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Abstract

Many social networks have the following properties: (i) a short average distance
between any two individuals; (ii) a high clustering coefficient; (iii) segregation pat-
terns; the presence of (iv) brokers and (v) hubs. (i) and (ii) define a small world
network. This paper develops a strategic network formation model where agents have
heterogeneous knowledge of the network: cognizant agents know the whole network,
while ignorant ones are less knowledgeable. For a broad range of parameters, all pair-
wise Nash (PN) networks have properties (i)-(iv). There are some PN networks with
one hub. Cognizant agents have higher betweenness centrality: they are the brokers
who connect different parts of the network. Ignorant agents cause the emergence
of segregation patterns. The results are robust to varying the number of cognizant
agents and to increasing the knowledge level of ignorant ones. An application shows
the relevance of the results to assessing the welfare impact of an increase in network
knowledge due to, e.g., improved access to social networking tools.
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1 Introduction

The structure of social networks is an important determinant of economic outcomes in a
wide spectrum of settings including labor markets, provision of informal insurance, the
generation and spread of innovations, disease epidemics, organizational performance and
financial markets. In order to harness benefits from the network, individuals strategically
form and break connections to acquire an advantageous position in the social structure.
Understanding how these strategic choices shape the emergence of social networks is of
fundamental importance to explain the main structural properties of networks observed
in empirical studies and to investigate the economic implications of these networks for
single individuals and the society as a whole.

A critical characteristic of social networks is their complexity and the consequent dif-
ficulty individuals face in building a correct knowledge of the intricate pattern of social
relations. For instance, a group of just 10 identical individuals can form 11, 716, 571
different connected network architectures. The incompleteness and heterogeneity in in-
dividuals’ knowledge of their social network may play an important role in determining
which network architectures emerge in equilibrium. This is particularly relevant in recent
years because the introduction of social networking websites/tools allows some individuals
to significantly increase their knowledge of the social structure they are embedded in.

Empirical and experimental studies in the sociology and psychology literatures have
investigated the accuracy of an individual’s cognitive network, i.e. her perception of the
surrounding social network. Kumbasar et al. [1994] map the cognitive friendship net-
works of the members of a professional group: they show that individuals’ perception of
the real network is inaccurate and displays systematic and heterogeneous biases. Janicick
and Larrick [2005] confirm some of these findings in an experimental setting. Moreover,
Krackhardt [1990] shows that accuracy in perception of a social network gives concrete ad-
vantages: the accuracy of an individual’s perception of the advice and friendship networks
in a 34-person organization is positively correlated with her influence in the organization
as ranked by her colleagues.1

In the last decade, studies in several disciplines, including sociology, physics, computer
science and economics, have collected large amounts of evidence that the majority of social
networks share common structural properties. Girvan and Newman [2002] highlight five
main properties:

(i) Short average distance: the average distance between any two individuals in the
network is small

(ii) High clustering coefficient: a high proportion of individuals with a common connec-
tion are also connected to each other

1Several other studies confirm and extend these findings. Casciaro [1998] and Bondonio [1998] show
that cognitive network accuracy is correlated with personality traits, demographic factors, hierarchical
status, and the individual’s position in the informal social structure. Other studies include Krackhardt
[1987], Freeman [1992] and Krackhardt and Kilduff [1999].
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(iii) Segregation patterns: individuals tend to gather into richly connected, close-knit
communities with few links across communities

(iv) Presence of brokers: there is a small number of individuals, called brokers, who
connect across communities

(v) Presence of hubs: there is a small number of individuals, called hubs, with a very
high number of connections

A network with properties (i) and (ii) is called a small world network. Milgram [1967]
was the first to investigate (i) with a famous experiment where, by using a letter chain,
he showed that on average it took 5.2 intermediaries to connect two randomly chosen
individuals in Nebraska and Boston. Recent studies on large networks have confirmed the
ubiquity of small world networks.2

Burt [1992] presents extensive empirical evidence of (iii) and (iv). He shows that
brokers receive higher benefits from their connections because they are able to access
non-redundant information and control information flows in the network.3 The seminal
paper by Barabási and Albert [1999] was among the first to point out (v) in many human
and non-human networks. In the ensuing years the number of studies finding power law
or similar distributions of connections for a variety of networks increased at a dramatic
pace.4

This paper develops a model of strategic network formation to investigate the im-
portance of individuals’ incomplete and heterogeneous knowledge of the network for the
emergence of structural properties (i)-(v). The model is as follows. There are n agents
exogenously partitioned into k communities. The cost of connecting for a pair of agents
belonging to different communities is constant, and greater than the constant cost of
connecting for a pair of agents in the same community. There are two types of agents:
network cognizant (NC) agents, with complete knowledge about the network, and net-
work ignorant (NI) agents, with partial knowledge about the network. Specifically, NI
agents are only able to see connections involving at least one agent from their own com-
munity, and they know the distribution of connections of a sample of the agents in other
communities.

The network formation process is modeled as a one-shot game which was first infor-
mally defined in Myerson [1991]: the agents independently announce the links they wish
to form and links are only formed under mutual consent. Agents derive their utility from

2Goyal et al. [2006] analyze the co-authorship network in economics journals: they find that it is a
small world and that the average distance between individuals has decreased over time. Similarly, Newman
[2001] finds that co-authorship networks in the physical sciences are also small world networks. Kossinets
and Watts [2006] analyze the dynamic evolution of a large email network at an American university. One
of the findings is that the network is a small world, and that this is persistent over time.

3Burt [2004] maps the idea generation network of the supply chain of a large electronics company
with 673 managers, and shows that managers who are brokers also have better job evaluations, faster
career tracks, higher bonuses, and they are more likely to have good ideas. Granovetter [1995] shows that
white-collar workers who are brokers are more likely to find a better job, and to find it faster.

4See Newman et al. [2006] for a comprehensive review.
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the network, and the payoff structure is the distance-based utility introduced by Bloch and
Jackson [2006a]: links are costly, but direct and indirect connections bring benefits that
decay with distance in the social network. The new component of the payoff structure
introduced here is that individuals derive benefits from their cognitive network, which can
differ from the real network structure. This change breaks the symmetry built into the
payoffs of previous models, and it allows the emergence of richer network structures in
equilibrium.

For a broad range of the parameters, the unique pairwise Nash networks constitute a
family of network architectures that are structurally richer and more realistic than equi-
librium networks previously characterized in the strategic network formation literature.
Figure 3 illustrates graphically three examples of these networks, which have two salient
features. First, they have a kernel : a densely connected part of the network formed by
the subset of NC agents who connect across communities. Second, in all these networks
the NI agents connect exclusively with other agents in their own community. The commu-
nities are either complete networks, if the cost of links within the community is low, or d2
networks if the cost is high.5 The proof involves two key steps: proving the claim that NI
agents only form links within their community and showing that the game is isomorphic
to a simpler network formation game involving only the NC agents.

All these pairwise Nash networks have properties (i),(iii) and (iv), plus property (ii)
as long as there is a non-negligible number of communities with low cost of link formation.
The NC agents are the brokers in the network: they strategically position themselves in
the social structure to connect across communities thereby shortening the average distance
between any two individuals in the network. The high clustering coefficient is guaranteed
by the presence of a non-negligible number of low cost communities. Finally, the NI agents
connect exclusively within their own community causing the emergence of segregation
patterns. For higher costs of link formation across communities, there are also some
pairwise Nash networks with a star kernel with properties (i)-(iv) and (v): the center of
the star kernel is a hub. Two extensions of the model show that these results are robust
to varying the number of NC agents in each community and to increasing the knowledge
that NI agents have about the network.

It is important to point out that both the heterogeneity in the cost of forming links
and the heterogeneity in the knowledge of the network are needed for these architectures
to emerge in equilibrium. If only cost heterogeneity is present then non-trivial small
world networks exist solely for the limit case where all communities have low cost of link
formation.6 Moreover, an example shows that there are pairwise Nash networks without
segregation patterns. If only knowledge heterogeneity is present then non-trivial small
world networks do not exist. Moreover, an example shows that there are pairwise Nash

5A network belongs to the family of d2 network architectures if all agents are at most at distance 2
from each other and there is at least a pair of agents who is not directly connected. See section 2 for a
more formal definition.

6A ”trivial” small world network is a network that satisfies the properties of a small world just because
it is ”overconnected.” An example is the complete network where each agent is directly linked to all the
others.
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networks without segregation patterns and brokers.
The results of the model qualify Burt’s claim that being a broker brings an economic

advantage: whether the NC agents, i.e. the brokers, earn higher payoffs than other
agents in their community depends on the social structure of the community itself. A
broker receives higher payoffs when she belongs to a poorly connected community because
this gives her privileged and almost exclusive access to the benefits from the rest of the
network. On the other hand, a broker receives lower payoffs when she belongs to a dense
community because most of the other members of the community are directly connected
with the broker and can free ride on the benefits.

An application of the model provides insight on the welfare impact of an increase in
network knowledge due to, for instance, the possibility that some agents gain access to
social networking tools. The first finding is that if these social networking tools increase
network knowledge then they also (weakly) increase welfare. The second finding is that
the same level of welfare attained in the pairwise Nash networks where all agents have
access to social networking tools can be attained even if only some agents have access to
these tools.

This paper is a contribution to the network formation literature. Models of network
formation are of two types: stochastic, mainly developed by physicists, and strategic,
mainly developed by economists. Stochastic models of network formation have been very
successful in reproducing the structural regularities found in large networks. For instance,
the seminal paper by Watts and Strogatz [1998] shows that small world networks emerge
for a broad set of parameters starting from a regular lattice and rewiring a few links with a
probability p. A large literature has developed in physics to build richer models to explain
the emergence of small world networks and other structural regularities such as power law
degree distributions and correlations among nodes’ degrees.7 However, stochastic models
have a major drawback: while they are very good at explaining how these structural
properties emerge, they are silent on the why.

Strategic models of network formation, such as the one in this paper, are therefore
complementary to the stochastic approach: they explain why network structures emerge
as a result of the decisions of utility maximizing individuals. A major drawback of most
of these models has been that equilibrium networks tend to be very basic structures which
are hardly representative of the structural characteristics of real social networks. Even
the most complex equilibrium networks found in the literature still have a high degree of
structural regularity, e.g. a number of star networks connected with each other. Moreover,
essentially all the models in the literature are based on the assumption that all agents
have complete and homogeneous knowledge about the network structure.

The paper that comes closest to the results in this work is Jackson and Rogers [2005].
They examine a special case of the model in this paper: a truncated version of the connec-

7Barabási and Albert [1999] is the seminal paper on the emergence of power law degree distributions.
Dorogovtsev et al. [2000] generalize Barabási and Albert [1999] and find an exact solution to their model.
Newman et al. [2006] is a comprehensive review of the work in physics on stochastic models of network
formation. Jackson and Rogers [2007] is an example of a stochastic model of network formation in the
economic literature.
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tions model with heterogeneous costs.8 The pairwise stable networks in their model are
a small subset of the equilibrium networks found in this work, and they have properties
(i)-(iv). However, their equilibrium networks are very regular structures: completely con-
nected ”islands” with a few links across islands, so the main reason for having properties
(i)-(ii) is that they are ”overconnected.” Moreover, their model does not say why any
particular agent would be the one building the link across islands, i.e. it is silent on why
certain individuals act as brokers.

Galeotti et al. [2006] and Hojman and Szeidl [2008] build models with heterogenous
costs of link formation, and they find that interlinked stars is one of the possible equilibria.
Interlinked stars have properties (iii)-(v): each star is a community where the agents at the
center of each star have a higher number of connections and act as brokers who connect to
the center of other stars. However, these equilibrium networks, too, have a high degree of
regularity: each community is a star with the link across communities generating from the
center of the star. Moreover, interlinked stars lack properties (i) and (ii) of a small world
network. McBride [2006] and McBride [2008] are the only strategic network formation
models that investigate the role incomplete knowledge of the network plays in determining
equilibrium network outcomes. However, the equilibrium networks that emerge in these
papers lack properties (i)-(v) commonly found in real social networks.

The first contribution of this paper is to construct a strategic network formation model
where, for a broad range of the parameters, all equilibrium networks have a rich structure
with properties (i)-(iv). Moreover, property (v) is present in some equilibria. This is
the first model of strategic network formation that derives equilibrium networks with the
above properties and where the presence of these properties is not just due to a high degree
of structural regularity or an overconnected network. If at least a non-negligible fraction of
the communities have low costs of link formation, small world networks naturally emerge
because there are a few individuals that connect across otherwise separate communities.
Segregation patterns emerge because the majority of agents connect only within their own
community, with the brokers providing the only connections across communities.

The second contribution is to show that incompleteness and heterogeneity in individ-
uals’ knowledge of the network plays a key role for the emergence of these properties.
The agents with complete knowledge of the network are the brokers who connect across
communities shortening the distance between any two individuals in the network. The
NI agents connect exclusively within their own community leading to the emergence of
segregation patterns.

The third contribution is to provide the first economic analysis of the welfare impact
of an increase in agents’ knowledge of a network. This is particularly relevant because
of the development in recent years of a variety of social networking websites, tools and
applications that allow those individuals with access to them to increase their knowledge
of the social environment in which they are embedded. An increase in knowledge of
the network has a (weakly) positive welfare impact, and it suffices that some individuals
in a community have complete knowledge of the network to match the welfare level of

8”Truncated” means that indirect benefits are cumulated only up to a distance D.

6



a community where all individuals are knowledgeable. The latter finding offers some
guidance on how to use information from social network analysis to improve organizational
performance.

The rest of the paper is organized as follows. Section 2 presents the model. Section
3 characterizes the equilibrium networks. Section 4 shows that the equilibrium networks
have properties (i)-(v). Section 5 shows that the main findings are robust to varying the
number of agents with complete knowledge and to increasing the knowledge of ignorant
agents. Section 6 uses the model to assess the impact of social networking websites and/or
applications. Section 7 concludes. Appendix A contains all the proofs.

2 The Model

This section presents the main elements of the model: the network notation and termi-
nology, the payoffs, the network formation game, and the assumptions on the knowledge
agents have about the network.

Networks. Consider a set of n agents N = {1, ..., n}, and partition it into k ≥ 2 subsets
such that NM = {M1,M2, ...,Mk}, where Mi = {1, ..., mi}. Assume that mi ≥ 3 to avoid
trivial subsets. The term community will be used to denote the Mis subsets. A network
is represented by a symmetric matrix g ∈ {0, 1}n×n, with gij = 1 denoting that i and j
are connected. The cognitive network of an agent i is represented by a symmetric matrix
gi ∈ {0, 1}n×n, with gi

jk = 1 denoting that agent i perceives that j and k are connected.
an agent’s cognitive network is therefore the agent’s perception of the underlying network
structure.

The neighborhood of i in g is Li(g) = {j ∈ N |j 6= i, gij = 1}. A path pij(g) between
i and j in a graph g is a set of links pij(g) = {gii1 , gi1i2 , ..., gipj} such that gii1 = gi1i2 =
... = gipj = 1. The length of a path is |pij(g)|, if there is no path between i and j then
the length is infinite. The geodesic distance dij(g) between i and j in g is the minimum
number of links that need to be used along some network path to connect i and j. If there
is no such path, then dij(g) = ∞. The diameter D(g) of a network g is the maximum
geodesic distance in g. A network is connected if there is a path of finite length between
any two nodes i and j. A network g is minimal if g − gij for any i, j ∈ N (i 6= j) is such
that |dij(g − gij)| = ∞.

The term network architecture refers to the geometric properties of a graph, and per-
mutations of agents do not generate different architectures. There are special network ar-
chitectures that will frequently arise. The complete network is the network gC = {g|gij = 1
∀i, j ∈ N}. The empty network is the network g∅ = {g|gij = 0 ∀i, j ∈ N}. A star network
g∗ is a network where, for some agent i, all agents j 6= i are connected to i and there is no
other link in the network. Analogously, a community Mi is a complete community if all
the agents in Mi are directly connected to each other. A community is a star community
if, for some agent i ∈ Mi, all agents j 6= i (j ∈ Mi) are connected to i and there is no
direct link between any other two agents in Mi. The set G = {g|g ⊆ gC} is the set of all
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possible networks.
The shorthand notation gINDEX denotes a family of network architectures with sim-

ilar structural properties. For instance, gd2 = {g|dij(g) ≤ 2 ∀i, j ∈ N and ∃i, j ∈ N such
that dij(g) = 2}. In words, g ∈ gd2 if any two nodes in g are at a maximum geodesic
distance of two and at least a pair of nodes is not directly connected. Clearly, g∗ ∈ gd2

and gC /∈ gd2. Analogously, a community Mi is a d2 community if, considering only paths
involving agents in Mi, any two agents in Mi are at a maximum geodesic distance of two
and at least a pair of agents is not directly connected.

Payoffs. Agents derive utility from a network according to the distance-based payoff
structure first introduced by Bloch and Jackson [2006a]:

ui(gi) =
∑

j 6=i

bi(dij(gi))− cij · gij (1)

where b(.) is a non-increasing function and cij is the cost to agent i of linking with
j. Agents receive a benefit and pay a cost for direct connections, and they also receive
benefits (weakly) decaying with distance from indirect connections. For instance, consider
a network formed by three agents i, j, k such that gij = gjk = 1 and gik = 0. Assuming
all the agents have complete knowledge of the network, the payoffs are: uk(g) = ui(g) =
b(1) − c + b(2) and uj(g) = b(1) − c. Clearly, the connections model and the truncated
connections model in Jackson and Wolinsky [1996] are special cases of these payoffs.

The only departure from the literature is that the utility for agent i depends on gi,
i.e. i’s cognitive network, and not the real network g. Thus, agents with less knowledge
about the network will be able to extract less benefits from it. This has an intuitive inter-
pretation. Imagine i and j are connected because they do the same job and they usually
communicate on work-related issues. Also, j happens to be connected to k because they
were roommates in college, and k’s family friend l is a renowned producer on Broadway.
However, i does not know that k and l are connected. Agent i would love to go to the
première of the much awaited new Broadway show of the season. If she knew that gkl = 1
then she would subtly mention it to j, hoping that he would ask k whether his friend l
has any spare VIP invitations. However, gi

jk = 0 so she would never think of raising the
subject with her colleague j, and therefore i will have to miss the première and the VIP
party. This short story illustrates that there are some benefits from the network that
need to be ”prompted,” and that an individual cannot have access to them unless she
knows the network structure.

Knowledge. First of all, a note on terminology. In this paper cognitive knowledge of a
network should be interpreted as the individual’s ”mental picture” of the network that
she is embedded in. This knowledge is exogenously given and it should be interpreted as
an individual’s cognitive ability to perceive the pattern of connections surrounding her.

Assume there are two types of agents in the network with complete and partial knowl-
edge about the underlying network structure. Specifically, the types of agents are:
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(i) Network Cognizant (NC): an NC agent i has complete knowledge about all the
nodes and links in the network g, i.e. gi ≡ g. Let the kernel K ⊂ N be the subset
of NC agents in the network.

(ii*) Simple Network Ignorant (NI): an NI agent i ∈ Mp has complete knowledge about
any link gjk where j ∈ Mp and/or k ∈ Mp, but she is not able to see any link gjk

such that j, k /∈ Mp. Moreover, she assumes that any link that she is not able to see
does not actually exist.

Clearly (ii*) assumes an extreme form of network ignorance and bounded rationality:
the NI agent is unable to perceive any intra-community link in other communities and
she assumes that agents that are not connected to anyone in her own community are
social isolates. This extreme case of network ignorance is for expositional purposes only.
An extension in section 5.2 analyzes the same game with more ”sophisticated” NI agents
who, in addition to the above, know the degree distribution of a sample of agents in
each of the other communities. A parameter regulates the size of the sample, allowing
the investigation of increases/decreases in the knowledge of the NI agents. However, as
section 5.2 shows, the results do not change, so for clarity of exposition the next section
investigates the model with the NI agents defined as in (ii*).

Figure 1 illustrates the cognitive networks of NC and NI agents. The network in
Figure 1(a) is the real network, which is also the network perceived by the NC agents.
The network in Figure 1(b) is the cognitive network gi of one of the NI agents i belonging
to the white community: she knows of the existence of all the connections involving at least
one agent from the white community, but she is unable to see the connections involving
only agents from the black community. Moreover, she assumes that the connections that
she cannot perceive do not exist and therefore she believes that most of the agents in the
black community are social isolates.

(a) The real network g, which is also the cogni-
tive network of the diamond-shaped NC agents.

(b) The cognitive network of the circle-shaped
NI agents in the white community.

Figure 1: A network N = {M1, M2} with |M1| = |M2| = 6. Individuals in M1 are color-
coded in white, and individuals in M2 are color-coded in black. Round-shaped nodes are
NI agents, and diamond-shaped nodes are NC agents.

It is useful to discuss a practical example to see how realistic the assumptions on
agents’ knowledge are. Imagine Figure 1(a) describes the friendship network in a firm
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with two departments: marketing (white nodes) and IT (black nodes). Node 3 is the
diamond-shaped NC employee in marketing, and 2 is an NI employee in the marketing
community. Both 2 and 3 know who is connected to whom in the marketing department.
Both of them also know that 1 and 5, in marketing, are connected to 6, 7 and 9 in IT.
Moreover, 3 knows who is connected to whom in IT as shown in 1(a). On the other
hand, 2 sees no other connection in the IT community and she thinks that 8 and 10 are
anti-social and have no friends.

Network formation game. All agents i ∈ N simultaneously announce the links they
want to form. An agent i’s strategy is a vector si ∈ Si = {0, 1}n−1, where Si is the set of
pure strategies for agent i. The strategy vector si = {si1, ..., sin−1} is such that sij = 1
if i wants to form a link with j, and sij = 0 otherwise. An undirected link gij forms if
and only if sij · sji = 1. A strategy profile s = (s1, ..., sn) ∈ S determines an undirected
network g(s), where S = S1 × ...× Sn is the space of pure strategies.

Equilibrium. A strategy profile s is a Nash equilibrium strategy profile of the game
if and only if ui[gi(s)] ≥ ui[gi(s′i, s−i)] for all agents i ∈ N and all strategies s′i ∈ S. Note
that a Nash equilibrium strategy for agent i is defined as a best response by i to the
other agents’ strategies as they are perceived by i. The same observation applies to the
stability/equilibrium notions defined below.

The main equilibrium concept used in this paper is pairwise Nash equilibrium:

Definition 1. The network g(s) is a pairwise Nash equilibrium network if and only if:

(i) s is a Nash equilibrium strategy, and

(ii) for all gij /∈ g, if ui(gi) < ui(gi + gij) then uj(gj) > uj(gj + gij)

In a pairwise Nash network there is no agent who wants to sever one or more of her
links, and there is no pair of agents who both (at least one of them strictly) want to form
a new connection.

A network g is efficient if the sum of the payoffs of the agents in g is (weakly) higher
than the sum of the payoffs the same agents could achieve if they were connected by any
other network g′ 6= g. Formally, let V (g) =

∑n
i=1 ui(g). Then g is efficient if and only if

V (g) ≥ V (g′) for all g′ ∈ G, g′ 6= g.

3 Equilibrium Analysis

This section characterizes the pairwise Nash networks of the game. Section 3.1 lists and
motivates some simplifying assumptions to the set-up of the model for both expositional
and tractability purposes. Section 3.2 characterizes all the pairwise Nash networks for
a broad range of the parameters of the model. Section 3.3 investigates the economic
implications of the equilibrium networks for the different types of agents.
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3.1 Assumptions and motivation

As the literature review in section 1 discusses, the characterization of equilibrium networks
for network formation games with heterogeneous agents is not easily tractable without
some simplifying assumptions. Moreover, it is important to reduce the heterogeneity in
the model to zoom in on the role of heterogeneity in cognitive knowledge of the network.
Thus, for tractability and expositional purposes, assume the following:

(a) Local uniqueness of the NC agent: in each community Mi there is one and only one
NC agent yi.

(b) Simple NI agents: see (ii*) in section 2.

(c) Homogeneous community size: the partitions Mis have equal cardinalities |Mi| =
m,∀i = 1, ..., k.

(d) Homogeneous benefits: the benefit function is the same for all i ∈ N , i.e. bi(.) ≡ b(.)

(e) Cost structure: if i, j ∈ Mk then the cost to form a link gij is equal to ck ∈ [c, c];
if i ∈ Mk and j ∈ Mp with k 6= p then the cost to form a link gij is constant and
equal to C > c. A community Mi is said to have high costs of link formation if
ci > b(1)− b(2).

Assumptions (a) and (b) are for expositional purposes only. Section 5 will show
that they are not necessary for the main results to hold. Assumptions (c), (d) and (e)
make the model more tractable. The cost structure in (e) has an intuitive interpretation.
The internal costs of connections are homogeneous within a community, but they vary
depending on the type of community. Moreover, costs of connections across communities
are more costly than the internal ones within a community. This captures the fact that a
bond between two individuals in the same community is easier to establish because people
in the same community are similar, while it requires more effort to bond with someone
from another community who has different characteristics.

Why is there the need of introducing heterogeneity both in costs and in the knowledge
that agents have about the network? Intuition may suggests that either heterogeneity
in costs or in knowledge should suffice to ensure that in any equilibrium network agents
connect mainly with other agents in their own community, i.e. the network has segregation
patterns.9 The following examples show that this intuition is not true: if only one form of
heterogeneity is present then there are equilibrium networks without segregation patterns.

Example 1 - Heterogenous knowledge with homogeneous costs
Assume (b)-(d) hold, but costs are homogeneous, i.e. cij ≡ c, ∀i, j ∈ N . It is rela-
tively easy to construct equilibrium networks where there is maximal separation of agents
from their communities, i.e. each agent is connected with all the individuals in other

9Section 4 gives a formal definition of segregation patterns, but for now think of a network with
segregation patterns as a network where most links are within instead of across communities.
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communities and with none in her own. Figures 2(a) and 2(b) are examples of such
networks. It is straightforward to check that they are pairwise Nash networks in the
b(1)− b(2) < c < b(1)− b(3) range. Architectures with maximal separation are equilibria
because they help NI agents in perceiving the network: there is no black-black (or white-
white) link so every white (or black) NI agent can perceive any link in the network since
any link involves one white (or black) agent. Thus, if one takes away the cost differential
there are equilibrium networks without segregation patterns.

(a) A network NM =
{M1, M2} with |M1| =
|M2| = 3.

(b) A network NM =
{M1, M2} with |M1| =
|M2| = 4.

(c) A network
NM = {M1, M2, M3, M4}
with |M1| = |M2| = |M3| =
|M4| = 3.

Figure 2: Nodes with the same color belong to the same community. Round-shaped nodes
are NI agents, and diamond-shaped nodes are NC agents. In (a) and (b) there is maximal
separation of agents from their communities in both the white and black networks. In (c)
there is maximal separation of agents in the white community.

Example 2 - Heterogeneous costs with homogeneous complete knowledge
Assume (c)-(e) hold, but all agents have complete knowledge about the network. It is
possible to construct networks where there is maximal separation of agents from their
community. Consider a network of four communities NM = {black, white, dark, light}
with three agents each, and such that cwhite < b(1) − b(2) < cj < b(1) − b(3) where
j 6= white. It is not difficult, and left to the reader, to check that the network in Figure
2(c) is pairwise Nash in the b(1) + b(2) − 2b(3) < C < b(1) + 2b(2) − 2b(3) − b(4) range.
Clearly in this network all agents in the white community are separate from each other.
Thus, if one takes away the knowledge differential, then there are equilibrium networks
without segregation patterns.

These examples give us a hint that the presence of both types of heterogeneity leads
to different equilibrium predictions than the presence of either type alone. After charac-
terizing the equilibrium networks in the following section, it will be enlightening to come
back to these examples and compare them to the equilibria that are supported when both
types of heterogeneity are included.
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3.2 Pairwise Nash networks

The following lemma is a key step in characterizing the pairwise Nash networks: it shows
that the combination of heterogeneity in costs and in knowledge of the network leads the
less knowledgeable agents to connect exclusively within their own community.

Lemma 1. Assume (b)-(e). Let C > b(1) + b(2)− b(3) and c < b(1)− b(3). No NI agent
forms links with agents in a different community.

The intuition of the proof is as follows. If costs of connections ci within communities
are low, i.e. ci < b(1) − b(2) for i = 1, ..., k, then the result is straightforward because
all communities are complete networks and NI agents cannot get any indirect benefits
from inter-community links. If costs ci are higher, i.e. b(1) − b(2) < ci < b(1) − b(3) for
i = 1, ..., k, then the proof is ad absurdum. Assume that there exists a link between two
agents i and j belonging to different communities and that i is NI. In order for i not to
want to sever this link at least one agent k belonging to i’s community has to be connected
with j. Moreover, there cannot be another agent l directly connected to both i and k,
otherwise i would not need the link with j to gain benefits from the indirect connection
with k. The proof shows that it is not possible to construct an equilibrium network
satisfying these requirements, and therefore the link gij cannot exist in equilibrium.

The lower bound C on the cost of inter-community links excludes the possibility of
small loops that could help sustain a link between i and j. Consider a circle network with
5 agents such that: agents 1-4 belong to community Ui, agent 5 belongs to community
Uj , agent 4 is NI and g45 = 1. The net benefits for 4 to remove the link with 5 are
C − b(1)− b(2) + b(3), so if the lower bound in the statement of the lemma does not hold
then NI agent 4 would like to keep a link with an agent 5 from another community. The
upper bound c on the cost of intra-community links ensures a minimum level of cohesion
within communities: no agent is more than two links away from another agent belonging
to her community. Without this minimum level of cohesion there might be equilibrium
networks where NI agents ”infiltrate” another community due to its very sparse structure.

Some more notation and terminology before characterizing the equilibria. Let λ be the
proportion of communities with high cost of link formation. Let B(i) ≡ b(i)+(m−1)b(i+1)
and B(i) ≡ b(i) + b(i + 1) + (m− 2)b(i + 2). B(1) is the total direct and indirect benefits
for the NC agent i to connect to agent j ∈ Mj if Mj is a complete community. B(1)
is the total direct and indirect benefits for i if Mj is a star community with j at the
periphery. Intuitively B(1) and B(1) are the lower and upper bound to the benefits from
connecting to another community. Clearly, B(i) and B(i) are the lower and upper bound
from being i−1 links away from an agent that is directly connected to another community.
Recall that the kernel K is the subset of NC agents in N . The following proposition fully
characterizes the equilibrium networks for b(1) < C < B(1)−B(2).

Proposition 1. Assume (a)-(e), and let b(1) + b(2) − b(3) < C < B(1) − B(2). The
unique pairwise Nash network architectures are:

(i) a complete kernel with complete communities, denoted gCKC , if c < b(1)− b(2)
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(ii) a complete kernel with mixed complete and d2 communities, denoted gCKM , if c <
b(1)− b(2) < c < b(1)− b(3).

(iii) a complete kernel with d2 communities, denoted gCKd2, if b(1) − b(2) < c < c <
b(1)− b(3).

The proof involves several lemmata. The first two lemmata are technical and they
show that it is possible to use pairwise stability, a simpler equilibrium concept than
pairwise Nash, to characterize the pairwise Nash networks. Lemma 3 proves that the
utility defined in (1) is superadditive in own-links. This superadditivity condition means
that the marginal utility to an agent i from having a subset of links is higher than the
sum of the marginal utilities from each of the links separately. Lemma 4 shows that
this condition matters because if u(.) is superadditive then the set of pairwise stable and
pairwise Nash networks coincide. Computationally, pairwise stability is a much easier
condition to prove because it only requires to check for one-link deviations: unilateral in
case of link severance and bilateral for link formation.

By lemma 1 the NI agents do not form any link with agents outside of their community.
Using this result it is easy to see that communities Mi with low costs of link formation
ci < b(1) − b(2) are complete communities and communities Mj with high costs of link
formation b(1) − b(2) < cj < b(1) − b(3) are d2 communities. Finally, the last step is to
characterize the structure of the kernel K of NC agents that form links across communities.
Given that communities are either gC or gd2, the benefit of forming a link with an NC
agent is in the [B(1), B(1)] range. Since C < B(1) − B(2) then the kernel is a complete
network and this completes the characterization of the equilibria. Hereafter, the pairwise
Nash networks in proposition 1 will be denoted as gCK , or pairwise Nash networks with
complete kernel.

Figure 3 is a graphical illustration of gCK networks. For instance, Figure 3(c) shows
a gCKM network architecture for λ = 0.5. Note in Figure 3(b) the variety of structures
that the d2 communities can have: the dark gray and black communities are stars with
the NC agent at the periphery, the white community is a star with the NC agent at the
center, and the light gray community is a hexagon with diagonals. Adopting, for now, an
informal definition of a network with segregation patterns as a network where most links
are within instead of across communities, it is clear that the gCK networks have segre-
gation patterns. In order to pinpoint the role played by the two types of heterogeneity
present in the model, it is useful to return to examples 1 and 2 in the previous section.

Example 1 - Heterogenous knowledge with homogeneous costs
Consider the same set-up as example 1 in section 3.1: assume (b)-(d) hold and homo-
geneous costs b(1) − b(2) < c < b(1) − b(3). The networks without segregation patterns
in Figures 2(a) and 2(b) are then pairwise Nash networks. Moreover, it is not difficult
to show that the gCK networks in proposition 1 are not pairwise Nash networks with
homogeneous costs in this parameter range. Thus, if one takes away the heterogeneity
in costs then gCK architectures are not equilibrium networks and there are equilibrium
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(a) Complete kernel of NC
agents with complete communi-
ties gCKC .

(b) Complete kernel of NC
agents with d2 communities
gCKd2.

(c) Complete kernel of NC
agents with mixed complete
and d2 communities gCKM with
λ = 0.5.

Figure 3: Pairwise Nash network architectures with complete kernel for a set of 4 com-
munities NM = {M1,M2,M3,M4} with |Mi| = 6 for all i. Round-shaped nodes are NI
agents, and diamond-shaped nodes are NC agents. Nodes with the same color belong to
the same community.

networks without segregation patterns.

Example 2 - Heterogeneous costs with homogeneous complete knowledge
Consider the same set-up as example 2 in section 3.1: assume (c)-(e) hold, all agents have
complete knowledge about the network and cwhite < b(1)− b(2) < cj < b(1)− b(3) where
j 6= white. The network without segregation patterns in Figure 2(c) is pairwise Nash if
b(1) + b(2)− 2b(3) < C < b(1) + 2b(2)− 2b(3)− b(4). Moreover, it is not difficult to show
that the gCK networks in proposition 1 are not pairwise Nash networks in this parameter
range if all agents are network cognizant. Thus, if one takes away the heterogeneity in
knowledge then gCK architectures are not equilibrium networks and there are equilibrium
networks without segregation patterns.10

These two examples show that both heterogeneity in costs and in knowledge are nec-
essary to sustain the gCK pairwise Nash networks. Without either type of heterogeneity
gCK networks are not equilibria and there are equilibria that do not have segregation

10Note that there is one limit case where gCK architectures are equilibrium networks for a narrow
parameter range without the knowledge differential. This is when all internal community costs ci are
so low that all communities are complete communities. The case with two communities is analyzed in
Jackson and Rogers [2005].
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patterns. The cost differential ensures that there are higher net benefits from direct
connections with agents in one’s own community. The knowledge differential leads the
network ignorant agents to underestimate the indirect benefits they would obtain by con-
necting with agents in other communities, and therefore NI agents connect exclusively
within their community leading to the emergence of segregation patterns. Section 4 will
show that gCK networks are quite interesting because they have, at least in stylized form,
some of the main properties observed in real social networks.

The characterization of equilibria for higher costs C > B(1)−B(2) of inter-community
links is harder because there are multiple equilibrium architectures for the kernel. This
multiplicity of equilibria is a well-known result since Jackson and Wolinsky [1996]. If
C < B(1) − B(3) then the kernel will be a d2 network, but if C > B(1) − B(3) then
different architectures can be sustained in equilibrium. Among these equilibria there
are some with a star kernel that are interesting because, as the following section will
discuss, they have one agent with a much higher degree than all the others. Corollary 1
characterizes these networks.

Corollary 1. Assume (a)-(e), and let B(1) − B(2) < C < B(1). The following are
pairwise Nash network architectures:

(i) a star kernel with complete communities, denoted gSKC , if c < b(1)− b(2)

(ii) a star kernel with mixed complete and d2 communities, denoted gSKM , if c < b(1)−
b(2) < c < b(1)− b(3).

(iii) a star kernel with d2 communities, denoted gSKd2, if b(1)−b(2) < c < c < b(1)−b(3).

The proof follows closely the one of proposition 1, and it provides no new intuition.
The network architectures are similar to the ones in Figure 3 with the only difference
being that the diamond-shaped NC agents form a star instead of a complete kernel.

3.3 The advantages and disadvantages of knowledge

A simple inspection of the equilibrium networks in proposition 1 highlights that agents
occupy different positions in the network according to their knowledge. More knowl-
edgeable NC agents position themselves at the center of the overall network structure
connecting with each other to form the ”kernel” of the network. Less knowledgeable NI
agents remain at the periphery, insulated within their own community. By comparing the
payoffs of NC and NI agents it is therefore possible to explore what are the advantages
(and disadvantages) of network knowledge.

Before proceeding, an important caveat. In the equilibrium analysis conducted in the
previous sections the NI agents base their linking decisions on their cognitive network. As
discussed after equation (1) in section 2, the cognitive network is what matters for some
of the payoffs an agent receives, e.g. i is not able to get the VIP invitation unless she
knows the path leading to l. However, other types of indirect network benefits flow in the
network without any need of being ’prompted.’ Thus, in the gCK pairwise Nash networks

16



the NI agents will receive (weakly) higher payoffs from the network than the payoffs they
compute given their knowledge of the network. There are different potential explanations
of why they do not realize this in equilibrium and change their linking decisions. One
of these explanations is that benefits that flow in a network are very ’intangible’ and
NI agents are not able to pin down the payoff discrepancy. Another one is bounded
rationality: they are not able to ’see’ where the benefits come from and they are not able
to infer it. If this is the case then the payoffs of the NI agents from the actual network
can be a useful upper bound on the effective payoffs they receive. These are the payoffs
that we will consider for the analysis in this section.

Let gCKSP denote complete kernel networks with star communities with peripheral NC
agents, i.e. gCK networks where all communities are star networks with the NC agent
located at the periphery of the star. The following corollary to proposition 1 compares
the payoffs NC and NI agents receive in the gCK equilibrium networks.

Corollary 2. Consider NC agent i ∈ Mi and NI agent j ∈ Mi and a network g ∈ gCK ,
then:

(i) ui(g) < uj(g) if g ∈ gCKC

(ii) ui(g) > uj(g) if g ∈ gCKSP

The gCKC and gCKSP network architectures are the two extreme cases that give the
highest benefits to the NI and NC agents respectively. gCKC networks favor NI agents
because all of them are directly linked to NC agents thereby minimizing the geodesic
distance from NI agents to agents in other communities and maximizing the costs that
NC agents have to pay to be linked to their own community. On the other hand, gCKSP

architectures favor NC agents because each one of them is linked to one NI agent in her
community thereby maximizing the geodesic distance from NI agents to agents in other
communities and minimizing the costs that NC agents have to pay to be linked to their
own community. In the other gCK pairwise Nash architectures the difference in payoffs
between NC and NI agents falls in between these two extremes: star communities with the
NC agent at the center and d2 communities balance the trade-offs above; gCKM networks
are clearly combinations of gCKC and gCKd2 networks.

Intuitively, an agent knowledgeable about the network receives higher payoffs in a
society formed by communities that are sparsely connected internally. In this type of
society the benefits that the NC agent brings in to her own community from the rest of
the society are not shared effectively due to the lack of internal cohesion of the community.
On the other hand, the NC agent receives relatively lower payoffs in a society formed by
many close-knit communities. In this type of society the NI agents have direct access
to the benefits the NC agent brings in and they free-ride on her investment to bridge to
other parts of the network.

As section 4.2 will discuss more formally, the NC agents are the brokers in the pairwise
Nash networks in proposition 1. The statement in corollary 2 therefore qualifies Burt’s
claim that being a broker is beneficial. A broker receives higher payoffs due to her position
in the network structure if she is part of a sparsely connected community and/or network.
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On the other hand, being a broker in a densely connected community/network may not
provide higher payoffs than the ones accruing to an agent who is directly connected to a
broker.

4 Structural properties of equilibrium networks

This section shows that equilibrium networks have properties (i)-(v) listed in the intro-
duction. Section 4.1 shows that essentially all pairwise Nash networks with a complete
kernel are small world networks. Section 4.2 shows that all pairwise Nash networks with a
complete kernel have segregation patterns and that the brokers are the network cognizant
agents. Section 4.3 shows that some of the pairwise Nash networks have one hub.

4.1 Small world networks

Before giving the formal definition of a small world network, it is necessary to introduce
two new concepts.

The first one is the clustering coefficient of a network. In the network literature the
clustering coefficient of a node of a network is the fraction of its neighbors that are also
directly linked to each other. Following Watts [1999], let us focus on the average clustering
coefficient C(g) of a network g:

C(g) =
1
n

∑

i

∑
j 6=i;k 6=j,i gijgjkgik∑

j 6=i;k 6=j,i gijgik
(2)

The average clustering coefficient of a network is simply the average of the clustering
coefficients of all its nodes.11

The second one is a particular type of networks called random networks, which have
been the subject of extensive study in the graph theory literature. It is not difficult to
generate a random network: following the seminal papers by Erdős and Rényi [1959, 1960],
let Gn,p be the set of all networks consisting of n vertices where each pair is connected
together with uniform probability p. In order to generate a network sampled uniformly
at random from Gn,p follow this process: take n initially unconnected vertices and go
through each pair of them, joining the pair with an edge with probability p.12

In the Erdős-Rényi model, and in many other random graph models, when the number
of nodes is large the average geodesic distance has approximately the same magnitude as

11Note that this is not the only clustering coefficient metric in the network literature. Apart from mea-
sures for directed networks, another popular clustering coefficient measure is the total clustering coefficient
CT (g). The latter is the overall fraction of ”triangles” in the network, i.e. CT (g) is not computed node by
node and then averaged out, but directly for the whole network. Newman [2003] shows these measures can
be very different for certain networks. For the rest of this paper, ”clustering coefficient” will mean C(g).
However, the results will apply to CT (g) as well, except for a few special cases of network structures.

12Several generating processes for random networks have been the subject of extensive study and for a
broad spectrum of generating processes the resulting networks share the same general properties in terms
of average geodesic distance and clustering coefficient. See Bollobás [2001] for an extensive review.
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the ratio of the logarithm of the total number of vertices in the graph to the logarithm
of the average degree of a node. Mathematically, d̄(grandom) ≈ log(n)/log(z) where z =∑n

i=1

∑n
j=1 gij/n is the average degree of a node in g. This approximation holds as long

as the average degree of a vertex is greater than one and it is significantly smaller than
n, i.e. as long as the number of links is not so small that the network is disconnected
in many small components and as long as the number of links is not so large that the
network is close to be a complete network. Moreover, the clustering coefficient C(grandom)
of a random graph with n nodes tends to zero as n becomes very large. The interested
reader can refer to Watts [1999] for a short derivation.

Following Watts [1999], the formal definition of a small world network is as follows.

Definition 2. A network g is a small world if:

(i) it has short average geodesic distance. More precisely, the average geodesic distance
is similar to the one of a randomly generated network with the same number of
nodes and the same average degree, i.e. d̄(g) ≈ d̄(grandom) ≈ log(n)/log(z)

(ii) it has a higher clustering coefficient compared to the one of a randomly generated
network. More precisely, limn→∞C(g) > limn→∞C(grandom) = 0

The following proposition shows that the majority of gCK pairwise Nash networks are
small world networks.

Proposition 2. For any gCK pairwise Nash network in proposition 1 we have that:

(i) the maximum diameter D(gCK) is five

(ii) if λ < 0.95 and n < 105 then d(grandom) ≈ d(gCK) < 5

(iii) a lower bound on the clustering coefficient is limm,k→∞C(gCK) = 1− λ.

The derivation of the results is by inspection of the gCK architectures. Statements (i)
and (ii) show that gCK networks have the first property of a small world, i.e. an average
geodesic distance comparable to the one of a random graph with the same number of
nodes and links. Statement (iii) shows that as long as there is a non-negligible fraction
of complete communities, i.e. λ < 1, then gCK networks have the second property of a
small world: a non-negligible clustering coefficient. These results show that small world
networks are prevalent in the broad parameter range where the equilibrium networks are
gCK networks.

It is important to point out that, even though gCK networks have a rich and varied
structure, they are still ”stylized” small world networks. This is evident in statements
(i) and (ii): there is an upper bound of 5 to the diameter, which limits the validity of
statement (ii) to networks with less than 100,000 nodes. As it is clear from definition 2,
small world networks can be defined for any number of nodes. This is an indication that
for very large networks this model starts to break down because an even more complex
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structure is needed. A potential avenue to explore would be to have the communities be
grouped into larger communities that interact to form even larger communities.13

Intuitively, all gCK networks in proposition 1 that have a non-negligible fraction of
communities with low costs of link formation are small world networks. The requirement
to have a few low cost communities is necessary for the clustering coefficient to be bounded
away from zero. In the limit, the clustering coefficient of a random network goes to zero
while the clustering coefficient of a gCK network does not, as long as λ < 1. Finally, note
that for (iii) to hold it is not necessary that both parameters m and k are very large,
either of them would suffice.14

The presence of agents with complete knowledge about the network is key for the
emergence of the first property of small worlds. The NC agents provide the few links
across different communities that dramatically shorten the social distance between any
two individuals in the network. The presence of a few close-knit communities with low
costs of link formation, where everyone is connected to everyone else, is enough for the
emergence of the second property of small world networks.

To sum up, both heterogeneity in costs and heterogeneity in knowledge determine the
first property of a small world network: a short average distance between individuals in
the network. Moreover, heterogeneity in costs is key to have the second property: an
average clustering coefficient bounded away from zero due to the presence of communities
with low cost of link formation.

4.2 Segregation patterns with brokers

A prominent characteristic of social networks is that they show segregation patterns.
Intuitively, individuals of the same type stick together in close-knit communities and they
form very few links outside of the community.15 A classical example is racial segregation
patterns in US urban areas. Moreover, these close-knit communities are connected by
a few agents, called brokers, who strategically position themselves in the social network
structure to bridge different communities.

A basic metric to measure the extent of segregation of an individual i ∈ Mp is the
fraction of i’s connection that are with members of her community Mp. Averaging the
segregation of all the agents in Mp gives a measure of the overall segregation of the Mp

community.16 Formally, the segregation index Sp of a community Mp is equal to:

Sp =
1
m

∑

i∈Mp

( ∑
j∈Mp

gij∑
j∈Mp

gij +
∑

k/∈Mp
gik

)
(3)

13These networks would have a fractal-like structure. See Dorogovtsev et al. [2002] for a deterministic,
non-strategic model of network formation that leads to a pseudo-fractal graph with many of the empirical
properties observed in real networks.

14Specifically, one can show (see proof of proposition 2(iii) in appendix A) that if k is finite then
limm→∞C(gCK) = 1− λ. Viceversa, if m is finite then limk→∞C(gCK) = 1− λ + λ

m
≥ 1− λ.

15As the popular saying goes, ”birds of a feather flock together.”
16See Currarini et al. [2008] for a review and discussion of this and other segregation metrics used in

the literature.
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The higher is this ratio, the more segregated is the community from the rest of the
network.17 Also, let us define the segregation NI index SNI

p to be equal to (3) above with
the restriction that i has to be an NI agent. The SNI

p index captures the extent that
network ignorant agents are segregated from other communities.

The concept of broker captures the idea of an agent that is on many paths connecting
other agents. The betweenness centrality metric first defined by Freeman [1977] defines
this notion more formally. Let η[pjk(g)] be the number of paths pjk(g) between j and k
in the network g such that |pjk(g)| = djk(g), i.e. such that the path length is equal to the
geodesic distance between j and k. Also, let ηi[pjk(g)] be the number of geodesic paths
between j and k that pass through agent i, where i 6= j, k. The betweenness centrality
IB(ηi) of an agent i is then equal to:

IB(ηi) = A
n−1∑

k=1

n∑

j=k+1

ηi[pjk(g)]
η[pjk(g)]

(4)

where j, k 6= i and j ∈ Mp, k ∈ Mq with q 6= p. A is just a normalization factor so that
IB(ηi) ∈ [0, 1].18

Armed with these metrics it is now possible to give more formal definitions of what it
means for a network to have segregation patterns and for an agent to be a broker.

Definition 3. A network g has segregation patterns if Sp > 1
2 for every p = 1, ..., k and

it has perfectly segregated NI communities if SNI
p = 1 for every p = 1, ..., k. An agent

i ∈ Mp is a broker if IB(ηi) > IB(ηj), for every j ∈ Mp, j 6= i.

The first part of the definition says that a network with segregation patterns is formed
by communities whose members connect mainly with each other. Moreover, in a network
with perfectly segregated NI communities the NI agents do not form links with members
of other communities.The second part says that the broker(s) in each community is the
agent(s) with the highest betweenness centrality, i.e. the one(s) who is more crucial to
give that community access to the individuals in other communities.

The following proposition shows that gCK networks have segregation patterns and
perfectly segregated NI communities, and that having complete knowledge about the
network structure is key to be a broker.

Proposition 3. All gCK pairwise Nash network in proposition 1 are such that:

(i) they have segregation patterns and the minimum segregation index is

Sp ≥ 1− k − 1
mk

>
2
3

17Blau [1977] makes the important point that this basic metric is sensitive to differences in community
size. However, this criticism can be safely ignored here because of assumption (c) that all communities
have the same size.

18Note that this definition restricts the metric to the paths between agents in different communities,
while Freeman [1977] defined it for any two agents in the network. The reason is that the goal here is to
understand which agents connect different communities in the network.
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(ii) they have perfectly segregated NI communities

(iii) the k brokers are the NC agents

The proof is by inspection of the gCK network architectures. Parts (ii) and (iii) tell a
clear story: in each community the NI agents only connect with each other because their
limited knowledge on the network structure does not allow them to see the benefits of
connecting across communities, and therefore the only brokers are the NC agents. Thus,
all gCK networks have segregation patterns. Moreover, the level of segregation is very
high. The lower bound of 2

3 only applies to the limit case of communities of only 3 agents.
Unless the communities are very small, the minimum level of segregation is much higher.
For instance, if m = 10 then the minimum segregation index is 0.9; if m = 50 then the
minimum segregation index is 0.98.

It is important to note that both heterogeneity in costs and heterogeneity in knowl-
edge are important to obtain the results in proposition 3. Example 1 in section 3 shows
that with heterogeneous knowledge and homogeneous costs the networks in Figures 2(a)
and 2(b) are pairwise Nash. These two networks have none of the properties (i)-(iii)
above: both the black and white communities have zero segregation index and all agents
are brokers. Example 2 in section 3 shows that with heterogeneous costs and homoge-
neous knowledge the network in Figure 2(c) is pairwise Nash: in this network the white
community has zero segregation index.

4.3 Hubs

The majority of social networks have a degree distribution with a ”long tail”: there are a
few agents, called hubs, who have a much higher degree than the other individuals in the
network. Physicists have shown that this has important implications for many phenomena
ranging from diffusion processes to the robustness of networks to random and targeted
attacks.19 The pairwise Nash networks in this model do not have enough degree variation,
so the overall shape of the degree distribution does not provide much information. How-
ever, for illustrative purposes, it is still useful to show that some equilibrium networks in
this model satisfy a stylized definition of a network with a hub.

Definition 4. An agent i is a hub in the network g if |Li(g)| À |Lj(g)|, ∀j 6= i.

Clearly, this is a basic and stylized definition which is also restrictive because it rules
out the possibility of having more than one hub in a network. However, it has the
advantage of being very clear-cut and of being very unambiguous in identifying as a hub
the agent that satisfies it. The following remark points out that a simple inspection of
the equilibrium networks with a star kernel in corollary 1 reveals that all gSK networks
have one hub as long as the number of communities is large compared to the number of
agents in each community.

Remark. If k À m then any gSK network has one hub, and the hub is an NC agent.
19See Newman et al. [2006] for a comprehensive review.
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Proof. Let i be the center of the star kernel, then mingSK{|Li(gSK)|} = k. Consider any
j 6= i, then maxi6=j,gSK{|Lj(gSK)|} = m. Clearly, i is the hub and by definition he is an
NC agent.

There are equilibrium networks which have an agent with a much higher number of
connections than all the other agents in the network. The hub is the central individual in
the ”super-community” of NC agents that connect different communities. To become the
hub it is crucial to be one of the agents that have better knowledge about the network
because only by connecting outside of one’s community it is possible to have a number of
links that is much larger than any other agent in the network.

Finally, note that a network can be a small world without a hub (e.g. a large number
of gCK networks), or, viceversa, it can have a hub but not be a small world (e.g. gSKS

networks with λ ≈ 1), and it can also be a small world with a hub. This is in line with
the findings in the empirical literature, but it is not uncommon to come across studies
that erroneously assume that any social network must necessarily have both small world
characteristics and a degree distribution with a ”long tail.”

5 Extensions

This section explores two extensions of the basic model. Section 5.1 shows that the prop-
erties of equilibrium networks are robust to relaxing the assumption of local uniqueness
of the NC agents. Section 5.2 shows that the properties of the equilibria are robust to
increasing NI agents’ knowledge of the network.

5.1 Robustness to multiple NC agents

Consider the model in section 3, without assumption (a) of local uniqueness of the NC
agents. Assume that in each community Mi there are pi NC agents, with 0 < pi < m− 1.
Moreover, let Pi ⊂ Mi be the subset of NC agents in the community Mi. Let the set
KP = {P1, ..., Pk} be the p-kernel. Subsets Pi and Pj are connected, i.e. gPiPj = 1, if and
only if there exists at least one pair of agents k ∈ Pi and l ∈ Pj such that gkl = 1. KP is
complete if gPiPj = 1, ∀i, j = 1, ..., k, i 6= j. Finally, let pmax be the maximum number of
NC agents in any community Mi, and let p∗max be the maximum number of NC agents in
any community with low cost of link formation ci < b(1)− b(2).

The following proposition is the equivalent of proposition 1 for the case of multiple
NC agents.

Proposition 4. Assume (b)-(e), and let b(1) < C < B(1) − B(2). The unique pairwise
Nash network architectures are:

(i) a complete p-kernel with complete communities, denoted gCpKC , if c < b(1)− b(2)

(ii) a complete p-kernel with mixed complete and d2 communities, denoted gCpKM , if
c < b(1)− b(2) < c < b(1)− b(3).
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(iii) a complete p-kernel with d2 communities, denoted gCpKd2, if b(1)− b(2) < c < c <
b(1)− b(3).

The proof follows closely the one of proposition 1. There is one main difference between
the statements of the two propositions: here the p-kernel, not the kernel, is a complete
network. This means that the kernel of NC agents is not necessarily a complete network,
and multiple network architectures for the kernel are possible. It is easy to see why:
suppose there are two complete communities M1,M2 with NC agents y1, y2 ∈ M1 and
y3, y4 ∈ M3. If gy1y3 = 1 then it might be that gy1y4 = 0 because y1 is already getting
benefits from its indirect connection with y4 through gy1y3 = 1.

The proposition below shows that also gCpK networks are small world networks.

Proposition 5. For any gCpK pairwise Nash network in proposition 4 we have that:

(i) the maximum diameter D(gCpK) is five

(ii) if λ < 0.95 and n < 105 then d(grandom) ≈ d(gCpK) < 5

(iii) if p∗max is finite then a lower bound on the clustering coefficient is limm,k→∞C(gCpK) =
1− λ.

The intuition for this result is as follows. gCpK networks are structurally the same as
gCK networks, but with a higher number of links across communities due to the higher
number of NC agents. Thus, the upper bounds on diameter and average geodesic distance
in (i) and (ii) in proposition 2 apply here as well. The difference with proposition 2 is
that some gCpK equilibrium networks with many NC agents and with communities with
low cost of link formation have a higher number of inter-community links than gCK

networks. However, it is straightforward to show that the main result is unchanged: the
average geodesic distance of gCpK networks is short and similar to the one of an equivalent
random network.

Proposition 2 has shown that in the limit C(gCK) is determined by the proportion 1−λ
of completely connected communities, i.e. by the NI agents in the completely connected
communities who have clustering coefficient equal to one. These NI agents will have
clustering coefficient equal to one in gCpK architectures as well. Thus, as long as there
is enough of them, i.e. p∗max is finite, then the limit of C(gCpK) will be approximately
the same as the limit of C(gCK). It follows that, if λ < 1 and p∗max is finite, the limit
of C(gCpK) will be bounded away from zero for large gCpK networks. Thus, small world
networks are prevalent even with multiple NC agents in each community.

The proposition below also shows that gCpK networks have segregation patterns and
that the role of brokers is still mainly played by the NC agents.

Proposition 6. All gCpK pairwise Nash network in proposition 4 are such that:

(i) if pmax ≤ m
2 they have segregation patterns

(ii) they have perfectly segregated NI communities
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(iii) the brokerage role is played by NC agents:
∑

i∈Mp,i∈K

IB(ηi) >
∑

j∈Mp,j /∈K

IB(ηj)

for any community Mp, p = 1, ..., k.

These statements mirror and enrich the results in proposition 3. As in proposition
3(ii), the NI agents connect exclusively with each other driving the emergence of seg-
regation patterns. Proposition 6(i) shows that the finding in proposition 3(i) is very
robust: segregation patterns emerge even if up to half of the agents in each community
are NC agents. Unless the majority of agents have complete knowledge of the network,
the emergence of segregation patterns is an inevitable by-product of the intrinsic difficulty
of perceiving the network structure.

The statement in proposition 6(iii) differs from proposition 3(iii) because here the NC
agents ”compete” for providing brokerage to their community and therefore the brokerage
role gets diluted among them. Because of this competition in some gCpK networks an NI
agent may have higher betweenness centrality than everyone in her community if she
is directly connected to the NC agents and therefore on the paths connecting them to
everyone else in the community. For instance, imagine a star community with two NC
agents i and j at the periphery of the star and an NI agent k at the center. If i and j split
their inter-community links then k will have higher betweenness centrality than either of
them because all the geodesic paths from other communities to the other individuals in
the star community will pass through the center.

However, the overall brokerage role between any given community and the rest of the
network is still mainly in the hands of the subset of NC agents belonging to that commu-
nity: any geodesic path connecting two agents in different communities involves at least
one intermediary NC agent from each community, but it involves at most one intermediary
NI agent from each community. Thus, the sum of the betweenness centralities of all the
NC agents in one community is always strictly higher than the sum of the betweenness
centralities of all the NI agents in the same community.

5.2 Better informed NI agents

The model in section 3 makes a strong assumption on the lack of cognitive knowledge
of network ignorant agents: they do not know anything about connections that do not
involve at least one agent from their group. This section relaxes that assumption and it
shows that the results do not change with the more general and realistic form of network
ignorance below.

(ii) Network Ignorant (NI): an NI agent i ∈ Mp has complete knowledge about any link
gjk where j ∈ Mp and/or k ∈ Mp. Additionally, for each community Mq (q 6= p)
she knows of the existence of a randomly chosen fraction of agents ψqmq (0 < ψq <
1), and for these ψqmq agents she knows the intra-community degree distribution
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ϕi(ψq). Finally, she does not have any knowledge of any inter-community link glt

(where l ∈ Mq, t ∈ Ms, s 6= q, p) and she assumes these links do not exist.

Figure 4 illustrates the new knowledge structure. The network in Figure 4(a) is the
real network, which is also the network perceived by the NC agents. The network in
Figure 4(b) is the cognitive network gi of one of the NI agents i belonging to the white
community: she knows of the existence of a sample of two thirds (ψ = 2

3) of the agents
in the black network, but she is not able to see the links among these agents. However,
i knows the degree distribution of the agents in this sample. If the central agent in the
black network is included in the randomly picked sample then the degree distribution will
be the one on top in Figure 4(c), otherwise it will be the one on the bottom.

(a) The real network
g, which is also the
cognitive network of the
diamond-shaped NC
agents.

(b) The cognitive
network of the circle-
shaped NI agents in the
white community.

(c) Additional knowledge available
to one of the circle-shaped NI agents
(assuming ψ = 2

3
) in the white com-

munity.

Figure 4: A network N = {M1,M2} with |M1| = 8 and |M2| = 6. Individuals in M1

are color-coded in white, and individuals in M2 are color-coded in black. Round-shaped
nodes are NI agents, and diamond-shaped nodes are NC agents.

An NI agent i ∈ Mi computes the expected benefits EBi(gij) from a link gij with
agent j ∈ Mj by assigning equal probabilities that j is one of the ψjmj individuals in i’s
sample of the Mj community. Thus, the expected indirect benefits from a link with j are
equal to the expected number of connections j has, given the sample degree distribution.
Consider an example with the networks in Figure 1 and assume that the randomly picked
distribution is the one on top in Figure 4(c). The expected benefits of connecting to j
are equal to: EBi(gij) = bi(1) + 1

4(bi(2) · 3 + 3bi(2) · 1) = bi(1) + 1.5bi(2).The maximum
possible expected benefits for any NI agent i connecting to an agent k in another network
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Mq are clearly when Mq is a complete network. In that case:

EBi(gij) = bi(1) +
1

ψqmq
[(ψqmq − 1)ψqmqbi(2)] = bi(1) + (ψqmq − 1)bi(2) ≡ EBmax

In addition to the ignorance, there is some degree of bounded rationality in the spec-
ification of the NI agents. First, the definition implicitly assumes that NI agent i ∈ Mi

is not able or does not try to figure out whether an individual j ∈ Mj who is linked to
individuals in Mi, i.e. links that i is able to perceive, is included in the randomly picked
sample for Mj or not. The NI agent simply assumes that j has a number of links with
other agents in Mj , which is equal to the expected number of links given the sample distri-
bution. Second, NI agent i does not try to figure out the second order degree distribution
of another community, i.e. the value of the expected indirect benefits of connections that
are two links away from an agent she is considering whether to connect to. Finally, agents
do not know and they are not able to figure out whether other individuals are NI or NC.
Note that all these assumptions are very plausible if communities are relatively large.

It is useful to discuss a practical example to see what this knowledge structure adds to
the previous one. As in section 2, imagine the network in Figure 4(a) depicts the friendship
relations in a firm: the white nodes belong to the marketing department and the black
ones are in IT. The diamond-shaped NC employee in marketing is omniscient: he knows
all the connections in the marketing department, the two inter-community connections,
and who is connected to whom in IT. As in section 2 a circle-shaped NI employee in
marketing knows who is connected to whom in the marketing department and the two
inter-community connections. Additionally, now a circle-shaped NI employee also knows
of the existence of four IT people and she knows that one person ”dominates” the IT
social sphere because she has three connections, while the others have only one. This
additional knowledge increases the value that she places on connections with someone
in the IT department because she is able to see that this friendship would also bring
additional indirect benefits.

Now consider the model in section 3 replacing the assumption (b) of simple NI agents
with the more sophisticated form of NI agents in (ii) above. For expositional purposes,
assume ψq ≡ ψ, ∀q = 1, ..., k. The following proposition is the equivalent of proposition 1
for the case of more knowledgeable NI agents.

Proposition 7. Assume (a), (c)-(e) and that ψ is such that EBmax < B(1)−B(2). Let
EBmax < C < B(1)−B(2). The unique pairwise Nash network architectures are:

(i) a complete kernel with complete communities, denoted gCKC , if c < b(1)− b(2)

(ii) a complete kernel with mixed complete and d2 communities, denoted gCKM , if c <
b(1)− b(2) < c < b(1)− b(3).

(iii) a complete kernel with d2 communities, denoted gCKd2, if b(1) − b(2) < c < c <
b(1)− b(3).
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The only difference from proposition 1 is that the range of values allowed for the cost C
is narrower since, by definition, EBmax > b(1)+b(2)−b(3). This makes intuitive sense: as
the knowledge available to NI agents increases (i.e. ψ increases), it becomes more difficult
to sustain equilibrium networks where the NC agents use their better knowledge to acquire
a strategic position as brokers among different communities. Note that if EBmax is high
enough then these equilibria may not exist.

These equilibrium network architectures are exactly the same as the networks char-
acterized in proposition 1. Thus, the discussion of the properties of these equilibrium
networks in section 4 applies here as well. To summarize, these networks are such that:
(i) they have short diameter and average geodesic distance similar to the ones of a random
graph grandom with the same number of links and nodes; (ii) they have higher clustering
coefficients than grandom, as long as a non-negligible fraction of communities Mis are low
cost, i.e. ci < b(1) − b(2); (iii) they have segregation patterns and the NC agent i ∈ Mi

has higher betweenness centrality than any other agent j ∈ Mi, i.e. the k NC agents are
the brokers in the network.

It is interesting to discuss what happens in the ψ → 1 limit. First of all, the NI agents
have complete knowledge of other communities with low cost of link formation because
in those communities each agent is connected to everyone else in their community, and
therefore if NI agents have complete knowledge of the distribution of links then they also
know the degree of each individual. Thus, none of the gCK networks is an equilibrium
because EBmax(ψ → 1) > B(1) − B(2) and therefore in all equilibrium networks NI
agents will link with agents in other low cost communities. However, NI agents still do
not have complete knowledge of the communities with high cost of link formation. Thus,
the equilibrium networks in this limiting case are different from the ones illustrated in
example 2 in section 3. Unlike the case where everyone has complete knowledge, here
segregation patterns will still always exist in equilibrium because NI agents still do not
have complete knowledge on the communities with high costs of link formation.

Finally, it is worth pointing out that there are two dimensions in the incompleteness
of the knowledge that NI agents have. First, they have knowledge only on a fraction ψ
of the agents in another community. Second, they only know the degree distribution, not
the exact degree of each node. These two dimensions are not both required to obtain the
results in proposition 7. The first would suffice: if the NI agent knows the exact network
structure of a fraction ψ of the agents in another community then, for appropriate values
of ψ, it is still possible to obtain that the benefits to an NI agent of a connection to
any community would be lower than C < B(1) − B(2), and therefore only NC agents
would connect across communities. On the other hand, the second dimension alone would
not suffice: let Mj be a complete community, if an NI agent i ∈ Mi knows the degree
distribution of Mj , then it has complete knowledge on that community and therefore the
same degree of complete knowledge of the NC agent.
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6 An application

Recent years have seen the rapid development of web-based social networking tools which
have entered many people’s daily lives: facebook.com boasts more than 150m users after
only 5 years of operations, and it is now one of the major players among internet corpo-
rations.20 Alongside generalist social networking tools, there has been the development
of specialized professional networking sites that claim to provide a competitive edge by
increasing the users’ knowledge of their professional network. For instance, linkedin.com is
a social network site targeted to professionals to ”discover inside connections when you’re
looking for a job or new business opportunity.”

Firms are becoming increasingly receptive to the advantages of knowing the social
network within and outside the organization. For instance, hooversconnect.com sells a
software product that maps email/contact networks within an organization to increase
employees’ knowledge of the professional resources that may be available to them through
the network of other members of the organization. The underlying theme behind all these
social networking websites, tools and applications is that an increase in network knowledge
is beneficial to an employee and to an organization. The model developed in this paper
provides a framework to test these claims.

Consider a simpler version of the model with two low cost communities, and where all
agents are NC. Moreover, also assume for convenience that the two communities have the
same size. Formally, let k = 2, |M1| = m1 = |M2| = m2 ≡ m and c1, c2 < b(1)− b(2). To
avoid long algebraic expressions define the following quantities:

EL(p) = b(1)− b(3) + 2(m− p− 1)[b(2)− b(3)]
EU (p) = EL(p) + b(2)− b(3)
PL(q) = b(1)− b(3) + (m− q − 1)[b(2)− b(3)]
PU (q) = PL(q) + b(2)− b(3)

As the following proposition states, EL(p) and EU (p) are the lower and upper bounds
for the range of the inter-community costs C for which the unique efficient network has
p inter-community links. Similarly, PL(q) and PU (q) are the lower and upper bounds for
the range of the inter-community costs C for which the unique pairwise Nash network has
q inter-community links.

Lemma 2. Assume k = 2, m1 = m2 ≡ m, c1, c2 < b(1) − b(2) and that all agents are
NC:

(i) For any value of C such that EL(1) < C < EU (m − 1), there is a unique efficient
network formed by two complete communities linked by p∗ inter-community links
such that each agent is involved in at most one inter-community link, and where p∗

is such that EL(p∗) < C < EU (p∗) with 1 ≤ p∗ < m.
20Other general social networking sites include orkut.com (operated by Google), hi5.com, bebo.com, etc.
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(ii) For any value of C such that PL(1) < C < PU (m − 1), there is a unique pairwise
Nash network formed by two complete communities linked by q∗ inter-community
links such that each agent is involved in at most one inter-community link, and
where q∗ is such that PL(q∗) < C < PU (q∗) with 1 ≤ q∗ < m.

Fix C so that EL(p∗) < C < EU (p∗) and therefore the efficient network has p∗ inter-
community links. Then PU (p∗) ≤ EL(p∗) for all p∗ ∈ [1,m−1).Hence the unique pairwise
Nash network is never efficient.

The structure of the efficient and equilibrium networks is intuitively clear. Internally
the communities are complete networks because the cost c of intra-community links is low.
Moreover, the first few links across communities bring very high indirect benefits which
overcome their relatively high costs. As inter-community links cumulate, the indirect
benefits they bring decrease until it is no longer beneficial to form these links.

There is a fundamental discrepancy between efficient and equilibrium networks: pair-
wise Nash networks are never efficient because they are under-connected. This is anal-
ogous to the result in Jackson and Wolinsky [1996] for the connections model: if costs
are moderately higher than direct benefits then the star is the efficient network but it is
not an equilibrium network. The intuition for the discrepancy is that an inter-community
link brings indirect benefits to both the initiator of the link and the other members of
her community, but the latter benefits are not taken into account by the initiator in her
decision. In other words, there are positive externalities to link formation that lead to the
discrepancy between equilibrium and efficient networks.

Now consider a society where the knowledge of the network is low, and the introduction
of a social networking tool allows some agents to increase their knowledge of the network.
Formally, suppose that in the initial society all agents are NI and that it is possible to turn
q agents into NC by, e.g., giving them access to a social networking tool. Note also that
the caveat in the second paragraph of section 3.3 applies here as well: the welfare analysis
that follows considers the payoffs from the real, not the cognitive, network. The following
proposition states the effects of increasing knowledge of the network in this society.

Proposition 8. Let PL(1) < C < PU (m − 1). Consider the set-up in lemma 2, except
that all agents are NI:

(i) Increasing knowledge of the network by turning some agents into NC agents (weakly)
increases welfare, and

(ii) Turning p∗ agents in each community into NC agents is sufficient to match the
welfare of the pairwise Nash network where all agents are NC.

The intuition for the proof is rather straightforward, and the results follow almost di-
rectly from lemma 2. The message of proposition 8 is that the impact of social networking
tools is positive because they increase agents’ knowledge of the network, allowing them
to better exploit its benefits. However, there is no need for everyone in a community to
know about the network: a few agents within each community suffice.

30



There are several service firms21 that offer software packages and consulting services
that involve mapping the informal network of an organization to increase employees’
knowledge of the network. The standard approach is to map the network and then feed-
back the information to all the employees. This turns out to be a rather costly process,
mainly due to the demands on employees’ time. An alternative approach that is less
time-consuming and equally effective would be a ’pick-the-winners’ strategy: select a few
individuals who will receive the feedback from the network analysis and therefore acquire
better knowledge of the network. These individuals would then act as brokers, while the
rest would benefit from the indirect benefits of brokerage.

Note that the results in proposition 8 focus on a very specific case of the model
with only two communities and very low intra-community costs of link formation. The
need of these specific assumptions is due to the well-known difficulties of characterizing
efficient networks with heterogeneity in costs. However, I conjecture that the statements
in proposition 8 apply to the general setting with k communities and intermediate costs
of intra-community links. The intuition is that even in the general case the pairwise Nash
networks will be under-connected compared to the efficient networks. This implies that
forming additional links will always improve welfare because there are positive externalities
to link formation. Thus, as the knowledge of the network increases, the pairwise Nash
network will either stay unchanged or it will have ”new” links leading to a (weakly)
positive change in welfare. Moreover, the pairwise Nash network will obviously not be
the complete network, so it should be possible to obtain the same pairwise Nash network
with a lower number of NC agents.

7 Conclusion

This paper has presented a strategic model of network formation where agents have in-
complete and heterogeneous knowledge of the network structure. For a broad range of the
parameters, the unique pairwise Nash equilibrium networks are such that (i) the average
and maximum distance between any two agents in the network are similar to those in an
equivalent random network; (ii) the clustering coefficient is significantly higher than in
an equivalent random network; (iii) segregation patterns are a robust equilibrium feature
and (iv) the segregated communities are connected by the brokers who are the agents with
complete knowledge of the network. Moreover, in a different parameter range, (v) some
equilibrium networks have one hub: an agent with complete knowledge of the network
with a much higher number of connections than anyone else.

The heterogeneity in the knowledge of the network breaks the symmetry of the payoff
structure and, jointly with the cost heterogeneity, is a key driver of the emergence of
properties (i)-(v). The presence of agents with complete knowledge is key to shorten the
social distance between individuals in the network, because these agents see the benefits
of connecting otherwise separate communities. The presence of agents with incomplete
knowledge is essential for segregation patterns to emerge. Moreover, the individuals with

21Examples include orgnet.com, keyhubs.com, morphix.com, netminer.com, etc.
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complete knowledge are the only brokers: they strategically position themselves to be at
the center of the paths that connect different parts of the network. Finally, the hub is
always an agent with complete knowledge because connecting to individuals in different
communities is key to cumulating a very high number of connections.

Knowledge of the network has (weakly) positive welfare consequences both at the
individual and at the collective level. However, depending on the social environment it
may be comparatively more beneficial to be directly connected to someone knowledgeable
instead of being a knowledgeable individual. If the social network is very dense and close-
knit then it is better to free ride on the benefits knowledgeable individuals bring into the
community. On the other hand, if the network is sparse then it is comparatively better
to be the knowledgeable person who sees the value of having prime access to other parts
of the network. In order to obtain the maximum collective welfare that can be achieved
in equilibrium it is not necessary that all individuals have complete knowledge of the
network; a few knowledgeable individuals in each community suffice.

Organization Network Analysis (ONA) is becoming a widespread tool to analyze and
improve the performance of the informal component of organizations. Cross and Parker
[2004] and other studies provide extensive evidence that the social network structure and
the position of key individuals matter for individual and collective performance. Cross
and Thomas [2009] and a variety of firms providing tools and services to map companies’
informal networks claim that increasing employees’ knowledge of the social network has
a positive impact on performance. An application of this model supports these claims,
showing that increases in knowledge have a (weakly) positive welfare impact. Furthermore,
this model suggests that it is not necessary to feedback the results of an ONA to the whole
organization: a more cost-effective approach of targeting a subset of employees would
suffice to obtain the same positive impact on collective welfare.

It is worthwhile to point out that this model is not only applicable to social networks.
There are a variety of networks for which knowledge about the network structure varies
across the entities involved and such that this knowledge matters for equilibrium outcomes.
An example is a partnership network among firms. When a firm i decides whether to invest
in a partnership with firm j, the knowledge on j’s existing partnerships and the way they
fit in the overall partnership network in the industry is relevant for i’s decision. Moreover,
many firms do not disclose their partnership agreements, so better knowledge about the
partnership network might lead to strategic positioning as brokers and the emergence of
small world networks.

An avenue for future research is to test experimentally the implications of the model.
The methodology developed by Krackhardt [1987] is so far the only one available to map
cognitive networks and investigate their role on determining economic outcomes. However,
this methodology is only applicable to small networks and it would not be adequate to
test the predictions for the structural properties of relatively large networks. There is
the need to develop a new methodology to untangle the causality arrow: does better
cognitive knowledge of the network lead to strategic positioning, or do certain positions
in the network structure facilitate learning the network? The answer to this question
could shed further light on the role that individuals’ knowledge of the network plays in
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shaping network structures, and it would open the path for policy interventions to improve
individual and collective welfare by enhancing knowledge of the social structure everyone
belongs to.
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A Appendix: Proofs

This appendix contains all the proofs omitted in the main body of the paper. The following
terminology and concepts will be useful for some of the proofs. Let li(g) ⊆ Li(g) be any
subset of i’s links in g. The marginal utility for an agent i from a set of links li(g) in a
network g is:

mui[g, li(g)] = ui(g)− ui[g − li(g)] (5)

Following Bloch and Jackson [2006b], a utility function u(.) is superadditive in own-
links if:

mui[gi, li(gi)] ≥
∑

gij∈li(gi)

mui(gi, gij) (6)

for all i, gi and li(gi) ⊆ Li(gi).
Jackson and Wolinsky [1996] first defined the notion of pairwise stability, a weaker

equilibrium concept than pairwise Nash equilibrium. The graph g is pairwise stable if:
(i) ∀gij ∈ g, ui(gi) ≥ ui(gi − gij) and uj(gj) ≥ uj(gj − gij) and (ii) ∀gij /∈ g, if ui(gi) <
ui(gi + gij) then uj(gj) > uj(gj + gij). Hereafter denote by PS(u) and PN(u) the sets
of all possible pairwise stable and Nash networks respectively, when u(.) is the functional
form of the utility.

Proof of Lemma 1. The strategy of the proof is to show that there is no pairwise stable
network g with a link gij such that i and j belong to different communities and i and/or j
is a NI agent. By lemmata 3 and 4 it then follows that there is no pairwise Nash network
g with the above characteristics.

First, consider a community Mp where the cost of forming links is c < b(1) − b(2).
Clearly, all agents i ∈ Mp are directly connected to each other, because if agents 1, 2 ∈ Mp

are not connected in g then mui(gi+g12, g12) = b(1)−c−b(2) > 0 for i = 1, 2 and therefore
the agents would form the link. Now, let i ∈ Mp be an NI agent, and let j ∈ Mq, q 6= p.
By definition of an NI agent, i will assume that any link gjk where k /∈ Mp is such that
gi
jk = 0. Thus, mui(gi + gij , gij) = b(1) − C < 0 and NI agent i will not form any link

with agents in a different community.
Second, consider a community Mp where the cost of forming links is b(1)− b(2) < c <

b(1) − b(3), and therefore (a) there are no agents i, j, k such that gij = gjk = gik = 1.
First, note that (b) all agents i ∈ Mp are within a geodesic distance 2 of each other. This
is because if agents 1, 2 ∈ Mp are such that d12(g) > 2 then the minimum marginal utility
they would gain by linking with each other is mui(gi + g12, g12) = b(1)− c− b(3) > 0 for
i = 1, 2 and therefore they would form the link. Now, proceed ad absurdum. Let i ∈ Mp

be an NI agent and suppose that gij = 1, (j ∈ Mq, q 6= p). For mui(gi, gij) < 0 to hold,
the following conditions must be true: (c) there must exist an agent 1 such that gi

j1 = 1
because C > b(1) + b(2) − b(3), and (d) there is no other agent l such that g1l = 1 and
gil = 1. Moreover, (e) 1 ∈ Mp because i is NI. By assumption, |Mp| = mp ≥ 3 and
therefore there is another agent k ∈ Mp that is connected to the network. Consider two
cases.
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(i) Suppose that gkj = 1. For j not to remove the links with i, k, 1, these agents must
provide some indirect benefits. Thus, assume there are agents 2 ∈ Mt and 3, 4 ∈ Mr such
that gi2 = gk3 = g14 = 1. Now there are two cases to consider: t = p and t 6= p.

First, t = p. In order to satisfy (b) it must be that d21(g), d2k(g) ≤ 2. By (d) we
cannot have that g21 = 1 and/or g2k = 1. Thus, in order to have d2k(g) ≤ 2, there must
be one or more agents q such that g2q = gqk = 1. However, if this were the case then
muj(g, gji) = C − b(1) − b(2) + b(3) > 0. Similarly, in order to have d21(g) ≤ 2, there
must be one or more agents q such that g2q = gq1 = 1. However, if this were the case then
muj(g, gji) = C − b(1)− b(2) + b(3) > 0.

Second, t 6= p. For mui(gi, gi2) < 0 to hold, the following conditions must be true:
(c’) there must exist an agent 5 such that gi

25 = 1, and (d’) there is no other agent l such
that g7l = 1 and gil = 1. Moreover, (e’) 7 ∈ Mp because i is NI. By (b), agents 7 and k
must be at most at geodesic distance 2. There are three possibilities: g73 = 1, g7j = 1 or
g7k = 1. In any of these three links exist then muj(g, gji) ≥ C − b(1)− b(2) + b(3) > 0.22

Thus, if gkj = 1 then there is no possible stable network with gij = 1.
(ii) Suppose that gik = 1. By (b) it must be that dk1(g) ≤ 2. By (d) we cannot have

that gk1 = 1. Thus, it must be that there is an agent 2 such that gk2 = g12 = 1. However,
if this were the case then muj(g, gjk) = C − b(1)− b(2) + b(3) > 0. Thus, if gik = 1 then
there is no possible stable network with gij = 1.

Thus, it must be that gij = 0, i.e. no NI agent i has any link with an agent j in
another community.

Proof of Proposition 1. Before proving the proposition, let us establish the following
lemmata.

Lemma 3. The utility defined in (1) is superadditive in own-links.

Proof. By definition 3 I need to show that mui(g, li(g)) ≥ ∑
gij∈li(g) mui(g, gij) ∀ i, g and

li(g) ⊆ Li(g). It suffices to show the statement is true for two links gij , gik ∈ g, where
i 6= j 6= k. Thus, the claim is that

mui(g, gij + gik) ≥ mui(g, gij) + mui(g, gik) (7)

Note that the distance dij(g) between i and j in g is such that dij(g) ≤ dij(g − li(g))
since any path from i to j in g − li(g) is also present in g, but the opposite may not be
true if the path goes through the deleted link gil ∈ li(g). Thus, it follows that for all
agents p 6= i:

dip(g) ≤ dip(g − gij) ≤ dip(g − gij − gik) (8)

dip(g) ≤ dip(g − gik) ≤ dip(g − gij − gik) (9)

22Another possibility is that 7 is connected to a new agent 8 who is directly connected to k. However,
in this case it is easy to iterate the argument in the preceding paragraph to show that if this were the case
then muj(g, gji) > 0.
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The marginal utility for i from deleting a link gij is the recovered cost of the link gij

minus any benefit i cannot access anymore or for which it requires a longer path to have
access to. For expositional convenience, define Bip(g, li(g)) = b(dip(g))− b(dip(g− li(g))).
By simple computations we get:

mui(g, gij) =
∑

p∈N

[b(dip(g))− b(dip(g − gij))]− c =
∑

p∈N

Bip(g, gij)− c

mui(g, gik) =
∑

p∈N

[b(dip(g))− b(dip(g − gik))]− c =
∑

p∈N

Bip(g, gik)− c

mui(g, gij + gik) =
∑

p∈N

[b(dip(g))− b(dip(g − gij − gik))]− 2c =
∑

p∈N

Bip(g, gij + gik)− 2c

Clearly, by definition if Bip(g, gij) 6= 0 then Bip(g, gij + gik) 6= 0. Similarly, if
Bip(g, gik) 6= 0 then Bip(g, gij +gik) 6= 0. Furthermore, there is no p such that Bip(g, gij) 6=
0 and Bip(g, gik) 6= 0. To show this, suppose there exists such a p, then there are two
distinct shortest paths p

(1)
ip and p

(2)
ip in g such that |p(1)

ip | = |p(2)
ip |, gij ∈ p

(1)
ip , gik ∈ p

(2)
ip ,

gij /∈ p
(2)
ip and gik /∈ p

(1)
ip . But then dip(g − gij)=dip(g) since p

(2)
ip still exists and therefore

Bip(g, gij) = 0 which is a contradiction. Thus, there is no p such that Bip(g, gij) 6= 0 and
Bip(g, gik) 6= 0.

But then for all p we have that

Bip(g, gij + gik) ≥ Bip(g, gij) + Bip(g, gik) (10)

since Bip(g, gij + gik) ≥ Bip(g, gij) from eq. (8) and Bip(g, gij + gik) ≥ Bip(g, gik) from eq.
(9) and there is no p such that Bip(g, gij) 6= 0 and Bip(g, gik) 6= 0. The inequality in (10)
proves the claim in (7).

Lemma 4. If u(.) is superadditive in own-links on PS(u) then PS(u) = PN(u).

Proof: Theorem 1 in Calvó-Armengol and Ilkiliç [2006] proves that if u(.) is α-convex on
PS(u) for some α ≥ 0 then PS(u) = PN(u). Setting α = 1, their definition of α-convexity
reduces to the superadditivity condition in section 2. By lemma 3, u(.) is superadditive,
and this proves the statement.

Lemma 5. Consider a network formation game where the benefits from connections are
heterogeneous, and vary in the [b(1), b(1)] range. The pairwise Nash network architectures
for the game are:

(i) c < b(1)− b(2) is a necessary and sufficient condition for the unique pairwise Nash
network to be the complete community gC

(ii) If b(1) − b(2) < c < b(1) then the star community g∗ is a pairwise Nash network
architecture.
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(iii) If c > b(1) then the empty graph g∅ is a pairwise Nash network, and g∗ is not a
pairwise Nash network

Proof. By lemmas 3 and 4 it suffices to prove the above statements for pairwise stability.
The proofs are then a straightforward check of the conditions for pairwise stability, and
they are therefore omitted.

Now, the proof of Proposition 1:

Proof. First of all, note that each community Mi is either a gC or a gd2 architecture. If
ci < b(1) − b(2) then Mi is a gC network because if 1, 2 ∈ Mi are such that g12 = 0 in g
then the minimum benefit to add the link g12 is mui(g + g12, g12) = b(1) − c − b(2) > 0
for i = 1, 2 so they will form the link. Similarly, if b(1)− b(2) < ci < b(1)− b(3) then Mi

is a gd2 network because if 1, 2 ∈ Mi are such that d12(g) > 2 then the minimum benefit
to add the link g12 is mui(g + g12, g12) = b(1)− c− b(3) > 0 for i = 1, 2 so they will form
the link.

By lemma 1 the only agents forming links across communities are the NC agents.
Moreover, the benefits to connecting to an NC agent are in the [B(1), B(1)] range. The
maximum benefit to connecting to yi is when Mi is a gC network and all agents are
directly connected to yi, in that case the benefits are equal to B(1) ≡ b(1) + (m− 1)b(2).
The minimum benefit is when Mi is a g∗ network and all, except for one, agents are two
links away from yi, in that case the benefits are equal to B(1) ≡ b(1)+ b(2)+ (m−2)b(3).

Let G(B(1), B(1), C) be the game played by the kernel of NC agents, with homo-
geneous costs C and heterogeneous benefits in the [B(1), B(1)] range. Now consider
the network formation game GL(b(1), b(1), c) in lemma 5, with homogeneous costs c and
heterogeneous benefits in the [b(1), b(1)] range. By construction, GL(b(1), b(1), c) is iso-
morphic to G(B(1), B(1), C). Thus, by lemma 5(i) and since C < B(1)−B(2) the kernel
of NC agents is a complete network.

Now it suffices to examine the cost structure of the communities to characterize the
pairwise Nash equilibria:

(i) Since c ≤ c < b(1)− b(2) then all communities are gC networks. Thus, the unique
pairwise Nash network is a complete kernel with complete communities gCKC .

(ii) There are (1−λ)k communities Mi such that ci < b(1)− b(2), and therefore there
are (1 − λ)k complete communities. The remaining λk communities Mj are such that
b(1) − b(2) < cj < b(1) − b(3), and therefore they are gd2 networks. Thus, all pairwise
Nash networks are formed by a complete kernel with mixed complete and d2 communities
gCKM .

(iii) Since b(1) − b(2) < c ≤ c < b(1) − b(3) then all communities are gd2 networks.
Thus, all pairwise Nash networks are formed by a complete kernel with d2 communities
gCKd2.

Proof of Corollary 1. The proof is exactly the same as the one of proposition 2 except
for the last sentence of the third paragraph (see above) that should now read ”by lemma
5(ii) and since B(1)−B(2) < C < B(1) the kernel of NC agents is a d2 network.”
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Proof of Corollary 2. Consider each case separately:
(i) The payoffs for the NC agent are ui(gCKC) = (m−1)[b(1)− c]+(k−1)[b(1)−C]+

(k−1)b(2), while the payoffs for the NI agent are: uj(gCKC) = (m−1)[b(1)−c]+(k−1)b(3).
It is straightforward to show that ui(gCKC) < uj(gCKC) if C > b(1) + b(2)− b(3).

(ii) The payoffs for the NC agent are ui(gCKSP ) = b(1) − c + (m − 1)b(2) + (k −
1)[b(1) + b(2) + (m− 2)b(3)−C]. In terms of position in the network structure there are
two types of NI agents: at the center and at the periphery of the star community. The NI
j agent at the center of the star community has payoffs: uj(gCKPS) = (m− 1)[b(1)− c] +
(k− 1)[b(2) + b(3) + (m− 2)b(4)]. The NI agent k at the periphery of the star community
has payoffs: uk(gCKSP ) = b(1)− c + (m− 1)b(2) + (k − 1)[b(3) + b(4) + (m− 2)b(5)]. It
is straightforward to verify that ui(gCKSP ) > max{uj(gCKPS), uk(gCKSP )}.
Proof of Proposition 2. Consider each part separately.

(i) By inspection of the gCK networks, the maximum geodesic distance between any
k ∈ Mi and l ∈ Mj is when i 6= j and both k and l are NI agents in a d2 community who
are not directly connected to the NC agent. Let g ∈ gCK be such that there are at least
two communities Mi and Mj with such agents k and l. Let xi ∈ Mi and xj ∈ Mj be the
agents that connect k and l respectively to the NC agents yi ∈ Mi and yj ∈ Mj . Then the
shortest path between k and l is pkl = {gkxi , gxiyi , gyiyj , gyjxj , gxj l}, so Max{D(gCK)} =
D(g) = |pkl| = 5.

(ii) By inspection of the gCK networks, it is evident that Min{d̄(gCK)} = d̄(gCKC),
i.e. the architecture with the shortest average path length is the network with complete
kernel and complete communities. The closed-form expression for d̄(gCKC) is:

Min{d(gCK)} = d̄(gCKC) =
1

mk − 1
[k(3m− 2) + 1− 2m]

The random network grandom which is equivalent to gCKC has average geodesic dis-
tance approximately equal to:

d̄(grandom) ≈ log(mk)
log((m2 −m− 1 + k)/m)

It is straightforward to verify that d̄(gCKC), d̄(grandom) ∈ (1, 3) and d̄(gCKC) ≈
d̄(grandom) for any parameter values of m, k satisfying mk = n < 105.

Clearly, the average geodesic distance of a network gCK(λ) with a fraction λ of high
cost communities is increasing in λ: the more high cost communities there are, the higher
is the average geodesic distance because high cost communities are less connected than
low cost ones. Thus, d̄(gCK(λ)) ≤ d̄(gCKS) = Max{d̄(gCK)} for any λ, where gCKS is the
network with complete kernel and star communities with the NC agents at the periphery.
The closed-form expression for d̄(gCKS) is:

Max{d(gCK)} = d̄(gCKS) =
1

m(mk − 1)
[
mk(5m− 6)− (3m2 − 2m− 2)

]
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The random network grandom which is equivalent to gCK(λ) has average geodesic distance
approximately equal to:

d̄(grandom) =
log(mk)

log((m + k − 2 + (1− λ)(m− 1)2 + λ(m− 1))/m)

It is straightforward to verify that d̄(gCKS), d̄(grandom) < 5 for any parameter values
of m, k satisfying mk = n < 105.

(iii) First, note that the gd2 networks with the lowest clustering coefficient are star
networks since C(g∗) = 0. Thus, in order to find a lower bound for the clustering co-
efficient of any gCK network, assume that all gd2 communities are star networks. The
following expression is the formula for the clustering coefficient of any gCK network with
d2 communities that are star networks.

Min{C(gCK)} =
[
(1− λ)[4 + k(k − 3) + m(m− 3)]

m(m + k − 2)(m + k − 3)
+ (1− λ)

(
1− 1

m

)]
+ (11)

+
[

µ(k − 1)(k − 2)
m(m + k − 2)(m + k − 3)

+
(k − 2)(λ− µ)

mk

]
(12)

where µ (with 0 ≤ µ ≤ λ) is the proportion of communities that are a star community
with the NC agent at the center.

Taking the limit of the above expression gives the result: limm,k→∞[Min{C(gCK)}] =
1− λ. Moreover, if m is finite then limk→∞C(gCK) = (1− λ) + λ

m > 1− λ. Viceversa, if
k is finite then limm→∞C(gCK) = 1− λ.

Proof of Proposition 3. Statement (ii) is a direct consequence of lemma 1. Let us
prove (i) and (iii).

(i) By lemma 1 NI agents have segregation index equal to one. Each NC agent yp ∈ Mp

is connected to at least another agent i ∈ Mp so the minimum segregation index for an
NC agent is 1

1+k−1 = 1
k . The minimum segregation index of Mp is therefore:

Sp =
1
m


1 + ... + 1︸ ︷︷ ︸

m−1

+
1
k


 = 1− k − 1

mk

To obtain the lower bound on the minimum segregation index, let mp = 3 so that there
is the minimum possible number of NI agents:

Sp =
1
3

(
1 + 1 +

1
k

)
>

2
3

(iii) Let i ∈ Mi be the NI agent with the highest betweenness centrality IB(ηi) among
all NI agents in Mi, i.e. ηi[pkl(g)] > ηj [pkl(g)], where j 6= i, yi, k ∈ Mp, l ∈ Mq, q 6= p.
Consider the NC agent yi ∈ Mi. Clearly, in any gCK network all the paths from k to l
that include i have to include yi as well because that is the only agent in Mi that forms
connections with agents in other communities. Thus, ηyi [pkl(g)] ≥ ηi[pkl(g)]. Moreover, yi

is also on the geodesic paths that connect i to agents in other communities, and therefore
ηyi [pkl(g)] > ηi[pkl(g)]. Thus, IB(ηyi) > IB(ηj), ∀j ∈ Mi, j 6= yi.
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Proof of Proposition 4. First, note that lemmas 1 and 5 apply here as well. Also, as
in proposition 1, each community Mi is either a gC or a gd2 network. The benefits for yi

(or yj) from the first link gyiyj (yi ∈ Pi, yj ∈ Pj) between subsets Pi ∈ Mi and Pj ∈ Mj

are in the [B, B] range. The maximum benefit is when Mj (or Mi) is a gC network.
The minimum benefit is when Mj (or Mi) is a g∗ network and all NC agents are at the
periphery of the star.

Let G(B(1), B(1), C) be the game played by the p-kernel KP , with homogeneous
costs C and heterogeneous benefits in the [B(1), B(1)] range. Now consider the network
formation game GL(b(1), b(1), c) in lemma 5, with homogeneous costs c and heteroge-
neous benefits in the [b(1), b(1)] range. By construction, GL(b(1), b(1), c) is isomorphic
to G(B(1), B(1), C). Thus, by lemma 5(i) and since C < B(1) − B(2) the p-kernel is a
complete network.

The last step to characterize the pairwise Nash equilibria is to examine the cost struc-
ture of the communities. This is the same as points (i), (ii), (iii) in the proof of proposition
1 and it is not repeated here.

Proof of Proposition 5. First, note that gCK ⊆ gCpK since gCK architectures are the
special case pi = 1, ∀i = 1, ..., k. Second, note that for any g ∈ gCpK there exists a
g′ ∈ gCK such that g has the same community structure of g′ plus some additional intra-
community and inter-community links. The additional links come from the additional
NC agents who form additional inter-community links and, possibly, additional intra-
community links since they become more valuable due to the indirect benefits they bring.
Now, consider each case separately.

(i) The proof is the same as the proof of (i) in proposition 2.
(ii) The proof is very similar to the proof in (ii) in proposition 2 and it is therefore

omitted.
(iii) The clustering coefficient for gCK networks in the limit m, k →∞ is determined by

the clustering coefficient of NI individuals in complete communities which have clustering
coefficient equal to one. NI agents in complete communities in gCpK architectures will
clearly also have clustering coefficient equal to one. Following a similar argument to the
proof of (iii) in proposition 2, we have that:

limm,k→∞[Min{C(gCpK)}] ≈ 1− λ

(
1− p∗max

m

)
(13)

where p∗max is the maximum number of NC agents in any community Mi with low cost of
link formation ci < b(1)− b(2). If p∗max 9∞ then limm,k→∞[Min{C(gCpK)}] = 1− λ as
in (iii) in proposition 2.

The right-hand-side of equation (13) comes from the second term in equation (11)
where clearly p∗max = 1 for gCK networks. Note that the equivalent of the expression in
(11) will be much more complicated for gCpK networks since the clustering coefficients of
several nodes will be affected by the additional links. However, the clustering coefficient
of all these nodes will go to zero in the limit so it is not necessary to derive the exact
formula for C(gCpK) in order to obtain the result in (13) above.
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Proof of Proposition 6. Statement (ii) is a direct consequence of lemma 1. Let us
prove (i) and (iii).

(i) By the definition of segregation index, a community Mq with the lowest Sq is
composed by agents with the lowest possible segregation index. By lemma 1, NI agents
have segregation index equal to 1. To minimize Sq, let pq = m

2 , i.e. half of agents in Mq

are NC. Each NC agent yp ∈ Mp is connected to at least another agent i ∈ Mp so the
minimum segregation index for an NC agent is 1

1+k−1 = 1
k . The minimum segregation

index of Mp is therefore:

Sp =
1
m


1 + ... + 1︸ ︷︷ ︸

m
2

+
1
k

+ ... +
1
k︸ ︷︷ ︸

m
2


 >

1
2

(iii) Consider the agents in the Mp community. There are three types of paths con-
necting any j ∈ Mq (q 6= p) to an agent in i ∈ Mp: (i) a path with no intermediary agent
k ∈ Mp if i is an NC agent such that i ∈ K; (ii) a path with one intermediary NC agent
k if gik = 1 and k ∈ K; (iii) a path with two intermediary agents k ∈ K and l /∈ K if
gil = gkl = 1 and gik = 0, with k and l an NC and an NI agent respectively. Note that
(i)-(iii) exhausts all possibilities because all networks have segregation patterns and the
maximum geodesic distance between two agents in the same community is two. Also note
that each type of path always exists for each community Mp except for (iii), which exists
only if Mp is a d2 network. Clearly, paths like (i) do not contribute to the betweenness
centrality of any of the agents in Mp. Paths like (iii) contribute equally to the between-
ness centrality of NC and NI agents in Mp. Finally, paths like (ii) contribute only to the
betweenness centrality of NC agents. Thus,

∑
i∈Mp,i∈K IB(ηi) >

∑
j∈Mp,j /∈K IB(ηj).

Proof of Proposition 7. In the statement and proof of lemma 1, replace C > b(1) +
b(2)− b(3) with C > EBmax. The proof of the lemma then follows unchanged. The proof
of this proposition is then the same as the proof of proposition 1.

Proof of Lemma 2. For the proof of statement (i) please refer to Jackson and Rogers
[2005] (proposition 2, page 624).

(ii) It is easy to see that any pairwise Nash network g is such that gij = 1 if i and j
belong to the same community: suppose not, then mu(g + gij , gij) = b(1) − c − b(2) > 0
and g is not pairwise Nash. Now consider a network g with complete communities and
q (with 1 ≤ q < m) inter-community links such that each agent i is involved in no more
than one inter-community link. Let a, b ∈ U1 and c, d ∈ U2 be such that gac = 1 and
gbd = 0, then for g to be pairwise Nash we must have:

mu(g + gbd, gbd) = −C + b(1)− b(3) + (m− q − 1)[b(2)− b(3)] ≡ −C + PL(q) < 0
mu(g, gac) = C − b(1) + b(3) + (m− q − 1)[−b(2) + b(3)] ≡ C − PL(q)− b(2) + b(3) < 0
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Thus, if PL(q) < C < PL(q) + b(2)− b(3) then g is pairwise Nash. It is clear that g is
the unique pairwise Nash architecture: in any pairwise Nash network all agents within a
community are connected and if there were a number of inter-community links different
than q then the expressions above show that the network would not be pairwise Nash.

By simple substitution and computation, it is clear that PU (p∗) < EL(p∗) if 1 ≤ p∗ <
m− 1 and PU (p∗) = EL(p∗) if p∗ = m− 1.

Proof of Proposition 8. Consider each statement separately.
(i) Let gr be the pairwise Nash network when there are r NC agents, and let gs be

the pairwise Nash network when there are s < r agents. Suppose that r − s NI agents in
gs are turned into NC agents. There are two cases:

- gr and gs have the same number of inter-community links, i.e. they have the same
network architecture given that they both have complete communities. Then clearly
after turning r−s NI into NC agents there is no link formation/removal in gs because
gs is the same as gr which by lemma 2 is the unique pairwise Nash network with r
NC agents. Thus, V (gs) = V (gr).

- gr has more inter-community links compared to gs. If each community in gs has
at least one ”new” NC agent then new inter-community link(s) will form because
they have positive marginal utility for the agents involved. Otherwise if all ”new”
NC agents are in one community then there is no link formation because forming a
link requires bilateral consent and nothing changed in one of the communities from
the gs pairwise Nash equilibrium. Clearly, there is no link removal either. Thus,
V (gs) ≤ V (gr).

Thus, turning r−s NI into NC agents leads to a (weakly) higher welfare for the whole
network.

(ii) Fix the cost C of inter-community links. By lemma 2 the pairwise Nash network
when all agents are NC is two complete communities with q links across communities. Let
p∗ ≡ q, and therefore consider a network with q NC agents in each community. Clearly,
the pairwise Nash network has complete communities connected by q links across the two
communities and it is the same network as the case where all agents are NC. Thus, the
total welfare in both cases will be the same.
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