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1. Introduction 

 

Over the past decades, our understanding of the role of technological change in economic growth 

has improved greatly. Literature has advanced from early models with exogenous technical change 

to representations of endogenous processes driven by various factors such as innovation (Romer, 

1986; 1990; Acemoglu, 2002), human capital (Lucas, 1988) and experience (Arrow, 1962).  

 

Technical change has also become an important element in the design of climate policies. Recent 

climate-economy models include modules describing technical change as an endogenous process. 

These models make it possible to understand how endogenous and policy-induced technical change 

(ITC) affects the macroeconomic costs of climate policy. Overall, this literature shows that ITC 

substantially affects both the costs and the timing of mitigation policies (Grubb et al. 2002; Clarke 

and Weyant 2002; Carraro, et al. 2006).  

 

Nonetheless, even the most recent climate-economy models suffer from two limitations. First, most 

models endogenise technical change in the energy sector. Other forms of technical change such as 

total factor productivity or labour productivity either follow autonomous trends or are simply 

omitted. However, increasing evidence supports the existence of both energy-saving and energy-

using technical change (see  van der Werf, 2008; De Cian, 2009). The effect of technical change on 

pollution or greenhouse gas emissions depends on the substitution possibilities among inputs. If 

technical change increases the productivity of inputs that are gross complement to energy, it may 

also increase pollution (Lopez, 1994). This underlines the key role played by the elasticity of 

substitution across factors and the deep interconnections between factor substitution and technical 

change (Sue Wing, 2006). Estimates of substitution elasticities are provided by a number of 

empirical studies (see Markandya, 2007 for a review). Despite the large heterogeneity, most 

estimates point at a complementarity relationship between capital, labour and energy. In most cases, 

a substitution elasticity lower than one is estimated.  

 

A second main limitation of most state-of-the-art climate-economy models is the weak empirical 

foundation of key technology parameters such as the elasticity of substitution, the growth rates of 

factor productivities, and their elasticities with respect to endogenous technology drivers. Despite 

significant improvements during the last decades, the empirical research that can provide useful 

information for the parameterisation of climate-economy models is still limited. 
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Most empirical literature focuses on the magnitude of neutral technical change. Early approaches 

measured indicators of neutral technical change as Solow residuals (Solow 1957) or as a coefficient 

of an exogenous trend using translog production functions (Jorgenson and Wilcoxen, 1990). 

Econometric methods were used to infer technical change from the dynamics of other economic 

variables. Slade (1989) and Bonne and Kemball-Cook  (1992) developed a model of factor demands 

in which the nature of technical change as a latent variable is emphasised. Technical change is 

broken down into an unobservable time trend and other factors that endogenously influence it. A 

similar methodology is used in Carraro and Galeotti (1996). In this latter work, the dynamics of 

technical change were inferred from the time evolution of capital stock rather than from factor 

demands. 

 

In addition, fewer studies have addressed factor-biased or factor-augmenting technical change2. 

Kendrick (1995)  analysed and compared trends in labour and capital productivity, measured as 

ratio of output over labour and capital respectively for 33 American industries from 1899 to 1953. 

Despite the heterogeneities across industry, in the long-run technical change is labour- and capital-

saving. Labour technical change tends to increase faster than capital technical change. Sue Wing et 

al. (2007) revised the work by Jorgenson and Fraumeni (1981) on energy-saving technical change 

in the US economy. Technical change has been an important explanatory factor of the decline in 

aggregate energy intensity since 1980. Another important driver is sectoral change, whereas  energy 

prices play only a minor role. Sanstad et al. (2006), using a translog production function, estimated 

sectoral productivity trends and energy-augmenting technical change for several energy- intensive 

industries in India, South Korea and the United States. They concluded that there is large 

heterogeneity in energy productivity not only across countries, but also across sectors. Van der 

Werf (2008)  estimated factor-augmenting technical change using a 2-level Constant Elasticity of 

Substitution (CES) production function for the inputs capital, labour and energy. He found larger 

rates of improvement for labour, followed by energy, whereas the rates of capital-augmenting 

technical change are negative3. 
 

This paper addresses these two previously described limitations of climate-economy models by 

estimating factor-specific technical change and input substitution using a structural approach. It 
                                                 
2 Hicks neutral technical change can be represented as a parallel shift in isoquants. Factor-biased technical change shifts 
the slopes of the isoquants, thereby affecting the relative marginal product of inputs. Technical change is factor-
augmenting if it increases the productivity of factors.  
3 Another branch of empirical research has investigated the determinants of neutral technical change, identifying several 
explanatory variables, which include human capital (Engelbrecht, 1997; Barro and Sala-i-Martin, 2004; Caselli, 2005), 
domestic R&D (Griliches, 1980; Nadiri, 1970; Mansfield, 1979;1980), foreign R&D (Coe and Helpman, 1995), trade 
openness (Grossman and Helpman, 2001; Cameron, 2005), and capital goods (Delong and Summers, 1991).  
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infers the dynamics of technical change from a system of factor demands. It improves upon van der 

Werf (2008) by introducing endogenous-technology drivers for factor productivities (energy, labour 

and capital) and by assessing the impact of endogenous technical change on the estimate of 

elasticity of substitution. This paper contributes to the debate on technology and the environment by 

providing new empirical results that are consistent with the underlying production structure of 

Integrated Assessment Models (IAMs) and is therefore suitable for improving the empirical 

foundations of those models.  

 

First, this paper shows that factor-productivities are endogenous, thus rejecting models with 

exogenous technical change. Second, it shows that technology drivers are factor-specific. 

Innovation is an important driver of capital and energy productivity, whereas education is a better 

explanatory variable of labour productivity. Imports of machinery and equipment from OECD are 

also energy-augmenting, but their effect is much smaller than that of R&D. Third, the rate of 

energy-augmenting technical change tends to be larger than that of either labour or capital, which 

instead have similar growth rates.  

 

Because the elasticity of substitution is less than one, we can conclude that innovation, imports of 

machinery and equipment, and education have an input-saving effect.  Therefore, innovation is not 

only energy-saving, but also  capital-saving. Human capital is labour-saving. As long as labour and 

capital are gross complements to energy, technical change can be energy-using. This is a relevant 

conclusion for the development of climate-economy models.  

 

In Section 2, we introduce the Constant Elasticity Production Function (CES) and briefly discuss 

the strategies that can be employed to identify different components of technical change. Section 3 

describes the specification of the empirical model and the data. Section 4 presents the results. 

Section 5 re-estimates factor-augmenting technical change using an alternative identification 

strategy. Section 6 summarises our main results and outlines further research directions.  

 

 

2. Model specification 

 

Climate-economy models represent the production side of the economy by using production 

functions that can be parameterised in different ways to reflect alternative assumptions on 
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technology and factors substitution. Most integrated assessment models describe the production 

side of the economy using a CES production function.  

 

Large differences exist with respect to the assumed nesting structure, the size of the elasticity of 

substitution, and the way technical change is represented. Van der Werf (2008) reviews the 

production structure of 10 state-of-the-art IAMs. All models except one, nest labour together with 

capital, whereas three models consider a non-nested production function, assuming an equal 

elasticity of substitution between energy, capital, and labour4. The specification that best fits the 

data combines capital and labour first, and then the capital-labour bundle with energy. However, a 

non-nested production function cannot be rejected for eight out of twelve countries, and for five out 

of seven industries. In addition, most IAMs share the assumption of exogenous technical change 

and only one model (Edenhofer et al. 2005) is characterised by factor-specific technical change. 

 

In this paper, we consider a non-nested production function with endogenous factor-augmenting 

technical change5. We assume that a representative firm produces total output (X) using the CES 

technology with constant-return-to-scale, a standard assumption in IA modelling literature: 

ρρρρ
1

}))()(())()(())()(){(()( tEtAtLtAtKtAtHtX ELK ++=      (1) 

The elasticity of substitution σ is related to ρ according to the standard relationship, ρ = (σ-1)/ σ.  

 

This formulation (David et al. 1965) can account for factor-specific technical change, differentiating 

the dynamics of technical change across inputs. The coefficients that pre-multiply the three inputs, 

capital, labour, and energy (Af  with f=K,L,E), describe the productivity or efficiency of production 

factors. The higher the productivity coefficient, the lower the quantity of input is required to 

produce the same level of output. Technical change is factor-augmenting if an increase in 

productivity leads to higher output, keeping everything else constant, i.e. 0
)(
)(
>

∂
∂

tA
tX

f

. Neutral 

technical change is also included as an additional parameter (H), which pre-multiplies the whole 

production function.  

 

                                                 
4 These are the models described by Edenhofer et al. (2005), Goulder and Schneider (1999) and Popp (2004). 
5 Given the focus of the paper, which is the identification of the endogenous determinants of factor-augmenting 
technical change, we decided to start with one of the simplest CES structure that has an empirical foundation. This 
assumption simplifies the analytical derivation of the empirical model, especially when neutral technical change is 
explicitly accounted for, see Section 5. 
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This production structure makes it possible to differentiate factor-specific technical change, while 

accounting for changes in overall productivity. Indeed, factor-specific technical change and overall 

productivity can take different and opposite paths. The industrial revolution in the eighteenth 

century and the introduction of information technologies in the seventies are both examples of rapid 

technical change in specific sectors associated with aggregate productivity slowdown (Greenwood 

and Yorukoglu, 1997). Learning about new technologies and initial lack of experience explain why 

the introduction of new technologies may be associated with lower productivity growth.  

 

Factor-augmenting technical change is input-saving or input-using depending on the elasticity of 

substitution. The interplay between neutral and factor-specific technical change and the interaction 

between substitution and technical change can be better understood by looking at conditional factor 

demands derived from the cost-minimisation problem of the representative firm6.  

 

Using logarithms and differentiating with respect to time, conditional factor demands can be 

expressed as a linear relationship7, as in system (2). The percentage change in factor demands on 

the left-hand side depends on the percentage change of final output (x), technology parameters (af + 

h) and relative input prices (pf - p):  

 

))(1())(1(
))(1())(1(
))(1())(1(

pphaxe
pphaxl
pphaxk

EE

LL

KK

−−++−+=
−−++−+=
−−++−+=

σσ
σσ
σσ

        (2) 

 
Technical change is broken down into two components, neutral technical change (h), which affects 

all inputs equally, and factor-augmenting technical change (af with f=K,L,E). Factor-augmenting 

technical change (af > 0) is input-saving if the elasticity of substitution is lower than one and if total 

technical change remains positive, (af + h) >0.   

 

Totally differentiating and dividing by the value of final output (PX), the zero profit condition 

(PX=PKK+PLL+PEE), neutral technical change (h) can be decomposed into total factor productivity 

growth (tfp) and share-weighted input efficiency improvements: 

 

)( EELLKK aaatfph θθθ ++−=          (3) 

                                                 
6 Cost minimisation is also a standard assumption made in IA modeling literature. As in the IA modeling literature we 
also assume price-taking behaviour and therefore the unit cost function gives the price of final output, C(1; PK, 
PL,PE)=P. 
7 Small letters denote percentage changes, e.g. x=dX/X=dlnX.  
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where tfp is defined as a unit cost reduction not due to factor price reductions: 

 

ppapapatfp EELLKK −++= )(          (4) 

 

Therefore, total factor productivity is a correct measure of neutral technical change only if technical 

change does not differ across inputs, i.e. aK=aE=aL. 

 

A well-known problem that stands out clearly from system (2) is the impossibility to fully identify 

both neutral and factor-specific technical change. The most straightforward way to deal with this 

issue is to focus on factor-specific technical change, assuming no time variation in neutral technical 

change (i.e. h=0). This is also the assumption shared by the literature on CES production functions 

with factor-augmenting technical change and on directed technical change (e.g. van der Werf, 2008 

and Acemoglu, 2002). This identification strategy is discussed further in Section 5, which proposes 

an alternative methodology.  

 

Factor-specific technical change consists of two components. A constant term, which captures the 

growth rate of autonomous technical change, and an endogenous component, which relates factor 

productivities to one or more technology driver, yj: 

 

ELKfya j
j
f

n

j
ff ,,

1

0 =∀+= ∑
=

δδ          (5) 

 
 
With this formulation we can test the hypothesis of endogenous technical change by looking at the 

statistical significance of the elasticity with respect to yj . In addition, the role of various technology 

drivers can be assessed. Three different possible sources of factor-specific technical change are 

considered: innovation, approximated by the stock of R&D expenditure, trade, in particular imports 

of machinery and equipment, and human capital, proxied by the stock of education expenditure. 

These variables were selected among the main determinants of neutral technical change (see Barro 

and Sala-i-Martin, 2004). 

 

The role of R&D as an engine of productivity growth has been acknowledged since the early 

models of endogenous growth (Romer 1986; 1990). Important contributions include studies by 

Griliches (1980), Nadiri (1970) and Mansfield (1979; 1980). Coe and Helpman (1995) found 



 8

empirical evidence of international technology spillovers. R&D has an effect not only on the 

productivity of the innovating country, but also on the productivity of trading partners. The more 

open to trade a country is, the greater this effect (Cameron 2005; Coe et al. 1997). 

 
Engelbrecht (1997) extended the analysis of Coe and Helpman (1995) by including the role of 

human capital. He found that both R&D and human capital, measured in terms of school attainment, 

are important determinants of productivity growth. Other empirical studies found a positive 

relationship between aggregate productivity and other indicators of human capital, such as 

education attainment (Barro and Sala-i-Martin,  2004) and education expenditure (Caselli, 2005). 

 
 
Another indicator of knowledge is the stock of capital (Arrow, 1962). Rosenberg (1983) stressed 

how technical improvements are often tied to capital goods such as machinery and equipment. 

Therefore, the purchase of these goods is fundamental for the translation of technical change into 

productivity growth. Machinery  was considered to be an important source of economic growth 

(DeLong and Summers, 1991) and technical progress. Historically, capital goods were 

manufactured in a small number of countries because they required a mature stage of 

industrialisation, technical competency and high skill levels. Moreover, the capital goods industry is 

highly specialised and requires a large market. For this reason, capital production has been 

concentrated in OECD countries, especially in the United States, the United Kingdom and 

Germany. These countries are also among the most R&D intensive. It follows that the machinery 

produced in these countries are particularly knowledge-intensive and therefore they have high 

potentials to transfer technology and knowledge.  

 
 

3. Empirical model and data 

 

System (2) can be expressed in percentage change of cost shares that depend on prices and 

technology. Technology is a function of time and of three technology drivers, namely the stock of 

R&D expenditure (y1), imports of machinery and equipment from OECD countries (y2) and the 

stock of education expenditure (y3):  
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Country and time effects are captured using country dummies and a logarithmic time trend8. As a 

consequence, the rate of autonomous technical change (δ0
f) consists of a country-specific term and 

of a time trend common to all countries.  In discrete time, the empirical model reads as follows: 
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8 The time effect can also be made country-specific by interacting country dummies with the time trend. Although all of 
these specifications were estimated, the model with a common time trend was preferred because it is more 
parsimonious. 
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A set of tests can be performed to better assess the dynamics of endogenous technical change (Test 

1), autonomous technical change (Test 4) and substitution (Test 2 and 3).  

12,..,1:H
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Test 1 assesses whether the role of different technology drivers differs across inputs. Test 2 

evaluates the hypothesis of a Cobb-Douglas production function. Test 3 checks the assumption of 

common elasticity between capital, labour and energy. Test 4 evaluates the hypothesis of neutral 

technical change when technical change is exogenous (i.e. γf1 = γf2 = γf3=0 for all f=K,L,E) by 

testing the equality of the time trend and dummy coefficients across equations. 

 

Estimation of system (7) requires data on prices and quantities of output, labour, capital and energy. 

The estimation is carried out using aggregate data, although an extension to sectoral data is left for 

future research. 

 

Aggregate data was collected from the OECD STAN Industry Database 20069, the International 

Energy Agency (IEA) Databases 2006 on Prices and Taxes and Extended Energy Balance. The 

methodology of Pindyck (1979) is used to compute values for the variables of interest. The share of 

labour was computed using labour compensation. The compensation to capital was computed as the 

difference between value added and labour compensation. Using data on the labour force from 

either the OECD STAN Industry Database 2005 or the Penn World Table (Heston et al. 2006), the 

price of labour was obtained implicitly, dividing labour compensation by the labour force. The price 

of capital was computed in a similar way. Energy prices were taken from dataset on real index of 

industry price, IEA Prices and Taxes, and they are expressed in constant US$ (base year 2000) per 

tonnes of oil equivalent. Energy quantities that come from IEA OECD Energy Balance are 

expressed in thousand tonnes of oil equivalent. Total output was defined as value added plus the 

value of energy quantities. All values, in national currency, were converted into current US$ using 
                                                 
9 Data available from http://www.sourceoecd.org/ 
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the Purchasing Power Parity Conversion Factor from the World Development Indicators10 (WDI). 

Using the US implicit deflator of GDP, current prices were converted into constant prices at 2000 

US$. All unites are therefore expressed in millions of US $ relative to the base year 2000. Prices 

were finally expressed as indices, with the base year 2000.  

 

Data on R&D expenditure11 is limited to 13 OECD countries, from 1987 to 2002. The stock of 

R&D was computed using the perpetual inventory method with a depreciation rate of 5%, although 

the choice of different depreciation values does not affect the results significantly. The initial value 

of the stock was set equal to the level of investments in the first available year, divided by the 

average annual growth rate over the observation period, plus the rate of depreciation, as suggested 

in Caselli (2005). 

 

Data on machinery and equipment imports are from the OECD STAN Industry Database 200612. 

Data are available for 12 countries over 13 years (1989-2001). The OECD STAN Industry Database 

provides data on bilateral trade flows and makes it possible to distinguish imports from different 

trading partners. In the case of machinery, only imports from the OECD countries were selected. 

Machinery and equipment imports are classified as a two-digit industry according to the 

International Standard Industrial Classification (ISIC classification number 29). 

 

Education is measured as current and capital expenditure on all types of education, from both 

private and public sources. Data are from the OECD13. The stock was computed using the perpetual 

inventory method, with a depreciation rate of 2% (Jorgenson and Fraumeni, 1992)14. Table A1 in 

the Appendix summarises descriptive statistics for the main variables. 

 

Given the theoretical set-up from which the empirical model was derived, the three equations are 

correlated. The representative firm chooses the optimal demand of all three inputs simultaneously. 

Therefore, the system error terms have a variance covariance matrix that does not satisfy the 

assumptions of zero covariance and constant variance. As a consequence, the model is estimated 

with a Feasible Generalised Least Square Estimator (FGLS).  

 

                                                 
10 World Bank, 2006. 
11 ANBERD - R&D Expenditure in Industry 2006 available from http://www.sourceoecd.org/ 
12 Data available from http://www.sourceoecd.org/ 
13 Education Expenditures by Country, Nature, Resource Category, and Level of Education Vol. 2006 issue 01. 
14 A higher depreciation rate was also experimented, yielding very similar results. 
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Although there are economic reasons that justify the inclusion of country dummies, their relevance 

is also assessed statistically. The null hypothesis of an equal constant term is always rejected at 10% 

significance level when technology is endogenous. The specification with exogenous technical 

change  rejects  two cases out of three.  

 

 
4. Estimation results 

 

Before imposing the restrictions that make it possible to identify a unique value for the parameters 

of interest, we estimate the system without cross-equation constraints. We also test the hypothesis 

of common elasticity (Test 3) and of Cobb-Douglas production function (Test 2), both in the case of 

exogenous and endogenous technical change. 

 

When technical change is assumed to be exogenous (i.e. γf1 = γf2 = γf3=0 for all f=K,L,E), we reject 

the hypothesis of common elasticity between capital and energy and labour and energy. The same 

hypothesis cannot be rejected between capital and labour (at 1% significance level). Similar results 

are obtained with endogenous technical change, but at a lower level of significance (10%). The 

equations for capital, labour and energy yield the following values of the elasticity of substitution: 

0.7, 0.8 and 0.1 respectively. Endogenous technical change slightly reduces the elasticity to 0.6, 0.7 

and 0.1 respectively. All estimates point at a value less than one. Indeed, the test of Cobb-Douglas 

production structure is rejected in all equations, both with exogenous and endogenous technical 

change.  

 

The main contribution of this paper is twofold: (i) the empirical assessment of the impact of 

endogenous technical change on the elasticities of substitution, and (ii) the determination of how 

different technology drivers affect factor-augmenting technical change. We present the results when 

factor productivities are exogenous (Table 1) essentially for comparison with the existing literature. 

The case with exogenous technical change provides a benchmark to assess the implications of 

endogenous technical change.  

 

Exogenous technical change is captured by the constant term, which is country-specific, and a time 

trend. Results are in line with previous findings, although there are some differences with van der 

Werf (2008), especially regarding capital-augmenting technical change. Our results are similar to 

Kendrick (1956). He found that technical change is labour-saving and capital-saving in the long-

term and that labour technical change tends to grow faster than capital. In addition, the rate of 
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energy-augmenting technical change is larger than that of labour, with values of 2.4% and 1.1% per 

year respectively.  

 
Table 1: Exogenous technical change (constrained system estimation, FGLS estimator) 

 Capital Labour Energy 

 coeff p-value coeff p-value coeff p-value 

γf4   (pi-p) 0.62 0.00*** 0.62 0.00*** 0.62 0.00*** 

αfBE 0.00 0.63 -0.01 0.08* -0.01 0.32 

αfCA 0.00 0.84 -0.01 0.18 -0.04 0.00*** 

αfDE 0.00 0.51 0.00 0.89 -0.06 0.00*** 

αfDK 0.00 0.45 -0.01 0.01*** -0.02 0.12 

αfES -0.02 0.01*** -0.02 0.00*** -0.02 0.15 

αfFI 0.00 0.81 -0.02 0.00*** -0.03 0.04** 

αfFR 0.00 0.66 -0.01 0.11 -0.04 0.00*** 

αfIT -0.03 0.00*** -0.01 0.08* -0.02 0.16 

αfJP 0.00 0.48 0.00 0.60 -0.03 0.01*** 

αfNL -0.01 0.07* 0.00 0.39 -0.04 0.00*** 

αfUK 0.00 0.66 -0.01 0.03** -0.05 0.00*** 

αfUS -0.02 0.01*** -0.01 0.18 -0.05 0.00*** 

αf1 (lnt) 0.00 0.44 0.00 0.93 0.01 0.00*** 

R2 0.52 0.16 0.67 

T 14 14 14 

N 12 12 12 

Factor-augmenting 

technical change 

(country average) 0.010 0.011 0.024 

Elasticity of substitution 0.376 0.376 0.376 

 *** Significant at 1% level 

** Significant at 5% level 

 * Significant at 10% level 

 

The hypothesis of neutral technical change (Test 4) is rejected in most countries. We can reject that 

energy-augmenting technical change is equal to either labour or capital in respectively 7 and 8 

countries out of 12. The equality between labour- and capital-augmenting technical change is 

rejected in only 2 out of 12 countries.  
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Table 2 reports the estimation results with endogenous technical change. We start by including all 

drivers mentioned above, namely the stock of R&D expenditure (R&D), imports of machinery 

(M&E), and the stock of education expenditure (Edu)15.  

 

The selected drivers of endogenous technical change partly explain the variation in input cost 

shares.  We can reject the null hypothesis of exogenous technical change for the capital and energy 

equation, whereas at this stage the three drivers do not explain changes in the labour cost share.   

 

The inclusion of endogenous-technology proxies reduce the role of the exogenous component. It 

decreases the significance and the coefficient of the time trend in the energy equation and it 

diminishes the number of significant country dummies in the labour equation. In the case of labour, 

the time trend is not significant. This means that the rate of labour-augmenting technical change is 

significantly different from zero only when country-dummies are significant, namely in Denmark, 

Spain and Finland. On average, the rate of labour-specific technical change is 1.4% per year, very 

close to what was found in the specification with exogenous technical change. Indeed, the 

endogenous drivers  included here do not explain improvements in labour productivity. 

 

On the contrary, energy-augmenting technical change is well explained by imports of machinery 

and R&D, although at this stage the latter driver is significant only at 11% significance level. The 

time trend and country dummies are no longer significant, suggesting that the two technology 

drivers are able to capture most of the dynamics of energy-augmenting technical change. The 

negative sign of their coefficients implies that, at constant prices, an increase in R&D and 

machinery imports reduces energy cost share. This is exactly what Binswanger and Ruttan (1978) 

defined as input-saving technical change.  

 

Capital-augmenting technical change is explained extensively by R&D and machinery, which have 

a capital-saving effect. On average, the rate of both energy and capital productivity growth is larger 

when accounting for the endogenous drivers. Growth rates are respectively 3% and 5.3% per year. 

 

 

                                                 
15 The correlation between these three variables is low and therefore they could be included simultaneously.  
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Table 2: Endogenous technical change (constrained system estimation, FGLS estimator) 

 Capital Labour Energy 

 coeff p-value coeff p-value coeff p-value 

γf4   (pi-p) 0.63 0.00*** 0.63 0.00*** 0.63 0.00*** 

γf1    R&D -0.64 0.00*** 0.18 0.13 -0.46 0.11 

γf2    M&E -0.01 0.09* 0.00 0.78 -0.05 0.01*** 

γf3    Edu 0.15 0.25 0.02 0.90 0.07 0.81 

αfBE 0.04 0.01*** -0.02 0.16 0.03 0.46 

αfCA 0.06 0.00*** -0.02 0.12 0.01 0.75 

αfDE 0.03 0.00*** -0.01 0.47 -0.03 0.20 

αfDK 0.06 0.00*** -0.04 0.05** 0.03 0.44 

αfES 0.03 0.12 -0.04 0.09* 0.02 0.62 

αfFI 0.07 0.00*** -0.04 0.03** 0.03 0.49 

αfFR 0.04 0.01*** -0.02 0.19 0.00 1.00 

αfIT -0.02 0.18 -0.01 0.44 -0.01 0.88 

αfJP 0.05 0.00*** -0.01 0.29 0.01 0.77 

αfNL 0.02 0.11 -0.01 0.26 -0.01 0.75 

αfUK 0.02 0.38 -0.02 0.27 -0.03 0.49 

αfUS 0.02 0.30 -0.02 0.35 -0.01 0.79 

αf1 (lnT) 0.00 0.34 0.00 0.90 0.01 0.30 

R2 0.67 0.20 0.68 

T 13 13 13 

N 12 12 12 

Technology parameters 

Exogenous component 

 (country average) -0.039 0.014 0.000 

Endogenous Drivers    

R&D 1.016   

M&E 0.023  0.085 

Edu    

Factor-augmenting 

technical change° 0.03 0.014 0.053 

Elasticity of substitution 0.368 0.368 0.368 

°Factor-augmenting technical change was calculated by adding the exogenous and  

endogenous component. 

The endogenous component was  computed for average values of the technology drivers 

 (See table A.I in Appendix I). 

*** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level 
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We tested whether R&D and machinery imports have the same effect on capital and energy input 

shares. Although we reject that machinery has the same impact on energy and capital at 10% 

significance level (p-value 0.07), we cannot reject the same hypothesis for R&D at 1% significance 

level (p-value 0.55).  

 

The model with endogenous technology also rejects the hypothesis of neutral technical change in 

most cases. We reject the hypothesis that labour has the same rate of factor-augmentation of any 

other input, but we could not reject that energy and capital have similar growth rates for 11 

countries out of 12.  

 

The introduction of endogenous technology drivers tends to reduce the elasticity of substitution by 

about 2%, from 0.376 to 0.368. This result suggests that the effect of prices on cost shares is upward 

biased when endogenous technical change is omitted. This result has already been emphasised by 

Carraro and Siniscalco, (1994). It suggests that part of the change that is attributed to substitution is 

due to technical change. It is difficult to know whether a new combination of inputs is adopted 

because a new technology has become available (technical change) or because variations in input 

prices have made an existing technology more attractive (substitution). When the elasticity of 

substitution is low, most of the variation is likely due to technical change (Sue Wing, 2006). 

 

To improve the efficiency of our estimates, we re-estimate the model with endogenous technical 

change excluding the technology drivers that were not statistically significant and the time trend. 

Only statistically significant country dummies are preserved16.  Results are reported in Table 3. 

 

The effect of R&D and machinery is quite stable, although machinery is no longer significant in the 

capital equation. The effect of education on labour is less robust, which is now significant and 

labour-saving. The autonomous term remains significant in the capital equation, suggesting that a 

considerable part of capital dynamics is still captured by an exogenous component.  

 

As for the rate of factor-augmenting technical change, we confirm the results obtained with the 

previous less efficient specification. Energy-augmenting technical change grows at a faster rate, on 

                                                 
16 We used an iterative selection technique that drops regressors one by one, selecting those with the lowest significance 
level, until all variables are significant.  
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average at 2% per year, whereas labour and capital have slightly lower and similar rates of 

improvement, respectively 1.5% and 1.4%.  

 

Together the two drivers of energy-augmenting technical change, R&D and machinery imports, 

have an effect on energy productivity that is statistically equivalent to the effect R&D has on capital 

productivity (p-value 0.20). Alternatively, the contribution of education to labour-augmenting 

technical change is statistically different at 1% significance level17.  

                                                 
17 As in Table 2, we reject that labour and either capital or energy have the same rate of factor-augmentation, but we 
could not reject that energy and capital have the same growth rate.  
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Table 3: Endogenous technical change including only significant variables (constrained system estimation, FGLS 

estimator) 

 Capital Labour Energy 
 coeff p-value coeff p-value coeff p-value 

γf4   (pi-p) 0.63 0.00*** 0.63 0.00*** 0.63 0.00*** 

γf1    R&D -0.59 0.00***   -0.34 0.00*** 

γf2    M&E     -0.06 0.00*** 

γf3    Edu   -0.09 0.00***   
αfBE 0.04 0.00***   0.04 0.01*** 
αfCA 0.05 0.00***   0.02 0.18 
αfDE 0.02 0.00***     
αfDK 0.06 0.00*** -0.01 0.04** 0.04 0.01*** 
αfES 0.04 0.00*** -0.01 0.10* 0.04 0.01*** 
αfFI 0.07 0.00*** -0.01 0.00*** 0.03 0.02** 
αfFR 0.04 0.00***     
αfIT -0.02 0.00***     
αfJP 0.05 0.00***   0.02 0.13 
αfNL 0.01 0.03**     
αfUK 0.02 0.00***     
αfUS 0.03 0.00***     
R2 0.64 0.15 0.66 
T 13 13 13 
N 12 12 12 

Technology parameters 
Exogenous component 

 ( country average) -0.047 0.004 -0.019 
Endogenous Drivers    

R&D 0.941  0.538 
M&E   0.093 
Edu  0.140  

Factor-augmenting 
technical change° 0.015 0.014 0.021 

Elasticity 0.370 0.370 0.370 
°Factor-augmenting technical change was calculated by adding  the exogenous and endogenous component.  

*** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level 

 

 

 

Estimation residuals reveal the presence of first-order autocorrelation. However, the correlation 

between residuals is not very strong, ranging from 0.26 in the endogenous specification with 

selected variables to 0.4 in the endogenous specification with all variables. We did not correct for 

correlation in the estimation results reported in Table 1 to 3, but Appendix II reports bootstrap 
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estimates of the standard errors. They confirm the validity of inference analysis presented in the 

main text of the paper18.   

 

Two are the main conclusions that have emerged so far. First, we confirm results by van der Werf 

(2008) that technology trends are factor-specific. Second, and perhaps most importantly, the 

underlining technology drivers differ over inputs.  Innovation (R&D) is the most important variable 

explaining capital- and energy-augmenting technical change. Education is the variable driving 

labour productivity. Imports of machinery also play a role, especially for the energy input, but its 

contribution is much smaller compared to that of R&D. 

 

The crucial assumption that makes it possible to identify factor-specific technology trends is that all 

technical change is captured by factor productivity coefficients, leaving no role for neutral technical 

change. Section 5 generalises the model to include neutral technical change. In the next section we 

clarify that when factor-augmenting technical change is endogenous and the drivers are input-

specific, we can partly solve the identification problem described in Section 2.  

 

5. Factor-augmenting technical change: an alternative specification 

 

The production structure described in equation (1) makes it possible to differentiate factor-specific 

technical change from changes in overall productivity, approximated by neutral technical change. 

Neutral and factor-augmenting technical change appear in the demand equation of each input with 

the same coefficient. Therefore their effect cannot be separately identified. These two technology 

components can only be identified if neutral and factor-augmenting technical change are 

characterised as different processes. This is one of the major findings in Section 2. Technical 

change is input-specific and therefore factor productivities should be described by different 

innovation frontiers. This result allows us to estimate a model including neutral and factor-specific 

technical change simultaneously.  

 

The remainder of this Section describes this alternative approach. It shows how the input-specific 

relationship between technology drivers and productivity growth makes it possible to completely 

identify the endogenous component of technical change even in the presence of neutral technical 

change.  

                                                 
18 Bootstrap methods are often used as an alternative to inference based on parametric assumptions when those 
assumptions are in doubt.  
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Instead of assuming no variations in neutral technical change as before, i.e. h=0, the relationship 

between neutral technical change and factor-augmenting technical change described in equation (3) 

is used to replace h into the system of factor demands (2).  Equation (3) describes a relationship 

between neutral technical change, total factor productivity growth rate, and factor-augmenting 

technical change. It describes neutral technical change as total factor productivity net of the 

improvement in input productivities. With this substitution the system of factor demands reads as 

follows:  
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σθσθσθσσσ
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 (8) 

 

The zero profit assumption leads to a linear combination among some regressors. To solve this 

problem, labour productivity is replaced by the following relationship EKL θθθ −−=1 19. The 

corresponding equation becomes redundant and can  be dropped: 
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 (9) 

 

The technology parameters that can be identified at this stage are the elasticity of substitution (σ) 

and the rate of factor augmentation relative to that of labour, (aK-aL, aE-aL). Compared to system (2) 

we have an additional explanatory variable, which is total factor productivity growth rate.  

 

Results described in Table 3 suggest that R&D is a common source of capital- and energy-

augmenting technical change, whereas education drives labour productivity. Based on this evidence, 

we consider a model in which energy and capital depend on R&D and labour on education: 
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+=

=∀+=
         (10) 

 

Replacing these equations into (9), the model to be estimated becomes: 

                                                 
19 The choice of normalising with respect to labour is driven by the fact that labour has a different technology driver and 
this is exactly what makes it possible to identify technical change.    
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The following constraints are to be imposed in order to identify the technology parameters: 
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The autonomous component can be identified only in relative terms. However, the endogenous part 

can be fully determined. 

 

Table 4 reports estimation results20. All variables are significant explanatory factors of the 

percentage change in input cost shares, but for the autonomous component of energy productivity, 

relative to labour. Regarding the sources, results confirm the role of R&D as technology driver of 

capital and energy productivities and of education as driver of labour productivity. R&D has a 

larger effect on energy than capital, though we could not reject the null hypothesis that R&D has the 

same effect on capital and energy productivity.  

 

 

 

 

 

 

 

 

 

                                                 
20 The estimation of system (11) involves an additional issue, namely the endogeneity of the input cost shares that 
appear also on the right hand side of the equation. This problem was addressed by considering a temporal shift between 
the dependent and the independent variables.  
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Table 4.  Factor-augmenting technical change in the presence of neutral technical change (constrained system 

estimation, FGLS estimator) 
 

 

Variables 

 

Parameters 

Estimated 

coefficients 

 

p-value 

 

Technology parameters 

))(( pptfp K −−  )1(11 −== σγγ EK  
-0.732*** 0.000 

 
σ  0.27 

)1( −Kθ  ))(1( 00
32 LKEK δδσγγ −−−==  

-0.014** 0.026 
)( 00

LK δδ −  
-0.02 

)( Eθ  ))(1( 00
23 LEEK δδσγγ −−−==  

-0.007 0.595 
)( 00

LE δδ −  
-0.01 

xK )1( −θ  1
54 )1( KEK δσγγ −−==  

0.228** 0.026 
1
Kδ (R&D) 

0.31 
xE )(θ  1

45 )1( EEK δσγγ −−==  
0.333* 0.072 

1
Eδ (R&D) 

0.46 
yL )(θ  1

66 )1( LEK δσγγ −−==  
0.127** 0.051 

1
Lδ (Edu) 

0.17 
R2: 0.69;0.65; T=12, N=12. Logarithm time trend was not statistically significant. Only significant country dummies 

have been included 

*** Significant at 1% level; ** Significant at 5% level; * Significant at 10% level 

 

 

As for the elasticity of substitution, these results confirm a tendency already observed with the 

previous models. The inclusion of additional variables that explain technical change, in this case 

total factor productivity, reduces the value of the elasticity of substitution. Accounting for neutral 

technical change reduces its value even further, to 0.27. 
 

Observing the relationship between neutral technical change and factor productivities described in 

equation (3), we can conclude that total factor productivity is a biased measure of neutral technical 

change. Total factor productivity growth is an accounting measure of technical progress that is 

exclusively based on output and input quantity changes, and neglects variations in factor 

productivities.  A corrected measure of neutral technical change should explicitly account for the 

improvements in input efficiencies. When technical change is factor-augmenting, the total factor 

productivity tends to over-estimate neutral technical change, i.e. )( EELLKK aaahtfp θθθ +++= . 

 

 

 

 

6. Summary and conclusions 
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The debate on technical change and the environment has emphasised the existence of a gap between 

the climate-economy modelling literature and empirical work. Climate-economy models simulate 

the consequences of different specification of technical change over time. Empirical works attempt 

to identify production and technology structures that best explain observed patterns. However, these 

two strands of literature have addressed similar, but not comparable questions.  

 

This paper tackles the existing divide from the empirical point of view.  Starting from a production 

structure widely used by climate-economy modellers, it provides empirical background to 

technology parameters that are essential to describe the dynamics of technical change.  This paper 

estimates factor-specific technical change and input substitution using a structural approach. It 

improves upon exiting works by introducing endogenous-technology drivers for factor 

productivities (energy, labour and capital). 

 

The main contribution of this paper is twofold. It provides an empirical assessment of the impact of 

endogenous technical change on the elasticity of substitution, and it determines how different 

technology drivers affect factor-augmenting technical change. 

 

First, factor-productivities are endogenous, thus rejecting models with exogenous technical change. 

Second, technology drivers are factor-specific. Where innovation is an important driver of capital 

and energy productivity, education is a better explanatory variable of labour productivity. Imports 

of machinery and equipment from OECD are also energy-augmenting, but their effect is much 

smaller than that of R&D. Thirdly, the rate of energy-augmenting technical change tends to be 

larger than that of either labour or capital, which instead have similar growth rates. Because the 

elasticity of substitution is less than one, we can conclude that innovation, machinery imports and 

education have an input-saving effect. Finally, our results suggest that endogenous technical change 

tend to lower the elasticity of substitution. This result is not new in literature, yet  has never been 

fully assessed empirically. These results indicate that innovation and human capital are not 

necessarily energy-saving. As long as labour and capital are gross complements to energy, technical 

change can be energy-using.  

 

The paper explores the relationship between neutral and factor-augmenting technical change. Total 

factor productivity is a widely used measure of neutral technical change, but it neglects 

improvements in factor productivities. As a consequence, when technical change is factor-

augmenting, it tends to overestimate neutral technical change. When both neutral and factor-
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augmenting technical change are considered in the estimated system, the elasticity of substitution is 

further reduced, confirming the link between technical change and substitution previously observed.  

 

Two lines of research can depart from the findings of this paper. On the one hand, empirical work 

should aim at a better understanding of the interplay between different components of technical 

change, technology drivers, and factor substitution. On the other hand, climate-economy models 

should broaden the representation of endogenous technical change outside the energy sector. Few 

attempts in this direction already exist (Gerlagh, 2008; Carraro et al. 2009), but modelling choices 

should be better grounded on the empirical evidence.  
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Appendix I 

 

Table AI.1 provides descriptive statistics of the main variables.  

 
Table AI.1. Descriptive statistics of main variables 

 

Variable N T Obs Mean Std. Dev. Min Max 
Labour price 
 (growth rate) 12 14 168 0.015 0.017 -0.076 0.067 
Capital price 
 (growth rate) 12 14 168 0.010 0.042 -0.154 0.138 
Energy price  
(growth rate) 12 14 168 0.011 0.063 -0.101 0.289 

Labour cost share 
 (growth rate) 12 14 168 0.000 0.016 -0.080 0.051 

Capital cost share 
 (growth rate) 12 14 168 0.001 0.023 -0.076 0.121 

Energy cost share 
 (growth rate) 12 14 168 -0.005 0.071 -0.190 0.273 

M&E 
(growth rate) 12 13 156 0.057 0.163 -0.379 0.860 

R&D 
(growth rate) 12 14 168 0.066 0.030 0.014 0.140 

Edu 
(growth rate) 12 14 168 0.068 0.037 0.011 0.163 

Tfp 
(growth rate) 12 14 168 0.013 0.018 -0.034 0.061 
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Appendix II 

 

This Appendix reports the same results as in the main text from Table 1 to 4, but with bootstrap 
standard errors. Results confirm the validity of the inference analysis carried out in the main text is 
valid. The only notable change is the reduction of the significance level of the education driver in 
table AII.4, which is diminished from 5% to 10%. 
 

Table AII.1: Exogenous technical change (constrained system estimation, FGLS estimator) 

 

 Capital Labour Energy 

 coeff p-value coeff p-value coeff p-value 

γf4   (pi-p) 0.62 0.00 0.62 0.00 0.62 0.00 
αfBE 0.00 0.52 -0.01 0.03 -0.01 0.31 
αfCA 0.00 0.78 -0.01 0.14 -0.04 0.00 
αfDE 0.00 0.53 0.00 0.95 -0.06 0.00 
αfDK 0.00 0.38 -0.01 0.00 -0.02 0.13 
αfES -0.02 0.00 -0.02 0.00 -0.02 0.27 
αfFI 0.00 0.83 -0.02 0.01 -0.03 0.03 
αfFR 0.00 0.52 -0.01 0.03 -0.04 0.00 
αfIT -0.03 0.00 -0.01 0.06 -0.02 0.10 
αfJP 0.00 0.35 0.00 0.56 -0.03 0.04 
αfNL -0.01 0.08 0.00 0.32 -0.04 0.01 
αfUK 0.00 0.56 -0.01 0.03 -0.05 0.00 
αfUS -0.02 0.14 -0.01 0.03 -0.05 0.01 
αf1 (lnT) 0.00 0.46 0.00 0.92 0.01 0.01 

 

 
Table AII.2: Endogenous technical change (constrained system estimation, FGLS estimator) 

 

 Capital Labour Energy 
 coeff p-value coeff p-value coeff p-value 

γf4   (pi-p) 0.63 0.00 0.63 0.00 0.63 0.00 

γf1    R&D -0.64 0.00 0.18 0.25 -0.46 0.15 

γf2    M&E -0.01 0.26 0.00 0.79 -0.05 0.05 

γf3    Edu 0.15 0.27 0.02 0.89 0.07 0.85 
αfBE 0.04 0.00 -0.02 0.14 0.03 0.49 
αfCA 0.06 0.00 -0.02 0.12 0.01 0.77 
αfDE 0.03 0.00 -0.01 0.61 -0.03 0.32 
αfDK 0.06 0.00 -0.04 0.05 0.03 0.49 
αfES 0.03 0.06 -0.04 0.06 0.02 0.69 
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αfFI 0.07 0.00 -0.04 0.07 0.03 0.51 
αfFR 0.04 0.00 -0.02 0.16 0.00 1.00 
αfIT -0.02 0.19 -0.01 0.42 -0.01 0.90 
αfJP 0.05 0.00 -0.01 0.31 0.01 0.79 
αfNL 0.02 0.06 -0.01 0.24 -0.01 0.76 
αfUK 0.02 0.33 -0.02 0.24 -0.03 0.56 
αfUS 0.02 0.27 -0.02 0.29 -0.01 0.83 
αf1 (lnT) 0.00 0.31 0.00 0.90 0.01 0.38 

 

 
Table AII.3: Endogenous technical change including only significant variables (constrained system estimation, 

FGLS estimator) 

 

 Capital Labour Energy 
 coeff p-value coeff p-value coeff p-value 

γf4   (pi-p) 0.63 0.00 0.63 0.00 0.63 0.00 

γf1    R&D -0.59 0.00    -0.34 0.00 

γf2    M&E     -0.06 0.06 

γf3    Edu    -0.09 0.00    
αfBE 0.04 0.00   0.035 0.01 
αfCA 0.05 0.00   0.017 0.18 
αfDE 0.02 0.00     
αfDK 0.06 0.00 -0.01 0.01 0.04 0.01 
αfES 0.04 0.00 -0.01 0.02 0.04 0.02 
αfFI 0.07 0.00 -0.01 0.06 0.03 0.01 
αfFR 0.04 0.00     
αfIT -0.02 0.00     
αfJP 0.05 0.00   0.02 0.27 
αfNL 0.01 0.03     
αfUK 0.02 0.00     
αfUS 0.03 0.01     

 

 
Table AII.4: Factor-augmenting technical change in the presence of neutral technical change (constrained 

system estimation, FGLS estimator) 
 

 

Variables 

 

Parameters 

Estimated 

coefficients 

 

p-value 

 

Technology parameters 

))(( pptfp K −−  )1(11 −== σγγ EK  
-0.732 0.00 

 
σ  0.27 

)1( −Kθ  ))(1( 00
32 LKEK δδσγγ −−−==  

-0.014 0.09 
)( 00

LK δδ −  
-0.02 

)( Eθ  ))(1( 00
23 LEEK δδσγγ −−−==  

-0.007 0.56 
)( 00

LE δδ −  
-0.01 
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xK )1( −θ  1
54 )1( KEK δσγγ −−==  

0.228 0.01 
1
Kδ  

0.31 
xE )(θ  1

45 )1( EEK δσγγ −−==  
0.333 0.05 

1
Eδ  

0.46 
yL )(θ  1

66 )1( LEK δσγγ −−==  
0.127 0.10 

1
Lδ  

0.17 
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