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Stationary consistent equilibrium coalition

structures constitute the recursive core∗

László Á. Kóczy†

Abstract

We study coalitional games where the proceeds from cooperation de-

pend on the entire coalition structure. The coalition structure core (Kóczy,

2007) is a generalisation of the coalition structure core for such games.

We introduce a noncooperative, sequential coalition formation model

and show that the set of equilibrium outcomes coincides with the recursive

core. In order to extend past results to games that are not totally balanced

(understood in this special setting) we introduce subgame-consistency

that requires perfectness in relevant subgames only, while subgames that

are never reached are ignored.

Subject classification: C71, C72

Keywords and phrases: partition function, externalities, implementa-

tion, recursive core, stationary perfect equilibrium, time consistent equi-

librium

1 Introduction

Throughout its history the theory of coalitional games has mostly focussed on

the study of games with orthogonal coalitions, that is, coalitions, which can be

studied independently of each other. The most obvious example is the com-

monest form of a TU-game with a characteristic function that assigns a payoff
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to a coalition disregarding other players and coalitions. When we look at the

usual interpretations of coalitions, be those trading blocks (Yi, 1996), trusts

(Bloch, 1995) or international environmental agreements (Funaki and Yamato,

1999; Eyckmans and Tulkens, 2003), the orthogonality assumption is difficult

to maintain; we believe it is the exception rather than the rule that coalitions

can be studied independently of each other.

Since the seminal paper of Thrall and Lucas (1963) introducing the parti-

tion function form numerous cooperative approaches and solution concepts have

been proposed to solve games with externalities, but in the absence of an im-

plementation by non-cooperative equilibria these remain interesting heuristics

(Chander and Tulkens, 1995; Ray and Vohra, 1997; Hyndman and Ray, 2007).

For games with orthogonal coalitions the implementation of cooperative solution

concepts, such as the core has an extensive literature (Chatterjee et al., 1993;

Lagunoff, 1994; Perry and Reny, 1994), but these results do not directly gen-

eralise to games with externalities. In this domain Huang and Sjöström (2006)

and Kóczy (2009) have provided partial results that are limited to games with

non-empty cores in all subgames, or, in terms of sequential coalition formation

games: to games with stationary perfect equilibria. It turns out that perfectness

is a very demanding condition and the implementation might fail even for simple

TU games. We therefore introduce a generalisation, subgame-consistency, and

show that the set of partitions formed under the resulting equilibria coincides

with the recursive core.

Subgame-consistency is a weaker concept than subgame-perfectness, but

more demanding than time-consistency (Kydland and Prescott, 1977). If we

define each of these concepts in corresponding sets of subgames, for subgame-

perfectness all subgames are relevant, while for time-consistency only the sub-

games on the equilibrium path. In particular subgame-perfect equilibria are also

subgame-consistent and subgame-consistent equilibria are also time-consistent.

Moreover stationary perfect equilibria are stationary consistent. For more on

the relation of subgame-perfect and time-consistent strategies see Fershtman

(1989) and Asilis (1995).

The structure of the paper is as follows. After this introduction a long second

section follows introducing both the cooperative and noncooperative theories to
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solve games in partition function form, we introduce the notation and simple

terminology we are going to use. We present the cooperative solution, namely

the recursive core and similarly the noncooperative coalition formation game

and its equilibria. A novel equilibrium concept, subgame consistency and the

corresponding notion of relevant subgame are also introduced here. We state

and prove our main result in the third section. The paper ends with a brief

conclusion.

2 Preliminaries

Let N denote the set of players. Subsets are called coalitions. A partition S of

S is a splitting of S into disjoint coalitions. Π(S) denotes the set of partitions

of S. In general we use capital and calligraphic letters to denote a set and its

partition (the set of players N being an exception), indexed capital letters are

elements of the partition. We write i ∈ S if there exists Sk such that i ∈ Sk ∈ S

and if i ∈ S we write S(i) for the coalition embedded in S containing i.

The game (N,V ) is given by the player set N and a partition function (Thrall

and Lucas, 1963) V : Π(N)→ (2N → R), where V (Si,S) denotes the payoff for

coalition Si in case partition S forms. For vectors x, y ∈ RN we write xS for

the restriction to the set S and xS > yS if xi ≥ yi for all i ∈ S ⊂ N and there

exists j ∈ S such that xj > yj .

The pair ω = (x,P) consisting of a payoff vector x ∈ RN and a partition

P ∈ Π(N) is a payoff configuration (or outcome) if
∑
i∈S xi = V (P,P) for all

P ∈ P. The set of outcomes of game (N,V ) is denoted Ω(N,V ).

Our main result is the equivalence of the partitions produced by certain

noncooperative coalition formation game and a cooperative solution concept.

In the following we spell out these approaches.

2.1 Recursive core

The first model is a cooperative solution concept, a generalisation of the core

to games in partition function form. The core is defined in terms of deviations,

but unlike in games with orthogonal coalitions, in games with externalities the

profitability of a deviation can only be determined once the partition of the
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remaining, residual players is also known, or at least some assumption is formu-

lated about their behaviour. While most of the approaches (see Kóczy, 2007,

for further references) tried to get rid of the externalities and solve the game as

a characteristic function form game, Huang and Sjöström (2003) and (Kóczy,

2007) assume that these residual players play a residual game that is a game

on its own and thus can be solved using the same concept. Once the solution

of this game is known, we know which partition is formed, and then it is also

possible to tell the deviating players’ payoffs. If this partition is not unique

(or not determined, in case the residual core is empty) Kóczy (2007) considers

optimistic and pessimistic scenarios depending on the deviating players’ expec-

tations regarding these alternatives. Our results will apply to the pessimistic

case, so only this version of the definition is given.

First we introduce residual games and then the recursive core:

Definition 1 (Residual Game). Let (N,V ) be a game and consider the set

L ( N of live players. Assume K = N \L have committed to form partition K.

Then the residual game (L, V K) is the partition function form game over the

player set L and with the partition function V K : ΠL → (2L → R), where

V K(C,L) = V (C,L ∪ K) ∀C,L : C ∈ L ∈ ΠL. (2.1)

The residual game is derived from the original game using the partition K, but

it is a partition function game on its own. So if we use the core to solve (N,V ),

we must also use it to solve (L, V K): Deviating coalitions must expect a residual

core outcome to form. Should the core be empty this solution does not present a

selection of the outcomes, and all possible responses must be considered. Even if

the residual core is non-empty it may contain payoff configurations with different

partitions. This gives rise the the following definition.

Definition 2 (Recursive core). Let (N,V ) be a partition function form game.

1. Trivial game. The core of ({1} , V ) is the only outcome with the trivial

partition: C({1} , V ) =
{(
V
(
1, (1)

)
, (1)

)}
.

2. Inductive assumption: The core C(N,V ) has been defined for all games
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with |N | < k players. The assumption about game (N,V ) is

A(N,V ) =

C(N,V ) if C(N,V ) 6= ∅

Ω(N,V ) otherwise.

3. Dominance. The outcome (x,P) is dominated via the coalition K forming

partition K if for all assumptions (yL,L) ∈ A(L, V K) of the remaining set

of players L = N \K there exists an outcome ((yK , yL),K∪L) ∈ Ω(N,V )

such that yK > xK .

The outcome (x,P) is dominated if it is dominated via a coalition.

4. Core. The core, denoted C(N,V ), is the set of undominated outcomes.

A partition is only dominated via a coalition if the deviation of this coali-

tion (as a partition) is profitable for every residual (core) partition. When the

residual core is empty, we have no information about the solution of the resid-

ual game, so we assume that any reaction is possible. As such, we do not, for

instance, exclude inefficient partitions – just as the sequential game will be free

from such limitations in Equation 2.4. Our results, however, generalise to such

modifications – as long as they are introduced in both models. For a general

discussion of the properties of the recursive core see Kóczy (2007).

In the following we simply refer to the recursive core as core and to the

(recursive) core of a residual game as residual core.

2.2 Sequential coalition formation

Now we describe the noncooperative coalition formation game. While several

formulations are known in the literature, ours is closest to the models of (Bloch,

1996) and Perry and Reny (1994).

2.2.1 An informal description

Coalitions form sequentially: a coalition is proposed, the proposal is discussed

among the members and if it is accepted unanimously, those involved leave, so

that the game continues with the remaining players only. While these players

leave the game final payoffs can only be determined once the entire partition is

known, and until then only advance payments are made. When all players exit,
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the game ends, those staying in the game indefinitely do not receive a payoff.

In the following we explain the model at length.

Time Time is continuous: players will always have a chance to act, although

will spend most of their time waiting idle. If the coalition formation process

terminates in finite steps we can ignore the depreciation of payoffs and hence

we will not discount payoffs realised in finite steps. As Perry and Reny (1994)

and Huang and Sjöström (2006) we also make a technical assumption of quiet

players who spend most of their time doing nothing.

Actions At each time a player can do one of the following

• make a proposal,

• accept the existing proposal, or

• wait.

A proposal is made to a coalition specifying the partition of the coalition and

a distribution rule to share the coalitional payoffs in each of these proposals. A

proposal must always target the proposer. A new proposal cancels the current

proposal: if there was interest in accepting it, the players involved would have

moved first. When a proposal is accepted by all targeted players, the proposed

coalitions form and leave the game.

Payoffs If the coalition formation process ends with all players leaving the

game a full partition is formed for which the coalitional payoffs are well defined,

after which the proposals specify the individual payoffs. If some players remain

in the game, they do not collect a payoff, or their payoff is 0. Since only part

of the players’ partition is defined, the players who have already left will only

be given their guaranteed payoff, that is, taking a pessimistic view on what the

remaining players can do. Since the game does not formally end, payments are

made each time some players leave the game, and at each exit the coalitions who

have left receive the coalitional payoff under the worst possibility (embedding

partition) given the coalitions who have already left.
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History History encompasses the entire activity log of the game including

proposals made, acceptances if any, which coalitions have left etc.

Beliefs We introduce a new element in the model. Players are not perfectly

informed about their location on the game tree. In particular, they will only

have some beliefs regarding the coalition(s) that have left last.

Our notion of belief is slightly different from a similar concept introduced

by Kreps and Wilson (1982) in that in their model a belief is a probabilistic

distribution over the possible histories and hence indistinguishable nodes in the

given information set, while in our model beliefs are only used to ensure that

leaving coalitions cannot completely fool the remaining players and that the

latter can possibly make the correct assessment, and therefore we look at worst

cases rather than of expectations.

Finally, we assume that beliefs are common to all players1 and are decided

by nature. Recollections are only updated when some players leave.

Strategies A strategy of a player specifies his actions for each state of the

game given all histories. We will be especially interested in strategies that are

stationary, strategies that only depend on the current state of the game, but

not on past actions. Strategies can also depend on the current recollection.

2.2.2 The formal treatment

The sequential coalition formation game (N,V ) is defined over the same player

set N and the same partition function V , although the game is played in an

entirely different way. Without loss of generality we assume 0 < minP,S V (S,P)

therefore staying in the game forever is never optimal.

1. Initially all players are active and no proposals have been made.

2. One of the players makes a proposal to an active subset of the players

including himself specifying a partition of this set as well as a distribution

of the coalitional values.
1We can assume that the player who is the most confident in her recollections is the one

who acts first and the rest accept her story.
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3. If this proposal is attractive, the invited players accept the proposal one-

by-one.

4. When all players have accepted, the proposed coalitions form and leave

the game.

5. The coalitions that have left receive some payment based on what they

have already earned, that is, the minimal payment for these coalitions in

any embedding partition taking the exited coalitions given.

6. At this point the recollection about the order of the coalitions that have

left is updated. The updated value is decided by nature.

7. The game continues with the remaining players.

8. If a proposal is not attractive, the invited players do not accept it and

another proposer can move forward. 2

9. This proposal is accepted or rejected as before making way to new pro-

posals, etc.

10. If all players have left, the game ends.

Proposals A proposal p by player i is offered to a set of players T 3 i,

specifying a partition T ∈ ΠT and a distribution w of coalitional payoffs in

each of the coalitions in T . We assume
∑
i∈Ti

wi = 1 for all Ti ∈ T , so w only

specifies the share of the payoff a particular player will receive, but until the

value of the coalition is realised, the exact value is not known. As Huang and

Sjöström (2006) point out this setup is not the most general, but specifying

individual payoffs adds only complexity to the model.

Permitting players to propose a partition is not the usual way to define such

games, but is needed to obtain efficiency of the equilibrium partitions due to

the externalities (Kóczy, 2009). For games with orthogonal coalitions proposing

single or multiple coalitions makes no difference. This idea is somewhat unusual
2Here we use the assumption that there are plenty of opportunities to accept a proposal so

if a player does not, but allows another one to make another proposal, then he is essentially

rejecting it. Bloch (1996) only allows the rejecting player to make a proposal, but with this

assumption our setup is essentially the same.
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although there are a number of real-life examples (the Yalta Conference, mergers

with divestiture).

Formally a proposal p = (T , w) ∈ ΠT × [0, 1]T , where T ⊆ N \ K and∑
i∈Ti

wi = 1 for all Ti ∈ T .

The set of proposals available to i are denoted Pi while P collects all possible

proposals.

History The game is specified in an extensive form, where decisions are made

at each node. History tells what decisions have been made and thus where, at

which node are we currently.

Definition 3. History ht at time t is a list of offers, acceptances and rejections

up to period t.

There is a natural interpretation of moving down the game tree as the passing

of time, but time is ordinal, so the exact location of a node/history on the

timeline is irrelevant, so in the sequel we drop the reference to time. We can,

however say that if h1 ⊂ h2, then h1 happened earlier than h2.

History has more data we will ever need, but we can focus on (the effects

of) certain key decisions. Among others history contains.

• the set of players K(h) =
⋃
S∈K(h) S ⊂ N who have already left the game

forming partition K(h) ∈ ΠK(h),

• the set of feasible proposals P (h) = {(T , w) ∈ P |T ⊆ N \K(h)} and

Pi(h) = P (h) ∩ Pi,

• the current proposal p(h) = (T (h), w(h)) ∈ P (h),

• the distribution rule for the quit players w(h) ∈ RN , where we set wi(h) =
1
|L| for all i 6∈ K,

• the set of players A(h) ⊂ T (h) who have already accepted the proposal,

• and finally β(h) the belief at node h.

The set of histories is denoted by H.

When a history h has been reached, all future histories can only be extensions

of h. The set of such feasible histories is denoted Hh = {h′ ∈ H |h ⊆ h′ }.
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Strategies The strategy of a player specifies an action for every possible his-

tory. It specifies whether it should take initiative, if so, whether it should accept

a current proposal or make one, and if the latter, it also includes a full specifi-

cation of the proposal.

Strategy σi of player i is a mapping from H to his set of actions:

σi(h) ∈ Pi(h) ∪ {accept,wait} . (2.2)

We assume that whenever a player acts: makes or accepts a proposal, this

action is preceded and followed by a nonempty open interval of time, where the

player is waiting. This is to ensure that other players have a chance to react.

When combining the players’ strategies, there are a number of special situ-

ations that we discuss explicitly.

1. Initially there is no active proposal and therefore choosing “accept” is the

same as choosing “wait”.

2. Similarly, if i accepts a proposal (T , w), while i 6∈ T , this action has no

effect, it is ignored and history does not change.

3. When a proposal is accepted by all targeted players, these players leave.

Their subsequent actions are irrelevant, these are outside the game.

4. A new proposal cancels the previous proposal: if it was not accepted,

by our assumption this is due to lack of interest not shortage of time.

Here the question whether a race-to-react could realise in some situations.

Fortunately the answer is no, in equilibrium this will not happen, but to

see this we first must specify payoff (the incentives to play the game) and

the equilibrium concept.

We denote the restriction of strategy σ to a subgame corresponding to history

h by σh.

Beliefs The collective belief of the players about the last exit is nothing but

a subset of the coalition(s) who have left the game. Therefore for all h, β(h) ⊆

K(h).

While recollections of the past are described by history, in this game strate-

gies alone do not necessarily determine the final outcome of the game. Indeed,
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each time a player leaves a game, the belief is exogenously updated (by na-

ture). As we will see, in equilibrium the outcome of the game will not depend

on beliefs, but to make the influence of recollections more explicit in general,

the outcome resulting from the strategy profile σ and the recollection-function

β can be written as ω(σ, β).

As for strategies, the restriction of β to subgame h is denoted by βh. The

set of beliefs is denoted B, the set of restrictions to h by Bh.

Despite their conceptual simplicity, beliefs are rather difficult to formally

include in the model. When nature chooses a belief (really a belief-function that

specifies a particular belief for each history), it does not disclose its choice and

so players must act with some uncertainty. The difficulty comes when working

with equilibria: while we can assume that in equilibrium players’ strategies will

be self-enforcing, beliefs may turn out to be anything making the calculation of

payoffs a little trickier.

Payoffs Since strategies are also dependent on the belief, the outcome of the

game can only be determined together with the belief β. Kreps and Wilson

(1982) have used expectations to aggregate results from different beliefs, here

we use the conservativism of the players: They focus on the worst outcomes,

essentially trying to minimise loss.

Before we further discuss the implications of beliefs we need to deal with a

much more fundamental issue. Not all players will necessarily leave the game.

Let h∞ denote the last history, where a coalition left the game. Then the

coalition structure that forms is simply

P(σ, β) = K(h∞) (2.3)

This set isomorphic with ΠN∪{a}, where a is a non-strategic player who never

leaves the game, so those in one coalition with a remain in the game. In case

all players in N leave the game a remains a singleton.

Since, in general, not the entire partition is specified, the payoff of the coali-

tions is not well-defined. Here and throughout the paper we assume that players

are careful, conservative and thus always look out for the worst case. With a

slight abuse of notation we generalise the payoff function for such “incomplete

partitions” as follows
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V (S,P(σ, β)) =

minP⊃P(σ,β) V (S,P) S ∈ P(σ, β)

0 otherwise.
(2.4)

In addition to the coalitional payoffs, the strategies also determine the in-

dividual ones. Let xi(σ, β) denote the payoff of player i in case the strategy

profile σ is played and β is the belief function. Formally

xi(σ, β) = wi(σ, β)V (P(σ, β, i),P(σ, β)), or (2.5)

xi(σ) = min
β′∈Bh

wi(σ, β′)V (P(σ, β′, i),P(σ, β′)), (2.6)

as it is perhaps more appropriate to specify payoffs as functions of strategies

only.

Contrary to our setup Bloch (1996) considers a discrete partition function

with optimistic players, so that vi(P(σ)) = maxP⊃K vi(P) for i ∈ P(σ).3 The

implications of this difference will be clear later, but let us provide a motivation

for this change in terms of deviations, a concept we formalise later. A devia-

tion is profitable if it is weakly profitable to all players. Suppose this deviation

creates a subgame where the sequential coalition formation game continues in-

definitely. In the absence of a stable partition, any of the partitions might form.

Optimistic players expect the best: a partition beneficial to the deviation will

form. Bloch’s players’ optimism goes further: they individually hope the best.

Then a deviation may appear profitable even if for every single possible reaction

someone is worse off. Pessimism is consistent in this sense: A player will not

deviate if any of the possible partitions will create a loss to him, in other words

a deviation K is profitable for K if and only if it is profitable for each player in

K and for each possible partition.

Before we proceed to study equilibria we introduce some additional notation.

At history h the continuation payoff for i using strategy profile σ is

xi(σ, h) =

minβh∈Bh wi(h)V (K(h, i),K(h) ∪ P(σh, βh)) if i ∈ K(h)

minβh∈Bh wi(σh, βh)V (P(σh, βh, i),K(h) ∪ P(σh, βh)) otherwise
(2.7)

Now suppose that at history h there is a proposal p = (D, w). For a player

3Recollections do not play a role in Bloch’s model, hence the simplified notation.
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i ∈ D, should the proposal be accepted the payoff becomes

xi(σ,D, w, h) = min
βh∈Bh

wiV (D(i),K(h) ∪ D ∪ P({accept} ∪ σh−i, βh)) (2.8)

Observe that we can express all elements of the history after the departure of

D using h. The obvious exception is β, but since we have to look at the worst

case anyway we might just assume that βh was already the worst case for the

post-exit scenario, too.

Before looking at the equilibria of the game, we introduce the following

notation. Suppose x(β) and y(β) are payoff vectors that are dependent on the

beliefs, but possibly on other things as well. Just like with vectors we say that

x is larger than y for all β ∈ B and write x(B) > y(B) if x(β) ≥ y(β) for all

β ∈ B and there exists β ∈ B such that x(β) > y(β).

Equilibria Now that we have specified the available strategies (actions), the

resulting payoffs (incentives) we can focus on the outcomes of the coalition

formation game. We hope to answer two questions simultaneously: (i) which

coalitions will form (ii) what is the distribution of the coalitional payoffs. In

particular, we look for strategies that do not need revisions, but are final already

as the game starts and for strategies that are stationary, that is, do not depend

on time, but only on the current state of the game. In nonstationary strategies

the set of equilibria may be too inclusive; for a discussion of folk-theorem-like re-

sults see Muthoo (1990, 1995); Perry and Reny (1994); Osborne and Rubinstein

(1990).

Definition 4. A strategy is stationary if it does not depend on history. For-

mally σ is stationary if for all i and for all histories h, h′ ∈ H such that

K(h) = K(h′) and p(h) = p(h′) we have σi(h) = σi(h′).

Stationary strategies only depend on the current state s = (K, p), a pair consist-

ing of the partition K of players who have already left and the ongoing proposal

p ∈ P i(h).

When recollections are taken into account we must recall that players are

conservative and only go for certain profits. Even the possibility of a loss deters

the deviators. If the different recollections lead to different subsequent actions
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from the other players, the deviation may or may not be profitable under all

such scenarios.

Definition 5. The strategy profile σ∗ is a subgame-perfect equilibrium (with

beliefs) if for all i ∈ N , for all h ∈ Hi and for all strategies σi we have

xi(σ∗hi , σ∗h−i, B
h) > xi(σhi , σ

∗h
−i, B

h). (2.9)

Definition 6. A stationary perfect equilibrium σ∗ is a strategy profile that is

both subgame-perfect and stationary.

The set of stationary perfect equilibrium partitions coincide with the re-

cursive core (Kóczy, 2009) (for games with nonempty residual cores). This

equivalence result predicts that games with empty residual cores do not have

stationary perfect equilibria.

Bloch (1996) presents a 3-player example, where player 1 would like to form a

coalition with 2, 2 with 3, 3 with 1. This game does not have stationary-perfect

equilibria. Since residual games are also partition function form games, the

smallest residual game for which the corresponding subgame of the sequential

game has no stationary strategies has an empty core. By a sufficiently large

payoff for the grand coalition the core of the original game is nevertheless empty.

Yet, perfectness only holds globally, that is, if the tiniest subgame fails to have

stationary perfect equilibria this imperfection spreads to the entire game. On

the other hand, just as the recursive core may be non-empty even if the game

has empty residual cores, with a weaker concept of perfection we may retain

some quasi subgame perfect behaviour in the corresponding sequential coalition

formation games, too.

We must therefore look for a weaker concept. Time-consistency (Kydland

and Prescott, 1977) merely requires that the equilibrium strategy does not need

revision along the way and thus will naturally be unaffected by empty cores in

subgames outside the equilibrium. This is in contrast with perfectness, where

the property is required in every subgame. Clearly, in most games there are

subgames that are never reached so it is superfluous to insist on this property

everywhere, on the other hand time-consistency does not check deviations care-

fully enough: some neighbourhood of the equilibrium should be controlled. We
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then introduce an intermediate concept and study subgame-consistent strate-

gies where the perfectness/consistency criterion is not checked per se for every

subgame, but is only required in relevant subgames.

Definition 7. For a strategy profile σ and belief β a subgame at history h is

relevant if

• h is the original game (K(h) = p(h) = ∅), or

• there exists a modification σ′ and a belief βh such that

– σ and σ′ differ in a single action in history h, resulting in the set D

forming partition D = K(h) \ P(σ, β) leaving the game,

– K(h) ⊆ P(σ′, βh), and

– xD(σ′, βh) > xD(σ, βh), or

• it is a relevant subgame of a relevant subgame.

In the following we explain why subgames covered by each of the cases must

not be overlooked.

The first case is trivial.

In the second case we look at an elementary deviation that, on the other

hand changes the resulting partition. Since σ′ is accepted by D, they benefit

from this deviation and hence we have a right to expect that the subgame will be

reached if σ is played. Conversely, if the deviation is not profitable, the subgame

is never reached, subsequent strategies, actions, deviations are irrelevant. In the

last condition we use the conservatism of the players: if there is a belief that

makes the remaining players act in a way that is harmful to (some) in D, the

deviation σ′ does not take place.

Finally we deal with subgames of subgames that are results of secondary,

tertiary, etc. deviations. If the primary subgame is irrelevant, there is no need

to look further (this is the point of (ir)relevance). If it is relevant, we use the

similarity to the “original” game: take this (relevant) game as the game on its

own and study its subgames. Its relevant subgames are relevant also in the

original game.

15



Definition 8. The strategy profile σ∗ is a subgame-consistent equilibrium4 if

• for all players i ∈ N , for all histories h and for all strategies σi

xi(σ∗hi , σ∗h−i, B
h) > xi(σhi , σ

∗h
−i, B

h) (2.10)

• restrictions to subgames relevant for σ are also subgame-consistent.

Definition 9. A stationary consistent equilibrium σ∗ is a strategy profile that

is both subgame-consistent and stationary.

We denote the set of stationary consistent equilibria by SCE(N,V ) and

outcomes resulting from playing such equilibrium strategies by Ω∗(N,V ).

3 Results

Theorem 1. Let (N,V ) be a partition function form game. Then its recur-

sive core C(N,V ) coincides with the set Ω∗(N,V ) of outcomes supported by

stationary consistent equilibrium strategy profiles.

The rest of this section is devoted to the inductive proof of this theorem. As

the proof is long, we break it into a number of propositions and finally present

a summary of these results.

The following proposition requires no proof:

Proposition 2. Let ({1} , V ) be a trivial, single-player partition function form

game. Then C({1} , V ) = Ω∗({1} , V ).

Now assume that Theorem 1 holds for all games with less than k players. In

the following we extend it to games with k players. In order to show Ω∗(N,V ) =

C(N,V ), first we show Ω∗(N,V ) ⊆ C(N,V ) then Ω∗(N,V ) ⊇ C(N,V ).

Lemma 3. If Theorem 1 holds for all games with up to k−1 players, Ω∗(N,V ) ⊆

C(N,V ) for all k-player games.
4In this equilibrium concept perfectness is not required in every state of the game except

in the neighbourhood of the equilibrium strategies and so perhaps the name quasi-perfect

equilibrium would be more appropriate. Unfortunately that term is already taken by van

Damme (1984). His quasi-perfect equilibrium is, however not related to our concept, in fact

even its relation to subgame perfect equilibria is not well defined, while our concept is a

weakening of subgame-perfectness.
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Proof. If Ω∗(N,V ) = ∅ the result is trivial, so in the following we assume that

there exists a SCE σ that results in an outcome ω(σ, β) = (x(σ, β),P(σ, β)) ∈

Ω∗(N,V ) for some belief-function β. In particular, we assume that ω(σ, β) 6∈

C(N,V ) and prove contradiction.

Our assumption is, by definition, equivalent to the existence of a profitable

deviation D by some set D of players. The resulting subgame has fewer players

so our inductive assumption is applicable. In the sequential game the deviation

at h is expressed by the strategy profile σ′ against the original strategy profile

σ, where σ′(h′) = σ(h′) for all h′ ⊂ h. We discuss three cases.

Case 1. The resulting subgame with K(h) = D, p(h) = ∅ is irrelevant.

Then for all σ−i(h) there exists i ∈ D and β such that xi(σ′, β) < xi(σ, β) –

clearly the deviation in the partition function form game cannot be profitable;

contradiction.

Case 2. The resulting subgame is relevant, the core of the corresponding

residual subgame is empty. Then V (D,D ∪ PN\D) >
∑
i∈S xi(σ, β) for all

PN\D. Since V (D,D ∪PN\D) = minβh∈Bh

∑
i∈S xi(σ

′, β) a player in D should

immediately propose D. By subgame consistency all in D will accept. There-

fore σ is not a stationary consistent equilibrium, moreover the outcome ω(σ, β)

cannot be supported by other equilibria either. Contradiction.

Case 3. The resulting subgame is relevant and the core of the corresponding

residual subgame is not empty. By the assumption that σ is a stationary con-

sistent equilibrium, its restriction σh to this relevant subgame (where K(h) ⊃ D

and p(h) = ∅) is a stationary consistent equilibrium, too. Moreover the devia-

tion from σ to form D is not profitable, therefore

xD(σh, Bh) > xD(σ′h, Bh) (3.1)

On the other hand, by the inductive assumption,

ω(σh, βh) ∈ C(L(h), V D) ∀β(h). (3.2)

This, however implies that in the partition function form game the deviation D

is not profitable. Contradiction.

We have discussed all cases, and found the assumptions contradicting. There-

fore ω(σ, β) ∈ C(N,V ).
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Lemma 4. If Theorem 1 holds for all games with less than k players, then

Ω∗(N,V ) ⊇ C(N,V ) for all k-player games (N,V ).

Proof. The proof is inspired by that of Bloch (1996, Proposition 3.2) in part,

and is by construction. We show that if (x̃, P̃) ∈ C(N,V ) there exists a station-

ary consistent strategy profile σ̃ such that for all β we have P(σ̃, β) = P̃ and

x(σ̃, β) = x̃. Let w̃ = x̃i∑
j∈P̃(i) x̃j

.

Harsh response First we will define a harsh response: an effort to stop a

deviating coalition. It is important to note here that this effort is never against

the interest of the players involved, it is one of the preferred behaviours.

Before we provide the formulae we explain or at least indicate the use of this

harsh response, which will also justify the way we formulate it. In the recursive

core a deviation is only profitable if it represents an improvement in the payoffs

for all residual assumptions. In case we are studying the core of the residual

game, the argument works in a similar fashion. When we move to the sequential

game, however, primary deviations can be retaliated, but due to stationarity, as

soon as multiple coalitions have left the game the players do not know which of

these should they punish.

Let us illustrate the problem with an informal example. Under the equilib-

rium strategy players obtain a payoff x. Suppose coalitions A and B have left

the game and they do not form a subset of the equilibrium partition (for sim-

plicity: none of them do), therefore someone has deviated. If A deviated first

N \ A (including B) should stop this deviation. This “stopping” implies some

alternative action that results in some payoff yA such that yAA < xA. When

B deviates, too, the remaining N \ A \ B should also choose an action to get

a payoff zB such that zBB < yAB . Consequently B does not deviate, yA forms

which is bad for A, hence A does not deviate and the equilibrium is preserved.

What if, however N \ A \ B are misinformed and think B deviated first,

calling for response yB , which A did not comply with thus A must be punished

by zA? (Here we assume yBB < xB and zAA < yBA .) Unfortunately it is possible

that zAB > yBB and zAA > xA and therefore the response does not work.

Since beliefs are not stationary, now and then N \ A \ B gets the order

right and find the right response to the last deviation knowing which coalitions
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have already left. In the following we specify the harsh response to a deviation

knowing that some other coalitions left, too.

We assume therefore, that K has already left the game, but D was (or at

least we think it was) the last to exit.

Consider a proposition p = (D, w). In the partition function form game

(N \ K ∪ D,V K\D) the partition D, as a deviation, defines a residual game

(N \K,V K). We discuss two cases based on the emptiness of the core of this

residual game.

If the residual core is not empty a “harsh response” to D is (x̃D|K, P̃D) ∈

C(N \ K,V K) ensuring that the deviation D is not profitable. That is, P̃D|K

satisfies5

∃S ∈ D : V (S,K ∪ P̃D|K) <
∑
i∈S

x̃i, or (3.3)

∀S ∈ D : V (S,K ∪ P̃D|K) =
∑
i∈S

x̃i. (3.4)

Since (x̃, P̃) ∈ C(N,V ) such a P̃D|K exists for all deviations D. Let w̃D|Ki =
x̃
D|K
i∑

j∈P̃D|K(i)
x̃
D|K
j

.

If the residual core is empty we observe that in order for a deviation to

be profitable it must be profitable for all residual partitions. Since (x̃, P̃) ∈

C(N,V ), in the partition function form game the deviation is not profitable

guaranteeing the existence of a residual partition P̃D|K ∈ ΠN\D satisfying

Condition 3.3 or Condition 3.4. Here w̃D|K can be chosen arbitrarily, so let

w̃
D|K
i = 1

|P̃D|K(i)| .

In the following we define the stationary strategy σ̃i for player i. Due to sta-

tionarity it is sufficient to specify the strategy for each triple (K, p,B) consisting

of the partition of players who have already quit, the current proposal and the

current belief (thus B ⊆ K).

5Observe that from the point of view of externalities only the residual partitions matter,

and therefore we ignore payoffs.
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σ̃i(K, T , w,B) =



(w̃, P̃) if K = T = ∅

(w̃B|K, P̃B|K) if T = ∅, but K 6= ∅

accept if xi(σ̃, T , w, (K, B)) > xi(σ̃, (K, B))

wait otherwise.

(3.5)

In equilibrium P(σ̃) = P̃ and the strategy is stationary by construction so

we only need to verify subgame-consistency. We show this by induction. As

subgame-consistency holds for a trivial game we may assume that it holds for

all games of size less than |N |.

Now consider game (N,V ) and observe the following. If a set of players K

have left the game to form K the subgame is simply a coalition formation game

with less players. We discuss two cases based on the emptiness of the residual

core.

1. If the residual core is not empty, the proposed strategy exhibits the same

similarity property: in equilibrium the core partition is proposed and accepted,

while residual cores form off-equilibrium.

The original assumption about smaller games then ensures that the off-

equilibrium path is subgame-consistent so we only need to check whether a

deviation T is ever accepted. This deviation corresponds to a deviation in

the partition function game. Since (x̃, P̃) ∈ C(N,V ), by the construction of

(w̃B|K, P̃B|K) we know that for some B there exists a player in T for whom

the deviation T is not profitable. Given the pessimism of the players, this is

sufficient to deter this player from accepting the proposal to deviate.

2. If the residual core is empty, the deviation is not profitable irrespective

of the residual partition that forms, the subgame is not relevant, and therefore

the second condition for subgame-consistency is satisfied.

The emptiness of the residual core, by our assumption, also implies that

there are no stationary consistent equilibrium strategy profiles. In the absence

of such strategy profiles the players in T cannot predict the partition of PN\K
– in this case, by Expression 2.4, they individually expect the worst. As T only

forms if it is profitable, it will, only, if it is profitable for all xi(σ̃, T , w, (K, B))
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for all B. Since (x̃, P̃) ∈ C(N,V ) this is not the case. This, on the other

hand implies that the formation of P̃ is unaffected by possible deviations in this

subgame, meeting the first condition of subgame-consistency.

Proof of Theorem 1. The proof is by induction. The result holds for trivial,

single-player games. Assuming that the result holds for all k − 1 player games,

the result for k-player games is a corollary of Lemmata 3 & 4.

4 Conclusion

Theorem 1 holds for arbitrary games in discrete partition function form, but

of course it is most interesting for games where some of the residual cores are

empty. When a proposal is made in a game without externalities the invited

players do not even (need to) consider the residual game and therefore the

emptiness of a residual core is not addressed. Huang and Sjöström (2006) and

Kóczy (2009) simply restrict their attention to games where the residual cores

are non-empty, in fact the r-core (Huang and Sjöström, 2003) is not even defined

for games with empty residual cores. As already pointed out by Kóczy (2007)

this is not only an enormous limitation given the number of conditions such

games must satisfy (one for each residual game), but the definitions/results do

not apply to some games without externalities and so they are not generali-

sations of the well-known results for TU-games. The present paper heals this

deficiency.
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