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it may happen that all governments are dominated. In graph-theoretic terms this means 
that the dominance graph does not possess a source. In this paper we are able to deal 
with this case by a clever combination of notions from different fields, such as relational 
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1 Introduction

In Rusinowska et al. [13] a government is defined as a pair consisting of a coali-
tion (a set of of parties) and a policy. Different governments may have different
utilities (values) for the different parties. In Berghammer et al. [4] we have shown
how the notion of ‘government g dominates government h’ can be described in
terms of relational algebra. This enabled us to use the Kiel RelView tool for
computing the dominance relation. The governments that are un-dominated are
by definition the stable ones.

In this paper we deal with the problem what to do when there is no un-
dominated government. Using graph-theoretic terms this means that the domi-
nance graph does not possess a source. By a clever combination of well known
concepts from different domains (relational algebra, the RelView tool for their
manipulation, graph theory, social choice rules and bargaining) we are able to
deal with this case and to choose a government which is as close as possible to
stable. As in Berghammer et al. [4], the decisive parts of our procedure are for-
mulated as relational expressions and programs, respectively, so that RelView
can be used for executing them and for visualizing the results.

The remainder of the paper is organized as follows. In Section 2 we present
the model of coalition formation. Section 3 introduces some preliminaries from
relational algebra, gives an overview on RelView, and recalls the method of
Berghammer et al. [4] for computing the dominance relation with the help of
this tool. Section 4 forms the core of the paper. We describe a general procedure
for choosing a government in the case that there is no stable one. In the graph
theoretical part we compute initial strongly connected components and minimum
feedback vertex sets. If our procedure results in more than one government, we
apply bargaining and social choice rules to select one of them.

2 The Model of Coalition Formation

In this section, we briefly recall some of the main ideas of the model of coalition
formation presented in Rusinowska et al. [13], i.e., the notions essential for the
application of relational algebra and RelView to the model. Let N be the finite
set of political parties and P be the finite set of all policies. A set of parties, i.e.,
an element of the powerset 2N , is called a coalition. We define a government as
a pair consisting of a coalition and a policy. Hence,

G := { (S, p) | S ∈ 2N ∧ p ∈ P }
denotes the set of all governments. Usually, we assume that only a majority
coalition (i.e., a coalition with more than half of the total number of seats in
Parliament) can form a government. Nevertheless, one may easily imagine a
government formed by a minority coalition.

Each party is assumed to have preferences on all policies and on all coalitions.
Then a coalition is called feasible if it is acceptable to all its members. A policy is
feasible for a given coalition if it is acceptable to all members of that coalition and
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a government is said to be feasible if it consists of a feasible coalition and a policy
feasible for that coalition. By G∗ we denote the set of all feasible governments:

G∗ := { g ∈ G | G is feasible } .

For each i ∈ N , we assume a utility function U (i) : G → R, where U (i)(g)
denotes the utility (or value) of the government g ∈ G to party i ∈ N . A precise
description of the utility of a government to a party has been given in Rusinowska
et al. [13]. In Roubens et al. [11], the MacBeth technique has been applied to
determine these utilities.

A feasible government g = (S, p) ∈ G∗ dominates a feasible government
h ∈ G∗ (denoted as g Â h) if the property

(∀ i ∈ S : U (i)(g) ≥ U (i)(h)) ∧ (∃ i ∈ S : U (i)(g) > U (i)(h))

holds. We call “Â” the dominance relation and the directed graph (G∗,Â) the
dominance graph. A feasible government is said to be stable if it is dominated
by no feasible government. By

SG∗ := {g ∈ G∗ | ¬ ∃h ∈ G∗ : h Â g}

we denote the set of all (feasible) stable governments. Using graph-theoretic
terminology, SG∗ is the set of sources (or initial vertices) of the dominance
graph.

3 Computing the Dominance Relation with RelView

In this section, we first present the basics of relational algebra and indicate how
sets can be modeled. For more details, see e.g., Schmidt and Ströhlein [14] or
Brink et al. [10]. After a short introduction to the RelView tool, we then recall
how the dominance relation can be computed and visualized with this tool.

3.1 Relational Algebra and RelView

If X and Y are sets, then a subset R of the Cartesian product X × Y is called
a (binary) relation with domain X and range Y . We denote the set (in this
context also called type) of all relations with domain X and range Y by [X↔Y ]
and write R : X↔Y instead of R ∈ [X↔Y ]. If X and Y are finite sets of
size m and n respectively, then we may consider a relation R : X↔Y as a
Boolean matrix with m rows and n columns. The Boolean matrix interpretation
of relations is well suited for many purposes and also used as one of the graphical
representations of relations within the RelView tool. Therefore, in this paper
we often use Boolean matrix terminology and notation. In particular, we write
Rx,y instead of 〈x, y〉 ∈ R or x R y.

We assume the reader to be familiar with the basic operations on relations,
viz. RT (transposition), R (complement), R ∪ S (union), R ∩ S (intersection),
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R;S (composition), R∗ (reflexive-transitive closure), and the special relations O
(empty relation), L (universal relation), and I (identity relation). If R is included
in S we write R ⊆ S and equality of R and S is denoted as R = S.

Relational algebra offers some simple and elegant ways to describe subsets
of a given set or, equivalently, predicates on this set. In this paper we will use
vectors, membership-relations, and injective embeddings for this task.

A vector v is a relation v with v = v; L. In the Boolean matrix model this
condition means that each row either consists of ‘true’ entries only or consists of
‘false’ entries only. As for a vector, therefore, the range is irrelevant, we consider
in the following mostly vectors v : X↔1 with a specific singleton set 1 := {⊥} as
range and omit in such cases the second subscript, i.e., write vx instead of vx,⊥.
Analogously to linear algebra we will use lower-case letters to denote vectors. A
vector v : X↔1 can be considered as a Boolean matrix with exactly one column,
i.e., as a Boolean column vector, and describes (or is a description of) the subset
{x ∈ X | vx} of X. If a vector describes a singleton set, i.e., an element of its
domain, it is called a point .

As a second way to model sets we will use the relation-level equivalents of the
set-theoretic symbol “∈”, i.e., membership-relations M : X↔ 2X . These specific
relations are defined by Mx,Y if and only if x ∈ Y , for all x ∈ X and Y ∈ 2X .
A Boolean matrix representation of M requires exponential space. However, in
Berghammer et al. [2] an implementation of M using ordered binary decision
diagrams is presented, the number of vertices of which is linear in the size of X.

If the vector v describes a subset Y of X, then inj (v) : Y ↔X denotes the
injective embedding of Y into X. This means that for all y ∈ Y and x ∈ X we
have inj (v)y,x if and only if y = x. A combination of injective embeddings and
membership-relations allows a column-wise enumeration of sets of subsets. More
specifically, if v describes a subset S of 2X in the sense defined above, then for
all x ∈ X and Y ∈ S we have (M; inj (v)T)x,Y if and only if x ∈ Y . Using matrix
terminology this means that the elements of S are described precisely by the
columns of the relation M; inj (v)T of type [Y ↔X].

Relational algebra has a fixed and surprisingly small set of constants and
operations which (in the case of finite carrier sets) can be implemented very
efficiently. At Kiel University we have developed a computer system for the
visualization and manipulation of relations and for relational prototyping and
programming, called RelView. The tool is written in the C programming lan-
guage, uses ordered binary decision diagrams for implementing relations, and
makes full use of the X-windows graphical user interface. Details and applica-
tions can be found, for instance, in Berghammer et al. [3], Behnke et al. [1],
Berghammer et al. [2], and Berghammer et al. [5].

The main purpose of RelView is the evaluation of relation-algebraic ex-
pressions. These are constructed from the relations of its workspace using pre-
defined operations and tests, user-defined relational functions, and user-defined
relational programs. A relational program is much like a function procedure in
the programming languages Pascal or Modula 2, except that it only uses relations
as data type. It starts with a head line containing the program name and the for-
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mal parameters. Then the declaration of the local relational domains, functions,
and variables follows. Domain declarations can be used to introduce projection
relations and pairings of relations in the case of Cartesian products, and injec-
tion relations and sums of relations in the case of disjoint unions, respectively.
The third part of a program is the body, a while-program over relations. As a
program computes a value, finally, its last part consists of a return-clause, which
is a relation-algebraic expression whose value after the execution of the body is
the result.

3.2 Computing and Visualizing Dominance

In Berghammer et al. [4] we have developed a relation-algebraic specification of
dominance and stability. To this end, we supposed a relational description of
government membership and the parties’ utilities to be given. The first means
that we have a relation M : N ↔G∗ at hand such that for all i ∈ N and g ∈ G∗

Mi,g ⇐⇒ party i is a member of government g;

the second means that we have for each party i ∈ N a relation R(i) : G∗↔G∗

at hand such that for all g, h ∈ G∗.

R
(i)
g,h ⇐⇒ U (i)(g) ≥ U (i)(h) .

Based on the relations R(i), i ∈ N , we first introduced a global utility (or
comparison) relation C : N ↔G∗×G∗ by demanding for all i ∈ N and g, h ∈ G∗

Ci,〈g,h〉 ⇐⇒ R
(i)
g,h

and transformed this component-based specification into a relation-algebraic
(i.e., component-free) one. Then we proved the following fact: If π : G∗×G∗↔G∗

and ρ : G∗×G∗↔G∗ are the projection relations of the direct product G∗ ×G∗

and the vector DomVec(M, C) : G∗×G∗↔1 is defined by

DomVec(M, C) = (π; MT ∩ C
T
); L ∩ (π; MT ∩ E; C

T
); L , (1)

where E := ρ; πT ∩ π; ρT : G∗×G∗↔G∗×G∗ is the so-called exchange relation1,
then we have for all 〈g, h〉 ∈ G∗×G∗ that DomVec(M,C)〈g,h〉 if and only if g Â h.
Hence, equation (1) is a relation-algebraic specification of the dominance relation
with the government membership relation M and the global utility relation C
as its input.

Strictly speaking, according to (1) dominance is specified as a vector of
type [G∗×G∗↔1]. But what we really wanted is a specification as a relation
of type [G∗↔G∗]. So, we additionally had to apply the technique of Schmidt
and Ströhlein [14] for transforming a vector with a direct product as domain
1 This name stems from the fact that for all u, v ∈ G∗ ×G∗ we have Eu,v if and only

if u1 = v2 and u2 = v1.
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into the corresponding relation. Doing so, we obtained a relation-algebraic spec-
ification DomRel(M,C) : G∗↔G∗ of the dominance relation by

DomRel(M, C) = πT; (ρ ∩DomVec(M, C); L) . (2)

Both equations (1) and (2) can be used for specifying relation-algebraically
the vector description StabVec(M,C) : G∗↔1 of the set SG∗ of all stable gov-
ernments. We used (1) and arrived after some steps at

StabVec(M, C) = ρT;DomVec(M, C) . (3)

We immediately could transform the three relation-algebraic specifications
(1), (2), and (3) into the programming language of RelView. In the first case
the result is the following program:

DomVec(M,C)
DECL Prod = PROD(M^*M,M^*M);

pi, rho, E
BEG pi = p-1(Prod);

rho = p-2(Prod);
E = rho*pi^ & pi*rho^
RETURN -dom(pi*M^ & -C^) & dom(pi*M^ & E*-C^)

END.

Here the first declaration introduces Prod as a name for the direct product
G∗ × G∗. Using Prod, the projection relations and the exchange relation are
then computed by the three assignments of the body and stored as pi, rho,
and E, respectively. The return-clause of the program consists of a direct trans-
lation of (1) into RelView-syntax, where ^, -, &, and * denote transposition,
complement, intersection, and composition, and, furthermore, the operation dom
computes for a relation R : X↔Y the vector R; L : X↔1.

Similarly, by straightforward translations we obtained as RelView-imple-
mentations of the relation-algebraic specifications (2) and (3) the following two
relational programs:

DomRel(M,C)
DECL Prod = PROD(M^*M,M^*M);

pi, rho
BEG pi = p-1(Prod);

rho = p-2(Prod)
RETURN pi^ * (rho & DomVec(M,C) * L1n(C))

END.

StabVec(M,C)
DECL Prod = PROD(M^*M,M^*M);

rho
BEG rho = p-2(Prod)

RETURN -(rho^ * DomVec(M,C))
END.
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Fig. 1. Dominance without a stable government

The operation L1n of the RelView-program DomRel computes for a relation R :
X↔Y the universal relation L of the specific type [1↔Y ], in matrix terminology
hence a Boolean universal row vector.

4 The Case of no Stable Government

Based on the situation in Poland after the 2001 elections, in Berghammer et al.
[4] we obtained a dominance graph with three sources, representing the stable
governments. In such a non-unique case one might allow negotiations in order to
choose a government from among the stable ones; see Rusinowska and de Swart
[12]. If there is exactly one stable government, obviously this one has to be
chosen. In this paper we consider the remaining case that the dominance graph
has no source, like in the RelView-picture of Fig. 1. The situation described
by this graph appears if we change the utilities of the example of Berghammer
et al. [4] a little bit. As in the original case, for reasons of clearness the picture
shows a transitive reduction of the dominance graph only.

Assuming that a computed dominance graph has no source, in this section
we first describe our procedure to select a government in this case as a whole.
After that we go into details and show how to compute initial strongly connected
components and minimum feedback vertex sets relation-algebraically. We also
sketch the application of techniques of social choice theory.

4.1 The General Approach

If the computed dominance graph has no source, i.e., there exists no stable gov-
ernment, the central question is which government should be chosen. In this
section we answer this question by proposing a procedure for choosing a govern-
ment that can be considered as rather stable.
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As a whole, our proposal is presented below. In it, we apply some well-known
concepts from graph theory. First, we use strongly connected components (SCCs),
i.e., maximal sets of vertices such that each pair of vertices is mutually reachable.
Especially we are interested in SCCs without arcs leading from outside into them.
These SCCs are said to be initial . We also use minimum feedback vertex sets,
where a feedback vertex set (FVS) is a set of vertices that contains at least one
vertex from every cycle of the graph. And here is our proposal:

1. Compute the set I of all initial SCCs of the dominance graph.
2. For each SCC C from I do:

a) Compute the set F of all minimum FVSs of the subgraph gener-
ated by the vertices of C.

b) Select from all sets of F with a maximal number of ingoing arcs
one with a minimal number of outgoing arcs. We denote this one
by F .

c) Break all cycles of C by removing the vertices of F from the
dominance graph.

d) Select an un-dominated government from the remaining graph. If
there is more than one candidate, use bargaining or social choice
rules in order to choose one.

3. If there is more than one set in I, select the final stable government
from the results of the second step by applying bargaining or social
choice rules again.

An outgoing arc of the dominance graph denotes that a government dominates
another one and an ingoing arc denotes that a government is dominated by
another one. Hence the governments of an initial SCC can be seen as a cluster
which is not dominated from outside. The application of the second step to such
a set of ‘candidates’ corresponds to a removal of those candidates which are
‘least attractive’ for two reasons: because they are most frequently dominated
and they dominate other governments least frequently. In Section 4.4 we will
apply this approach to the example given in Fig. 1.

4.2 Computing Initial Strongly Connected Components

Given a finite graph (V, R) with relation R : V ↔V for the arcs, the SCCs of
(V, R) are precisely the equivalence classes of the equivalence relation R∗∩(RT)∗.
The following RelView-program Classes for column-wisely enumerating the
equivalence classes of an equivalence relation S : X↔X has been published
in Berghammer and Fronk [6]. In it, the calls Ln1(S) and On1(S) compute the
universal vector L : X↔1 and the empty vector O : X↔1, respectively, the call
point(v) yields one of the points contained in the non-empty vector v, and the
operation + computes the relational sum. In matrix terminology the latter means
that it puts the matrices one upon the other, so that the RelView-expression
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(C^ + c^)^ of Classes ‘concatenates’ the matrix C and the vector c.

Classes(S)
DECL C, v, c
BEG C = On1(S);

v = Ln1(S);
WHILE -empty(v) DO
c = S * point(v);
IF isempty(C) THEN C = c

ELSE C = (C^ + c^)^ FI;
v = v & -c OD

RETURN C
END

Using the operation rtc for computing reflexive-transitive closures, from the
above remark we obtain that the call Classes(rtc(R) & rtc(R^)) column-wisely
enumerates the SCCs of R.

In Berghammer and Fronk [6] the authors also refine the program Classes
to a RelView-program that computes the initial SCCs of R. Essentially this
refinement consists of an additional assignment in front of the hitherto first
assignment to compute rtc(R) & rtc(R^) and to store the result as S (which now
is a local variable instead of the formal parameter), and it simply checks after the
computation of the next equivalence class c via the assignment c = S * point(v)
whether c is initial and executing only in that case the conditional of the original
while-loop. It leads to the following program:

InitSccs(R)
DECL S, C, v, c
BEG S = rtc(R) & rtc(R^);

C = On1(S);
v = Ln1(S);
WHILE -empty(v) DO

c = S * point(v);
IF incl(R*c,c) THEN
IF isempty(C) THEN C = c

ELSE C = (C^ + c^)^ FI FI;
v = v & -c OD

RETURN C
END

The RelView-expression incl(R*c,c) of InitSccs tests whether the vector
R*c (describing the predecessors of c with respect to R) is contained in c which,
in words, exactly means that the SCC described by c is initial.

4.3 Computing Minimum Feedback Vertex Sets

The following relation-algebraic computation of minimum FVSs follows the lines
of Berghammer and Fronk [7]. As in Section 4.2 we assume that (V, R) is a finite
graph with relation R : V ↔V .
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Let M : V ↔ 2V be the membership-relation on vertices. In a first step we
reduce the computation of the FVSs to the computation of simple cordless cycles,
i.e., simple cycles c which do not contain a pair x, y of vertices that forms an arc
in (V,R) but not an arc in c. Since a set F of vertices is a FVS if and only if
it contains a vertex from every simple chordless cycle (Berghammer and Fronk
[7]), it suffices to enumerate column-wisely the vertex sets of the simple chordless
cycles of (X,R) via a relation K : V ↔C, where C denotes the set of vertex sets
of the simple chordless cycles. Assuming K to be at hand, for all F ∈ 2V we are
able to calculate as follows (where c ranges over the simple chordless cycles and
S ranges over C):

F is a FVS ⇐⇒ ∀ c : ∃x : x ∈ F ∧ x vertex of c
⇐⇒ ∀S : ∃x : Mx,F ∧Kx,S

⇐⇒ ¬∃S : MT; KFS ∧ LS

⇐⇒ MT; K; LF

This calculation yields MT; K; L : 2V ↔1 as the vector representation of all FVSs
of (V, R). Next we apply that the vector v∩Q; v describes the least elements of the
set described by the vector v with respect to the preorder Q; see e.g., Schmidt and
Ströhlein [14]. If we use the above vector as v, the size comparison relation on 2V

as Q, and implement the expressions developed so far in RelView, we obtain the
following program for computing the vector description of the minimum FVSs
from the relation K:

MfvsVec(K)
DECL LeEl(Q,v) = v & -(-Q * v));
DECL M
BEG M = epsi(O(K))

RETURN LeEl(cardrel(O(K)),-dom(-(M^*K)))
END.

From this program we obtain a program for the column-wise enumeration of the
minimum FVSs by applying the technique described in Section 3.1.

We call a set S of vertices of (V, R) progressively infinite if it is non-empty and
for each vertex x ∈ S there exists a successor y ∈ S. Fundamental for obtaining
a relation-algebraic specification of the relation K : V ↔C (a task we still have
to solve) is the following fact (Berghammer and Fronk [7]): S is the vertex set of
a simple chordless cycle if and only if it is a minimal progressively infinite set.
Thus, our next goal is identified. We have to develop a RelView-program, say
MprinfVec, that computes the vector description of the minimal progressively
infinite sets. Then the technique of Section 3.1 shows that K is computed by

M * inj(MprinfVec(R))^ .
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In order to obtain a vector that describes the minimal progressively infinite
sets, we first neglect minimality and calculate for a set S of vertices as follows:

S progr. infinite ⇐⇒ (∃x : x ∈ S) ∧ (∀x : x ∈ S → ∃ y : y ∈ S ∧Rx,y)
⇐⇒ (∃x : Mx,S) ∧ (∀x : Mx,S → ∃ y : My,S ∧Rx,y)
⇐⇒ (∃x : L⊥,x ∧Mx,S) ∧ (∀x : Mx,S → (R;M)x,S)
⇐⇒ (L; M)⊥,S ∧ (¬∃x : L⊥,x ∧Mx,S ∧R; Mx,S

⇐⇒ (L; M)TS ∧ L; (M ∩R;M)⊥,S

⇐⇒ ((L; M)T ∩ L; (M ∩R; M)
T
)S

Hence, (L; M)T ∩ L; (M ∩R;M)
T

: 2V ↔1 is a vector description of the progres-
sively infinite sets of the graph (V,R). Minimalization now is obtained by using
two well known results: MT; M : 2V ↔ 2V relation-algebraically specifies set in-
clusion on 2V and the vector v∩ (QT ∩ I)v describes the minimal elements of the
set described by the vector v with respect to the preorder Q; see again Schmidt
and Ströhlein [14]. If we combine these facts with the vector description of the
progressively infinite sets and formulate the result in RelView-syntax, we arrive
at the following RelView-program:

MprinfVec(R)
DECL Min(Q,v) = v & -((Q^ & -I(Q)) * v);

M, SI, L
BEG M = epsi(O(R));

SI = -(M^ * -M);
L = L1n(R)
RETURN Min(SI, (L*M)^ & -(L * (M & -(R*M)))^)

END.

The bottleneck of this program is the use of set inclusion since the size of the
ordered binary decision diagrams of this relation is exponential in the size of the
base set. Using the present RelView-version it can be only applied to graphs
with up to approximately 30 vertices. As we apply it, however, only to initial
SCCs, this usually suffices for practical applications of coalition formation. It still
should be mentioned that Berghammer and Fronk in [6] develop a refinement
of our programs that avoids the use of set inclusion and can be used for graphs
consisting of about 100 vertices in general and even more in advantageous cases.

4.4 The Example Revisited

In the following, we want to demonstrate an application of the RelView-
programs we have developed so far. As input we assume the dominance relation,
the transitive reduction of which graphically is depicted in Fig. 1.

Following the general procedure of Section 4.1, in the first step we have to
compute the initial SCCs using the RelView-program InitSccs of Section 4.2.
The graph of Fig. 1 possesses exactly one initial SCC. Its RelView-represen-
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Fig. 2. SCCs and initial SCC of the former example

tation as Boolean vector is shown on the right-hand side of Fig. 2. To give an
impression how a column-wise enumeration of sets of subsets looks in RelView,
on the left-hand side of the figure we additionally show the six SCCs of the
input as 17× 6 matrix. In both cases labels are added to rows and columns by a
specific feature of the tool for illustration purposes. In RelView a black square
of a Boolean matrix means ‘true’ and a white square means ‘false’. Hence, the
SCCs of the input are {1, 4, 5, 9}, {2}, {3, 8, 12, 13, 15, 16, 17}, {6}, {7, 10, 14},
and {11}. The only initial SCC is C3 = {3, 8, 12, 13, 15, 16, 17}.

Next, we perform Step a) of the general procedure to the initial SCC. C3

contains the cycles {12, 16}, {3, 8}, {8, 12, 15}, {3, 8, 12, 15}, {8, 12, 16, 13},
{8, 12, 16, 15} and {3, 8, 12, 16, 15}. By means of the RelView-program
MfvsVec of Section 4.3 we obtain two minimum FVSs, viz. {8, 16} and {8, 12}.
The Boolean RelView-matrix of Fig. 3 column-wisely enumerates these sets.

Fig. 3. Minimum FVSs of the initial SCC

Since Step a) of the general procedure of Section 4.1 demands to compute
the minimum FVSs of the subgraph generated by the initial SCC C3, strictly
speaking we first get a relation of type [C3↔F] as result, which means that the
elements of F are considered as subsets of C3. The matrix of Fig. 3 is obtained
from this result by multiplying it from the left with inj (v)T, where the vector
v : G∗↔1 describes the SCC C3. Thus, the computed minimum FVSs become
subsets of the set G∗.
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Fig. 4. The original graph marked with the minimum FVSs

That {8, 16} and {8, 12} are indeed the only minimum FVS hopefully be-
comes clear if we consider Fig. 4. It shows two copies of the input graph of
Fig. 1. In both cases we have instructed RelView to draw the vertices of the
initial SCC as squares and additionally to indicate a minimum FVS by the colour
black. In the graph on the left-hand side we identify the minimum FVS {8, 16}
and in the other graph the minimum FVS {8, 12}. From Fig. 4 we also see that
five arcs lead from outside into the FVS {8, 12}, but only four arcs lead from
outside into {8, 16}. Hence, by Steps b) and c) of the general procedure we have
to remove the vertices 8 and 12 from the graph, which leads to 16 and 17 as new
sources, i.e., as governments that can be considered as rather stable. What gov-
ernment finally is chosen depends on specific circumstances. Here social choice
rules or bargaining can help; we discuss this point in the next subsections.

4.5 Application of Social Choice Theory

According to the procedure described in Section 4.1, if the application of graph
theory does not give a unique solution, we select the final government from
among the ‘graph-theoretical’ results by applying social choice rules or bargain-
ing theory. This subsection concerns an application of some well-known social
choice rules, like Plurality Rule (Most Votes Count), Majority Rule (Pairwise
Comparison), Borda Rule, and Approval Voting, to our choice problem. For an
overview and comparison of social choice rules see, for instance, Brams and Fish-
burn [9], and de Swart et al. [15].

The input for an application of social choice theory consists of: (at least two)
selected governments (from which we have to choose one), parties forming these
governments, and preferences of the parties over the governments. Moreover,
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for each government each party either accepts (approves of) or does not accept
(disapproves of) it. We consider four rules:

1. Plurality Rule: Under this rule only the first preference of a party is con-
sidered. A government g is collectively preferred to a government h if the
number of parties that prefer g most is greater than the number of parties
that prefer h most. The government chosen under the plurality rule is the
government which is put first by most parties.

2. Majority Rule: This rule is based on the majority principle. A government
g is collectively preferred to h if g defeats h, i.e., the number of parties
that prefer g to h is greater than the number of parties that prefer h to g.
If there is a government that defeats every other government in a pairwise
comparison, this government is chosen, and it is called a Condorcet winner.

3. Borda Rule: Here weights are given to all the positions of the governments
in the individual preferences. For n governments, every party gives n points
to its most preferred government, n− 1 points to its second preference, etc.,
and 1 point to its least preferred government. A decision is made based on
the total score of every government in a given party profile.

4. Approval Voting Rule: Under Approval Voting (Brams and Fishburn [8]),
each party divides the governments into two classes: the governments it ap-
proves of and the ones it disapproves of. Each time a government is approved
of by a party is good for one point. The government chosen is the one that
receives most points.

Let us apply these rules to our example. We have two governments chosen
by the ‘graph theoretical part’ of the procedure described in Section 4.1: govern-
ments 16 and 17, and denote them by g16 (formed by parties A and C) and g17

(formed by parties A and B), respectively. Let Âi denote the preference relation
R(i) of party i ∈ {A,B,C} over the set {g16, g17}. In our example, we have:

g17 ÂA g16 g16 ÂB g17 g16 ÂC g17

Moreover, all three parties accept both governments, except party C which does
not approve of g17. In the case of two alternatives, the Plurality Rule, the Ma-
jority Rule and the Borda Rule give the same result: government g16. Moreover,
g16 is approved of by all three parties in question, while g17 is approved of only
by two parties.

4.6 Application of Bargaining Theory

We also like to mention another way for choosing one final government from
among (at least two) governments selected by the ‘graph-theoretical part’ of our
procedure. This alternative method is based on bargaining theory. In Rusinowska
and de Swart [12], the authors define six bargaining games in which parties be-
longing to stable governments (it is assumed that there are at least two stable
ones) bargain over the choice of one stable government. Subgame perfect equi-
libria of the games are investigated. Of course, the result of a bargaining game
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depends not only on the bargaining procedure, but also on the order in which
parties bargain. In Rusinowska and de Swart [12], a procedure for choosing the
order of parties for a given game is also proposed.

In this paper, we apply only some bargaining games analyzed in Rusinowska
and de Swart [12], to show how such an application of bargaining to our choice
problem may look like. Since we have only two governments and only three
parties, the games are very simple. There are several common assumptions for
our bargaining games. First of all, it is assumed that a party, when submitting
an offer, may propose only one government. Moreover, the same offers are not
repeated: a party cannot propose a government which has been already proposed
before. Finally, it is assumed that choosing no government is the worst outcome
for each party. Our bargaining games differ from each other with respect to the
bargaining procedures and the bargaining costs. Here we consider the games in
which a party prefers to form a government it likes most with a delay, rather
than to form immediately (with no delay) a less preferred government.

Let us consider one of the bargaining games for which the parties’ order
chosen by a special procedure is (A,B, C). This is the order of parties according
to the number of seats in Parliament. It is assumed in this game that a party,
when submitting an offer, may propose only a government the party belongs to.
The bargaining procedure for this game is the following. First, party A proposes
either government g16 or government g17. If g16 is proposed, then party C (which
is involved in g16) either accepts of rejects the proposal. Since there are no
more parties ‘responsible’ for g16, if party C accepts the offer, government g16

is chosen. Otherwise, no government is created, since party C is involved in no
more governments. On the other hand, if A proposes g17, it is party B which
has to react. Similarly, the acceptance of this offer causes g17 to be formed, and
the rejection leads to no government formed. There is only one subgame perfect
equilibrium for this game and it leads to the choice of government g17, the most
preferred result of party A.

The other two games we like to mention are less profitable for the strongest
party A. One of them gives more room for parties other than the strongest
one. Let us assume that a party does not have to belong to the government it
proposes, and all parties have to react to each offer. This means that if A submits
an offer (g16 or g17), both parties B and C must either accept or reject the offer.
For some orders of the parties, this game has more than one subgame perfect
equilibria, but they always lead to the creation of g16, i.e., the government most
preferred by parties B and C.

Finally, let us assume that only the strongest party, i.e., party A, may submit
an offer, and the other party forming the proposed government has to react. The
subgame perfect equilibrium of this game also results in the choice of government
g16.
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5 Conclusions

The central concepts of the coalition formation model are the notion of (feasi-
ble) government and the notion of stable government. The latter is defined as
a feasible government dominated by no feasible government. In the present pa-
per, we aim to answer the question which government should be chosen if there
is no stable government (that is, if the dominance graph has no source). The
attractiveness and novelty of our approach consists in: 1. the clever combina-
tion of notions from partly different domains (relational algebra, graph theory,
social choice theory and bargaining), and 2. the immediate and easy support
by the computer system RelView for computing solutions and for visualizing
the results. Given a dominance graph without a source, first we compute all
initial strongly connected components. The governments of an initial strongly
connected component can be seen as a cluster which is not dominated from
outside. Next, for each initial strongly connected component, we compute the
set of all minimum feedback vertex sets, where a minimum feedback vertex set
is a minimal set of vertices which breaks all cycles. Next, we choose a specific
minimum feedback vertex set according to the following rule. First, we choose
the set(s) for which the number of ingoing arcs is maximal. Since an ingoing arc
denotes that a government is dominated, such a choice means selecting govern-
ments dominated most frequently. Next, if there are at least two such sets, we
choose one for which the number of outgoing arcs is minimal, meaning the choice
of the governments which dominate other governments least frequently. Next, we
break all cycles by removing the chosen set of governments. One may say that
we remove governments which are least attractive for two reasons: because they
are most frequently dominated and they dominate other governments least fre-
quently. According to our procedure, if there is more than one initial strongly
connected component, we select the final stable government (from the results of
the procedure described above) by applying bargaining or some well-known so-
cial choice rules. Concerning the application of bargaining, we construct several
bargaining games and choose the government which is a subgame perfect equi-
librium result. Concerning the application of social choice theory, we apply the
plurality rule, the majority rule, the Borda rule, or approval voting. Of course,
some of these applications may also lead to a non-unique solution. In this case,
we propose to combine several techniques and to apply a several-steps method
consisting of, for instance, a social choice rule in the first step, and a bargaining
game in the second step.
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