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Suppose markets and firms are connected in a bi-partite network, where firms can only

supply to the markets they are connected to. Firms compete a la Cournot and decide how

much to supply to each market they have a link with. We assume that markets have linear

demand functions and firms have convex quadratic cost functions. We show there exists a

unique equilibrium in any given network of firms and markets. We provide a formula which

expresses the quantities at an equilibrium as a function of a network centrality measure.
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1 Introduction

Thanks to the decreased costs of transportation and communication, the world became

a densely connected network. This is particularly true for markets and natural resources.

International trade connects world markets to the extent that the world prices are determined

by the demand and supply conditions of countries that take part in it. How and how much

a country affects the market depend both on the size and the position of the country in the

network.

One example is the market for crude oil. The price is determined by many factors from

different regions of the world. As the petrol is relatively easy to transport, we observe

a single global price which does not change much from region to region. Any difference

between regional prices would be offset through trade. Market power of an oil exporting

country is determined by the capacity and efficiency of its production. The Organization

of Petroleum Exporting Countries use their combined market share to influence the price of

oil.

The market for natural gas presents a much more complex example. It requires an

infrastructure to be carried to consumers. It is carried mainly through pipelines1. Other

forms of transportation are not economical when compared with pipelines. Which countries

can trade natural gas is determined by the structure of the network formed by the natural

gas pipelines. This leads to the formation of regional prices. The price for a thousand

cubic meters of natural gas ranges almost from zero to 300 (EU Commission Staff Working

Document (2006)), depending on the location. An importing country with a single supplier

faces a monopoly and pays a higher price. An importing country which has alternative

suppliers will pay a lower price thanks to the competition between the latter. The market

power of exporting countries are determined both by their production and their position in

the market. The recent attempt of natural gas exporting countries to mimic OPEC will

potentially create a cartel which can decide both the quantity and the destination of supply.

Moreover, the transit countries which transport the gas from producers to consumers become

strategic actors, independent of whether they produce natural gas or not.

To understand how the market for the natural gas functions we need to go into the details

1More than 90 percent of the natural gas imports of the European Union are through pipelines (EU
Commission Staff Working Document (2006)). The ratio for global gas imports is around 80 percent (Victor
et. al. 2006). The three countries which depend most on maritime transportation of natural gas are Japan,
Taiwan and South Korea. It is due to the infeasibility of building long distance pipelines in the ocean.
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of the network that connects suppliers with consumers. A structural analysis is required

to understand the patterns of interaction and to quantify the influence that countries or

regions have on each other. We need to understand how each link affects the countries that

it connects and measure how much it changes the prices. We can ask how the addition of a

new link changes the market and whether it would be profitable to construct it. Then we

can see how a country (e.g. Russia) or a group of countries (e.g. the European Union) can

improve their market power by coordinating their policies on infrastructure and consumption.

We model a bipartite network, where links connect firms with markets. We look at the

Cournot game, where firms decide how much to sell at each market they are connected to.

We assume that firms have convex quadratic costs and markets have linear inverse demand

functions.

We show that there exists a unique the Cournot equilibrium. We write the equilibrium

conditions as a linear complementarity problem and provide an interpretation of the equilib-

rium flows using the Katz-Bonacich centrality (Katz 1953, Bonacich 1987). We then study

the effects of a cartel and the strategic complementarities between links.

We bridge two branches of the literature. On one side we study Cournot competition.

We extend the basic to a network of firms and markets. Given a network, we show how the

structure of connections determines firms’ supply levels.

The closest line of literature is the analysis of behavior on networks. Ballester et al.

(2006) analyzes the equilibrium activities at each node of a simple (i.e. not bipartite) non-

directed network. Players create externalities on their neighbors. A player has a single

level of activity. Her payoff depends on her activity level and of her neighbors’. They show

that the equilibrium levels are given by a network centrality index, which is similar to the

Katz-Bonacich centrality. Ballester and Calvó-Armengol (2006) shows that the first order

equilibrium conditions of games which exhibit cross influences between agents’ actions are

linear complementarity problems. They study some interesting classes of such games which

have a unique equilibrium. In both of these papers, the agents’ strategy spaces are subsets

of the real line. A link between two agents shows that they impose externalities on each

other. In our model, agents’ strategy spaces are multidimensional and a link is not only a

qualitative object, but also carries a value which is determined endogenously.

As in Corominas-Bosch (2004) we study a bipartite network. She studies the equilibria

of a bargaining game in a network of buyers and sellers. Her model differs from ours in two

basic points. First, both buyers and sellers are active agents, where we model only the firms
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as strategic. Second, in Corominas-Bosch (2004) buyers and sellers are bargaining over a

single indivisible good. In contrast we assume that the good transferred through the links

is perfectly divisible, allowing a firm to supply to many markets.

The basic notation, some of which we borrow from Corominas-Bosch (2004), is introduced

in Section 2. Section 3 defines the payoffs. We define the Cournot game in Section 4 and solve

for its equilibrium. In Section 5 we demonstrate some applications of the model. Section 6

concludes. The proofs are given in the Appendix.

2 Notation

There are n markets v1, ..., vn, and m firms f1, ..., fm. They are embedded in a network that

links markets with firms, and firms can supply to the markets they are connected to. We

will represent the network as a graph.

A non-directed bipartite graph g = 〈V ∪ F,L〉 consists of a set of nodes formed by markets

V = {v1, ..., vn}, and firms F = {f1, ..., fm} and a set of links L, each link joining a market

with a firm. A link from vi to fj will be denoted as (i, j). We say that a market vi is

linked to a firm fj if there is a link joining the two. We will use (i, j) ∈ g and (i, j) ∈ L

interchangeably, meaning that vi and fj are connected in g. Let r(g) be the number of links

in g.

A graph g is connected if there exists a path linking any two nodes of the graph. For-

mally, a path linking nodes vi and fj will be a collection of t firms and t markets, t ≥ 0,

v1, ...vt, f1, ..., ft among V ∪ F (possibly some of them repeated) such that

{(i, 1), (1, 1), (1, 2), ..., (t, t), (t, j)} ∈ g

A subgraph g0 = 〈V0 ∪ F0, L0〉 of g is a graph such that V0 ⊆ V, F0 ⊆ F,L0 ⊆ L and such

that each link in L that connects a market in V0 with a firm in F0 is a member of L0. Hence

a node of g0 will continue to have the same links it had with the other nodes in g0. We will

write g0 ⊆ g to mean that g0 is a subgraph of g. For a subgraph g0 of g, we will denote by

g − g0, the subgraph of g that results when we remove the set of nodes V0 ∪ F0 from g.

Given a subgraph g0 = 〈V0 ∪ F0, L0〉 of g, let ←→g0 be the complete bipartite graph with

nodes V0 ∪ F0. We call ←→g0 the completed graph of g0.

Ng(vi) will denote the set of firms linked with vi in g = 〈V ∪ F,L〉 , more formally:
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Ng(vi) = {fj ∈ F such that (i, j) ∈ g}

and similarly Ng(fj) stands for the set of markets linked with fj.

For a set A, let |A| denote the number of elements in A. For vi in S, we denote |Ng(vi)|
by mi(g). Similarly for fj ∈ F, let |Ng(fj)| = nj(g), be the number of markets connected to

fj.

Labeling of pairs (i,j) We will first order all possible links such that the links of a

firm j are assigned a lower number than any firm i for i > j, and the links of a firm are

ordered according to the indices of the markets they connect. The label of a possible link

(i, j) will be denoted by τ(i, j). For example for 2 firms and 2 markets, we will order the

links starting from firm f1 and market m1, τ(1, 1) = 1. The second link is between f1 and

m2, τ(2, 1) = 2. Now, as all links of firm f1 are ranked, τ will next rank the link between f2

and m1, τ(1, 2) = 3. Then comes the link between firm f2 and market m2, τ(2, 2) = 4.

For a network g, let Y (g) = {y ∈ N+ : y = τ(i, j) for some (i, j) /∈ g} be the set of

indices that τ assigns to links which are not in g. Assume, without loss of generality that

|Y (g)| = m × n − r(g), for some 1 ≤ r(g) ≤ m × n, where r(g) is the number of links in

graph g. For 2 firms and 2 markets, for a graph g, if the only missing link is (1, 2), then

Y (g) = {3} and r(g) = 3.

τ orders all possible links, independent of g, where as Y (g) does depend on g. We can

see how this works on an example. Suppose that 2 cities and 2 sources, form a completely

connected bipartite graph g1. For graph g1, Y (g1) = ∅.
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t t

s2s1

c2c1

4321

g1

Figure 1

Now we cut the link between c2 and s1, to obtain g2.
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Figure 2

Although link (1, 2) does not exist in g2 it is still labeled equally by τ . τ(1, 2) = 3,

meaning that Y (g2) = {3}.
We will make use of graphs g1 and g2 in many examples throughout the paper.

Now we define the column vector that shows the quantities flowing at each link. Let

Q = [ez] be the column vector of quantities extracted such that for qij, the quantity extracted

from market vi by fj, eτ(i,j) = qij. For 2 firms and 2 markets:

Q =


q11

q21

q12

q22


Let Q−j be the vector obtained by deleting row j from Q. For J ⊂ N+, let Q−J be the

vector obtained deleting each row j ∈ J and column j ∈ J from Q. For Y (g) ⊂ N, let Qg be

the matrix obtained by deleting each row y ∈ Y (g) from Q. Then Qg has size r. Qg is the

link by link profile of supplies. For the two graphs given above:

Qg1 =


q11

q21

q12

q22

 Qg2 =

 q11

q21

q22


For j ∈ N+, let Qg−j be the vector obtained from Qg by deleting row j. For J ⊂ N+,

letQg−J be the vector obtained from Qg by deleting each row j ∈ J .

Let Q(m×n) be the set of all non-negative real valued column vectors of size (m× n). Let

Qrbe the set of all non-negative real valued column vectors of size r.
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Given a vector of flows Qg, for a firm fj, we will denote by Sj(Qg) the total production

by fj. For a market vi we will denote by Di(Qg) the total demand at vi.

3 Demand and Cost Functions

We assume that markets have linear inverse demand functions. Given a market vi and a flow

vector Qg the price at vi is

pi(Qg) = αi − βiDi(Qg)

where αi, βi > 0.

We assume that firms have quadratic costs of production. For firm fj the total cost of

production is

Tj(Qg) =
γj
2

(Sj(Qg))
2

where γj > 0

For α, β, γ > 0, the profit of firm fj is:

πj(Qg) =
∑

vi∈Ng(fj)

αiqij −
γj
2

(Sj(Qg))
2 −

∑
vi∈Ng(fj)

βiqij (Di(Qg))

Marginal profit is not separable with respect to each market. The marginal profit from qij

does depend on the supply from fj to markets other than vi.

4 The Cournot Game

Given a network g, each firm fj maximizes its profit by supplying a non-negative amount to

the markets in Ng(fj). So, the set of players are the set of firms F . The set of strategies of

a firm fj is Qj = QNg(fj). We denote a representative strategy of fj by Qj ∈ Qj. Given that

there are r(g) links in g, the strategy space of the game is Qg =
∏
fj∈F

Qj = Qr(g).

The best response Q′j of firm fj to Qg ∈ Qg is such that,

for all links (i, j), q′ij =


α−γ

∑
vl∈Ng(fj)\{vi}

qlj−β
∑

fk∈Ng(vi)\{fj}
qik

2β+γ
, if

∂uj

∂qij
|Qg ≥ 0

0 , if
∂uj

∂qij
|Qg < 0
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The first order equilibrium conditions of the Cournot game constitutes a linear comple-

mentarity problem. Given a matrix M ∈ Rt×t and a vector p ∈ Rt, the linear complemen-

tarity problem LCP (p;M) consists of finding a vector z ∈ Rt satisfying:

z ≥ 0, (1)

p+Mz ≥ 0, (2)

zT (p+Mz) ≥ 0 (3)

Samelson et al. (1958) shows that a linear complementarity problem LCP (p;M) has

a unique solution for all p ∈ Rt if and only if all the principal minors of M are positive.

We prove this to be true for the linear complementarity problem formed by the first order

equilibrium conditions of the Cournot game.

We further check for the second order conditions for each agent, which reveals that the

solution of the linear complementarity problem is indeed the equilibrium of the game.

Theorem 1 The Cournot game has a unique Nash equilibrium.

Example Suppose we have the graph g1. Let α = β = γ = 1. Then the link supplies

at equilibrium are q∗11 = q∗21 = q∗12 = q∗22 = 0.2. The prices and the profits are p1 = p2 = 0.6

and π1 = π2 = 0.16, respectively.

Suppose the graph was g2. Now at equilibrium, q∗11 = 0.2857, q∗21 = 0.1429, and q∗22 =

0.2857. The deletion of the link (1, 2) changes the supply to market v2, and moreover firm f1

supplies less to the market she shares with firm f2. The prices and the profits are p1 = 0.7125,

p2 = 0.5696 and π1 = 0.1936, π2 = 0.1224, respectively.

Let Q∗g be an equilibrium of the Cournot game. There might be some links in g which

carry zero flow at equilibrium Q∗g. Marginal profits of supply via those links need not be

zero at Q∗g.

q∗ij > 0⇒ ∂uj
∂qij

= 0

q∗ij = 0⇒ ∂uj
∂qij
≤ 0

To calculate the equilibrium quantities, first we need to weed out the links with zero flow.

Let ρ : L → N+ be a lexicographic order on L respecting τ such that ρ relabels the (i, j)
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pairs from 1 to r(g) by skipping those links which are not in g.2 Now we delete from Q∗g, the

entries that correspond to links with no flow.

Let Z
(
Q∗g
)

= {z ∈ N+ : z = ρ(i, j) for some (i, j) s.t. q∗ij = 0}. Let
∣∣Z (Q∗g)∣∣ = t∗, then

Q∗
g−Z(Q∗g)

is a vector of size r(g)− t∗ obtained from Q∗g by deleting the zero entries. It is the

vector of equilibrium quantities for links over which there is a strictly positive flow from a

firm to a market.

Let Q∗g be the equilibrium of the Cournot game at network g. We denote by g − Z(Q∗g)

the network obtained from g by deleting the links which have zero flow at Q∗g.

Theorem 2 Given two networks g and g′. Let Q∗g and Q∗g′ be the equilibrium of the Cournot

game in g and g′, respectively. If g − Z(Q∗g) = g′ − Z(Q∗g′), then Q∗g−Z(Q∗g) = Q∗g′−Z(Q∗
g′ )

.

At equilibrium there might be links which carry no flows. For the firms of such links, the

marginal profits of supplying via them are not positive. They are indifferent between having

such a link or not. Theorem 2 tells us such links with zero flow play no role in determining

the equilibrium. They are strategically redundant. Take graph g3. Let α = β = γ = 1.

Then at equilibrium,

t t t

@
@

@
@
@

@
@

HH
HH

H
HH

H
HH

H
HH

H

A
A
A
A
A
A
A

t t t

v3v2v1

f3f2f1

g3

1/4 1/4
0

1/4 1/4

Figure 3
2Explicitly, ρ : L→ N+ is such that:

(i) ∃(i, j) ∈ L such that ρ(i, j) = 1,

(ii) (i, j) 6= (k, l)⇒ ρ(i, j) 6= ρ(k, l),

(iii) j < l⇒ ρ(i, j) < ρ(k, l) for all (i, j), (k, l) ∈ L,

(iv) i < k ⇒ ρ(i, j) < ρ(k, j) for all (i, j), (k, j) ∈ L,

(v) if ∃(i, j) s.t. ρ(i, j) = z > 1 then ∃(k, l) ∈ L s.t. ρ(k, l) = y − 1.
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Now we cut the link (1, 3) and denote the new graph by g3 − (1, 3).

t t t
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@

@
@
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A
A
A
A
A
A

t t t

v3v2v1

f3f2f1

g3 − (1, 3)

1/4 1/4

1/4 1/4

Figure 4

For α = β = γ = 1, according to Theorem 2 the supplies at equilibrium are q∗11 = q∗12 = 1
4

and q∗23 = q∗33 = 1
4
. At the equilibrium in g3, the marginal profit to firm f3 from supplying

via (1, 3) was negative. Deleting it does not change the equilibrium quantities on other links,

because the marginal profits from them are the same as in graph g3.

We will use the marginal profit argument employed in this example to give a network

interpretation for the quantities at equilibrium Q∗
g−Z(Q∗g)

on any given graph g.

Definition 1 Given a graph g, a line graph I(g) of g is a graph obtained by denoting each

link in g with a node in I(g) and connecting two nodes in I(g) if and only if the corresponding

links in g meet at one endpoint.

Given a network g, let r∗(g) = r(g)−t∗. Let G∗ = [gij]r∗(g)×r∗(g) be the weighted adjacency

matrix of the line graph of g − Z(Q∗g) such that

gij =


γl, if ρ−1(i) and ρ−1(j) share firm fl

βl, if ρ−1(i) and ρ−1(j) share market vl

0, otherwise

For example for graph g2 all links have positive flows at equilibrium. Then,

G∗g2 =

 0 γ1 0

γ1 0 β2

0 β2 0


For any graph g, G∗ has diagonal entries as 0 and non-diagonal entries are either 0, γ or

β. We will use G∗ to denote both the line graph of g − Z(Q∗g) and the weighted adjacency
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matrix of this graph. Similarly, we define A, a diagonal matrix with the same size as G∗

such that

akl =

{
1

2βi+γj
, if k = l and ρ−1(k) = (i, j)

0, otherwise

For a ≥ 0, and a network adjacency matrix G∗, let

M(G∗, a) = [I − aG∗]−1 =
∞∑
k=0

(aG∗)k

If M(a,G∗) is non-negative, its entries mij(G
∗, a) counts the number of paths in the

network, starting at node i and ending at node j, where paths of length k are weighted by

ak.

Definition 2 For a network adjacency matrix G, and for scalar a > 0 such that M(G, a) =

[I − aG]−1 is well-defined and non-negative, the vector Katz-Bonacich centralities of param-

eter a in G is:

b(G, a) = [I − aG]−1 .1

In a graph with z nodes, the Katz-Bonacich centrality of node i,

bi(G, a) =
z∑
j=1

mij(G, a)

counts the total number of paths in G starting from i.

Theorem 3 Given a network of Cournot markets and firms g, the Nash equilibrium flow

vector is

Q∗g−Z(Q∗g) =

[
∞∑
k=0

(AG∗)2k −
∞∑
k=0

(AG∗)2k+1

]
Aα

where α is a column vector such that for t = ρ(i, j), αt = αi.

The first summation counts the total number of even paths that start from the corre-

sponding node in G∗, and the second summation counts the total number of odd paths that

start from it.

The first sum tells that the equilibrium flows from a link is positively related with the

number of even length paths that start from it. The links which have an even distance
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between them are complements. In contrast, the negative sign on the second summation

means the equilibrium supply from a link is negatively related with the number of odd

length paths that start from it. The links which have an odd distance between them are

substitutes.

For example, in graph g1,

t t
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�

@
@

@
@

@
@
@

t t

v2v1

f2f1

4321

g1

Figure 5

links (1, 1) and (2, 2) are complements. The supply to market v2 by firm f2 increases incen-

tives for firm f1 to supply more to market v1, because the former decreases the marginal

revenue on v2. This makes v1 a better option. Links (1, 1) and (2, 1) are substitutes, be-

cause supply through one decreases the marginal revenue to firm f1. This decreases firm’s

incentives to supply more.

In general, the links of a firm are substitutes for each other (e.g. (1, 1) and (2, 2) at

graph g1). Similarly, the links of a market are substitutes for each other, too (e.g. (1, 1) and

(1, 2) at graph g1). If two firms are sharing a market, then their links to markets they don’t

share are complements (e.g. (1, 1) and (2, 2) at graph g1). Moreover, if a link (i1, j1) is a

substitute of a link (i2, j2) and (i2, j2) is a substitute of (i3, j3), then (i1, j1) and (i3, j3) are

complements. Therefore, the effect depends on the parity of the distance between two links.

In the Cournot game the adjacency matrix G∗ does not necessarily have binary entries,

neither its non-zero entries are all equal. Each link in G∗ has a weight. While counting the

number of paths, these weights are taken into account as well. The total supply a firm fj is

calculated by summing up the link centralities of the elements in Ng(fj).

5 Applications

5.1 Cartel

Let there be 2 markets and 5 firms connected as in the graph g5 below.
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t t

t t t t t

v1 v2

f1 f2 f3 f4 f5

g4

Figure 6
Let α = β = γ = 1. Then the equilibrium quantities, prices and profits are

(q11, q21, q31, q32, q42, q52) = ( 3
14
, 3

14
, 1

7
, 1

7
, 3

14
, 3

14
)

(p1, p2) = (3
7
, 3

7
)

(π1, π2, π3, π4, π5) = (0.069, 0.069, 0.082, 0.069, 0.069)

Suppose firms 2 and 3 form a cartel. Now, the equilibrium quantities, prices and profits

are

(q′11, q
′
21, q

′
31, q

′
32, q

′
42) = (12

49
, 11

49
, 2

49
, 9

49
, 10

49
, 10

49
)

(p′1, p
′
2) = (24

49
, 20

49
)

(π′1, π
′
2, π

′
3, π

′
4) = (0.090, 0.085, 0.070, 0.062, 0.062)

The collusion benefited firms

Formation of a cartel in a standard market would benefit all producers which are not

in the cartel and hurt all consumers. In a networked market the effects are not symmetric.

The markets which are linked to more than one member of the cartel are worse off. Those

producers whose production can substitute the cartel’s supply reduction improve. The mar-

kets which are linked with a single member of the cartel are better off, while the producers

of those markets are worse off. The effects of the cartel would diffuse through the network

affecting all consumers and producers.

5.2 Strategic Complementarities

Let there be 2 markets and 4 firms connected as in the graph g5 below.
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Let α = β = γ = 1. Then the equilibrium quantities, prices and profits are

(q11, q21, q31, q32, q42) = (15
68
, 15

68
, 2

17
, 7

34
, 9

34
)

(p1, p2) = (15
34
, 9

17
)

(π1, π2, π3, π4) = (0.073, 0.073, 0.067, 0.1)

Suppose firm 3 commits to supply zero to market 1. Now, the equilibrium quantities,

prices and profits are

(q′11, q
′
21, q

′
31, q

′
32, q

′
42) = (1

2
, 1

2
, 0, 1

2
, 1

2
)

(p′1, p
′
2) = (1

2
, 1

2
)

(π′1, π
′
2, π

′
3, π

′
4) = (0.094, 0.094, 0.094, 0.094)

The commitment to zero supply increased the profits of firms 1,2 and 3, but hurt firm 4.

The consumers in market 1 are worse off, but the consumers in market 2 are better off.

This is the type of strategic complementarities analyzed in Bulow et al. (1985). The

model they studied had two markets, while our model shows that their results carry through

in a setup with multiple markets and firms.

6 Conclusion

We have analyzed a situation where firms embedded in a network with markets compete a

la Cournot. We have shown that the equilibrium flows will depend on the whole structure.

The quantity supplied by a firm to a market depends on the centrality of the links it has.

The centrality index which determines the quantities is calculated using the line graph of

the positive flow network. The quantity flowing through a link is positively proportional

with the number of even paths and negatively proportional with the number of odd paths

starting from it.
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The network flows studied in graph theory and operations research literature3 do not

parallel the economic model studied in this paper. The analyzes of strategic behavior requires

the introduction of decision making nodes to the model of flow networks. This distinguishes

our approach from the existing literature on flow networks.

Although the network in our model is fixed, the analysis paves way for further research

on strategic network formation in competitive markets. The results we provide can be used

to calculate the benefit of each potential link to a firm. Once players know the payoff they

would obtain in each network, they could manipulate their connections to maximize their

profits.
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Appendix

Proof of Theorem 1 Given a graph g, at any the equilibrium of the Cournot game the

flows cannot be negative

Q∗g ≥ 0 (4)

For each link (i, j) ∈ g, at equilibrium
∂πj

∂qij
|q∗ij ≤ 0. More explicitly

∂πj
∂qij
|q∗ij = αi − βiq∗ij − γj

∑
vk∈Ng(fj)

q∗kj − βi
∑

fk∈Ng(vi)

q∗ik ≤ 0

These set of equations can be written in matrix form

−α+DgQ
∗
g ≥ 0 (5)

where α = [αt]r such that for t = τ(i, j), αt = αi and Dg = [dtz]r×r such that

dtz =


2βi + γj, if t = z = τ(i, j) for some vi ∈ V, fj ∈ F
γj , if t 6= z, t = τ(i, j), z = τ(k, j) for some vi, vk ∈ V, fj ∈ F
βi , if t 6= z, t = τ(i, j), z = τ(i, k) for some vi ∈ V, fj, fk ∈ F
0 , otherwise

Lastly, for each link (i, j) ∈ g, at equilibrium
∂πj

∂qij
|q∗ijq

∗
ij ≤ 0. In matrix form

(Q∗g)
T (−α+DgQ

∗
g) ≥ 0 (6)

The first order equilibrium conditions (4), (5), (6) of the Cournot game constitute a

LCP (−α;Dg).
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Samelson et al. (1958) shows that a linear complementarity problem LCP (p;M) has a

unique solution for all p ∈ Rt if and only if all the principal minors of M are positive. Positive

definite matrices satisfy this condition and we will now that Dg
4 is positive definite for any

graph g.

We show that for any matrix Dg we can find a matrix R with independent columns such

that Dg = RTR. 5

For example for graph g1,

Dg1 =


2β1 + γ1 γ1 β1 0

γ1 2β2 + γ1 0 β2

β1 0 2β1 + γ2 γ2

0 β2 γ2 2β2 + γ2


We write R as

R =



√
β1 0 0 0

0
√
β2 0 0

0 0
√
β1 0

0 0 0
√
β2√

γ1

√
γ1 0 0

0 0
√
γ2

√
γ2√

β1 0
√
β1 0

0
√
β2 0

√
β2


Then clearly Dg1 = RTR. Given a graph g, the same technique can be used to show that

Dg is positive definite. Hence, for any g and any α, LCP (−α;Dg) has a unique solution.

Now, let’s check that the second order conditions are satisfied. For firm fk with n

connections we first label the connections from 1 to n. Hence, Ng(fk) = {v1, ..., vn}. Then

the Hessian of the profit function πk is H = [hij]n×n where

4The interpretation, when we use it to find the equilibrium quantities flowing from markets to firms, is
that the column z and the row z in Dg corresponds to the link (i, j) in g such that τ(i, j) = z. Hence,
column 1 and row 1 corresponds to the link (1, 1), column 2 and row 2 corresponds to the link (2, 1), column
3 and row 3 corresponds to the link (1, 2), and column 4 and row 4 corresponds to the link (2, 2).

5This is equivalent to checking that D is positive definite. For other characterizations of positive defi-
niteness see Strang (1988).
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hij =

{
−2βi − γk, if i = j

−γk, otherwise

Let H ′ = −H. We can use the same technique applied for Dg to show that H ′ is positive

definite. Hence, H is negative definite. The solution of LCP (−α;Dg) is the equilibrium of

the Cournot game.

Proof of Theorem 2 Assume Q∗g−Z(Qg), Q
∗
g−Z(Q′′g ) are equilibria of the game at g and g′,

respectively. Let

g − Z(Q∗g) = g′ − Z(Q∗g′)

Then,

Dg−Z(Q∗g).Q
∗
g−Z(Q∗g) = α.1=Dg′−Z(Q∗

g′ )
.Q∗g′−Z(Q∗

g′ )
= Dg−Z(Q∗g).Q

∗
g′−Z(Q∗

g′ )

As we showed in proposition 6 Dg−Z(Q∗g) is positive definite, hence invertible.

Q∗g−Z(Qg) = Q∗g−Z(Q′′g )

Proof of Theorem 3

Dg−Z(Q∗g).Q
∗
g−Z(Q∗g) =

[
A−1 +G∗

]
.Q∗g−Z(Q∗g)

= A−1 [I + AG∗] .Q∗g−Z(Q∗g)

Remember that Q∗g is the solution to LCP (−α1r;Dg). Then, when we invert Dg−Z(Q∗g), the

matrix multiplication
[
Dg−Z(Q∗g)

]−1

α will give us a strictly positive vector.

[I + AG∗] = [I − AG∗]−1 [I − (AG∗)2
]

[I + AG∗]−1 =
[
I − (AG∗)2

]−1
[I − AG∗]

and[
I − (AG∗)2

]−1
=

∞∑
k=0

(AG∗)2k
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Substituting this into Dg−Z(Q∗g).Q
∗
g−Z(Q∗g) = α,

Q∗g−Z(Q∗g) =
[
I − (AG∗)2

]−1
[I − AG∗]Aα

=
∞∑
k=0

(AG∗)2k [I − AG∗]Aα

=

[
∞∑
k=0

(AG∗)2k −
∞∑
k=0

(AG∗)2k+1

]
Aα

=
[
M((AG∗)2, 1) −M((AG∗)2, 1).(AG∗)

]
Aα
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