solve the system substituting for WQ1(cM) = cM ; etc., and we derive as
solutions:

dQ1 = � pdT

cM

�
cR
cM

��2
� cR

< 0

dQ2 =
pdT

cR � cM
�
cR
cM

��1 > 0
A brief comment on these results is needed. First, we know now that as T
increases bA1 ! cM1: This means that as T increases the value of reactivation

38Note that by (A.1.3) Wc(c
(
>1)
M )dc

(
>1)
M =Wc(c

(
>1)
R )dc

(
>1)
R = 0:
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vanishes and the value of option to suspend ( bA1) consistently converge to the
value of the option to abandon (cM1). As shown above as cM1 ! 0 in that
scrapping is not convenient the option to suspend is valueless as bA1 ! 0:
Second, as T increases cM2 ! bA2: As the value of the option to reactivate
is vanishing the only option which is sensible to consider as ct ! 0 is the
option to switch to D2 ( bA2 > 0). To analyse the changes induced by dT on
the thresholds, we di¤erentiate the smooth-past conditions in A.1.3. In cM
this yields:

Wcc(cM)dcM = �(�1cMdQ1 + �2cMdQ2)
Note that since Wcc(cM) > 0, we must have dcM > 0: This implies that as
T increases the suspension threshold cM rises. This can be justi�ed by the
option to reactivate losing value.
On the contrary, in cR

Wcc(cR)dcR = �(�1cRdQ1 + �2cRdQ2)

Here, being Wcc(cR) < 0; it must be dcR < 0: This makes sense considering
that as T increases the option to reactivate should be exercised only if the
convenience of the input cost, i.e. ct low enough, covers the reactivation cost
pT . As shown above, for T su¢ ciently high this could never be the case.
We investigate now the e¤ect that changes in m may have on the time

triggers. It easy to show that as m increases for (A.1.5) and (A.1.6) to
hold respectively both cM and cR should rise. One can easily see that as m
increases the option to suspend is less interesting and it is worth to exercise
it only for high value for ct. On the contrary, having suspension become more
costly, under that regime the plant manager would prefer to rush reactivation.
Last, note that the two limits in (A.1.5) and (A.1.6) corresponds to the
marshallian thresholds to which in the absence of uncertainty (� ! 0) cR
and cM converge.39

Finally, suppose that the manager considers sensible only the exercise of
the option to switch between D1 and D2: By the discussion above the system
reduces then to

� bB1d�1 + bA2d�2 = 0
� bB1�1

�2
d�1 + bA2d�2 = (1� 
) �d

r�2

39See Dixit (1989) for a complete analysis of a similar problem.
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This is easy to solve and we get

bA2 = (
 � 1) �d1��2

r (�1 � �2)
> 0

bB1 = (
 � 1) �d1��1

r (�1 � �2)
> 0

A similar analysis can be developed also for the case 
 2 [0; 1] :
If the options to mothball and to abandon are available, an optimal

strategy makes sense as long as cM < cS:We have shown above that as T rises
cM increases. This is due to the option to mothball losing value in that the
reactivation is more costly. It follows that the cost opportunity of scrapping
the project decreases. Hence, it may exists T such that cM = cS = c which
would imply that the option to mothball may be completely neglected: In
this case, summing (c) to (g) and (d) to (h)

bA1c�1 + bA2c�2 + p� d(1� �)� �c
r

= �FS

bA1�1c�1 + bA2�2c�2 � �cr = 0

and rearranging one would get

bA1c�1 = � �2
�2 � �1

p� d(1� �) + rFS
r

+
�c

r

�2 � 1
�2 � �1

Now, suppose FS ' 0 and m is small enough (m ! 0): This implies that
even if the reactivation has become more costly and cM ! cS it will still be
worth not to abandon (cS !1) and keep the option to mothball.

A.2 Optimal 
(> 1)

Since bA2 = (
�1) �
r(�1��2)

d1��2 = (
�1)A > 0; the optimal level of �exibility
is given by


� = argmaxNPV (ct; �; 
) (A.2.1)

= argmax

�
p� (1� �) d� �ct

r
+ (
 � 1)Ac�2t �

K (�)

2
(
 � 1)2

�
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The FOC is given by

Ac
�2
t �K (�) (
 � 1) = 0 (A.2.2)

and the SOC is always satis�ed. From A.2.2 it turns out that:


� =

(
1 +

Ac
�2
t

K(�)
for bc � ct

1
�

for d < ct < bc (A.2.3)

where bc = � k
A

�1=�2.
A.3 Imperfect substitutability

Consider a plant using a Cobb-Douglas technology mixing two di¤erent types
of materials to produce 1 m3 of biogas. To minimize cost, the following
problem must be solved:

c(w; x) = min [w1x1 + w2x2] such that x�1x
1��
2 = 1

where x1 and x2 are the quantity of the two inputs, �; 1 � � the output
elasticities and w1 and w2 the unit input prices.
Solving the problem gives conditional demand functions for both factors

and the cost function:

x1(w1,w2) =

�
�

1� �
w2
w1

�1��
x2(w1,w2) =

�
�

1� �
w2
w1

���
c(w1; w2) � Kw�1w

1��
2

where K = ���(1� �)��1:
Setting q as unit output price, to maximize pro�ts is equivalent to max-

imize q
c(w1;w2)

. Taking the logarithm and rearranging the objective function
becomes

� = p� [�c+ (1� �)d]
= p� C1

where p = ln q
K
; c = lnw1 and d = lnw2: This is to prove that the analysis

we propose may easily apply also to this scenario.
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