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1 Introduction

Players can strengthen their position by committing themselves. This is an essential

insight of Schelling (1960). This commitment power has been analyzed as the power to

commit to a single action before the other players can move. In this paper we ask what

happens if players have the power to commit themselves but none of the players has the

privilege to do so before the other players. When players face an all or nothing decision

of commitment, i.e. players can either commit to a single action or they can choose

to stay completely flexible, not much is gained. The original Nash-equilibria and some

equilibrium outcomes of the sequential version of the game arise as the only outcomes of

this sort of commitment game. To make this question an interesting question we allow

parties more flexibility in terms of possible commitments. To be precise: we do not require

the players to choose to commit to a single action or to keep all of their actions for a later

decision. In our setup players are allowed to keep any closed and convex subset of their

initial action space for their choice in the second stage of the game. In a sense, players

are not so much assumed to commit to play a particular action but rather not to play

any of the actions that they ruled out. Classical examples of such commitment are firms

picking their capacity constraints, an army general burning a bridge behind his troops,

or a candidate promising not to raise taxes by more than x%. Once such commitments

are made agents still have room to choose which action they will undertake. In all these

cases, reneging on one’s commitment is either physically impossible or too costly to be

considered.1

Allowing players to commit on sets of actions can drastically affect the set of equilib-

rium outcomes. The guiding question of this paper is then: which action profiles can be

sustained as equilibrium outcomes when we allow the agents to rule out large subsets of

actions in a commitment phase that precedes the play of the game? We give a detailed

answer to this question for the case of two player games in which action spaces and the

permissible restrictions of them are compact subintervals of the real line and in which

players have strictly quasiconcave payoff functions. We embed a strategic form game G

into a two stage game in which players can restrict their action spaces in the first stage.

In the second stage players pick actions from these restricted action spaces and payoffs are

determined as in the original game G. If an action profile of the original game G is played

1See Muthoo (1996) for a model in which players can revoke (at some cost) their commitments.
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in the second stage of a subgame perfect strategy profile we call this action profile imple-

mentable by a commitment. In equilibrium, commitments become thus self-enforcing in

the sense that they are sustained by a simple sequential game structure, without assuming

punishment scheme against deviating players.

The question whether an action profile is implementable by a commitment is non-

trivial. Any action profile belongs to an infinite set of restricted action spaces. So to

find out whether a profile x is implementable by a commitment we would have to check

whether it is implementable by any one of these infinitely many pairs of restricted action

spaces. One of the main contributions of this paper is the proof that an action profile

is implementable by a commitment if and only if it is implementable by what we call a

‘simple commitment.’ This reduces the complexity of our problem drastically since for

any action profile there are only 4 such simple commitments.

All Nash equilibrium outcomes of the original game are implementable by a commit-

ment. Such outcomes are obtained for instance when each player commits to one single

action, his Nash equilibrium action. Another set of action profiles that is easily imple-

mented is ‘lead-follow’ equilibrium outcomes, that is the subgame perfect equilibrium

outcomes when we modify G such that one player is moving first and the other follows

suit (e.g., Stackelberg in a duopoly). To implement such outcomes it suffices that the

‘leader’ commits to a single action (his action in the lead-follow profile) and the other

player does not restrict his action space at all. This is not accidental, we show that all

action profiles that can be implemented by a game of commitment can be described as the

equilibrium outcome of a generalized sequential version of the game under consideration.

Important insights about following and leading in sequential games apply to the game of

strategic commitment. We use these insights to translate our characterization results into

a geometrical representation. We can show in particular that with a further restriction to

games with strategic complementarities the best reply curves alone suffice to characterize

all implementable profiles, in this case the set of implementable profiles is bounded by

the Nash- and follow-lead equilibrium outcomes.

Games usually have large sets of implementable profiles. It is our contention that this

multiplicity is a positive aspect of our theory presented in this paper. We indeed consider

that the set of implementable profiles adequately describes the set of profiles on which

two parties could agree upon in any situation in which there is a desire to cooperate (or
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coordinate) but there is lack of institutional tools to make agreements binding.We apply

our notion of bilateral commitment to the context of international tax treaties. We argue

that this interpretation is suited well for two reasons. First, it is a matter of fact that

many treaties are not point-wise agreements but rather agreements about sets of actions

each party is allowed to undertake. Recent works in the international economic litera-

ture acknowledge this aspect of treaties (Maggi and Rodŕıguez-Clare, 2005a,b). Second,

supranational authorities often do not have enough power to enforce punishment against

deviators, and thus a prerequisite to any treaty proposal is then to be self-enforcing.

In this respect our theory of commitment offers a framework to analyze self-enforcing

treaties. Using a basic model of international tax competition we show through simple

heuristics that self-enforcing commitment permit two countries to moderate the so-called

‘race-to-the-bottom,’ i.e., equilibria with sub-optimal tax levels.

We pursue our characterization by considering a variant of our commitment game, al-

lowing parties to commit in several steps. In a recent paper, Lockwood and Thomas (2002)

indeed show that gradualism may enforce partial cooperation that is not attainable in one

step commitment. It turns out that this is not the case in our setup: a profile is imple-

mentable in T rounds of commitment if and only if it is implementable in one round.

An important question is whether bilateral commitment may help players to be better

off with respect to the status quo, i.e., Nash equilibria of the original game. We show

that the players cannot, generically speaking, implement efficient outcomes using commit-

ments.2 We then ask whether self-enforcing commitment can at least help to improve upon

the status quo. The answer to this question is trivial when the lead-follow equilibrium,

which are always implementable by commitment, gives both players a higher payoff than

the Nash equilibria. When this is not the case, we show that no improvements are imple-

mentable in the important class of games with strategic complementarities and positive

consonance.3 However, we are able to give an example of a game with a non-monotonic

best reply curve in which parties can Pareto improve upon a unique Nash equilibrium

even though the ‘follow-lead’ equilibria do not Pareto dominate the Nash equilibrium.

Thus, we conclude on a positive note: bilateral commitments might improve the welfare

2This result parallels Dubey’s (1986) theorem that shows that Nash equilibria are generically ineffi-

cient.
3A game is said to have positive consonance when a player’s payoff is increasing in the opponent’s

action.
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of each player.

Our results provide a new angle on the debate around endogenous timing e.g., Hamil-

ton and Slustky (1990), Amir and Grilo (1999) or Romano and Ydilrim (2005). This

literature is guided by the question: what are the equilibrium predictions of a duopoly

model if we do not arbitrarily assign the firms to move in a certain sequence? Our guiding

question is instead: what happens if we do not arbitrarily restrict the players to commit

to a single action at every moment that they are allowed to take a move? We keep a strict

order of play in our paper: in a first stage both players are allowed to restrict their action

spaces, in s second stage they are allowed to pick actions from the restricted action spaces.

We do however allow for a lot more flexibility with respect to the commitments taken by

the players. 4 Our results parallel the results in the endogenous timing literature insofar

as that we obtain that the additional flexibility in the choice of commitments yields a

range of implementable profiles that is - in a sense to be defined more precisely - bounded

by the Cournot and Stackelberg outcomes as extreme cases.

Our approach of commitment is shared by Hart and Moore (2004). The situation

they study is that of two contracting parties who can restrict the set of outcomes over

which they will bargain. One of the main differences between their work and ours is that

they assume that some uncertainty is being resolved after players committed to a set of

outcomes and before the parties bargain over the final outcome. Without such uncertainty

there would be no reason not to commit fully in the first period in the framework of

Moore and Hart (2004). Contrary to that no uncertainty is needed in our model to

motivate parties not to commit themselves fully in a first period. We show that non-

trivial commitments can be Pareto-improving.

Jackson and Wilkie (2005) also allow players to modify the game to played in a pre-play

stage. Their paper is similar to ours in that they treat all players completely symmetrically

in the pre-play stage. The main difference between their work and ours lies in the set of

permissible modifications. While Jackson and Wilkie (2005) allow players to commit to

utility transfers in the second period we allow players to discard any number of actions

in the pre-play stage. These different pre-play modifications yield different results. Nash

equilibria can always be implemented in our framework but need not be implementable

4A notable exception in the literature on endogenous timing is Romano and Ydilrim (2005) who

assume that players commit to a lower bound.
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in theirs. On the other hand they show, like us, that pre play modification do not

necessarily make efficient outcomes implementable. Finally, Renou (2006) provides a

complete characterization of the equilibrium payoffs in general commitment games.

This paper is organized as follows. In Section 2, we give a detailed description of

the environment faced by the players, and define what we call the game of commitment.

Section 3 presents some preliminary results. We completely characterize in Section 4

the set of action profiles that are implementable by self-enforcing bilateral commitment.

Section 5 discusses the welfare implications of self-enforcing bilateral commitment. Most

proofs are relegated in the Appendix.

2 Games of commitment

2.1 Preliminaries

The initial situation we consider is a two-player strategic-form game G := 〈N, (Yi, ui)i∈N〉
with N = {1, 2} the set of players, Yi the set of actions available to player i, and ui :

Y1×Y2 → R the payoff function of player i. Denote Y := Y1×Y2. We call the opponent of

player i, player j. We assume that for each player i ∈ {1, 2}, Yi is a non-empty, compact,

convex subset of the real line. Without loss of generality, we take Yi = [0, 1], for i ∈ {1, 2}.
For each player i, the payoff function ui is assumed to be continuous in all its arguments

and strictly quasi-concave in yi, i.e., for all yj ∈ [0, 1], yi ∈ [0, 1], y′
i ∈ [0, 1], and α ∈ (0, 1),

ui(αyi + (1 − α)y′
i, yj) > min{ui(yi, yj), ui(y

′
i, yj)} .5 These assumptions are met by many

economic models.

We furthermore assume that players have the ability to unilaterally commit not to

play some actions, i.e., to restrict their action sets. Such commitments are assumed to be

perfectly binding, meaning that if player i restricts his action set to Xi, any action chosen

later on must belong to Xi.

5In the words of Moulin (1984), G is a two-player ‘nice game.’ It is worth noting that the mixed

extensions of any finite games do not satisfy our assumptions. First, payoff functions are not strictly

quasi-concave in such games. Second, unless the finite game has only two actions per player, mixed

action spaces are not a subset of the real line. Consequently, the theory developed in this paper cannot

be applied to mixed extensions of finite games.
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Definition 1 A (bilateral) commitment is a pair (X1, X2) where for both i ∈ {1, 2}, Xi

is a non-empty, compact and convex subset of [0, 1].

Thus, our definition of a commitment imposes on each player a restriction of his action

space.6

Henceforth, we write the restricted action space Xi of player i as a closed real interval

[xi, xi] ⊆ [0, 1], where xi (xi) refers to the minimum (maximum) of player i’s restricted

action space. Note that player i can also commit to a singleton, in which case xi = xi.

It is important to note that a commitment does not necessarily prescribe the choice

of an action. In the words of Hart and Moore (2004), “in a bilateral commitment, the

players commit not to consider actions not on the list (X1, X2), i.e., these actions are

ruled out. Ex-post, the players are free to choose from the list of actions specified in the

commitment i.e., actions are not ruled in.”

We say that the bilateral commitment (X1, X2) induces the game G(X) := 〈N, (Xi, u
X
i )〉,

where X = X1×X2, and for i ∈ {1, 2}, uX
i (x) = ui(x) for all x ∈ X. Abusing notation, we

will drop the superscript X in the sequel. The induced game G(X) is thus obtained from

the game G by restricting the action sets of the players. We shall use the term ‘mother ’ to

make reference to the original game G. For instance, we shall use the expressions mother

game, mother best-reply, mother action set, etc. Similarly, the term ‘induced ’ will refer to

the best reply, action sets etc. in G(X). We denote by Yi the collection of all non-empty,

compact, convex subsets of [0, 1], and define Y :=
∏

i∈{1,2} Yi.

2.2 Games of commitment

Given the strategic-form game G, the game of commitment Γ(G) is a two-stage game

with almost perfect information, in which:

Stage 1. Both players simultaneously choose action sets Xi ∈ Yi.

Stage 2. Players play the induced strategic form game G(X) .

6That restrictions are assumed to be convex subsets is not without loss of generality. In particular it

ensures that the game played once players have chosen their restrictions has a Nash equilibrium. Imposing

some Lipschitz conditions is sufficient, however, to deal with non-convex restrictions. We also note that

imposing convex strategy sets is a common assumption in the economic literature.
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A strategy for a player i in the game Γ(G) (for short, Γ), is a pair si = (Xi, σi) where

Xi ∈ Yi, and σi is a mapping from Y to [0, 1] such that σi(X) ∈ Xi, for all X ∈ Y .

That is, a strategy for a player prescribes a choice of a restriction Xi (first-stage action)

and, for each possible choice of a restriction for both players in the first-stage, an action

xi ∈ Xi (second-stage action). The outcome of a strategy profile s = (si)i∈{1,2} is the pair

(X, x) where xi = σi(X) for each player i ∈ {1, 2}. The payoffs over outcomes (X, x) are

assumed to only depend on the action profiles chosen in the second stage of the game

and are given by the payoffs of the induced game G(X). That is, we assume that player

i derives utility ui(x) from outcome (X, x). If (X, x) is the outcome of strategy profile s

we call x the result of s.

The central concept of this paper is the concept of implementation by commitment,

which we now define.

Definition 2 An action profile x is implementable by commitment X if the pair (X, x)

is the outcome of a subgame-perfect equilibrium of Γ.

Hence, a profile x is implementable by commitment if it is a (stage 2) result of a

subgame-perfect equilibrium of Γ. In this paper, we focus on subgame-perfect equilibria

in pure strategies.

3 Games induced by commitments

We first derive some results concerning the proper subgames of Γ, namely the set of all

induced games G(X). The proofs of the results presented below, Lemmata 1 and 2 are in

our companion paper, Bade, Haeringer and Renou (2005).

Define BRi : [0, 1] → [0, 1], the (mother) best-reply of player i in the game G, with for

yj ∈ [0, 1],

BRi(yj) = {yi ∈ [0, 1] : ui(yi, yj) ≥ ui(y
′
i, yj) for all y′

i ∈ [0, 1]}.

When players commit to play in the set X, the best-reply map brX
i : Xj → Xi of player

i is defined similarly, bearing in mind that now player i cannot choose an action outside

Xi, that is, for all xj ∈ Xj,

brX
i (xj) = {xi ∈ Xi : ui(xi, xj) ≥ ui(x

′
i, xj) for all x′

i ∈ Xi}.
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We will denote the best-reply map br
Xi×[0,1]
i by brXi

i . That is, brXi
i is the restricted best-

reply of player i when he is committed to Xi and player j can choose any action in [0, 1].

Note that best-reply maps are non-empty, single valued and continuous. Furthermore,

the strict quasi-concavity of payoff functions enables us to easily characterize the mapping

brX
i as a function of BRi and X.

Lemma 1 Player i’s best-reply function in G(X), brX
i : Xj → Xi, is

brX
i (xj) =




xi if BRi(xj) < xi ,

BRi(xj) if xi ≤ BRi(xj) ≤ xi ,

xi if xi < BRi(xj) .

In words, the best-reply map brX
i of the restricted game G(X) agrees with the best-

reply map BRi of the mother game G on the set {xj ∈ Xj : BRi(xj) ∈ Xi}, and is either

xi or xi, otherwise. Lemma 1 is illustrated in Figures (1a) and (1b). In the former it

displays a mother best-reply of player j and in the latter the restricted best-reply when

he commits to [xj, xj ].

�

�

xi

xj

0 1

1

BRj

xj

xj

�

�

xi

xj

0 1

1

br
[xj ,xj ]

j

xj

xj

(a) (b)

Figure 1: Mother and restricted best-replies

Denote N(G) and N(G(X)) the set of Nash equilibria of G and G(X), respectively.

Observe that the mother game G as well as any induced game G(X) has a Nash equilib-

rium in pure actions. Our next lemma states that if a profile of actions x∗ is an equilibrium
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of G(X), but is not an equilibrium of the mother game G, then x∗ ∈ bdY (X), the relative

boundary of X in Y .7

Lemma 2 If x∗ ∈ N(G(X)) \ N(G), then x∗ ∈ bdY (X).

Lemma 2 states that if a commitment X∗ implements a result x∗ that is not an

equilibrium of G, then it must be the case that for at least one player, say i, the action

x∗
i is either the maximum or the minimum of X∗

i . Lemma 2 thus provides a first intuition

about the set of implementable profiles. Namely, if the implemented profile is not a Nash

equilibrium of the mother game G, then the action of at least one player identifies with

the boundary of his restricted action space.

4 Implementation by commitments

4.1 Existence

We start by observing that the existence of a subgame-perfect equilibrium of Γ is not, a

priori, guaranteed, for the cardinality of each player’s strategy set in Γ is uncountable. It

turns out, however, that the issue of equilibrium existence in our case is easily solved.8

Proposition 1 The game of commitment has an equilibrium.

Proof. Since Γ(G) is a finite horizon game, we can use the one-shot deviation property

to check that a profile is an equilibrium —see Osborne and Rubinstein (1994, p. 103).

Choose y∗ ∈ N(G) and consider for each player i the strategy s∗i = ({y∗
i }, σ∗

i ), with

(σ∗
i (X))i∈{1,2} a Nash equilibrium of G(X) for any first-stage actions (commitment) X.

By construction, no player can profitably change his second-stage action. Observe that

since for both i ∈ {1, 2} we have y∗
i = BRi(y

∗
j ), neither player can obtain a strictly higher

payoff than ui(y
∗). Therefore, given the restriction of player i to {y∗

i }, player j cannot

increase his utility by changing his restriction on his action space. �
7Let (Y, d) be a metric space and X ⊂ Y . A point x is a boundary point of X in Y if each open

neighborhood U of x satisfies U ∩X �= ∅ and U ∩ (Y \X) �= ∅. The set of all boundary points of X in Y

is bdY X . For instance, if Y = [0, 1], bdY [0, 1/2] = {1/2} while bdY [1/3, 2/3] = {1/3, 2/3}.
8See, for instance, Harris et al. (1995) for results on the existence of subgame-perfect equilibria for con-

tinuous games with almost perfect information. It is worth noting that Proposition 1 holds independently

of the number of players involved in the mother game G.
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The key observation in the proof of Proposition 1 is that any Nash equilibrium of the

mother game G is implementable. So, commitments have the power to perpetuate an

existing situation.9 Moreover, it should be noted that uniqueness is clearly not guaran-

teed. For instance, if G has a multiplicity of equilibria, then we can already construct a

multiplicity of subgame-perfect equilibria of Γ.

4.2 A Complete Characterization

We are now ready to characterize the set of all action profiles that can be implemented

by a commitment. The main result of this section is that if a profile of actions x is

implementable, then it is implementable by one of a very small number of bilateral com-

mitments, those that we call simple.

Definition 3 A bilateral commitment X is simple if it has the form ({xi}, [0, BRj(xi)])

or ({xi}, [BRj(xi), 1]).

In a simple commitment, one player takes an extreme position, that of excluding all

but one action. The other player, player j, truncates his action space either from below

or from above, but not both. Moreover, the truncation is at his best-reply to the only

action in player i’s extreme commitment. We are now ready to formally state the main

result of this section:

Theorem 1 An action profile x∗ is implementable by a bilateral commitment if and only

if it is implementable by a simple bilateral commitment.

Before proving this characterization result, let us briefly comment on the implications

of this theorem (see Section 5.5. for more on this). If we want to check whether a

particular profile can be implemented by a commitment, we only need to check whether

it can be implemented by a simple commitment. This is a very manageable task, as for

any action profile x∗, there are exactly 4 simple commitments that could implement it.

9In a related paper, Jackson and Wilkie (2005) propose a model in which players can commit to

utility transfers conditional on actions being played. They notably show that Nash equilibria of the

game without transfer, the mother game, might not be implementable, while they are in our paper. An

essential difference between their paper and our paper is that commitments can be undone in their paper

by transferring back, while it is not possible in our paper.
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These commitments are:

([0, BR1(x
∗
2)], {x∗

2}), ([BR1(x
∗
2), 1], {x∗

2}),
({x∗

1}, [0, BR2(x
∗
1)]), ({x∗

1}, [BR2(x
∗
1), 1]) .

It is not difficult to check whether an action profile can be implemented by one

of these four simple commitments. Indeed, to check whether x∗ is implementable by

({x∗
1}, [0, BR2(x

∗
1)]), it suffices to check whether player 1 has an incentive to change his

restricted action space. Observe that in the second stage, neither player has an incentive

to deviate (player 2 will be playing the mother best-reply to player 1’s action, and player

1 does not have any choice). Furthermore, given that player 1 commits to {x∗
1}, player

2 does not have an incentive to alter his commitment, the mother best-reply to x∗
1 is

already contained in [0, BR2(x
∗
1)]). Therefore, we only need to check whether player 1 has

an incentive to deviate in the first stage of the game. Notice that for any restriction X1

player 1 may choose the profile played in the second stage must be a Nash equilibrium

of G(X1 × X∗
2 ). So, if player 1 chooses the restriction {x1} for some x1 ∈ [0, 1], the

second stage result will be (x1, br
[0,BR2(x∗

1)]
2 (x1)). Consequently, the action profile x∗ is an

equilibrium if x∗
1 solves the following optimization program:

max
x1∈[0,1]

u1(x1, br
[0,BR2(x∗

1)]
2 (x1)) . (1)

In Section 5.5, we take this optimization program as a starting point for a geometric

characterization of implementable profiles.

4.3 Proof of Theorem 1

In this section, we present the main steps leading to Theorem 1 and give intuitions for

these intermediate results. Detailed proofs can be found in the Appendix. We start by

showing a key result, namely if a result x∗ is implementable, then for at least one player

i ∈ {1, 2}, x∗
i is a mother best-reply to x∗

j .

Proposition 2 Let x∗ be implementable by some bilateral commitment X∗. Then x∗
i =

BRi(x
∗
j) for at least one player i ∈ {1, 2}.

To see the intuition behind Proposition 2, suppose that a profile x∗ is implementable by

the bilateral commitment X∗ such that neither player is using his mother best-reply. From
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Lemma 2 this means that for both players the constraints imposed by the commitment

bind. The continuity of the best replies implies that for all of player 2’s actions in a

sufficiently small interval (x∗
2−ε, x∗

2+ε) around x∗
2, player 1’s restricted best reply remains

x∗
1. Let us now consider a different restriction for player 2. Take a {x′

2} such that x′
2

is 1) closer to player 2’s mother best-reply to x∗
1, BR2(x

∗
1), and 2) inside the interval

(x∗
2 − ε, x∗

2 + ε). (See Figure 2.) The strict quasi-concavity of player 2’s payoff function

implies that the result (x∗
1, x

′
2) is strictly preferred to x∗. This implies that player 2 has

a profitable deviation, a contradiction with our assumption x∗ is implementable with the

bilateral commitment X∗.

�

�

x1

x2

1

1

�

� br
[x∗

2,1]
2

BR2

br
[0,x∗

1]
1

x′
2

x∗

ε

ε

Figure 2: Illustration of Proposition 2

Proposition 3 Let x∗ be implementable by some bilateral commitment X∗ with x∗
j =

BRj(x
∗
i ). Then x∗ is also implementable by the bilateral commitment X ′, such that X ′

i =

{x∗
i } and X ′

j = X∗
j .

There is a tight connection between Proposition 2 and Proposition 3. By Proposition 2,

we know that in any equilibrium outcome (X∗, x∗) of Γ, x∗
j = BRj(x

∗
i ) for at least one

player j ∈ {1, 2}. Imagine now that player i commits to the singleton {x∗
i }. Since player

j can still play BRj(x
∗
i ) in the second stage and there player i has no other choice but

playing x∗
i in the second stage, player j has no incentive to deviate. If player i can
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profitably deviate when choosing the restriction {x∗
i }, he can also profitably deviate when

choosing the restriction X∗
i . This, however, cannot be true as we started out with the

assumption the (X∗, x∗) is an equilibrium outcome of the game.

The main insight of Proposition 3 is that if (x∗
i , BRj(x

∗
i )) is implementable by a bi-

lateral commitment X∗, then it is also implementable by the commitment

X ′ = ({x∗
i }, X∗

j ). (2)

To obtain Theorem 1, it suffices then to show that X∗
j can be reduced to be either [0, x∗

j ]

or [x∗
j , 1]. We establish precisely that in the following proposition.

Proposition 4 Let x∗ be implementable by some bilateral commitment ({x∗
i }, X∗

j ) with

x∗
j = BRj(x

∗
i ). Then x∗ is also implementable by a commitment X ′ such that X ′

i = {x∗
i }

and either X ′
j = [BRj(x

∗
i ), 1] or X ′

j = [0, BRj(x
∗
i )].

Now to prove Theorem 1, take any implementable action profiles x∗ and let X∗ be a bi-

lateral commitment that implements it. By Proposition 3, we know that the commitment

({x∗
i }, X∗

j ) for i ∈ {1, 2} does also implement x∗. Finally, from Proposition 4, we know

that an action profile that can be implemented by such a commitment can also be imple-

mented by a simple commitment. In sum, these arguments imply that an action profile

can be implemented by a commitment only if it can be implemented by a simple commit-

ment. Conversely, any action profile that can be implemented by a simple commitment

can be implemented by a commitment. This completes the proof of Theorem 1.

4.4 Multi-period games of commitment

It is often conjectured that the lack of enforcement options may be overcome by con-

sidering gradual commitments, thus allowing to implement outcomes that could not be

attainable if players can only commit once.10 The intuition that drives this conjecture

is that in a dynamic setting players may find it profitable to make ‘small’ commitment.

Such small commitments might incentive the opponent to also commit but have the merit

to minimize the loss if the opponent does not commit. Two central contributions on

this issue are Admati and Perry (1991) and Lockwood and Thomas (2002). Admati and

10See Schelling (1956) for an early account on this issue.
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Perry (1991) consider a model in which players can make repeated voluntary contribu-

tions to finance a project. This latter is implemented only if the sum of the contribution

passes a threshold. The game stops as soon as the project is implemented. Lockwood and

Thomas (2002) consider a finitely repeated prisoners’ dilemma with continuous action

space in which at each stage players can only increase their level of cooperation. Both

models show that efficient, or nearly efficient outcomes can be obtained.11 In this section,

we follow this line of research by considering a multi-period game of commitment, denoted

ΓT .

In the game ΓT , players face T periods of commitment and one final stage in which

they play the game induced by their commitments. In each period t = 1, . . . , T , players

simultaneously restrict their action spaces with the constraint that the restriction at stage

t has to be a non-empty, compact, convex subset of the restricted action space at period

t−1. That is, if X t
i denotes the restriction of player i at period t then X t+1

i ⊆ X t
i . Finally,

in period T +1, players play the game induced by the commitment of period T , the game

G(XT ).

One may imagine that allowing for several stages of commitment may change the set

of implementable profiles. In fact, it turns out that in our context this is not the case.

Theorem 2 For any T a profile of actions x∗ is implementable in the multi-period game

of commitment ΓT (G) if and only if it is implementable in a game of commitment Γ(G).

The proof of this theorem heavily rests on a result similar to that of Proposition 2, i.e.,

if x∗ is implementable in T rounds of commitment then at least one player is best-replying.

A key observation to prove Theorem 2 is that for any equilibrium s∗ of ΓT , we can always

construct a new equilibrium profile ŝ in which players’ first stage restrictions are the same

as their last restrictions under s∗ (on the equilibrium path), and at all other subsequent

11The models of Admati and Perry (1991) and Lockwood and Thomas (2002) do not separate as clearly

as we do the commitment decision from the decision of choosing which action to play. Their models are

simply repeated games in which the assumption that at each stage players cannot use an action ‘lower’

than their action at the previous stage. First, this implies that in their models players can only restrict

their action sets by choosing a lower bound (the contribution level in Admati and Perry (1991) or the

cooperation level in Lockwood and Thomas (2002)). Second, a key difference is that in their model, the

payoff is dependent on the sequence of commitments (lower bounds), while in our model we do assume

that commitments do not enter directly the payoff functions.
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stages players do not further restrict their action spaces. Hence, from the perspective of

characterizing the set of implementable profiles repeating the number of stages at which

players can restrict their action spaces does not enrich our model.

4.5 The geometry of implementable profiles

As already pointed out, Theorem 1 has remarkable implications for the characterization

of the implementable action profiles of a game of commitment. To check whether a profile

of actions x is implementable, it suffices to follow a simple four-step procedure:

Step 1. Check whether x lies on the graph of the best-reply map of at least one player. If

not, then x is not implementable. If yes, go to step 2.

Step 2. Check whether x lies on the best-reply graphs of both players. If yes, then x is

implementable since it is an equilibrium of the mother game G. If not, go to step 3.

Step 3. Without loss of generality, assume that xj = BRj(xi). Construct the simple com-

mitments ({xi}, [0, BRj(xi)]) and ({xi}, [BRj(xi), 1]). Go to step 4.

Step 4. Check whether x′
i maximizes ui(·, br[0,BRj(xi)]

j (·)) or ui(·, br[BRj(xi),1]
j (·)). If yes, then

x is implementable. If not, then x is not implementable.

Steps 1 and 2 are easily translated into geometric analysis. An action profile can be

implemented only if it lies on the best-reply curve of at least one player. If it lies on the

best-reply curves of both players, this action profile is an equilibrium of the mother game,

and from Proposition 1, it is implementable. Therefore, we are left with the question:

which of the action profiles that lie on only one best-reply curve can be implemented? Steps

3 and 4 give the answer. However, these last two steps do not translate as easily into

geometric analysis. In the sequel, we show that simple geometric arguments can be used to

show that certain portions of the best-reply curves of the players cannot be implemented.

Furthermore, we show that for a certain class of games, the set of implementable profiles

can even be completely characterized by a straightforward geometric procedure.

To get this result, we first show that any equilibrium outcome can be described as a

two step optimization program,
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Proposition 5 An outcome (X∗, x∗) is an equilibrium outcome of Γ(G) if and only if,

for at least one player i ∈ {1, 2}, j �= i:

(i) x∗
i maximizes ui(xi, br

X∗
j

j (xi)) , and

(ii) br
X∗

j

j (x∗
i ) = BRj(x

∗
i ).

Figure 3 illustrates the logic of Proposition 5. The outcome (x∗, X∗) with X∗ =

({x∗
i }, [0, xj ]) is an equilibrium outcome as the profile of actions x∗ is associated with

player i’s highest indifference curves ICi on the section of player j restricted best-reply

curve br
[0,xj ]
j that corresponds with his mother best-reply curve BRj . Observe that x∗ is

also implementable by the simple bilateral commitment ({x∗
i }, [0, x∗

j ]), an illustration of

Proposition 4.

�

�

xi

xj

1

1

ICi

br
[0,x̄j ]
jx̄j

x∗

Figure 3: The geometry of Proposition 5

Remark 1 From Proposition 5, we have that x∗ is implementable by the commitment

X∗ if x∗
i maximizes the payoff of player i being on the graph of the restricted best-reply

of player j. This result has thus the flavor of the outcome of a sequential game in which

player i moves first. Intuitively, this is not surprising since, as already pointed out by
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Schelling (1960), the power to commit oneself is equivalent to a first move.12 Hence,

implementable profiles of actions have a Stackelberg-type structure, one player ‘leads’ the

commitment while the other ‘follows.’

We now provide a geometric condition that has to hold for a profile of actions to be

implementable. In other words, if this condition does not hold at a profile of actions

x∗ with x∗
j = BRj(x

∗
i ), then x∗ is not implementable; it does not solve the above maxi-

mization program. For simplicity, assume that the (mother) best-reply maps and payoff

functions are continuously differentiable.13 The geometric condition relates the slope of

the indifference curve of player i at x∗ with the slope of the best-reply of player j at the

same action profile x∗.

Proposition 6 Let x∗ be an implementable profile of actions with x∗
j = BRj(x

∗
i ), and x∗

interior. It cannot be true that the slope of player i’s indifference curve at x∗ is strictly

negative (resp., positive) while the slope of player j’s (mother) best-reply at x∗ is positive

(resp., negative).

Proposition 6 thus provides a general geometric condition for implementability: the

slope of player i’s indifference curve and the slope of player j’s best-reply must have the

same sign. For instance, in Figure 4, x∗ is not implementable since BRj is positively

sloped at x∗ while player i’s indifference curve ICi is negatively sloped. Hence, to look

for implementable action profiles, we can restrict our attention to the profiles that are

on the positively (resp., negatively) sloped portions of the best-reply curve of player j in

the positive (resp., negative) indifference curve section of player i. This condition is not

12There is now an abundant literature on imperfect competition whose purpose is to obtain Cournot

and Stackelberg outcomes as equilibrium outcomes of the same model. Interestingly, several models use

an approach similar to ours: they give the possibility to the firms to commit to some actions —see

for instance Hamilton and Slutsky (1990) , van Damme and Hurkens (1999) or more recently Romano

and Yildirim (2005), and the references therein. More precisely, firms in most of these models are

assumed to commit either to a single action or to not commit at all. A notable exception is Romano and

Yildirim (2005) who assume that firms can restrict their action sets only from the bottom, i.e., firms can

only accumulate. Hence these models can be seen as a simplified version of our approach. Hamilton and

Slutsky’s main result is that the only equilibrium result that can be obtained are the Cournot and the

Stackelberg outcomes, while our approach allows for a larger set of equilibrium results.
13The assumption of differentiability is not crucial, but greatly simplifies the exposition.
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Figure 4: The profile x∗ is not implementable.

sufficient, however. In what follows, we give a necessary and sufficient geometric condition

for implementation in an important class of mother games.

Consider the class of games with strategic complementarities.14 Furthermore, we as-

sume that the function ui(·, BRj(·)) is strictly quasi-concave in xi, for all i ∈ {1, 2}.15
For simplicity, we also assume that player i’s payoff is increasing in player j’s action xj

for all i ∈ {1, 2}, that is, the game has positive consonance.16 We show that for this

class of games, the knowledge of the Nash equilibria of G along with the knowledge of

the ‘lead-follow’ profiles is necessary and sufficient to completely characterize the set of

implementable profiles of actions.

First, we need to order the set of Nash equilibria of G. Define x∗(1) the Nash equi-

librium of G with the lowest coordinate for player i, that is, there does not exist another

equilibrium x of G such that xi < x∗
i (1). Similarly, define x∗(2) the equilibrium of G

14See Fudenberg and Tirole (1991, p. 490) for a definition. It is worth noting that a similar charac-

terization holds for games with strategic substitutabilities.
15See Romano and Yildirim (2005) for similar assumptions.
16This assumption is not crucial. A complete characterization without this assumption is available

upon request.
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with the second lowest coordinate for player i, and so on recursively.17 Note that since

best-reply maps are single-valued, x∗(k) is a singleton for any k > 0. Moreover, the set of

equilibria of G is generically finite and odd (see Harsanyi (1973)), hence there generically

exists a finite odd number K of x∗(k)’s. (See Figure 5.)

Second, define (li, BRj(li)) the profile of actions such that li maximizes ui(·, BRj(·)),
that is, the profile of actions (li, BRj(li)) is the lead-follow profile with player i as the

leader. It is worth noting that since ui(·, BRi(·)) is strictly quasi-concave in xi and BRj

single-valued, li is unique. Moreover, since BRi and ui are non-decreasing functions of

xj , we have that li ≥ x∗
i (K) for all i ∈ {1, 2} (See Lemma A3 in the Appendix). Our next

proposition states that the knowledge of li and the x∗(k)’s is necessary and sufficient to

completely characterize the set of implementable profiles of actions.

Before stating the proposition, let us introduce a last piece of notation. Define Ii as a

subset of [0, 1] as follows:

Ii :=
⋃

k<K
k odd

[x∗
i (k), x∗

i (k + 1)] ∪ [x∗
i (K), li]. (3)

Observe that the set Ii is uniquely defined by the knowledge of li and the x∗(k)’s.

Proposition 7 Consider a game with strategic complementarities and positive conso-

nance. The set of implementable profiles of actions is I = I1 ∪ I2 with for i ∈ {1, 2},
j �= i:

Ii = {x : xj = BRj(xi), xi ∈ Ii}.

The intuition behind Proposition 7 is rather simple. First, note that since G is a

game with strategic complementarities, the best-reply maps are increasing. Moreover,

the best-reply map of any player, BRi, separates the action space [0, 1]2 into two regions

{x : xi < BRi(xj)} where player i’s indifference curves are negatively sloped, and {x :

xi > BRi(xj)} where player i’s indifference curves are positively sloped. Second, for

any x with xj = BRj(xi) and xi ∈ (x∗
i (k), x∗

i (k + 1)), k even, we have xi < BRi(xj),

17Formally, let x∗(0) = ∅, and define for any k > 0,

x∗(k) := {x ∈ N(G) \ ∪k−1
k′=0{x∗(k′)} : xi ≤ x′

i, ∀x′ ∈ N(G) \ ∪k−1
k′=0{x∗(k′)}}.
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hence player i’s indifference curve is negatively sloped at x. Since BRj is positively

sloped, it follows from Proposition 6 that x is not implementable. A similar argument

holds for any x with xj = BRj(xi) and xi < x∗
i (1). Finally, any profile of actions x

with xj = BRj(xi) and xi ∈ (x∗
i (k), x∗

i (k + 1)), k odd, is implementable by the simple

bilateral commitment ({xi}, [0, BRj(xi)]). To see this, it is enough to observe that player

j’s best-reply br
[0,BRj(xi)]
j (x′

i) is BRj(xj) for x′
i > xi, and BRj(x

′
i), otherwise. The strict

quasi-concavity of ui and ui(·, BRj(·)) implies then that xi is solution of the optimization

program described in Proposition 5. The other cases are similar. See Figure 5 for the set

of implementable actions.

�

�

xi

xj

1

1
BRi

BRj

xi(1) xi(2) xi(3) li

lj

xj(1)

xj(2)

xj(3)

Figure 5: The set of implementable profiles (in bold)

For the class of games with monotonic best-reply maps and ui(·, BRj(·)) strictly quasi-

concave in xi, the complete characterization of the set of implementable actions is therefore

purely geometric, and the only knowledge required is that of the Nash equilibria of G and

the lead-follow profiles.

4.6 Bilateral tax treaties as an example

Consider a basic tax competition model between two countries, 1 and 2, where govern-

ments compete for a (perfectly) mobile capital. Both economies produce a private good
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produced using labor (which is immobile) and a public good, whose production is financed

by a tax ti on capital levied by each government i ∈ {1, 2}. Governments are social welfare

maximizers, i.e., they maximize the utility of a representative consumer (which depends

on consumption of both private and capital goods). If one country raises its tax rate,

the capital owners will respond with a reallocation of capital such that after tax revenue

from capital is equal in both countries. Best replies in such a model are upward sloping, a

higher tax rate in the foreign country means that the reallocation effect from a raise of the

tax rate in the home country will be less pronounced. The received wisdom for this type

of model is that competition between governments will result in a so-called ‘race to the

bottom.’ To see this, notice that whenever the gains obtained by having a higher share of

the world capital stock offset the losses due to a lower tax rate, both countries will have

an incentive to have a lower tax rate than that of the opponent. However, higher tax rates

for both governments mean higher revenues for both governments. So, in equilibrium tax

rates are sub-optimally low, resulting in an inefficient level of public good provision.18

A nice interpretation of a commitment in this context is that of a treaty. The story

we have in mind is as follows. Consider that the two countries negotiate over the terms

of a tax treaty. However, in order for a treaty to come into force, it has to be ratified

by the parliament of each country. We have then in mind situations in which a treaty

won’t be ratified by country A if the limitations that the treaty imposes on country A

are not a best-reply to the limitations that the treaty imposes on the other country.We

interpret the translation of the requirements of the treaty into national law as a binding

commitment. This binding commitment does not necessarily specify a particular tax

profile but intervals of tax levels (i.e., the first-stage restrictions), and each country has

in turn discretion to choose a particular tax level that fits in the interval specified by the

treaty. Viewing treaties as commitment on intervals rather than point-wise commitments

is a approach in line with recent literature on international economics —see Maggi and

Rodŕıguez-Clare (2005a,b).19

Figure 6 describes the best-replies of each country and the set of implementable profiles

for a rudimentary version of the tax competition model we just presented. Note that in

18See Zodrow and Mieszkowski (1986) and Wilson (1999).
19Committing on intervals rather than on a particular value is often employed in environmental treaties.

For instance, article 3 of the Kyoto protocol stipulates that countries are bound to reduce their overall

emissions of greenhouse gases by 2008-2012 by ‘at least’ 5% (on average) below the 1990 levels.
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such models there is a second mover’s advantage in the sense that if countries where to

choose their tax rates sequentially both countries would prefer to choose second. This is

so because once the opponent has set its tax rate a country can set a set a tax rate a

bit lower in order to attract a higher share of the capital stock. In Figure 6 we define

l(i) by l(i) = (li, BRj(li)). So, the payoff of either player is monotone increasing from

the Nash equilibrium B to either of the lead-follow profiles, l(1) or l(2). Note that the

complete characterization is a simple application of Proposition 7 since there is a unique

Nash equilibrium.

�

�

t1

t2

A

B

l(1)

l(2)

BR1

BR2

Figure 6: A simple model of tax competition.

We can then use our characterization results to identify the set of implementable

profiles in this simple model. First, notice that the strict quasi-concavity of the payoff

function implies that all profiles that are in the segment [A, B] are such that firm 1’s

indifference curve is downward slopping. Thus, using Proposition 6 we deduce that these

profiles are not implementable. To complete the characterization of implementable pro-

files, we can use Proposition 7. Implementable profiles are depicted by the bold segments

[B, l(1)] ∪ [B, l(2)].

Can a treaty make both countries better off? Without the treaty the payoffs of both

countries are determined by the Nash equilibrium outcome. It turns out that in this

example all the profiles that are implementable by a commitment (or treaty in this con-

text) Pareto dominate the Nash equilibrium, but none of these outcomes is efficient.20

Furthermore each outcome that is implementable by a treaty is Pareto dominated by at

20This contrasts with Rodŕıguez-Clare and Maggi (2005a,2005b) who start with the assumption that

treaties are efficient.
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least one of the lead-follow equilibria l(1) and l(2). In our next section on the social value

of commitments we show that these features are quite general. We first show that im-

plementable profiles are generically not efficient. We show next that any implementable

profile is dominated by a lead-follow equilibrium in a game with strategic complemen-

tarities. Finally we show that the case for commitments by action space restrictions is

strongest in games with non-monotonous best replies. In the context of tax treaties this

means that they have the most appeal in a context in which the reallocation of capital is

governed by a non-monotonic best reply curve. This is most likely to happen when there

are exogenous obstacles to capital movements.

5 The Social Value of Commitments

If we interpret our commitment game as a mechanism to implement a particular action

profiles we should ask: Why don’t players simply commit to efficient profile of actions? It

turns out that quite generally such commitments are not self-enforcing. More precisely,

we show that if G is a smooth game, then we have generic inefficiency.

Next, we address the question whether commitments are at least useful to implement

action profiles that Pareto dominate the Nash equilibria of the mother game. We conclude,

on a more positive note: we show that commitments can very well serve to make both

players better off if certain conditions are met.

5.1 Efficiency

Let us first recall the definition of efficiency.

Definition 4 A profile of actions y is efficient if there does not exist another profile of

actions y′ such that ui(y
′) ≥ ui(y) for all i ∈ {1, 2}, and ui(y

′) > ui(y) for some i ∈ {1, 2}.

Definition 4 is the textbook definition of (Pareto) efficiency. It is worth noting that

several related papers e.g., Jackson and Wilkie (2005) or Gomez and Jehiel (2005), use

a stronger concept of efficiency: a profile of actions is efficient if it maximizes the sum

of players’ payoffs. However, since we do not necessarily assume transferable utilities,

our concept of efficiency is more appropriate. Let us now turn to the concept of smooth

games.
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Definition 5 The game G is a smooth game if for all i ∈ N , ui is twice continuously

differentiable.

Two remarks are in order. First, in virtually all economic models in which payoff

functions are assumed to be continuous, payoff functions are also assumed to be twice

continuously differentiable.21 For instance, linear-quadratic Cournot games or models of

Bertrand competition with differentiated goods are smooth games. Second, we actually

need the assumption of differentiability only around equilibrium results.

Theorem 3 For any smooth game G, interior equilibrium results of the commitment

game Γ(G) are generically inefficient.22

This result is reminiscent of Theorem 1 of Dubey (1986), which states that Nash

equilibria of smooth games are generically inefficient. The main reason for hope that this

result could be overcome in the game of commitments is that the set of action profiles

that can be implemented is (in general a large) superset of the set of Nash equilibria of

the mother game. So, there is hope that this superset would also contain some efficient

profiles. However, our Theorem 3 shows that this does not hold true, just like Nash

equilibria of smooth games, the profiles that are implementable by commitments are

generically inefficient.

Not only is our Theorem 3 reminiscent of Dubey (1986), also the proof follows along

similar lines. The main difference (and difficulty) we face is that implementable profiles

that are not themselves Nash equilibria of the mother game lie on the boundary of the

action space of the subgame G(X) with X the commitment that is implementing the

profile (Lemma 2). This implies that differentiability of the restricted best response fails

precisely where we need it: at the action profile under investigation.

Some additional remarks are in order. First, allowing for commitment to transfer

utilities conditional on actions being played, Jackson and Wilkie (2005) also show that

efficiency might not hold for two-player games. Whether efficiency holds if we allow for

commitments to transfer functions and actions is an open question. Second, Theorem 3

21Moreover, any continuous function can be arbitrarily approximated by continuously differentiable

functions by Weierstrass Approximation Theorem —See Zeidler (1986, p. 770).
22Let T be a set of parameters indexing the payoff functions i.e., for each player i ∈ {1, 2}, ui : X×T →

R. By genericity, we mean that there exists an open, dense subset of T for which any equilibrium result

is inefficient.
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continues to hold if G is a game with strategic complementarities, but not necessarily

smooth. (See Appendix.) Third, efficient profiles on the boundary can in some games be

implemented by commitments. This holds in particular if a game has an efficient Nash

equilibrium on the boundary.

5.2 Pareto Improvements

While efficient results are generically not implementable, a self-enforcing commitment

might nonetheless implement an improvement upon the status quo. In other words, the

next question we address is whether a commitment can implement a profile that makes

both players better off compared to any equilibrium of the mother game G.

Definition 6 A result x∗ is an improvement upon the status quo if ui(x
∗) ≥ ui(y

∗) for all

i ∈ {1, 2}, and ui(x
∗) > ui(y

∗) for at least one player, where y∗ is an action profile that is

efficient in the set of mother Nash equilibria.23

It is not hard to find games in which improvements upon the status quo can be

implemented. Just take any game with a unique Nash equilibrium y∗ and a lead-follow

equilibrium that dominates y∗.24 The lead-follow equilibrium can be implemented by

the commitment in which the leader restricts his action space to a singleton while the

follower does not restrict his action space at all. So the more interesting question is: can

commitments be used to implement improvements upon the status quo if none of the

lead-follow equilibria represents such an improvement? In our next result we show that

this cannot happen if the players’ best responses are monotone and if the players’ utilities

are monotone in the actions of the opponent. We say that a game satisfies constant

consonance if any players payoff is monotone in the action of the other player.

Theorem 4 Let G be a game with constant consonance such that the lead-follow equilibria

do not improve on the status quo. Then there exists an equilibrium improvement x∗ only

if at least one best-reply map is non-monotonic.

23Note that the set of equilibria N(G) is a compact set, hence efficiency is well defined.
24This is the case for instance of any game with a strict second-mover advantage (e.g., differentiated

Bertrand duopoly). Since the payoff of the first mover in a lead-follow profile is necessarily weakly higher

than the highest Nash equilibrium, the former Pareto dominates the latter.
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An important implication of Theorem 4 is that if G, in addition to be a game with

constant consonance is also a game with strategic complementarities or strategic sub-

stitutabilities, then commitments do only serve to improve upon the status quo if the

lead-follow equilibrium is already itself such an improvement. This result sharply con-

trasts with Proposition 2 of Bernheim and Whinston (1989), and illustrates how seemingly

innocuous restrictions on the set of feasible commitments can be critical. Bernheim and

Whinston’s model and our model, albeit similar in spirit, differ in two important dimen-

sions. First, in their model only one player (the principal) has the opportunity to commit.

Second, and more importantly, the principal does not only have the power to commit him-

self (to take a single action) but he can also restrict the action set of the other player, the

agent. This contrasts with our model in which both players have the power to commit

and a player can only restrict his own action set.

Theorems 3 and 4 are rather negative results in that the power of commitment does

not seem to be of much social value. The following example shows that equilibrium

improvements do exist even in the case that neither of the lead-follow equilibria represents

such an improvement.

Example 1 Take the mother game G with strategy spaces Y1 = Y2 = [0, 2] and payoff

functions:

u1(y1, y2) =
y1

y1

4
+ y2

− y1,

u2(y1, y2) = −
(

y2 +
y1

2
− 2

3

)2

− 20y1.

The best-reply map of the players are

BR1(y2) =


−4y2 + 4

√
y2 if y2 ≤ 1,

0 otherwise,

and

BR2(y1) =



−1

2
y1 +

2

3
if y1 ≤ 4

3
,

0 otherwise.

The mother game has a unique equilibrium, y∗
1 = 4/3(

√
3 − 1) , y∗

2 = 2/3(2 − √
3),

with equilibrium payoffs of ui(y
∗) = 4/3 , uj(y

∗) = 80/3(1 − √
3) � −19.52 , respec-
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tively. Moreover, the lead-follow profile (BR1(l2), l2) = (1, 0) is associated to payoffs of

u1((BR1(l2), l2))) = 0 , u2((BR1(l2), l2)) = −1/9 � −0.11 .

Let us show that there exists a self-enforcing commitment which implements the action

profile ỹ = (8/9, 1/9) with associated payoffs of u1(ỹ) = 16/9 and u2(ỹ) = −1441/81 �
−17.79, respectively. Clearly, both players’ payoffs improve upon the Nash equilibrium.

According to Proposition 2, at least one player’s action must be a best-reply against the

action of the other player. In the profile ỹ, we have 8/9 = BR1(1/9).

Following Proposition 4, we can focus, without loss of generality, on only two candi-

dates for the restriction of player 1, [0, 8/9] or [8/9, 1]. We claim that player 1’s restriction

cannot be [0, 8/9]. To see this, observe that if 1 commits to [0, 8/9], then player 2 can

commit to {1} and gets a payoff of −1/9 (since br
[0,8/9]
1 (1) = 0), which is higher than

u2(ỹ). Therefore, the unique candidate for 1’s restriction is [8/9, 1]. In this case, player

1’s restricted best-reply is

br1(y2) = max {−4y2 + 4
√

y2, 8/9} . (4)

Observe that for all y2 ∈ [1/9, 4/9], we have −4y2 +4
√

y2 ≥ 8/9. It follows that 2’s payoff

when y2 /∈ [1/9, 4/9] is −(y2 − 2/9)2 − 160/9, which is maximized when y2 = 1/9. If

y2 ∈ [1/9, 4/9], then player 2 maximizes u2(y) = −4y2 + 4
√

y2. That the maximum is

obtained when y2 = 8/9 is a simple matter of computation (albeit tedious) and is left to

the reader.
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Appendix

A Characterization results

Proof of Proposition 2. The proof proceeds by contradiction. Let s∗ = (X∗
i , σ

∗
i )i∈{1,2}

be an equilibrium of Γ, and suppose that (X∗, x∗) the outcome of s∗ is such that x∗
i �=

BRi(x
∗
j) for all i ∈ {1, 2}, i �= j. To reach a contradiction, we first identify an action, x′

1

such that u1(x
′
1, x

∗
2) > u1(x

∗
1, x

∗
2) and brX∗

2 (x′
1) = x∗

2. Second, we show that there exists

a strategy for player 1, s′1, such that the outcome of (s′1, s
∗
2) is (X∗, (x′

1, x
∗
2)), hence a

contradiction with s∗ being an equilibrium.

Step 1. Since x∗ is a Nash equilibrium of the game G(X∗), we have x∗
i = brX∗

i (x∗
j )

for all i ∈ {1, 2}, i �= j. Suppose that brX∗
i (x∗

j ) �= BRi(x
∗
j ) for all i ∈ {1, 2}, i �= j.

By continuity of BR2 and br
X∗

2
2 (remember that brX∗

2 is the restriction of br
X∗

2
2 to X∗

1 ),

there exists an open interval (x∗
1 − ε, x∗

1 + ε) with ε > 0 sufficiently small such that for all

x1 ∈ (x∗
1 − ε, x∗

1 + ε) we have that br
X∗

2
2 (x1) = x∗

2. Next pick α ∈ [0, 1) large enough such

that x′
1 = αx∗

1 + (1 − α)BR1(x
∗
2) ∈ (x∗

1 − ε, x∗
1 + ε). By construction of (x∗

1 − ε, x∗
1 + ε),

we have that br
X∗

2
2 (x′

1) = x∗
2. Moreover, u1(x

′
1, x

∗
2) > u1(x

∗
1, x

∗
2) since player 1’s payoff

function is strictly quasi-concave in x1.

Step 2. We claim that the strategy s′1 = ({x′
1}, σ∗

1) is a profitable deviation for player

1. The outcome of (s′1, s
∗
2) is (({x′

1}, X∗
2 ), (x′

1, x
∗
2)), which, by construction, gives a strictly

higher payoff to player 1.

Proof of Proposition 3. Let s∗ = ((X∗
1 , σ

∗
1), (X

∗
2 , σ

∗
2)) be an equilibrium of Γ with

outcome (X∗, x∗). By Proposition 2, for at least one player, say player 1, we have x∗
1 =

BR1(x
∗
2). We claim that the strategy profile s′ := (s∗1, s

′
2), with s′2 = ({x∗

2}, σ∗
2), is also an

equilibrium of Γ, with outcome ((X∗
1 , {x∗

2}), x∗).

First, observe that player 1 does not have an incentive to deviate from s∗1 given player

2’s strategy s′2. Indeed, since player 2’s restriction is the singleton {x∗
2}, player 1 cannot

obtain a payoff higher than u1(BR1(x
∗
2), x

∗
2), which is the payoff he obtains under s′.

Second, to show that player 2 has no profitable deviation, we use the one shot deviation

property. Since s′ agrees with s∗ in all proper subgames of Γ, and s∗ is an equilibrium of

Γ, player 2 has no profitable deviations in any of the proper subgames of Γ.
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Suppose now that s′′2 = (X ′′
2 , σ∗

2) was a profitable deviation for player 2 given player

1’ strategy s∗1. Since player 2 is indifferent between (s∗1, s
′
2) and s∗, it follows that s′′2 is

also a profitable deviation from s∗2, a contradiction with our assumption that s∗ is an

equilibrium.

Proof of Proposition 4. Let s∗ = (({x∗
i }, σ∗

i ), (X
∗
j , σ

∗
j )) be an equilibrium of Γ with

result x∗, X∗
j = [xj , xj ], and x∗

j = BRj(x
∗
i ). Define s′j = ([x∗

j , 1], σ∗
j ) and s′′j = ([0, x∗

j ], σ
∗
j ).

We claim that either (s∗i , s
′
j) or (s∗i , s

′′
j ) is an equilibrium of Γ with result x∗. First, observe

that both strategy profiles under consideration have x∗ as their result. To see this, note

that player i has only one action x∗
i , and player j’s mother best response to x∗

i , BRj(x
∗
i ),

is contained in his restricted action space in either case. Second, note that player j does

not have an incentive to change his restricted action space given player i’s commitment to

{x∗
i } as his restricted action space contains his mother best-reply BRj(x

∗
i ) to the single

action in player 1’s restricted action space .

It remains to show that player i has no profitable deviation from his commitment to

{x∗
i } given the commitment of player j to either [x∗

j , 1] or [0, x∗
j ]. Since s∗ is an equilibrium

of Γ, the set of action profiles that give player i a payoff strictly higher than ui(x
∗),

{x : ui(x) > ui(x
∗)}, does not intersect the graph of the restricted best-reply br

[xj ,xj ]

j of

player j. For otherwise, player i would have a strictly profitable deviation from s∗1. It

follows that for all x′ ∈ {x : ui(x) > ui(x
∗)}, we have either

br
[xj ,xj ]

j (x′
i) − x′

j > 0, (A1)

or

br
[xj ,xj ]

j (x′
i) − x′

j < 0. (A2)

We can also observe that for all xi ∈ [0, 1],

br
[xj ,xj ]

j (xi) ≤ br
[x∗

j ,xj ]

j (xi) ≤ br
[x∗

j ,1]

j (xi),

br
[xj ,xj ]

j (xi) ≥ br
[xj ,x∗

j ]

j (xi) ≥ br
[0,x∗

j ]

j (xi).

Suppose that (A1) holds. It follows from the above observation that for all x′ ∈ {x :

ui(x) > ui(x
∗)},

br
[x∗

j ,1]

j (x′
i) − x′

j > 0.

30



This implies that given the commitment of player j to [x∗
j , 1], player i cannot obtain a

payoff strictly higher than u(x∗). Therefore, player i has no profitable deviation from s∗i
given s′j, hence (s∗i , s

′
j) is an equilibrium of Γ. If (A1) does not hold, then (A2) must

hold. If (A2) holds, we can use the same arguments to show that x∗ is implementable by

({x∗
i }, [0, x∗

j ]).

Proof of Proposition 5. Observe that we can rewrite conditions (i) and (ii) as follows.

A profile x∗ is implementable by a bilateral commitment if and only if there exists a

restriction X∗
j such that x∗

i is a solution of the following program,




(P)


maxxi∈[0,1] ui(xi, xj)

s.t. xj = br
X∗

j

j (xi)

such that br
X∗

j

j (x∗
i ) = BRj(x

∗
i ),

(P∗)

Note that (P∗) is a two-step optimization program. First, we optimize ui(xi, br
X∗

j

j (xi))

with respect to xi. This is the program (P). Second, we check whether the solution

obtained lies on the graph of j’s best-reply BRj .

(⇒ ) Let s∗ = (Xi, σ
∗
i )i∈{1,2} be an equilibrium of Γ, where X∗

1 = {x∗
1}. (The

case when X∗
2 = {x∗

2} is symmetric). Note that we make use of Proposition 3. For all

X ∈ Y , the mappings σ∗
1 and σ∗

2 are such that (σ∗
1(X), σ∗

2(X)) is a Nash equilibrium

of G(X). In particular, if X1 = {x1} for some x1 ∈ Y1, we have σ∗
2(X) = brX2

2 (x1).

Thus, for all deviations by player 1 to a strategy s1 = ({x1}, σ∗
1) for some x1 ∈ Y1, we

have u1(s1, s
∗
2) = u1(x1, br

X∗
2

2 (x1)). Moreover, any deviation by player 1 to a strategy

s′1 = (X ′
1, σ

∗
1) for some X1 ∈ Y1 with result x is result-equivalent to a deviation of the

type s1 = ({x1}, σ∗
1) since x2 = br

X∗
2

2 (x1) for both profiles of strategies. Since s∗ is an

equilibrium, such deviations are not profitable, i.e.,

u1(x
∗
1, br

X∗
2

2 (x∗
1)) ≥ u1(x1, br

X∗
2

2 (x1)), ∀ x1 ∈ Y1 .

That is, x∗
1 must be a solution of (P). By Proposition 2, we have x∗

i = BRi(x
∗
j ) for at

least one player i ∈ {1, 2}. Suppose that x∗
2 �= BR2(x

∗
1). Then, given ({x∗

1}, σ∗
1), player 2

is better-off deviating to ({BR2(x
∗
1)}, σ∗

2), a contradiction with s∗ being an equilibrium.

Hence, we have x∗
2 = BR2(x

∗
1), and therefore, x∗

1 is solution of (P∗).

31



(⇐ ) Suppose that x∗
1 is solution of (P∗). Consider the following strategy profile: s∗1 =

({x∗
1}, σ∗

1), and s∗2 = (X∗
2 , σ

∗
2), where the mappings σ∗

1 and σ∗
2 are such that (σ∗

1(X), σ∗
2(X))

is a Nash equilibrium of G(X), for all X ∈ Y . Clearly, the outcome of s∗ is (x∗
1, x

∗
2),

and by construction it is a Nash equilibrium of G({x∗
1} × X∗

2 ).25 By construction, for

all subgames G(X), the actions (σ∗
1(X), σ∗

2(X)) constitute a Nash equilibrium of G(X).

Hence, according to the one-shot deviation property, it suffices to check that there is no

first-stage deviation to obtain that s∗ is indeed an equilibrium of Γ. Since x∗
2 = BR2(x

∗
1)

and X∗
1 = {x∗

1}, player 2 cannot obtain a better payoff than u2(x
∗), and thus has no

profitable deviation. As for player 1, suppose that there exists X1 ∈ Y1 such that for

s1 = (X1, σ
∗
1), u1(s1, s

∗
2) > u1(s

∗
1, s

∗
2). Let x̃ be the outcome of the profile (s1, s

∗
2). Since s1

is a profitable deviation, we then have u1(x̃) > u1(x
∗). By construction of the mapping

σ2, we have x̃2 = br
X∗

2
2 (x̃1), a contradiction with the fact that x∗

1 is a solution of (P).

B Proofs related to the multi-period game of commitments, ΓT

Lemma A1 Let x∗ ∈ N(G). The profile x∗ is implementable in ΓT (G).

Proof. The proof is similar to that of Proposition 1, and left to the reader. �

Lemma A2 Let x∗ be implementable in ΓT (G). We have x∗
i = BRi(x

∗
j ) for at least one

player i ∈ {1, 2}.

Proof. The proof proceeds by contradiction. Suppose that x∗ is implementable in

ΓT (G) by the strategy profile s∗, but x∗
i �= BRi(x

∗
j ) for all players i ∈ {1, 2}. Assume that

x∗
i > BRi(x

∗
j) for both players. (The other cases are treated similarly.) Let s∗i (h

t) = [xt
i, x

t
i]

where ht is the history at period t on the equilibrium path. From Lemma 1 in the main

text, we have that x∗
i = xT

i for both players. Let ht∗ be the last history on the equilibrium

path of s∗ such that x
t∗i
i �= xT

i for at least one player i ∈ {1, 2}. Such an history exists

as the empty history (i.e., the beginning of the game) satisfies this inequality. Without

loss of generality, assume xt∗
1 �= xT

1 . Moreover, as X t ⊆ X t−1 for any t ∈ {1, . . . , T},
we have xT

1 > xt∗
1 , xT

1 = xt
1 and xT

2 = xt
2 for any t ≥ t∗ + 1. We now show that player

25Since x∗
1 is solution of (P∗), br

X∗
2

2 (x∗
1) = BR2(x∗

1) ∈ X∗
2 . Moreover, single-valuedness of BR2 implies

that x∗ is the unique Nash equilibrium of G({x∗
1} × X∗

2 ), where x∗
2 = BR2(x∗

1).

32



1 has a profitable deviation at history ht∗ . As in the proof of Proposition 2, choose

x′
1 ∈ (BR1(x

∗
2), x

∗
1) ∩ X t∗

1 �= ∅ sufficiently close to x∗
1 such that br

Xt∗+1
2

2 (x′
1) = xt∗+1

2 where

X t∗+1
2 is the restriction played by player 2 at history ht∗ under s∗2. By construction of ht∗ ,

remember that xt∗+1
2 = xT

2 . Construct the following strategy for player 1: s′t
∗

1 ) = {x′
1}

and s′1(h) = s∗1(h) for any other history h. Following the history (ht∗ , ({x′
1} × X t∗+1

2 )),

the unique equilibrium result for this subgame is (x′
1, br

Xt∗+1
2

2 (x′
1)) = (x′

1, x
∗
2). Strict quasi-

concavity of u1 thus implies that s′1 is a profitable deviation for player 1, a contradiction.

�

Proof of Theorem 2. (⇐). The proof is trivial if T = 1. Suppose that T ≥ 2.

Let x∗ be an action profile implementable in Γ(G) by the simple bilateral commitment

X∗. W.l.o.g. suppose that X∗
1 = {x∗

1}, and x∗
2 = BR2(x

∗
1). We now show that we can

implement x∗ in ΓT (G). To this end, consider the strategies in ΓT (G) such that player

1 chooses the restriction {x∗
1} in the first stage (and, hence in all subsequent stages)

and player 2 restricts to X∗
2 at the initial history and at all subsequent histories ht of

length t < T . Formally, we consider any profile of strategies s∗ with s∗1(h
0) = {x∗

1} and

s∗2(h
0) = X∗

2 at the initial history h0, and for any history ht = (h0, ({x∗
1} × X∗

2 )t) with

t < T , s∗1(h
t) = {x∗

1} and s∗2(h
t) = X∗

2 . Clearly, any profile satisfying this requirement

yields the result x∗. Since x∗
2 = BR2(x

∗
1), and given that player 1 restricts to the singleton

{x∗
1}, player 2 has no incentive to deviate. As for player 1, observe that he can only deviate

at the first stage. Consider a first-stage deviation by player 1 to X1. The induced game is

ΓT−1(G(X1×X∗
2 )), and let x′ be a Nash equilibrium of G(X1×X∗

2 ). By Lemma A1, there

exists a profile of strategies s∗|X1×X∗
2

such that x′ is implementable in ΓT−1(G(X1 ×X∗
2 )),

with s∗|X1×X∗
2

a profile of strategies following the history (h0, (X1×X∗
2 )). (More precisely,

let s be any profile of strategies of ΓT , s|h is the profile of strategies induced by s after

history h i.e., si|′h = si(h, h′) for any h′ in the set of histories following history h.) Note that

since x′ is the Nash equilibrium of G(X1 × X∗
2 ), we have x′

2 = br
X∗

2
2 (x′

1), and, moreover,

since x∗
1 ∈ arg maxx1∈Y1 u1(x1, br

X∗
2

2 (x1)), we have u1(x
∗) ≥ u1(x

′). It follows that the

strategies in which player 1 commits to {x∗
1} in the first stage, player 2 commits to X∗

2 at

the initial history and at all subsequent histories ht of length t < T , players play s∗|X1×X∗
2

following any first-stage deviation of player 1 implements x∗. (To be complete, assume

that the strategies prescribe the play of an equilibrium after any other type of histories.)
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(⇒). Let s∗ be a subgame perfect equilibrium of ΓT (G) that implements the profile x∗,

and denote (X1
1 , X1

2 ) the restriction played in the first stage of ΓT (G). From Lemma A2,

it follows that x∗
i = BRi(x

∗
j ) for at least one player i ∈ {1, 2}. W.l.o.g., suppose that

x∗
2 = BR2(x

∗
1). We claim that the commitment ({x∗

1}, X1
2 ) implements x∗ in Γ(G). Player

2 has clearly no incentive to deviate given the commitment of player 1 to {x∗
1}. Consider

now player 1, and suppose that player 1 has a profitable deviation X ′
1 from his commitment

{x∗
1}. Following player 1’s deviation, the induced game is G(X ′

1×X1
2 ), and let x′ be a Nash

equilibrium of G(X ′
1 × X1

2 ) with u1(x
′) > u1(x

∗). (Note that we implicitly consider the

profile of strategies ((X ′
1, σ1)(X

1
2 , σ2)) with (σ1(X), σ2(X)) a Nash equilibrium of G(X)

for any X ∈ Y .) Notice that x′
2 = br

X1
2

2 (x′
1) since x′ is a Nash equilibrium of G(X ′

1 ×X1
2 ).

This implies that {x′
1} is also a profitable deviation for player 1 in Γ(G). We now show

that the existence of such a deviation in Γ(G) contradicts the fact that s∗ is a subgame

perfect equilibrium of ΓT (G). To see this, consider the strategy s′1 in which player 1

plays {x′
1} in the first period of ΓT (G) and play according to s∗1 at any other history.

Consider the subgame starting after this deviation by player 1. We then have the game

ΓT−1(G({x′
1}×X1

2 )). Clearly, in any result of this subgame player 1, plays x′
1. Therefore,

the best result that player 2 can induce is br
X1

2
2 (x′

1); hence, the profile of strategies (s′1, s
∗
2)

leads to a unique equilibrium result, (x′
1, br

X1
2

2 (x′
1)) . It follows that s′1 is a profitable

deviation for player 1 given the strategy s∗2 of player 2, which implies that (s∗1, s
∗
2) cannot be

an equilibrium of ΓT (G), a contradiction. We conclude that x∗ must also be implementable

in Γ(G).

C Proofs related to the geometry

Proof of Proposition 6. Let x∗ be an implementable profile of actions with x∗
j =

BRj(x
∗
i ), and x∗ interior. By contradiction, suppose that the slope of indifference curve

of player i at x∗ is negative while the slope of BRj at x∗ is positive.

Define Q+ := {y ∈ [0, 1]2 : y ≥ x∗} and Q− = {y ∈ [0, 1]2 : y ≤ x∗}.26 Since the

indifference curve of player i at x∗ is negatively sloped, there exists an ε > 0 such that

either ui(y) > ui(x
∗) for all y ∈ Bε(x

∗) ∩ (Q+ \ {x∗}) or such that ui(y) > ui(x
∗) for all

y ∈ Bε(x
∗) ∩ (Q− \ {x∗}), where Bε(x

∗) is an open ball of radius ε around x∗.

26Let x and y two vectors in R
n. We write x ≥ y if xi ≥ yi for all i ∈ {1, . . . , n}
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Let f : X → Y be a function. We denote Gr f the graph of f . Since the slope of BRj

at x∗ is positive, we have that

Gr br
[0,BRj(x

∗
i )]

j ∩ (Bε(x
∗) ∩ Q+ \ {x∗}),

Gr br
[0,BRj(x∗

i )]
j ∩ (Bε(x

∗) ∩ Q− \ {x∗}),
Gr br

[BRj(x∗
i ),1]

j ∩ (Bε(x
∗) ∩ Q+ \ {x∗}),

Gr br
[BRj(x

∗
i ),1]

j ∩ (Bε(x
∗) ∩ Q− \ {x∗}),

are non-empty sets, hence the graph of player j’s restricted best-reply intersects player

i’s strict upper contour set at x∗.

Finally, from Theorem 1, the two simple commitments that could possibly imple-

ment the profile x∗ are ({x∗
i }, [0, BRj(x

∗
i )]) and ({x∗

i }, [BRj(x
∗
i ), 1]). It follows from the

above arguments that x∗ cannot be a solution of the optimization program described in

Proposition 5 (since the graph of player j’s restricted best-reply intersects player i’s strict

upper contour set at x∗), hence a contradiction with x∗ being implementable. The same

argument follows mutatis mutandum for the other cases.

Lemma A3 Let G be a game with strategic complementarities and positive consonance

i.e., ui is non-decreasing in xj, j �= i, for all i ∈ N . We have li ≥ x∗
i (K).

Proof. Suppose that x∗
i (k + 1) > li > x∗

i (k). Since, BRj is non-decreasing, we have

BRj(x
∗
i (k + 1)) ≥ BRj(li) ≥ BRj(x

∗
i (k)), hence

ui(li, BRj(x
∗
i (k + 1)) ≥ ui(li, BRj(li)) (A3)

since ui has positive consonance. Moreover, since x∗
i (k + 1) is the unique best-reply to

x∗
j (k + 1) = BRj(x

∗
i (k + 1)) (x∗(k + 1) is a Nash equilibrium), we have

ui(x
∗
i (k + 1), x∗

j (k + 1)) > ui(li, BRj(x
∗
i (k + 1))

≥ ui(li, BRj(li)) ≥ ui(x
∗
i (k + 1), x∗

j(k + 1)),
(A4)

a contradiction. A similar argument shows that li could not be smaller than x∗
i (1). �

Proof of Proposition 7. We first start with a preliminary observation. The best-reply

of player i separates the action space [0, 1]2 into two regions: one region in which player i’s
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indifference curves are negatively sloped, one region in which player i’s indifference curves

are positively sloped. To prove this result, fix an action x∗
j of player j, and consider the

best-reply x∗
i = BRi(x

∗
j ) of player i to x∗

j . Define IC := {x ∈ [0, 1]2 : ui(x) = ui(x
∗)}.

For any xi �= x∗
i , we have ui(xi, x

∗
j ) < ui(x

∗) since x∗
i is the unique best-reply to x∗

j . Next,

if xj < x∗
j , it follows from ui increasing in xj that ui(xi, xj) ≤ ui(xi, x

∗
j ) < ui(x

∗), hence

(xi, xj) /∈ IC. Therefore, for any xi, we need xj > x∗
j for (xi, xj) to belong to IC. Hence,

we have that for any xi < x∗
i , IC is negatively sloped and for any xi > x∗

i , IC is positively

sloped.

As a second observation, note that for any xi ∈ [x∗
i (k), x∗

i (k + 1)], BRi(BRj(xi)) − xi

is either positive or negative, but does not alternate in signs. For otherwise, there exists

another equilibrium in (x∗
i (k), x∗

i (k+1)), a contradiction with the definition of the x∗(k)’s.

Moreover, we have that BRi(BRj(xi))− xi < 0 for any xi ∈ (x∗
i (k), x∗

i (k + 1)) if k is odd,

BRi(BRj(xi)) − xi > 0, if k is even. In words, the graph of player i’s best-reply is

to the ‘left’ of the graph of player j’s best-reply if k is odd, and to the ‘right’ if k is

even. (See Figure 5.) Furthermore, BRi(BRj(xi)) − xi > 0 for any xi < x∗
i (1) and

BRi(BRj(xi)) − xi < 0 for any xi > x∗
i (K).27

Fix a profile of actions x with xj = BRj(xi) and xi ∈ (x∗
i (k), x∗

i (k+1)) for some k even.

We want to show that this profile is not implementable. From the previous observation,

we have that BRi(xj) = BRi(BRj(xi)) > xi. From the first observation, it then follows

that the indifference curve of player i at x is negatively sloped. Since BRj is positively

sloped, it follows from Proposition 6 that x is not implementable. A similar argument

holds for any x with xj = BRj(xi) and xi < x∗
i (1).

Let us now consider any profile of actions x∗ with x∗
j = BRj(x

∗
i ) and x∗

i ∈ (x∗
i (k), x∗

i (k+

1)) for some k odd. We want to show that any such a profile is implementable by the

simple bilateral commitment ({x∗
i }, [0, BRj(x

∗
i )]). The key observation is that the best-

reply of player i is now to the ‘left’ of the best-reply of player j i.e., BRi(BRj(x
∗
i )) < x∗

i .

(See Figure 5.) Hence, for any xi > x∗
i , br

X∗
j

j (xi) = BRj(x
∗
i ), that is, player j’s restricted

best-reply is BRj(x
∗
i ), and ui(xi, br

X∗
j

j (xi)) < ui(x
∗
i , br

X∗
j

j (x∗
i )) by strict quasi-concavity of

ui. Finally, note that br
X∗

j

j (xi) = BRj(xi) for any xi ≤ x∗
i , henceforth the maximum of

27By contradiction, suppose that BRi(BRj(xi)) − xi < 0 for any xi < xi(1). In particular, for xi = 0,

i.e., for the lower bound of Yi, we have 0 ≤ BRi(BRj(0)) − 0 < 0, a contradiction.
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ui(·, brX∗
j

j (·)) is achieved in x∗
i by strict quasi-concavity of ui(·, BRj(·)). It follows that x∗

is implementable (step 4).

Similar arguments applies to show that any point x∗ with x∗
j = BRj(x

∗
i ) and x∗

i ∈
(x∗

i (K), li] is implementable by the simple bilateral commitment ({x∗
i }, [0, BRj(x

∗
i )]).

D Proofs related to the welfare

Proof of Theorem 3. Let (X∗, x∗) be any equilibrium outcome of Γ(G) such that

X∗ is simple, and x∗ is interior. Let T be a set of parameters and define the family of

payoff functions : ui : X × T → R, for all i ∈ {1, 2}. We want to show that for a dense

open subset T ∗ of T , x∗ is inefficient. If x∗ is an equilibrium of the mother game G, the

result follows from Theorem 1 of Dubey (1986). If x∗ is not an equilibrium of the mother

game G, the proof is similar to the proof of Theorem 1 of Dubey. The proof is as follows.

Define the directional mapping D : T × X → R
4,

D(t, x′) =




∂u1(·, t)
∂x1

(x′) ∂u1(·, t)
∂x2

(x′)
∂u2(·, t)

∂x1
(x′) ∂u2(·, t)

∂x2
(x′)


 , (A5)

and let Dt(·) be the restriction of D to t. Thus, Dt(x
∗) is the Jacobian matrix evaluated at

x∗. A key step in Dubey’s proof is to observe that at any interior equilibrium x∗ of G, the

diagonal elements of the Jacobian matrix are zero, and that the set of 2×2 matrices with

zeros on the diagonal is a sub-manifold of R
4 of co-dimension 2. If x∗ is not an equilibrium

of G, we have a similar result, that is, we can show that if x∗ is an equilibrium result of

Γ, then Dt(x
∗) ∈ A∩B, with A∩B a sub-manifold of R

4 of co-dimension 2. This step is

the only step that differs with Dubey’s proof.

First, from Lemma 2, for at least one player, we have x∗
i = BRi(xj). Without loss of

generality, suppose that x∗
2 = BR2(x

∗
1). Since x∗ is interior, we then have that ∂u2

∂x2
(x∗) = 0.

This equality is our first constraint on the Jacobian matrix. Formally, define the set

A = {M ∈ R
4 : M22 = 0}, (A6)

i.e., the set of 2 × 2 matrices with a zero on the diagonal. Observe that if x∗ is an

equilibrium result, then Dt(x
∗) ∈ A, or x∗ ∈ D−1

t (A). The set A is a sub-manifold of R
4

of co-dimension 1.
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Second, since (X∗, x∗) is an equilibrium outcome, it follows from Theorem 1 that

u1(x
∗
1, br

X∗
2

2 (x∗
1)) ≥ u1(x1, br

X∗
2

2 (x1)) for all x1 ∈ Y1. We show that these inequalities

impose a relationship between the first-order derivatives of u1 with respect to x1 and

x2, respectively. If br
X∗

j

2 is differentiable at x∗, then the relationship is trivial. However,

whenever X∗ is a simple commitment, br
X∗

2
2 is not differentiable in x∗

1. We use the concepts

of subgradient and subdifferential to circumvent this problem.28

For any function f : Z → R, denote ∂f(z) the subdifferential of f at z. We refer

the reader to Clarke (1989, Chapter 1) or Rockafellar (1981, Chapter 3) for rigorous

definitions of subdifferentials. As an example, if f(z) = |z|, then ∂f(0) = [−1, 1].

Since u2 is twice continuously differentiable, BR2 is continuously differentiable, hence

Lipschitz continuous. From Lemma 1, it then follows that br
X∗

2
2 is Lipschitz continuous.

Note that Rademacher Theorem implies that br
X∗

2
2 is differentiable almost everywhere.

Let us consider the subdiffential of v1(·) := −u1(·, brX∗
2

2 (·)) at x∗
1. Since u1 is continuously

differentiable and br
X∗

2
2 is Lipschitz continuous, Theorem 5P of Rockafellar (1981, p. 74)

implies that

∂v1(x
∗
1) = −∂u1

∂x1
(x∗) − ∂u1

∂x2
(x∗)∂br

X∗
2

2 (x∗
1). (A7)

Since x∗
1 minimizes v1, 0 ∈ ∂v1(x

∗
1) (Clarke, 1989, p. 9)), hence there exists a ξ ∈

∂br
X∗

2
2 (x∗

1) such that

0 =
∂u1

∂x1

(x∗) +
∂u1

∂x2

(x∗)ξ, (A8)

the required relationship. (Note that if br
X∗

2
2 is differentiable at x∗

1, then ξ is the derivative

of br
X∗

2
2 evaluated at x∗

1. )

For any scalar a, define the set

B = {M ∈ R
4 : M11 + aM12 = 0}, (A9)

i.e., the set of 2 × 2 matrices with a linear relationship between the two first entries. It

follows that if x∗ is an equilibrium result, then Dt(x
∗) ∈ B, or x∗ ∈ D−1

t (B) (take a = ξ).

The set B is a submanifold of R
4 of co-dimension 1. It then trivially follows that A ∩ B

is a submanifold of R
4 of co-dimension 2, as required.

28We refer the reader to Rockafellar (1981) for a good source on the theory of subgradients and non-

smooth optimization.
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Finally, define the set

C = {M ∈ R
4 : the rows of M are linearly dependent}. (A10)

It is easy to see that if x∗ is efficient, then Dt(x
∗) ∈ C, or x∗ ∈ D−1

t (C). For otherwise,

there exists a neighborhood O of x∗ and a x′ ∈ O such that ui(x
′) = ui(x

∗) + εi, εi > 0,

for all player i ∈ N i.e., there exists dx1 and dx2 such that


∂u1(·, t)
∂x1

(x∗) ∂u1(·, t)
∂x2

(x∗)
∂u2(·, t)

∂x1
(x∗) ∂u2(·, t)

∂x2
(x∗)



(

dx1

dx2

)
=

(
ε1

ε2

)
. (A11)

Hence, if a profile x∗ is an equilibrium result and efficient, then Dt(x
∗) ∈ A ∩ B ∩ C

or x∗ ∈ D−1
t (A ∩ B ∩ C).

The next step is to show that for a dense open set T ∗ ⊂ T , D−1
t (A∩B ∩C) is empty.

To do so, we shall show that the co-dimension of D−1
t (A∩B∩C) is 2, that is the dimension

of Y , hence is empty. This step is found in Dubey’s proof.

Inefficiency and a non-smooth game

Assume that the game G is a game with strategic complementarities and negative

consonance i.e., xj �→ ui(xi, xj) is decreasing in xj for each player i ∈ N , i �= j. Note that

G is not assumed to be smooth.

The first observation is that BR1(BR2(x
∗
1)) ≤ x∗

1. Since BR2 is monotone increasing in

x1, we have br
[0,BR2(x∗

1)]
2 (x1) = BR2(x2) for all x2 ∈ [0, x∗

1], and br
[0,BR2(x∗

1)]
2 (x1) = BR2(x

∗
1),

otherwise. Henceforth, if BR1(BR2(x
∗
1)) > x∗

1, we have that player 2’s best-reply to

BR1(BR2(x
∗
1)) is BR2(x

∗
1), hence a contradiction with x∗

1 maximizing player 1’s payoff on

the constrained best-reply of player 2.

Second, since u2 is decreasing in x1, we obviously have

u2(x
∗
2, BR1(BR2(x

∗
1))) ≥ u2(x

∗
2, x

∗
1),

hence (BR1(BR2(x
∗
1)), x

∗
2) improves upon 2’s payoff.

Finally, since at an equilibrium x∗ of Γ, x∗
2 = BR2(x

∗
1), it follows that

u1(BR1(x
∗
2), x

∗
2) ≥ u1(x

∗),

with a strict inequality if x∗ is not a Nash equilibrium of G.
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It follows that (BR1(x
∗
2), x

∗
2) Pareto-improves upon x∗, hence x∗ is not efficient. Fi-

nally, observe that the result also holds if we assume strategic substitutes and payoff

increasing in the action of the opponent.

Proof of Theorem 4 Let (X∗, x∗) be an equilibrium outcome of Γ and assume that x∗

is an improvement upon the status quo. Let xN be a Nash equilibrium, which is efficient

in the set of Nash equilibria, for which we have ui(x
∗) ≥ ui(x

N ) for i ∈ {1, 2} with at least

one strict inequality. Using Proposition 2, we can assume that x∗
2 = BR2(x

∗
1). By our

assumption that neither of the lead-follow equilibria is an improvement upon the status

quo, we have that

u2(x
∗) ≥ u2(x

N ) > u2(l1, BR2(l1)).

Observe that in all the three profiles, player 2 is best replying to player 1’s action.

Furthermore, as player 2’s payoff function is monotonic in his opponent’s action, we have

that u∗
2(x1) := u2(x1, BR2(x1)) is a monotonic function of x1, hence x∗

1 and l1 must lie on

two different sides of xN
1 i.e., we must have either l1 ≥ xN

1 ≥ x∗
1 or l1 ≤ xN

1 ≤ x∗
1. Since

best-reply maps are single valued, we also have that l1 �= xN
1 �= x∗

1.

Moreover, since xN and (l1, BR2(l1)) both lie on the graph of player 2’s mother best-

reply and u1 is continuous, we have

u1(l1, BR2(l1)) ≥ u1(x
∗) ≥ u1(x

N ) .

Assume that player 2’s best-reply function is monotonic. We will show that l1 and x∗
1

cannot lie on two different sides of xN
1 , and give to player 1 a payoff higher than his

Nash payoff whenever player 1’s payoff function is monotonic in his opponent’s action

and best-reply functions are monotonic.

We first start with the case in which the best-reply function BR2 is non-decreasing

and the player 1’s payoff function has positive consonance i.e., x2 �→ u1(x1, x2) is non-

decreasing. From Lemma A3, we have l1 > xN
1 , therefore l1 > xN

1 > x∗
1 since l1 and x∗

1

must lie on two different sides of xN
1 . Moreover, BR2(x

N
1 ) ≥ BR2(x

∗
1). It thus follows

that

u1(x
N
1 , BR2(x

N
1 )) > u1(x

∗
1, BR2(x

N
1 )) ≥ u1(x

∗
1, BR2(x

∗
1)),
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where the first strict inequality follows by strict quasi-concavity and the second by positive

consonance, a contradiction.

Second, consider the case in which the best-reply function BR2 is non-decreasing

and the player 1’s payoff function has negative consonance i.e., x2 �→ u1(x1, x2) is non-

increasing. An immediate modification of Lemma A3 implies that l1 < xN
1 , and therefore

l1 < xN
1 < x∗

1. It follows that BR2(x
N
1 ) ≤ BR2(x

∗
1), and

u1(x
N
1 , BR2(x

N
1 )) > u1(x

∗
1, BR2(x

N
1 )) ≥ u1(x

∗
1, BR2(x

∗
1)),

where the first strict inequality follows by strict quasi-concavity and the second by negative

consonance, a contradiction.

The other cases are similar and left to the reader.
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