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Modelling asymmetric dependence using copula functions:

an application to Value-at-Risk in the energy sector

Andrea Bastianin�y

February 26, 2009

Abstract

In this paper I have used copula functions to forecast the Value-at-Risk (VaR)

of an equally weighted portfolio comprising a small cap stock index and a large cap

stock index for the oil and gas industry. The following empirical questions have been

analyzed: (i) are there nonnormalities in the marginals? (ii) are there nonnormalities

in the dependence structure? (iii) is it worth modelling these nonnormalities in risk-

management applications? (iv) do complicated models perform better than simple

models? As for questions (i) and (ii) I have shown that the data do deviate from

the null of normality at the univariate, as well as at the multivariate level. When

considering the dependence structure of the data I have found that asymmetries show

up in their unconditional distribution, as well as in their unconditional copula. The

VaR forecasting exercise has shown that models based on Normal marginals and/or

with symmetric dependence structure fail to deliver accurate VaR forecasts. These

�ndings con�rm the importance of nonnormalities and asymmetries both in-sample

and out-of-sample.

Keywords: Copula functions, Forecasting, Value-At-Risk

JEL Classi�cation: C32, C52, C53, G17, Q43

1 Introduction

Risk management is used by �rms to translate the risks connected to their business

activities into competitive advantages. One of the most widely used risk measure is
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Value-at-Risk (VaR), de�ned as the maximum loss of a portfolio within a given time

horizon and at a given level of con�dence.

VaR can be estimated either parametrically, or non-parametrically. While in the

latter case the realizations of past returns are used to estimate their distribution and

thus the VaR, parametric techniques rely on distributional assumptions to forecast the

mean and the volatility of a portfolio and hence to calculate its VaR [for a survey of the

VaR methodology see Jorion (2007)].

The volatility of a portfolio, measured by its variance, is a function of the variance

of the individual assets and their correlations. More generally, the distribution of the

returns of a portfolio will be function of the marginal distributions of the individual

assets in the portfolio and the dependence structure between those assets. It is therefore

clear that ill parametric assumptions will lead to poor VaR forecasts. For instance, VaR

models based on the Gaussian distribution, such as the J.P. Morgan�s RiskMetricsTM

approach, could lead to underestimation of risk in the case of returns with excess kurtosis.

More generally, there are at least two kinds of departures from normality that are

especially important in the �eld of risk management: asymmetries and excess kurtosis.

A bunch of studies in the empirical �nance literature have shown that there is evidence of

two types of asymmetries in the joint distribution of stock returns. First, stocks display

excess skewness in their marginal distributions [see Harvey and Siddique (1999, 2000)].

Second, also the dependence between stocks seems to be asymmetric: stocks returns are

more highly correlated in bear markets that in bull markets [see Hong, Tu and Zhou,

(2007), Longin and Solnik (2001)]. As for excess kurtosis, a fat-tailed univariate random

variable is more likely to experience extreme events than what we would expect under the

assumption of normality [see Hansen, (1994), Hull and White (1998)]. Similarly, when

assuming normality for the dependence structure of returns we neglect tail dependence

and hence we underestimate the joint likelihood of extreme events [see Jondeau and

Rockinger (2003), Patton (2004, 2006c)].

Summing up, it is clear that both in the case of a single asset and in the case of

a portfolio, bad parametric assumptions can lead to poor VaR forecasts [see Hull and

White (1998)]. The importance of parametric assumptions and the growing body of

empirical evidence against the use of the Normal distribution in �nancial applications

motivates my attempt to use copula theory as a tool for improving VaR forecasts. The

assumption of joint normality is very often violated and this leads to the problem of

�nding more appropriate multivariate speci�cations; copula functions can be a solution

to this problem. In fact, the basic idea of the copula approach is that a joint distribution

can be factored into the marginals and a dependence function called copula. The de-

2



pendence relationship is entirely determined by the copula, while the location, scale and

shape parameters (i.e. mean, standard deviation, skewness and kurtosis) are completely

determined by the marginals [see Sklar (1959)].

Copula functions have been used because they allow us to take simultaneously into

account two characteristics of �nancial data: nonnormalities at the univariate, as well

as at the multivariate level. Nonnormalities in the marginals, such as excess skewness

and/or excess kurtosis, can be taken into account with a variety of univariate models;

however, when considering multivariate modelling, the task of �nding an appropriate

speci�cation for the data becomes more challenging, either because estimation can suf-

fer from curse of dimensionality, or because models are not �exible enough. On the

contrary, the strength of copula functions relies on their �exibility. In fact, these func-

tions can be used to link marginal distributions and to generate a variety of multivariate

speci�cations.

In this paper I have used copula functions to forecast the VaR of an equally weighted

portfolio comprising a small cap stock index and a large cap stock index for the oil and

gas industry. Such a portfolio represents a very general investment strategy, namely one

based on a low-risk/low-return position, the large cap index, and a high-risk/high return

position, the small cap index.

It is worth noting that VaR can be a very useful tool for �rms in the energy industry

(e.g. airlines wishing to hedge the risks due to jet fuel price volatility, or energy traders),

and more generally, when dealing with the problem of energy security. Energy security,

de�ned as the availability of a regular supply of energy at an a¤ordable price, is high on

the agenda of governments and policy makers around the world. A threat to a country�s

energy security can originate either from a physical disruption (e.g. when an energy

source is exhausted, or its production is stopped), or from an economic disruption. Eco-

nomic disruptions are due to erratic �uctuations in the price of energy products, which

can be caused either by a threat of a physical disruption of supplies, or by speculative

activities. In both cases, the result is a sharp price increase, which directly a¤ects busi-

ness costs and the purchasing power of private consumers. Therefore VaR, measuring

the prospect of an extreme price increase, can be used also as an economic measure of

energy security.

This paper answers a set of empirical questions: (i) are there nonnormalities in

the marginal distributions? (ii) are there nonnormalities in the dependence structure?

(iii) is it worth taking these nonnormalities into account for risk-management? (iv) do

complicated models perform better than simple models?

As for questions (i) and (ii), I have shown that the data do deviate from the assump-
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tion of normality at the univariate, as well as at the multivariate level. The marginal

of the small cap index and that of the large cap index display kurtosis and skewness

di¤erent from what we would expect in the case of normally distributed time series. The

most serious problem is represented by excess kurtosis, on the contrary excess skewness

does not seem to be relevant, neither in the estimation stage, nor for risk management

purposes.

When considering the dependence structure of the data, I have found that they are

more correlated in market downturns than in market upturns. Asymmetries show up in

their unconditional distribution, as well as in their unconditional copula, that is after

having �ltered the returns with appropriate speci�cations.

As for the importance of nonnormalities for risk management purposes, the VaR

forecasting exercise has shown that models based on Normal marginals and/or with

symmetric dependence structures fail to deliver accurate VaR forecasts. Among the

models that properly forecast the VaR, we have very simple models, such as MA mod-

els, copula models with Student�s T marginals and asymmetric copula functions, as

well as a model with T marginals and Normal, symmetric, copula. The analysis of a

set of loss functions shows that the T-asymmetric copula models deliver the best VaR

forecasts. These �ndings con�rm the importance of nonnormalities and asymmetries

both in-sample and out-of-sample. A common �nding in the forecasting literature is

that complicated models often perform worst than simple, even misspeci�ed, speci�ca-

tions [see González-Rivera, Lee and Mishra (2004), Swanson and White (1995, 1997)];

interestingly, this does not apply to the data I have analyzed.

The rest of the paper is organized as follows: section 2 introduces the theory of

copulas; section 3 illustrates how to use copulas to forecast VaR; section 4 is the empirical

part of the paper; section 5 concludes.

2 Multivariate models and copulas

A copula function represents a statistical tool that allows to study the dependence be-

tween two, or more random variables. The word "copula" comes from the Latin for

"link": a collection of marginal distributions can be "linked" together via a copula to

form a multivariate distribution. The theory of copulas dates back to Sklar (1959), who

showed how to decompose a joint distribution into a set of univariate marginal distrib-

utions and a copula which describes the dependence between variables after taking out

the e¤ects of the marginals.

Early applications of copulas in statistics focused on random vectors of independently
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and identically distributed (i.i.d.) data; nowadays, it is common to use them in the

context of time series analysis. Following Patton (2006b) we can consider two main

areas of applications of copulas to time series modelling. The �rst is the application

to multivariate time series, where the focus is the modelling of the joint distribution of

some random vectorXt = [X1t; X2t; :::; Xnt]
0, conditional on a given information set 
t�1

(i.e. usually it contains past observations on the variates, say 
t�1 � Xt�j , for j � 1).
The second �eld of application of copulas is the modelling of the joint distribution of a

sequence of observations of a univariate time series Xi = [Xit; Xit+1; :::; XiT ]
0. In this

paper I will focus on the use of copulas for multivariate time series modelling; more

details about the application of copulas in time series modelling and in risk management

can be found in Dias (2004), Embrechts et al. (2001, 2002), and Patton (2006b).

The discussion of the theory of copulas and its application to multivariate time series

modelling requires some technical concepts; these technicalities, the main de�nitions and

the properties of copulas will be discussed in the next section. Next, I will go into the

details concerning estimation and inference techniques for conditional copulas.

Although copulas are designed to deal with general multivariate distributions, in

what follows I restrict my attention to the bivariate case. As for the notation, I will use

the following conventions: X and Y denotes two random variables, W is a conditioning

variable or vector of variables, FXYW is the joint distribution of (X;Y;W ), FXY jW is the

conditional distribution of (X;Y ) given W and the conditional marginal distributions of

XjW and Y jW are denoted FXjW and FY jW , respectively (for unconditional distribution

the notation is similar, in this case I simply ignore the conditioning variable). Further-

more, I will adopt the usual convention of denoting cumulative distribution functions

(c.d.f.) and random variables using upper case letters, while lower case letters are used

for probability density functions (p.d.f.) and realizations of random variables. Through

the paper I will assume that FXYW is su¢ ciently smooth for all required derivatives to

exist, and that FXY jW , FXjW and FY jW , are continuos.

2.1 Introducing copulas

A copula function can be de�ned as a multivariate distribution function with uniform

U (0; 1) univariate marginal distributions. Sklar (1959) showed that copulas are useful

not only as a tool for isolating the dependence relationships from the marginal behavior

in a multivariate distribution, but also because we can use them to write the mapping

from the individual distribution functions to the joint distribution function. This result

can be stated as follows:
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Theorem 1 (Sklar�s theorem) Given a pair of distribution functions, FX , FY , and
a bivariate copula C, the function de�ned by:

FXY (x; y) = C (FX (x) ; FY (y)) , 8 (x; y) 2 R� R (1)

is a bivariate distribution function with univariate margins FX and FY . R denotes the
extended real line, that is R � R [ f�1g.

Equivalently, we can say that given any collection of marginals (F1; F2; : : : ; Fn) and

any copula C, we can use Sklar�s theorem, as stated in Equation (1), to recover the

joint distribution from the marginal distributions. This gives a great advantage in terms

of �exibility which is very useful in many branches of econometrics. For instance, in

portfolio modelling we can use di¤erent marginals for each asset and a copula to link

them together; given the widespread evidence of nonnormalities in �nancial data, this

�exibility is of great importance also for risk management tools, such as Value-at-Risk [for

an application of copulas to VaR see Fantazzini (2004)]. Moreover, what makes copulas

really useful in applications involving the joint modelling of two or more variates, is that

the linear correlation and the marginal distributions determine a joint distribution only

if the variables of interest are elliptically distributed. When this is not the case, the

copula will take the place of the correlation.

To fully understand copulas, we need to introduce the concept of "probability-integral

transformation", (PIT). The PIT is a method for generating n values of a non-uniform

random variable X which has continuos c.d.f. FX . The PIT can be introduced as

follows1:

De�nition 1 (Probability integral transformation (a)) The PIT is the mapping

T : Rd ! [0; 1]d, (x1; x2; :::; xd) 7�! (F1(x1); F2(x1); :::; Fd(xd)).

The PIT exploits the fact that a random variableX with c.d.f. FX can be transformed

into a variable with uniform distribution over the interval [0; 1], that is U = FX (X).

Conversely, if U is uniformly distributed over the interval [0; 1], then X = F�1X (U) has

c.d.f. FX . Hence, to generate a value, say x, of the random variable X having continuos

c.d.f. FX , we can generate a value, say u, of the random variable U which is uniformly

distributed over [0; 1]. The value x is then obtained as x = F�1X (u).

1The PIT is due to Rosenblatt (1952). A very intuitive proof is given by Schuster (1976). For its use
in goodness-of-�t tests, see for instance Breymann et al. (2003), Dias (2004). For the extension of the
PIT theory to time series analysis see Diebold et al. (1998).
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Now that I have introduced the concept of PIT, we are ready to de�ne the density

function equivalent of (1). Provided that FX and FY are di¤erentiable and that FXY
and C are twice di¤erentiable we have:

fXY (x; y) � @2

@x@y
FXY (x; y)

=
@FX (x; y)

@x

@FY (x; y)

@y

@2C (FX (x) ; FY (y))

@u@v

= fX (x) fY (y) c (FX (x) ; FY (y)) . (2)

where c (�) � @2C (FX (x) ; FY (y)) =@u@v denotes the "copula density", U � FX (x),
V � FY (y) are the PIT and (u; v) 2 [0; 1]2. With this result we can rewrite the Sklar�s
theorem in terms of density functions:

Theorem 2 (Sklar�s theorem (continued)) Given a pair of density functions, fX ,
fY , and a bivariate copula density c, the function de�ned by:

fXY (x; y) = fX (x) fY (y) c (FX (x) ; FY (y)) , 8 (x; y) 2 R� R (3)

is a bivariate density function with univariate margins fX and fY . R denotes the ex-

tended real line, that is R � R [ f�1g.

Sklar�s theorem written as in (3) is very useful for maximum likelihood estimation,

indeed we can state that the joint log-likelihood of (X;Y ) can be written as the sum of

the univariate marginal likelihoods and the copula likelihoods; additional details will be

given below.

Let us now move to the question of conditional copula modelling. Following Patton

(2006c), I assume that the dimension of the conditioning variable, W , is one. Hence

we can derive the conditional bivariate distribution of (X;Y ) jW from the unconditional

joint distribution of (X;Y;W ) as follows:

FXY jW (x; yjw) = fw (w)�1
@FXYW (x; y; w)

@w
, for w 2 W (4)

where fw is the unconditional density of w and W is the support of W . However,

notice that this type of derivation is not feasible for the conditional copula; in other

words, we cannot derive it from the unconditional copula, as we did for the bivariate

distribution, because we need the same information set for all the marginal distributions

and the copula. For the moment, let us just introduce the notion of conditional copula,
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without taking the common information problem into consideration. Accordingly, a

conditional copula can be de�ned as follows:

De�nition 2 (Conditional copula) The conditional copula of (X;Y ) jW = w, where

Xj (W = w) � FXjW (�jw) and Y j (W = w) � FY jW (�jw), is the conditional distribution
function of U � FXjW (Xjw) and V � FY jW (Y jw) given W = w.

Where U and V are the PIT of X and Y given W ; as we have seen, these variates

will have Uniform (0; 1) distribution, regardless of the original distributions of X and

Y . Hence, the conditional copula can be de�ned as the conditional joint distribution of

two conditional Uniform (0; 1) variates.

Once again, notice that in the context of conditional copulas the de�nition of the

conditioning set is essential for the validity of the properties listed above. The extension

of Sklar�s theorem to conditional distributions provided by Patton (2006c) is as follows:

Theorem 3 (Sklar�s theorem for conditional copulas) Let FXjW (�jw) be the con-
ditional distribution of Xj (W = w), FY jW (�jw) be the conditional distribution of Y j (W = w),

FX;Y jW (�jw) be the joint conditional distribution of X;Y j (W = w), and W be the sup-

port of W . Assume that FXjW and FY jW are continuous in x and y for all w 2 W.
Then there exists a unique copula C (�jw) such that:

FXY jW (x; yjw) = C
�
FXjW (xjw) ; FY jW (yjw) jw

�
; (5)

8 (x; y) 2 R� R and each w 2 W

Conversely, if we let FXjW (�jw) be the conditional distribution of Xj (W = w), FY jW (�jw)
be the conditional distribution of Y j (W = w), and C (�jw) be a conditional copula, then
the function FX;Y jW (�jw) is a conditional bivariate distribution with conditional marginal
distributions FXjW (�jw) and FY jW (�jw).

In the context of multivariate time series analysis the converse of Sklar�s theorem is

very useful, indeed it implies that we can link together any two univariate distributions

with any copula and have a valid bivariate distribution. We can think of this �exibility

as expanding the set of parametric multivariate distributions we can use in econometric

modelling.

As anticipated above, in order to extend Sklar�s theorem to conditional copulas the

choice of the conditioning set is a delicate matter, indeed this must be the same for

both the univariate marginals and the copula. An example of di¤erent conditioning sets

across variables is represented by situations in which each variable depends on its own
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�rst lag, but not on the lags of other variables. Failure to use the same conditioning

information set for FXjW , FY jW and C, will in general imply that FX;Y jW is not a proper

joint distribution function [see Patton (2006, p. 534)]. The only case in which FX;Y jW
is a proper joint distribution function, even thought the conditioning variables are not

the same for all marginal distributions, is when some variables a¤ect the conditional

distribution of one variable but not the others2.

To conclude this section, let us see how to use Sklar�s theorem, as expressed in

Equation (5), and the relation between the distribution and the density function to

extract the bivariate conditional copula density c (�jw), associated to the conditional
copula function C (�jw):

fXY jW (x; yjw) � @2

@x@y
FXY jW (x; yjw) , 8 (x; y; w) 2 R� R�W

=
@FXjW (x; yjw)

@x

@FY jW (x; yjw)
@y

@2C
�
FXjW (xjw) ; FY jW (yjw) jw

�
@u@v

= fXjW (xjw) fY jW (yjw) c
�
FXjW (xjw) ; FY jW (yjw) jw

�
(6)

where U � FXjW (xjw) and V � FY jW (yjw).

2.2 Copula modelling

The choice of the copula used to link together the marginals of two variates should

be guided by the nature of the data the analyst is going to consider. Indeed, each

copula implies a di¤erent type of dependence between the variables. Patton (2006c, 541)

points out that many of the copulas available in the statistical literature are designed

for variables that take on joint extreme values in only one direction. While this kind

of functional forms are adequate for some economic variables, for others it is wise to

be �exible in the choice of the copula. As for equity returns, we can choose the copula

on the basis of the empirical evidence suggesting that "stocks tend to crash together,

but not to boom together". In this case we should select a copula that implies greater

dependence for joint negative events than for joint positive events. However, for many

economic variables it is not easy to select the "right" copula; this is due either to the

lack of empirical evidence, or to the fact that we do not have a theoretical model which

suggests the sign of the joint dependence for the variable we want to study. In these

2For instance, Patton (2006c) reports that, conditional on lags of the DM-USD exchange-rate, lags of
the Yen-USD exchange-rate do not impact on the distribution of the DM-USD exchange-rate. Similarly,
lags of the DM-USD exchange-rate do not a¤ect the Yen-USD exchange rate, conditional on lags of the
Yen-USD exchange rate.
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situations the best thing to do is to consider various functional forms for the copula.

The �rst copula I consider is the Gaussian or Normal one. The Normal copula is the

copula function associated to with the bivariate Normal distribution and represents the

dependence structure associated to such a distribution. Let us assume that the random

vector (X;Y ) jW is bivariate Normal, or equivalently that its margins FXjW and FY jW
are Normal and recall that U � FXjW (xjw) and V � FY jW (yjw). The Gaussian copula
can be written as:

CN (u; vj�) =
��1(u)Z
�1

��1(v)Z
�1

1

2�
p
(1� �2)

exp

"
�
�
r2 � 2�rs+ s2

�
2 (1� �2)

#
drds � 2 (�1; 1) .

(7)

where ��1 (�) is the inverse c.d.f. of a Normal (0; 1) variate. The Gaussian copula
depends on a single parameter: the coe¢ cient of linear correlation �.

Similarly, the Student�s T copula is the dependence structure assumed whenever the

bivariate T distribution is used. The T copula depends on the correlation coe¢ cient �,

and on �, the shape parameter/degrees of freedom of the distribution. Notice that in

analogy to what happens for the c.d.f.s, the Gaussian copula can be thought of as the

limiting case of the T copula as � !1 . [for more details on the T copula see Demarta

and McNeil (2004)].

Both the Gaussian and the T copula depend on the correlation coe¢ cient, but the

latter has a di¤erent behavior for what concerns tail dependence. In multivariate set-

tings, fat taildness can be referred to both the marginal univariate distributions, or to

the joint probability of large market movements. The concept we use to deal with the

latter problem is called tail dependence and it can be formally de�ned as follows:

De�nition 3 (Tail dependence) Let U and V be two random variables uniformly dis-
tributed on (0; 1). If the limit

�L � lim
"!0+

Pr (U � "jV � ")

= lim
"!0+

Pr (U � "; V � ")
Pr (V � ")

= lim
"!0+

C ("; ")

"

exists, then the copula C exhibits lower tail dependence if �L 2 (0; 1] and no lower tail
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dependence if �L = 0. Similarly, if

�U � lim
"!1�

Pr ((1� U) > "j (1� V ) > ")

= lim
"!1�

1� 2"+ C ("; ")
1� "

exists, then the copula C exhibits upper tail dependence if �U 2 (0; 1] and no upper tail
dependence if �U = 0.

Notice that �U and �L are asymptotic measures of dependence focused on bivariate

distributions; indeed, we say that two variates are asymptotically dependent in the lower

(upper) tail if �L 2 (0; 1] (�U 2 (0; 1]). Similarly, whenever �L = 0 (�U = 0) two variables
are said to be asymptotically independent in the lower (upper) tail. More informally,

we can state that tail dependence captures the behavior of two variates during extreme

events, thus it measures the probability that a stock, say ENI, has an extremely low/high

return given that another stock, say BP, experiences an extremely low/high return.

It can be shown that the Normal copula has �L = �U = 0, meaning that the variables

are independent in the tails of the distribution [see Embrechts et al. (2002)]. The

tail dependence of two bivariate Student�s T variates is determined by the correlation

coe¢ cient � and the shape parameter, �. Being a symmetric copula, the dependence

between extremely low returns and extremely high returns is the same.

The copulas we have discussed so far belong to the family of elliptical copulas; this

de�nition stems from the fact that they have been derived from elliptical multivariate

distributions. A drawback of elliptical copulas is that they cannot account for the fact

that in many �nancial applications it is reasonable to assume that there is a stronger

dependence across extremely low returns, than across extremely high returns. For these

reasons in the empirical part of the paper I will carry out the analysis by using the

Normal copula along with the following copula functions: Clayton copula, symmetrized

Joe-Clayton (SJC) copula, Plackett copula and rotated Gumbel copula. Contour plots

of some of these copulas, are shown in �gure 1. As we can see from �gure 1, by linking

bivariate Normal (0,1) densities with di¤erent copulas, we can generate isoprobability

contours of very di¤erent shapes. These plots clearly illustrate that di¤erent copulas can

account for basically any kind of dependence structure. The upper left panel displays

the Normal copula with its familiar elliptical contours. In the upper right panel we can

see the isoprobability contour of the Student�s T copula: we can notice that, although

symmetric and elliptically shaped, if compared with the Normal copula, the T copula has

a quite di¤erent behavior in the �rst ("positive-positive") and in the third ("negative-
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negative") quadrant, where the isoprobability contours are more tightly clustered around

the diagonal, suggesting that it allows for (symmetric) non-zero tail dependence. Other

copulas that generate symmetric dependence are the SJC and Plackett copulas shown in

the lowest panels. Interestingly, the SJC copula, which depends upon two parameters,

�U and �L (that, as we have seen, are measures of tail dependence), is a modi�cation of

the Joe-Clayton copula that can generate both symmetric and asymmetric dependence

(e.g. it is symmetric for �U = �L and it becomes asymmetric whenever �U 6= �L).
The remaining four copulas can generate asymmetric dependence. In particular the

rotated Gumbel copula and the Clayton copulas can account for returns more highly

correlated in bear markets than in bull markets, which is the case for many �nancial

time-series. This type of behavior has been reported for instance by Carvalho and

Amonlirdviman (2008) and Longin and Solnik (2001).

2.3 Multi-stage estimation of copula functions

The methodology to estimate copula functions, known as the Inference Functions for

Margins (IMF) method [for details, see Dias (2004)], has been extended to time series

analysis by Patton (2006a). The author shows that the existing two-stage maximum

likelihood estimation framework [see Newey and McFadden (1997) and White (1982)],

can be applied to estimate parametric multivariate density models involving variables

with histories of di¤erent length. Patton (2006a) focuses on models with an unknown

parameter vector that may be partitioned into elements relating only to the marginals

and elements only relating to the copula. This partition is also possible in many common

multivariate models, such as vector autoregressions and conditional correlation multi-

variate GARCH models [see Bollerslev (1990) and Engle et al. (2001)].

Let us assume that the conditional distribution of (Xt; Yt) jWt�1 is known and that

it is parametrized as Ht (x; yjw; �0) = C (Ft (xjw;'0) ; Gt (yjw; 0) jw; �0), where �0 �
['00; 

0
0; �

0
0]
0 must be estimated. In terms of the notation used until now we have that,

Ht � FXY jW , Ft � FXjW , Gt � FY jW and similarly for the densities. Notice that, when

feasible, I suppress the dependence on the conditioning variable W and the subscript

denoting time in order to avoid cumbersome notation. From Sklar�s theorem we know

that the conditional density of (Xt; Yt) jWt�1 can be written as [see Equation (6)]:

ht (�0) = ft ('0) gt (0) c (Ft ('0) ; Gt (0) j�0) (8)
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Figure 1: Contour plots for various copula functions all with normal marginals.
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and hence, this implies that the likelihood of (Xt; Yt) jWt�1 is given by:

LXY (�0) � T�1
TX
t=1

log ht (�0)

= T�1
TX
t=1

log ft ('0) + T
�1

TX
t=1

log gt (0) + T
�1

TX
t=1

log ct (Ft ('0) ; Gt (0) j�0)

� LX ('0) + LY (0) + LC (�0) (9)

where '0 2 int (�) � Rp, 0 2 int (�) � Rq, �0 2 int (K) � Rr and �0 �
['00; 

0
0; �

0
0]
0 2 int (�) � int (�) � int (�) � int (K) � Rp+q+r � Rs, where int (=) is

the interior set of =.
Let the multi-stage maximum likelihood estimator (MSMLE) of �0 be denoted as �̂T .

It is obtained by dividing the estimation process into the following two steps:

1. The parameters '0 and 0 of the marginal distributions Ft (xjw;'0) andGt (yjw; 0)
are estimated as:

'̂T = argmax
'2�

T�1
TX
t=1

log ft (xtj') ; (10)

̂T = argmax
2�

T�1
TX
t=1

log gt (ytj) (11)

2. Given the results in step 1, the copula parameters �0 are estimated as:

�̂T = argmax
�2K

T�1
TX
t=1

log c (Ft (xtj'̂T ) ; Gt (ytĵT ) j�) (12)

Asymptotic results for the MSMLE are obtained as an extension of the two-stage

MLE framework discussed for instance in Newey and McFadden (1994) and in White

(1982). In particular, it can be shown that under standard regularity assumptions the

MSMLE is consistent and that its limiting distribution is given by [Patton (2006a, 166-

170)]:

B
0�1=2
T A0T

p
T
�
�̂T � �0

�
d�! N (0; Is) (13)

where Is is an s� s identity matrix, and:
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S0T = T�1

264
PT
i=15' log f

0
tPT

i=15 log g
0
tPT

i=15� log c
0
t

375 (14)

Hess0T = T�1

264
PT
i=15'' log f

0
t 0 0

0
PT
i=15 log g

0
t 0PT

i=15'� log c
0
t

PT
i=15'� log c

0
t

PT
i=15�� log c

0
t

375 (15)

OPG0T = T�1

264
PT
i=1 s

0
'ts

00
't

PT
i=1 s

0
'ts

00
t

PT
i=1 s

0
'ts

00
�tPT

i=1 s
0
ts

00
't

PT
i=1 s

0
ts

00
t

PT
i=1 s

0
ts

00
�tPT

i=1 s
0
�ts

00
't

PT
i=1 s

0
�ts

00
t

PT
i=1 s

0
�ts

00
�t

375 (16)

A0T = E
�
Hess0T

�
, B0T = E

�
OPG0T

�
(17)

where OPG0T = S0TS
00
T , s

0
't � 5' log f

0
t , s

0
t � 5 log g

0
t , s

0
�t � 5� log c

0
t , f

t
0 �

ft (xtj'0), gt0 � gt (ytj'0), ct0 � ct (Ft ('0) ; Gt (0) j�0) (when a quantity has a zero in
the subscript, or in the superscript it means that this quantity is evaluated at the true

vector of parameters �0). Equation (14) is the vector of �rst derivatives, or score vector,

Equation (15) is the matrix of second derivatives, or Hessian matrix and Equation (16)

is the Outer Product of Gradients (OPG).

Following White (1982), we say that if eV �1=2T

p
T
�e�T � �0� d�! N (0; I), then the

asymptotic covariance matrix of the estimator e�T is eVT , or that avar �e�T� = eVT .
For the MSMLE we have B0�1=2T A0T

p
T
�
�̂T � �0

�
d�! N (0; Is), thus the asymptotic

covariance matrix is A0�1T B0TA
0�10
T ; equivalently we can write3:

p
T
�
�̂T � �0

�
d�!

N
�
0; A0�1T B0TA

0�10
T

�
. Under standard regularity conditions, the asymptotic covariance

matrix can be estimated using the Hessian and the OPG evaluated at the MSMLE, �̂T
[see White (1982)].

In other words VT
�
�̂T

�
is estimated as, T�1HessT

�
�̂T

��1
OPGT

�
�̂T

��1
HessT

�
�̂T

��1
,

which is the so-called "sandwich estimator" of the covariance matrix.
3Let V �1=2 = B

0�1=2
T A0T , then it follows that:

C =
�
V �1=2

��1
=
�
B
0�1=2
T A0T

��1
=
�
A0T
��1 ��

B0
T

��1=2��1
= A0�1T

�
B0
T

�1=2
,

C0 =
�
A0�1T

�
B0
T

�1=2�0
=
��
B0
T

�1=2�0 �
A0�1T

�0
= B

01=2
T

�
A0�1T

�0
(B0

T is symmetric)

and
V = CC0 = A0�1T

�
B0
T

�1=2
B
01=2
T

�
A0�1T

�0
= A0�1T B0

TA
0�10
T .
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2.4 Density functions for the marginals

A probability density function (p.d.f.) is characterized by three parameters: the loca-

tion, the scale and the shape. The location parameter (e.g. mean, median, or mode)

speci�es the positions on the x-axis of the range of values. For symmetric distributions,

the location parameter represents the midpoint and hence, as it shifts, the p.d.f. shifts

retaining its shape. The scale parameter (e.g. variance) measures the spread of the

density and determines the unit of measurement of the values in the range of the p.d.f..

The p.d.f. compresses/expands leaving its shape unchanged, as the scale changes. The

shape parameter (e.g. skewness and kurtosis) determines how the variation is distrib-

uted about the location and the form of the distribution within the general family of

distributions to which it belongs. As the shape parameter changes, the properties of the

p.d.f. change.

As for time series analysis, we can state that, in general, a p.d.f. should have the

following desirable properties:

(i) it must generalize to the standard Normal distribution (e.g. the T distribution

converges to the Normal, as its degrees of freedoms tend to in�nity);

(ii) it must be su¢ ciently �exible so as to generate a range of shapes which we think

might be relevant in a particular application (e.g. in �nancial applications, it is

desirable that the shape parameter explains the skewness and kurtosis that may

be encountered in the data);

(iii) it must be su¢ ciently parsimonious that the shape parameters can be modeled

with time series techniques whenever required;

(iv) it must be available in closed-form in order to facilitate (Quasi-ML) estimation.

The last point is very important, especially in applied work. Indeed in the statis-

tical literature there exist many �exible and parsimonious parametric distribution, but

only few of them have closed-form density functions. When the density is unavailable

estimation can be carried-out via method of moments, but as Hansen (1994) points

out this might involve severe inferential di¢ culties, especially for IGARCH models. In

other words, we want �exible low-dimensional densities with closed-form in order to use

QML estimation, which is preferred because of its simplicity and its very well-grounded

inference theory.

Let us introduce the notation: the observed sample is (yt; wt : t = 1; :::; T ) where

wt includes all the past values of yt. The density of yt is written as: f (yj�t (wt; �)),
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where � is a �nite-dimensional vector of parameters and �t = � (wt; �) is a time-varying

parameter. Now assume that is possible to parametrize f (yj�), so that we can partition
the time-varying parameter as �t =

�
�t; �

2
t ; �t

�
, where �t = � (�; wt) = E (ytjwt) is

the conditional mean, �2t = �2 (�; wt) = E
h
(yt � �t)2 jwt

i
is the conditional variance

and �t = � (�; wt) is the shape parameter of the distribution. Finally, let us de�ne the

normalized variable zt � [(yt � � (�; wt)) =� (�; wt)] which has density g (zj�t). Notice
that the densities of y and z are related by f

�
ytj�t; �2t ; �t

�
= g (ztj�t) =�t.

The �rst distribution I consider is the standardized Normal p.d.f.. As already high-

lighted, two of the most common deviations from normality are fat-tails and asymmetry

(recall that the implied kurtosis and skewness of the Normal distribution are three and

zero, respectively). I use the Student�s T density to capture (excess) kurtosis and the

skewed Student�s T density to capture both skewness and kurtosis. The density of the

T-distribution (normalized to have unit variance) depends on the parameter � which

represents the degrees of freedom of the distribution and captures leptokurtosis. It is

important to note that the kurtosis is both a measure of the peakedness and the fat

taildness of the distribution. The Student�s T density allows for variations in the lo-

cation, scale, and tail thickness. The implied kurtosis of the Student�s T distribution

is k = 6= (� � 4) for all � > 4. Notice that the the Student�s T is leptokurtic when

4 < � � 25 and it converges to the Normal as � !1.
A desirable extension with respect to both the Normal and the Student�s T density,

is to allow for skewness; this can be accomplished by considering the skewed Student�s

T distribution of Hansen (1994), who underlines the importance of having a density

function that can be easily parametrized so that the standardized residuals of a condi-

tional location-scale model have zero mean and unit variance (i.e. otherwise, it might be

di¢ cult to separate the �uctuations in the mean and variance from those in the shape

of the conditional density). The functional form of the skewed Student�s T density is

given by:

T skew (zj�; �) =

8><>: bc
h
1 + 1

��2

�
bz+a
1��

�i�(�+1)=2
if z < �a=b

bc
h
1 + 1

��2

�
bz+a
1+�

�i�(�+1)=2
if z � �a=b

(18)

where 2 < � � 1 and �1 < � < 1. The constants a, b and c are de�ned as:

a = 4�c

�
� � 2
� � 1

�
, (19)

b =
p
1 + 3�2 � a2, (20)
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and

c =
�
�
�+1
2

�p
� (� � 2)�

�
�
2

� . (21)

Notice that the skewed Student�s T distribution encompasses both the (symmetric)

Student�s T and the Normal distribution; indeed, we get the former when � = 0, while

the latter is obtained for � = 0 and � ! 1. Like the Student�s T distribution, it is

well de�ned only for � > 2, the skewness exists for � > 3 and the kurtosis exists only

if � > 4. The parameter � controls the skewness of the density, which is continuos and

has a single mode at �a=b. If � > 0, the mode of the density is to the left of zero and
the variable is skewed to the right, vice-versa for � < 0.

3 VaR Forecasting with Copulas

Value-at-Risk measures the worst expected loss under normal market conditions over a

speci�c time interval, at a given con�dence level; in other words, VaR estimates market

risk, that is the uncertainty of future earnings due to the changes in market conditions.

The time period and the con�dence level (i.e. the quantile) are two very important

parameters that should be chosen in a way appropriate to the overall goal of risk mea-

surement. In this paper I use a 95 percent con�dence level and a one day time period.

There are two factors that have contributed to increase the popularity of VaR as a

risk management tool. First, its simplicity: VaR reduces the market risk associated with

any portfolio to a single number, the loss associated to a given probability. Second, the

Basel Capital Accord sets capital requirements of banks as a function of the VaR. In

1988 central bankers from the Group of Ten (G10) countries undertook what is known

as the Basel Accord. This agreement, which is now adopted by more than 100 countries,

sets the minimum capital requirements that banks must meet to guard against credit

and market risks. The market risk capital requirement is a function of the forecasted

VaR thresholds. Assuming that returns can be written as rt = E (rtj
t�1)+ "t and that
"t has variance ht, the VaR threshold is de�ned as:

V aRt = E (rtj
t�1)� q
p
ht (22)

in which q is the critical value from the distribution of the unpredictable component

of returns, "t.

For an equally weighted portfolio of two assets, the VaR can be written as:
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V aRt =

vuut 2X
i=1

(V aRi;t)
2 + 2�12;tV aR1;tV aR2;t (23)

One of the most well known VaR methodologies is J.P. Morgan�s RiskMetricsTM .

This method assumes that the continuously compounded daily returns of a portfo-

lio follow a conditional Normal distribution, that is rtj
t�1 � N (�t; ht). In addition

RiskMetricsTM assumes that the mean, �t, and the variance, �
2
t , evolve according to:

�t = 0; ht = �ht�1 + (1� �) r2t�1; with � = :94 (24)

Therefore, the method assumes that the logarithm of the daily price, pt = ln (Pt),

of the portfolio satis�es the di¤erence equation pt � pt�1 = rt, where rt =
p
ht�t, is an

IGARCH(1,1) process without drift and � is a decay factor with a typical value of 0.94

for daily data and of 0.97 for monthly data (these �gures are the result of J.P. Morgan�s

calibration exercises). When using the RiskMetricsTM methodology on a portfolio of

assets, we also need to compute the coe¢ cient of correlation given by �tij = htij=
p
htihtj ,

in which the covariance is estimated using an exponential weighting scheme, that is:

hijt = �hijt�1 + (1� �) rit�1rjt�1; with � = :94 (25)

Although RiskMetricsTM permits sizeable computational gains, Za¤aroni (2008) shows

that it delivers non-consistent estimates and hence unreliable forecasts of the conditional

variances and correlations.

Another simple way to calculate the VaR of a portfolio/asset, is to forecast its volatil-

ity as the historical Moving Average of the standard deviations, denoted as MA(m):

h (m) =
1

m

mX
t=1

r2t (26)

where m is the length of the estimation window and rt � N (0; h). In the empirical
section of the paper, where I deal with daily data, I use two MA models with m = 20,

and m = 60.

Forecasting VaR from copula models is less straightforward. Let us introduce some

notation: log-prices are given by pit = log
�
P it
�
where i = SC;LC; log returns are given

by rit = p
i
t � pit�1, standardized residuals after ARMA-GARCH estimation (i.e. ARMA

residuals eit divided by the estimated standard deviation
p
hit) are denoted as "

i
t, the

PIT of "it are given by ut = Ft
�
"SCt j'̂

�
and vt = Ft

�
"LCt ĵ

�
, where '̂ and ̂ are the
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estimated parameters of the marginals and Ft (:j:) denotes the conditional c.d.f. of "it.
Having de�ned these variables, we can write the value of an equally weighted portfolio

containing the small cap index and the large cap index as:

Vt =
1

2
exp

�
pSCt

�
+
1

2
exp

�
pLCt

�
(27)

The Pro�t and Loss (P&L) function of this portfolio is given by Lt = (Vt � Vt�1).
Alternatively, the P&L function can be expressed as:

Lt =
1

2
PSCt�1

�
exp

�
rSCt

�
� 1
�
+
1

2
PLCt�1

�
exp

�
rLCt

�
� 1
�

(28)

The algorithm I use to obtain the recursive one-step ahead forecasts of the 5 percent

VaR implied by copula models is the following:

1. Estimate the marginal distributions of returns using T observations;

2. Forecast returns and variances in T + 1 and denote these as r̂iT+1 and ĥ
i
T+1, for

i = SC;LC;

3. Get ut and vt and estimate the copula parameters, denoted as �̂;

4. Simulate j random variables
�
ujT+1; v

j
T+1

�
, where j = 1; :::; N , from the copula

function4 estimated in step 3;

5. Get the (simulated) standardized residuals "i;jT+1 using the fact that "
SC;j
T+1 = F

�1
T+1

�
ujT+1j'̂

�
and that "SC;jT+1 = F

�1
T+1

�
vjT+1ĵ

�
, where F�1 (:) is the inverse c.d.f.;

6. Get the simulated (forecasted) returns using the forecasted returns and variances

from step 2 (i.e. simulated standardized residuals at time T + 1 are de�ned as

"i;jT+1 =
�
ri;jT+1 � r̂iT+1

�
=
q
hiT+1 therefore r

i;j
T+1 = r̂

i
T+1 + "

i;j
T+1

p
hT+1);

7. Repeat steps 4-6 N times and use Equation (28) to get a sample of LjT+1 for

j = 1; :::; N ;

8. Sort the j P&L functions in increasing order;

9. The VaR is the � quantile from the simulated empirical distribution of LT+1 (i.e.

the 0:05N -th observation in the sorted sample LT+1).

4See Cherubini, Luciano and Vecchiato (2004).
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It easy to understand that when using this algorithm a critical variable to be set is

N , that is the number of simulations from the copula functions. Obviously, the larger

N , the more accurate the VaR; however, copula simulation can be very time-consuming,

especially when doing that within a recursive, or rolling forecasting scheme. For this

reason, I have carried out a Monte Carlo exercise to determine N on the basis of the

trade-o¤ between accuracy of the VaR and CPU time. This exercise demonstrates that

setting N=5000 represents a good compromise between accuracy and speed5.

3.1 Backtesting VaR

I use two tools to evaluate the performance of di¤erent VaR models: statistical tests and

loss functions. Let us de�ne the following indicator variable as the hit series:

It =

(
1 if Lt < V aRt (q)

0 if Lt � V aRt (q)
(29)

where It, which can be written more compactly as It = 1 (Lt < V aRt (q)), is a

dummy variable that takes on value one when the P&L function exceeds the forecasted

VaR threshold.

Recall that the VaR threshold represents the critical value that corresponds to the

lower q percent tail of the distribution of returns. Alternatively, q can be de�ned as the

true probability coverage whose sample analogue is given by q̂ =
PT
t=1 It=T in which q̂

is called nominal coverage.

With these de�nitions, I can introduce the trinity of tests due to Christo¤ersen

(1998). These tests are based on the de�nition of (conditional) e¢ ciency of the sequence

of VaR forecasts; more precisely, we say that a series of VaR forecasts is e¢ cient with

respect to the information set 	t�1, if E (Itj	t�1) = q for all t. These tests can be done in
a likelihood ratio (LR) testing framework. A very convenient feature of Christo¤ersen�s

tests is that they can be carried out as a joint test of two properties of the hit series,

namely we test separately the correct unconditional coverage and serial independence

hypotheses.

The idea behind the unconditional coverage test is straightforward: accurate VaR

estimates should exhibit the property that their nominalnunconditional coverage q̂ equals
the true probability coverage, say q = 5 percent. Let x =

PT
t=1 It be the number of

exceptions in a sample of size T , then we can write the probability of x as6:

5Results are available from the author upon request.
6Notice that this corresponds to the probability density function of a Binomial variate. This stems

from the fact that x is a sum of T Bernoulli variates It.
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Pr (x) =

�
T

x

�
qx (1� q)T�x : (30)

From (30) it follows that the maximum likelihood estimate of q can be written as7

q̂ = x=T . For a set of 5 percent VaR forecasts, the LR statistic for testing the null

hypothesis that q̂ = q = 0:05 against the alternative q̂ 6= q is:

LRUC = 2
n
log
h
q̂x (1� q̂)T�x

i
� log

�
0:05x0:95T�x

�o
(31)

As usual, we have LRUC
asy� �2 (s� 1) = �2 (1), in which s = 2 is the number of

possible outcomes of the hit series.

Christo¤ersen has shown that this test does not have any power against the alter-

native that the zeros and the ones in the hit series come clustered together in a time-

dependent fashion; this explains why we need a test that helps identify the presence

of dynamics in higher-order moments. The LR test of independence (LRIND) is used

to test the null hypothesis of serial independence against the alternative of �rst-order

Markov dependence. Under null hypothesis LRIND is asymptotically distributed as a

�2 (1).

Finally, the test of unconditional coverage and test of independence can be combined

to form a test of conditional coverage (LRCC). The test of conditional coverage can be

written as:

LRCC = LRUC + LRIND
asy� �2 (2) (32)

As we can see the LRCC test is a joint test of unconditional coverage and indepen-

dence.

The fourth and last statistical test I will use is due to Engle and Manganelli (2002).

Let us consider a modi�ed version of the hit series:

Hitt = 1 (Lt < V aRt)� q (33)

and let Xt =
h
� Hitt�1 Hitt�2 ::: Hitt�p V aRt

i
, where � is column of ones.

By regressing Hitt on Xt we get: � = (X 0
tXt)

�1X 0
tHitt.

The Dynamic Quantile (DQ) test statistic is given by:

7Notice that the log-likelihood function is given by: log
�
T
x

�
+ x log q + (T � x) log (1� q) :

Solving the FOC for q yields q̂ = x=T =
PT

t=1 It=T:
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DQ (p) =
�0X 0

tXt�

q (1� q) � �
2 (p) . (34)

The test exploits the fact that, under the null of a correctly speci�ed VaR model,

the Hit series should have mean zero and should be independent of everything in the

conditioning information set, including its lagged values and the VaR.

While the previous tests can be used to choose among models on the basis of the

number of exceptions, they do not tell us anything about the magnitude of the exceptions.

The magnitude of the exceptions can be evaluated using a set of loss functions. The �rst

loss function, proposed by Lopez (1998), can be written as:

CLt =

(
1 + (Lt � V aRt)2 if Lt < V aRt

0 if Lt � V aRt
(35)

Notice that the penalty increases with magnitude of the VaR violation. An alterna-

tive loss function has been proposed by Blanco and Ihle (1999):

CBIt =

(
Lt�V aRt
V aRt

if Lt < V aRt

0 if Lt � V aRt
(36)

This loss function focuses on the average size of the exceptions. The third loss

function, used also by González-Rivera et al. (2004), is the loss function used in quantile

estimation [see, Kroner and Basset (1978)]:

Q = T�1
TX
i=1

(q � It) (Lt � V aRt (q)) (37)

where It = 1 (Lt < V aRt (q)), as de�ned in Equation (29). Q penalizes more heavily,

with weight (1� q), the observations for which Lt�V aRt (q) < 0. A smaller Q indicates
a better goodness-of-�t.

Lastly I use a loss function based on the Basel Committee�s capital charges. The

Basel Capital Accord sets the capital charge at the highest of the previous day�s VaR,

or the average VaR over the last 60 business days times a multiplicative factor k (i.e.

this is to be determined by local regulators, but it cannot be less than 3):

CCt = � (3 + k)max
 
1

60

60X
t=1

V aRt�i; V aRt�1

!
(38)

Notice that CC is the product of the negative of (3 + k) and the greatest between

the previous day VaR and the mean VaR over the last sixty days. As we can see from
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table 1, k increases as a function of the number of violations of the VaR threshold over

the last 250 trading days.

Table 1: Basel Penalty parameter as a function of the VaR violations in the last 250
trading days
Violations <5 5 6 7 8 9 � 10
Increase in k 0.00 0.40 0.50 0.65 0.75 0.85 1.00

Source: Jorion (2007).

4 Application

In this section of the paper I analyze the forecasting performance of copula models. The

next subsection describes the dataset used in the analysis, focusing on the properties of

the marginal distributions of the data, as well as on their correlation. Then I analyze

the goodness-of-�t of di¤erent parametric assumptions. Lastly, I compare the forecasting

performance of copula models with a set of statistical tests and loss functions.

4.1 Data description

The theory of copulas is used to forecast the VaR of an equally weighted portfolio

composed of two Dow Jones Global Indices (DJGI). These indices, which are available

for 47 countries, include stocks that are categorized into 10 industries, 18 super-sectors,

39 sectors and 104 sub-sectors, as de�ned by the DJ�s Industry Classi�cation Benchmark.

The empirical application of this paper is based on the DJ�s U.S. Oil and Gas Producers

Index, which includes companies involved in upstream activities (i.e. exploration and

production), as well as integrated oil and gas companies (i.e. companies involved in both

upstream and downstream activities, such as re�ning, marketing, and distribution).

This index is available at the sector level, as well as for three sub-categories of stocks,

namely large-cap, mid-cap and small-cap stocks (i.e. indices of stocks sorted by their

market capitalization).

The analysis uses the small cap index and the large cap index recorded at daily

frequency from January 1992 to May 2008. The sample comprises a total of 4260 ob-

servations: 3500 observations are used for estimation purposes, while the remaining

760 observations are used for out-of-sample evaluation. Descriptive statistics for these

samples are shown in table 2.

Both the average return and the volatility of small cap stocks are higher than those

of large cap stocks over the three periods.
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Notice that these indices have been chosen to represent a portfolio comprising a

low-risk/low return position, namely the large cap index, and a high risk/high return

position, that is the small-cap index.

Although, for both indices, the empirical 5 percent VaR is quite close to -1.65, that

is the 5 percent quantile of a Normal variate, the Jarque-Bera statistic always rejects

the null hypothesis of unconditional normality. Furthermore, notice that the small cap

index always displays slightly negative excess skewness, while the large cap index displays

slightly positive excess skewness. Both indices exhibit excess kurtosis and are positively

correlated, with the coe¢ cient of correlation close to 0.6. As I noted above, a common

feature of �nancial data is that they are often more correlated in bear markets than in

bull markets. The asymmetric dependence between the two indices can be measured

using the framework of Longin and Solnik (2001) and Hong, Tu and Zhou (2007).

Let us de�ne the exceedence correlation between two random variables X and Y , as

�e (q):

�e (q) =

(
�� = corr (X;Y jX � Qx (q) \ Y � Qy (q))
�+ = corr (X;Y jX > Qx (q) \ Y > Qy (q))

where Qx (q) and Qy (q) are the q-th quantiles of X and Y .

The empirical exceedence correlations of standardized returns8 along with those im-

plied by a Normal and a Rotated Gumbel copulas9 are shown in �gure 2. Similarly, �gure

3 displays the empirical exceedence correlations of transformed standardized residuals10

(u; v) along with what we would observe if they were linked with the Normal copula, or

the Rotated Gumbel copula.

Notice that the information provided by these two plots are substantially di¤erent:

while the former displays evidence of asymmetries in the unconditional distribution of

returns, the latter shows the degree of asymmetry in their unconditional copula, that is

after having removed all the asymmetries in the marginal distributions.

Clearly, both �gures reveal that the assumption of multivariate normality, that im-

8Alternatively, we can de�ne �e (q) as:

�e (c) =

�
�� = corr

�
�X; �Y j �X � c \ �Y � c

�
�+ = corr

�
�X; �Y j �X > c \ �Y > c

�
where �X and �Y are standardized variables and the correlation at the exceedence level c is de�ned as

the correlation between the two variables when both of them exceed c standard deviations away from
their means. Notice that while �gure (2) uses �e (q), the J-tests in table (3) are based upon �e (c).

9Notice that for these two copulas the parameters have been derived from relationship between
Kendall�s � and their parameters. For the Normal copula � = 2

�
arcsin (�), while for the rotated Gumbel

copula � = 1� 1
�
.

10These are the Probability Integral Transforms of standardized residuals after normal GARCH(1,1)
estimation.
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Figure 2: Exceedence correlations between standardized returns.
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Figure 3: Exceedence correlations between transformed standardized residuals (u; v)
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plies symmetric exceedence correlation, is not appropriate for the two indices I am ana-

lyzing.

Furthermore, both the F-test and the J-test in table 3 con�rm what I have just

highlighted: both tests reject the null hypothesis of symmetric correlation (with the

exception of the out-of sample J-test). The last four columns of the table, which show

the di¤erence between negative and positive exceedence correlations for exceedence levels

c = 0; :5; 1; 1:5, provide further evidence of the asymmetric dependence between the small

cap index and the large cap index.

4.2 Marginal Distribution Models

The evidence presented above coupled with some pre-estimation statistical tests11 sug-

gest to model the marginal distribution for the two indices as follows:

rSCt = �1 + �2r
SC
t�1 + "1;t

hSCt = �3 + �4"
2
1;t�1 + �5h

SC
t�1

rLCt = �6 + �7r
LC
t�1 + �8"2;t�1 + "2;t

hLCt = �9 + �10"
2
2;t�1 + �11h

LC
t�1

"j;t =
q
hit�j;t for i = SC; LC and j = 1; 2

�j;t~T
skew (�j;tj�; �)

The marginal distribution for the small cap index is assumed to be adequately char-

acterized by an AR (1)�T skew�GARCH (1; 1), while the marginal distribution for the
large cap index is assumed to be characterized by ARMA (1; 1)�T skew�GARCH (1; 1).

Recall that Hansen�s skewed T distribution nests, at least asymptotically, both the

Student�s T distribution (e.g. when � = 0) and the Normal distribution (e.g. when

� = 0 and � !1), therefore I can test the adequacy of the parametric assumptions by
means of Likelihood Ratio tests (LR). As we can see from table 4, the LR tests reject

the normality of the data, but do not reject the null that � = 0; in other words, these

tests are telling us that the Student�s T distribution should be adequate for the data.

Lastly, I evaluate the goodness-of-�t of the three GARCH models with the framework

proposed by Diebold, Gunter and Tay (1998). These authors showed that for a times

series of PITs to be i.i.d. U(0,1) the sequence of densities must be correct.

11Results available from the author upon request.
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Therefore, I test the goodness-of-�t of the marginal densities in two separate steps. In

the �rst step I use the Kolmogorov-Smirnov test and an histogram to asses whether the

transformed standardized residuals are U(0,1). Then, in the second step, I use the plot

of their autocorrelation functions to test the independence hypothesis. For the Normal

GARCH, as well as for the T-GARCH model, the Kolmogorov-Smirnov test rejects the

null hypothesis that the transformed series are uniformly distributed. Moreover, some

of the histograms�bins lie outside their con�dence bounds. In the case of the skewed

Student�s T distribution the Kolmogorov-Smirnov test fails to reject the null and the

histogram looks closer to what we would expect if the data were really i.i.d. Uniformly

distributed. Lastly, in all cases the correlograms do not reveal any neglected dynamics12.

All in all, I decided to use all of the three distributions for two reasons: (i) if on

the one hand I can quite easily discard the Normal distribution, on the other hand the

evidence just presented does not allow to choose between the T and the skewed Student�s

T distribution; (ii) each distribution allows to keep into consideration di¤erent features

of the data. The Normal distribution has been used as benchmark model, that I will call

the Normal-Normal model, that is a speci�cation with Normal marginals linked with a

Normal copula.

4.3 Copula Models

As we have seen above, the estimation of copula models can be broken down into two

steps [see Equation (9)]; in the �rst step, I use Equations (10) and (11) to get QML

estimates of the marginal distributions, while in the second step I use Equation (12) to

estimate the parameters of the copula and Equation (13) to draw inferences.

For each marginal distribution, I have �tted �ve copulas: the Normal copula, the

Clayton copula, the Plackett copula, the Rotated Gumbel copula and the SJC copula.

These copula functions have been chosen because they have functional forms that allow

to take into account the characteristics of the data. Recall from �gures 2-3 that the

indices are more correlated in bear markets than in bull markets. This fact is con�rmed

by the estimates of the SJC copula that, independently of the marginal distribution,

always displays a coe¢ cient of lower tail dependence
�
�L
�
slightly greater than the

coe¢ cient of upper tail dependence (�U ), see table 5. The same table also shows how

the models rank according to the value of the maximized log-likelihood function. The

�rst and the third-best copula models are those that link the univariate T distributions

with asymmetric copulas, such as the SJC and the Rotated Gumbel.

12Results available from the author upon request.
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Table 4: Estimation of marginal distribution and goodness-of-�t tests.
Small Cap Large Cap

N-Lik -5734.7868 -5419.5093
T-Lik -5689.8773 -5366.7107
tsk-Lik -5689.2082 -5366.6924
AIC(N) -11469.5718 -10839.0169
AIC(T) -11379.7524 -10733.4191
AIC(tsk) -11378.4136 -10733.3820
BIC(N) -11469.5665 -10839.0117
BIC(T) -11379.7454 -10733.4121
BIC(tsk) -11378.4048 -10733.3732
LR(N vs. T) 89.8188 105.5972
(P-value) 0.0000 0.0000
LR(N vs. tsk) 91.1571 105.6338
(P-value) 0.0000 0.0000
LR(T vs. tsk) 1.3382 0.0366
(P-value) 0.2473 0.8483

Notes: For each distribution (Normal (N), Student�s T (T) and skewed Student�s T (tsk) the table shows the

value of the log-Likelihood (Lik), the Akaike Information Criteria (AIC), the Bayesian Information Criteria (BIC)

and a Likelihood Ratio test for nested models (e.g. in the case of LR(N vs t) we are testing whether the t-GARCH

is better than the N-GARCH model).)

The second best model is characterized by T marginals linked with the (symmetric)

Plackett copula. These speci�cations are followed by the Normal marginals-Plackett

copula model and then by the Normal-Normal model. The speci�cations with T sk mar-

ginals are the next in this ranking; however, it should be pointed out that the estimates of

the skewness parameter are never statistically di¤erent from zero. Interestingly, models

based on the Clayton copula are the worst three speci�cations. This is quite surprising,

given that this copula has negative tail dependence as the Rotated Gumbel copula.

4.4 VaR results

The performance of di¤erent copula models is now evaluated in terms of their forecasting

performances. Table 6 shows the number of VaR violations, the percentage of VaR vio-

lations and the results of the Unconditional Coverage
�
LRUC

�
, Independence

�
LRIND

�
,

Conditional Coverage
�
LRCC

�
and Dynamic Quantile (DQ) tests for twelve models.

Three of these models, namely the RiskMetricsTM , the MA(20), and the MA(60) model,

are single index models and the remaining are portfolio models. In other words, the �rst

three models do not take into account the correlation between the small cap index and

the large cap index, while the remaining speci�cations take diversi�cation into account.

When looking at the number of exceptions, the best model seems to be the one based
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Table 5: Copula estimation
Coe¢ cient Std.

Error
Rank �LC AIC BIC

N+Normal � 0.5463 0.0099 5 620.41 1240.81 1240.81
N + Clayton � 0.7622 0.0314 15 463.96 927.93 927.92
N + Plackett � 6.4716 0.2879 4 624.32 1248.63 1248.63
N + Rotated Gumbel � 1.5316 0.0209 11 580.48 1160.97 1160.97
N + SJC �U 0.2776 0.0213 12 574.88 1149.77 1149.76

�L 0.3407 0.0178
T + Normal � 0.5450 0.0129 7 612.64 1225.27 1225.27
T + Clayton � 1.0669 0.0374 13 536.71 1073.42 1073.42
T + Plackett � 7.2299 0.3346 2 636.99 1273.97 1273.97
T + Rotated Gumbel � 1.6894 0.0248 3 631.87 1263.75 1263.74
T + SJC �U 0.4011 0.0208 1 648.65 1297.30 1297.30

�L 0.4529 0.0169
tsk + Normal � 0.5450 0.0099 8 610.81 1221.61 1221.61
tsk + Clayton � 0.8178 0.0309 14 501.62 1003.24 1003.24
tsk + Plackett � 5.9125 0.2644 9 606.12 1212.24 1212.24
tsk + Rotated Gumbel � 1.5329 0.0204 10 595.29 1190.58 1190.58
tsk + SJC �U 0.3250 0.0206 6 619.50 1238.99 1238.99

�L 0.3602 0.0189
Notes: For each distribution (Normal (N), Student�s T (T) and skewed Student�s T (tsk) and for each copula the

table shows the estimated copula parameters, its standard error, the ranking of the model (Rank) based on the

value of the maximized log-Likelihood function (LC), the Akaike Information Criteria (AIC) and the Bayesian
Information Criteria (BIC).
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on the portfolio RiskMetricsTM methodology, which delivers only 19 violations out of

760 VaR forecasts, while the models with the worst performance, at least 55 exceptions,

seem to be those using the skewed Student�s T distributions for the marginals. These

numbers are quite impressive given that the second-best model, namely the T-Rotated

Gumbel copula speci�cation, produces 32 VaR exceptions.

A more useful statistics is the percentage of violations; recall that this is obtained as

100 times q̂ =
�
760�1

P760
t=1 1 (Lt < V aRt)

�
, where q̂ is the empirical, or unconditional

coverage. When forecasting the 5 percent VaR, we expect q̂ to be close to 5 percent (i.e.

the true probability coverage). In this sense, we can see that the portfolio RiskMetricsTM

approach corresponds to an unconditional coverage of 2.5 percent, that is a half of what

we would expect.

Notice that models using the Student�s T distribution for the marginals are those with

the best unconditional coverage, ranging from 4.21 percent to 5 percent. Once again,

the models using the skewed Student�s T distribution are among the worst, implying

unconditional coverages slightly higher than 7 percent.

When looking at the LR test for independence, I cannot discriminate among di¤erent

models, indeed none of them reject the null hypothesis of serial independence of the hit

series. However, when moving to the Conditional Coverage LR test, I can con�rm what

already noticed when I looked at the percentage of violations.

All of the single index models pass the test, while neither the models using the skewed

Student�s T distribution, nor the portfolio RiskMetricsTM approach pass the test. On

the contrary, all of the models based on the T-distribution display correct conditional

coverage.

From now on I analyze only those models that have correct conditional coverage,

namely the single index RiskMetricsTM model, the two MA models, all the copula models

using the Student�s T distribution. As usual, I also consider the Normal-Normal model

to have a benchmark.

Of this subset of models, those that fail the DQ test are the following: RiskMetricsTM ,

MA(60), "Normal-Normal" and "T-Plackett".

Summing up, among the models that pass both the LRCC test and the DQ test (at

the 5 percent signi�cance level) we �nd three portfolio VaR models (i.e. the "T-Normal",

the "T-Rotated Gumbel" and the "T-SJC" copula models) and one single index model

(i.e. the MA(20) model).

The subset of models that, according to the statistical tests, deliver correct condi-

tional coverage are now evaluated in terms of their loss functions. This exercise is carried

out in table 7, while they are ranked according to lowest loss function and least number
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of violations in table 8.

Table 6: Backtesting of 5 percent VaR Forecasts: Statistical Tests
# Violations % Violations LRUC LRIND LRCC DQ

RiskMetricsTM (SI)� 48 6.32 2.5942 1.1463 3.7404 12.9224
p-value 0.1073 0.2843 0.1541 0.0443
MA(20)�;y 51 6.71 4.2843 0.0793 4.3637 11.7127
p-value 0.0385 0.7782 0.1128 0.0687
MA(60)� 51 6.71 4.2843 0.6686 4.9529 17.4732
p-value 0.0385 0.4135 0.0840 0.0077
N + Normal 57 7.50 8.7809 0.5445 9.3254 13.2330
p-value 0.0030 0.4606 0.0094 0.0395
T + Normal�;y 38 5.00 0.0001 0.6166 0.6167 8.8593
p-value 0.9934 0.4323 0.7347 0.1816
T + Rotated Gumbel�;y 32 4.21 1.0348 0.2566 1.2915 8.0954
p-value 0.3090 0.6124 0.5243 0.2312
T + Plackett� 38 5.00 0.0001 0.5419 0.5420 12.9546
p-value 0.9934 0.4617 0.7626 0.0438
T + SJC�;y 35 4.61 0.2476 0.0705 0.3181 6.1299
p-value 0.6188 0.7905 0.8530 0.4088
tsk + Normaly 56 7.37 7.9329 0.0104 7.9433 10.3955
p-value 0.0049 0.9187 0.0188 0.1090
tsk + Rotated Gumbel 55 7.24 7.1234 0.3473 7.4707 12.6529
p-value 0.0076 0.5556 0.0239 0.0489
tsk + Placketty 56 7.37 7.9329 0.0104 7.9433 11.4632
p-value 0.0049 0.9187 0.0188 0.0751
RiskMetricsTM (P)y 19 2.50 12.1042 1.0278 13.1320 11.1186
p-value 0.0005 0.3107 0.0014 0.0848

Notes: For each model the table shows the number and the percentage of violations of the VaR threshold and

three statistical tests: Christo¤ersen�s (1997) tests for Unconditional Coverage (LRUC), Independence (LRIND),

Conditional Coverage (LRCC), and the Dynamic Quantile Test of Engle and Manganelli (2002). Models denoted

with an "*" pass the Conditional Coverage Test, models denoted with a "y" pass the DQ test.

The joint analysis of these tables reveals that, for three loss functions out of four,

two of the T-SJC copula models rank either �rst, or second. However, when looking at

the mean capital charge, asymmetric copula models (i.e. T-SJC and T-RG) rank last

and second-last, with the MA models being in the �rst positions.

Notice however that the MA models are the worst models in the case of three loss

functions out of four, as well as for the number of VaR violations.

Moreover, recall that copula models have unconditional coverage closer to 5 percent

than MA models. Indeed, none of the MA models pass the unconditional coverage test.

Given that results in tables 7 and 8 are not robust to the choice of the loss function

(i.e. MA models outperform copula models when using the mean capital charge), I

provide further evidence about the forecasting performance of di¤erent models by means
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Table 7: Backtesting of 5 percent VaR Forecasts: Loss Functions and Capital Charges
Lopez BI Q Min CC Mean CC Max CC

MA(20) 4701.6366 19.9591 1.5878 40.0664 79.6824 142.1621
MA(60) 5317.1557 20.6035 1.6265 57.7675 81.7763 134.4733
T + Nl 3154.3608 13.2763 1.5316 46.8042 87.1998 156.7110
T + RG 2849.8654 11.6531 1.5338 49.3558 88.9990 160.8449
T + PL 3042.9603 12.5602 1.5296 50.5477 88.0974 158.6559
T + SJC 2809.7689 11.9025 1.5264 47.4040 88.9291 158.6794

Notes: The table uses the following notation to denote models and loss functions: T = Student�s T marginal

distribution; RG = Rotated Gumbel copula; N = Normal copula; PL = Plackett Copula; BI = Blanco and Ihle;

Q = Quantile Loss Function; CC = Capital Charge

Table 8: Ranking of 5 percent VaR Forecasts
Rank # Violations Lopez BI Q Mean CC
1 T+RG T+SJC T+RG T+SJC MA(20)
2 T+SJC T+RG T+SJC T+PL MA(60)
3 T+N T+PL T+PL T+N T+N
4 T+PL T+N T+N T+RG T+PL
5 MA(20) MA(20) MA(20) MA(20) T+SJC
6 MA(60) MA(60) MA(60) MA(60) T+RG

Notes: The table uses the following notation to denote models: T = Student�s T marginal distribution; RG =

Rotated Gumbel copula; N = Normal copula; PL = Plackett Copula.

of the forecast evaluation test developed by Diebold and Mariano (1995). This test,

referred to as the DM test, is a test for equal predictive ability of two competiting

forecasts. The null of equal predictive accuracy is tested against composite alternatives

that suggest which of the two models performs better. The test is based on a sample of

loss di¤erentials dt = L
�
fAt
�
� L

�
fBt
�
, with L (:) being some arbitrary loss function of

f it , that is, the time t forecast from model i = A;B. Equal predictive accuracy implies

E (dt) = 0 which can be tested using its sample counterpart �d = T�1
PT
t=1 dt. The DM

test can be written as:

DM =
�dq

vâr
�
�d
� (39)

where vâr
�
�d
�
is the asymptotic variance of �d computed with the Newey-West (1987)

heteroskedasticity and autocorrelation consistent (HAC) estimator. Under the null of

equal predictive accuracy, the DM test is normally distributed.

In the paper I use a modi�ed version of the test, denoted asMDM , put forth by Har-

vey, Leybourne and Newbold (1997), that can improve the power of the test in small sam-

ples. This test is given by MDM = T 1=2
�
T + 1� 2h+ T�1h (h� 1)

�1=2
DM , in which
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h is the forecast horizon (i.e. in this case, h = 1). Under the null of equal forecast accu-

racy MDM � T(T�1). Given that most of the asymptotics in the forecasting literature
requires the loss function to be di¤erentiable, I implement the tests with a di¤erentiable

version of the Quantile Loss function, Q [see Equation (37) and González-Rivera et al.

(2004)]. From now on, we have eQ = T�1PT
i=1 (q �m� ((Lt; V aRt (q)))) (Lt � V aRt (q)),

where m� (a; b) = f1 + exp [� (a� b)]g�1. The parameter � > 0 controls the smooth-

ness13 of eQ.
Table 9 shows that we can reject the null of equal predictive accuracy of the two MA

models when these are tested against copula models; on the other hand, the MDM test

does not help to choose among copula models. Thus, for this sample, the MDM test

has shown once again that copula models outperform simple models, such as the MA

speci�cations.

Lastly, I implement a test introduced by White (2000) and known as "Reality Check"

(RC). The null hypothesis of White�s RC test is that a given benchmark model performs

at least as well as the best competiting alternative model. The test is applied three

times on an increasingly smaller set of models and uses loss di¤erentials (i.e. the dt�s of

the DM test) calculated with the smoothed quantile loss function, eQ.
The �rst set of models include MA models, RiskMetricsTM models, and the copula

speci�cations excluding those based on skewed Student�s T marginals. Results are shown

in table 10 where each model in the �rst column has been used as the benchmark and

compared with all the remaining models. As we can see, the table displays two types

of p-values labelled as "White" and "HansenL" [see Hansen, 2001]. The "HansenL"

p-values use the adjustment due to Hansen (2005) that correct for the fact that the

"White" p-value tends to become very large whenever a poor model is introduced.

From table 10 we can see that the MA models, as well as the RiskMetricsTM speci�-

cations are the least preferred models. The copula models are associated with quite high

p-values; notice that the Normal-Normal model represents the worst copula speci�cation.

Given these results I recalculate the RC test on copula models only14. In this case,

the p-value associated to the Normal-Normal speci�cation is 10 percent, therefore the

null hypothesis is rejected and there exist at least one model outperforming that based

on the Gaussian distribution.

Lastly, I apply the RC test only to copula models using the Student�s T distribution

for the marginals. In this case, none of the benchmark models is outperformed by the

alternative speci�cations; however, once again the SJC copula speci�cation appears to

13 I set � = 25, however the test does not vary signi�cantly with �.
14Results available from the author upon request.
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be the most preferred.

Table 9: Modi�ed Diebold and Mariano Test
T+N T+PL T+RG T+SJC

MA(20) -1.9121 -1.9048 -1.6956 -1.8440
p-value 0.0562 0.0572 0.0904 0.0656
MA(60) -2.0547 -2.0591 -1.8819 -1.9819
p-value 0.0403 0.0398 0.0602 0.0479
T+N -0.3683 0.2820 -0.6734
p-value 0.7127 0.7780 0.5009
T+PL 0.4950 -0.3624
p-value 0.6207 0.7172
T+RG -1.1529
p-value 0.2493

Notes: The table uses the following notation to denote models: T = Student�s T marginal distribution; RG =

Rotated Gumbel copula; N = Normal copula; PL = Plackett Copula.

Table 10: Reality Check: Step 1
White HansenL

MA(20) 0.1440 0.0390
MA(60) 0.0720 0.0460

RiskMetricsTM (SI) 0.2090 0.0690
N+N 0.3050 0.1030
T+N 0.9260 0.4430
T+PL 0.9270 0.4610
T+RG 0.8880 0.3430
T+SJC 0.9820 0.6480

RiskMetricsTM (P) 0.0230 0.0230
Notes: Each model in the �rst column has been used as the benchmark and compared with all the remaining

models. The Null of the Reality Check (RC) is that the benchmark is at least as good as the other models. "White"

and "Hansen" denote the p-values of the RC. The bootstrap RC p-values are computed with 1000 bootstrap

resamples using the block bootstrap of Politis and Romano (1994). The block length has been determined with

automatic-block length selection method of Politis, White and Patton (2007) and is equal to 12. The table uses

the following notation to denote models: T = Student�s T marginal distribution; RG = Rotated Gumbel copula;

N = Normal marginal/copula; PL = Plackett Copula.

5 Conclusions

In this paper I have used copula functions to forecast the VaR of an equally weighted

portfolio comprising a small cap stock index and a large cap stock index for the oil and

gas industry. Such a portfolio represents a very general investment strategy, namely one

based on a low-risk/low-return position, the large cap index, and a high-risk/high return
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position, the small cap index.

Copula functions have been used because they allow us to take simultaneously into

account two characteristics of �nancial data: nonnormalities at the univariate, as well at

the multivariate level. Nonnormalities in the marginals, such as excess skewness and/or

excess kurtosis, can be taken into account with a variety of univariate models. However,

when considering multivariate modelling, curse of dimensionality comes into play. On

the contrary, the strength of copula functions relies on their �exibility. In fact, these

functions can be used to link marginal distributions and to generate �exible multivariate

speci�cations.

With this paper I have answered a set of empirical questions: (i) are there nonnor-

malities in the marginals? (ii) are there nonnormalities in the dependence structure? (iii)

is it worth taking these nonnormalities into account for risk-management applications?

(iv) do complicated models perform better than simple models?

As for questions (i) and (ii), I have shown that the data do deviate from the null

of normality at the univariate, as well as at the multivariate level. The marginal of the

small cap index, as well as that of the large cap index display kurtosis and skewness

di¤erent from what we would expect in the case of normally distributed time series. The

most serious problem is represented by excess kurtosis; on the contrary, excess skewness

does not seem to be important neither in the estimation stage, nor for risk management

purposes.

When considering the dependence structure of the data, I have found that they are

more correlated in market downturns than in market upturns. Asymmetries show up in

their unconditional distribution, as well as in their unconditional copula, that is after

having removed the nonnormalities from their marginal distributions.

As for the importance of nonnormalities for risk management purposes, the VaR

forecasting exercise has shown that models based on Normal marginals and/or with

symmetric dependence structures fail to deliver accurate VaR forecasts. Among the

models that deliver correct VaR forecasts, we have both very simple models, such as MA

models, and copula models with Student�s T marginals and asymmetric copula functions,

as well as a model with T marginal and Normal, symmetric, copula. By means of a set

of loss functions, I conclude that the T-asymmetric copula models deliver the best VaR

forecasts. This fact is illustrated also with the Diebold and Mariano test and with

White�s Reality Check test. These �ndings con�rm the importance of nonnormalities

and asymmetries both in-sample and out-of-sample. This last observation is not a trivial

one, indeed a common �nding in the forecasting literature is that complicated models

often provide poorer performance than simple, even misspeci�ed, models [Swanson and
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White (1995, 1997)].

The paper leaves unanswered at least two questions. First, the importance of time

varying correlations which can be addressed with time-varying copulas [see Fantazzini

(2004)]. Second, the forecasting performance of di¤erent models could be evaluated by

means of di¤erent loss functions and with a wider set of statistical tests, such as the

Conditional Quantile Forecast Encompassing test of Giacomini and Komunjer (2005).

Alternative, modelling techniques could also be used in place of GARCH models. In-

teresting alternatives are represented by the use of copula functions in conjunction with

Extreme Value Theory [see McNeil and Frey (2000)], or with quantile regression methods

[see Chen, Koenker and Xiao (2008) and Gourieroux and Jasiak (2008)].
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