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Valuing ecosystem services with microeconomic underpinnings presents challenges 
because these services typically constitute nonmarket values and contribute to human 
welfare indirectly through a series of ecological pathways that are dynamic, nonlinear, 
and difficult to quantify and link to appropriate economic spatial and temporal scales. 
This paper develops and demonstrates a method to value a portion of ecosystem 
services when a commercial fishery is dependent on the quality of estuarine habitat. 
Using a lumped-parameter, dynamic open access bioeconomic model that is spatially 
explicit and includes predator-prey interactions, this paper quantifies part of the value of 
improved ecosystem function in the Neuse River Estuary when nutrient pollution is 
reduced. Specifically, it traces the effects of nitrogen loading on the North Carolina 
commercial blue crab fishery by modeling the response of primary production and the 
subsequent impact on hypoxia (low dissolved oxygen). Hypoxia, in turn, affects blue 
crabs and their preferred prey. The discounted present value fishery rent increase from a 
30% reduction in nitrogen loadings in the Neuse is $2.56 million, though this welfare 
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Valuing ecosystem services with microeconomic underpinnings presents challenges because 
these services typically constitute nonmarket values and contribute to human welfare indirectly 
through a series of ecological pathways that are dynamic, nonlinear, and difficult to quantify and 
link to appropriate economic spatial and temporal scales. This paper develops and demonstrates a 
method to value a portion of ecosystem services when a commercial fishery is dependent on the 
quality of estuarine habitat. Using a lumped-parameter, dynamic open access bioeconomic model 
that is spatially explicit and includes predator-prey interactions, this paper quantifies part of the 
value of improved ecosystem function in the Neuse River Estuary when nutrient pollution is 
reduced. Specifically, it traces the effects of nitrogen loading on the North Carolina commercial 
blue crab fishery by modeling the response of primary production and the subsequent impact on 
hypoxia (low dissolved oxygen). Hypoxia, in turn, affects blue crabs and their preferred prey. 
The discounted present value fishery rent increase from a 30% reduction in nitrogen loadings in 
the Neuse is $2.56 million, though this welfare estimate is fairly sensitive to some parameter 
values. Surprisingly, this number is not sensitive to initial conditions. 

 
 
 

I. Introduction 
 

 
 Valuing ecosystem services presents four challenges. First, many of the economic 

benefits generated are non-market. Second, ecosystem services typically contribute to human 

benefits indirectly. Humans may not value the service, per se, but something that it supports. For 

example, recreational anglers may value the fish in a stream but not necessarily the riparian 

habitat that support the fish population. Third, the links between ecosystem services and human 

values are dynamic and can be nonlinear, but economic valuation architecture is most developed 

for static problems. Finally, providing an empirical basis for ecosystem valuation involves 

multiple academic fields and profound spatial and temporal scale mismatches. To begin to 

address these challenges, one must simplify problems. In this paper, we highlight the strategic 

modeling choices that are involved in adapting a lumped-parameter bioeconomic model to study 

the valuation of ecosystem services. 

 Lumped-parameter approaches greatly simplify renewable resource dynamics by 

modeling a small number of states that depend on just a handful of parameters. While the overall 

goal of this research is to evaluate the strengths and weaknesses of lumped-parameter approaches 

to study the economic value of ecosystem services, we develop a particular model to highlight 
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the research challenges that are involved in coupling economic and ecological models to answer 

a specific policy question. In our case, the specific policy issue is the tradeoff between nutrient 

loading in estuaries and the resulting effects on fisheries productivity. The simplifications in our 

lumped-parameter model balance conceptual knowledge about the estuarine ecology and the 

economics of the fishery with the data available for parameterizing each feature of the system. 

 We find that a lumped-parameter bioeconomic fisheries model is able to address each of 

the four challenges for valuing ecosystem services. First, we deal with a commercially valuable 

species. Hypoxia is not priced in the market, but fish that are affected by it do have market value. 

Our metric of economic value is fishery rent, which provides an exact welfare measure under 

some assumptions. Focusing on a producer problem in which we incorporate the opportunity cost 

of capital, we avoid many of the complications of nonmarket valuation such as substitution 

prospects, income effects, and identifying assumptions like weak complementarity. Our work 

also responds to a recent National  Research Council call for more research on the effects of 

nutrient pollution on commercially valuable coastal resources (NRC, 2000). Second, the links 

between anthropogenic effects on ecosystem services and human values are modeled explicitly. 

The model traces the eutrophying effects of nutrient pollution to fishery outcomes starting with 

how nutrient loadings stimulate primary productivity in an estuary. Primary productivity affects 

dissolved oxygen levels and can lead to episodes of hypoxia (low oxygen) or anoxia (no 

oxygen). These episodes, in turn, cause migration of mobile crustaceans (like blue crabs, a 

harvested predator species) and mortality of sedentary benthic invertebrates (a non-harvested 

prey species). Fishing pressure responds to the overall abundance and spatial distribution of 

predators. Third, the paper models all states dynamically, and the paper begins to incorporate 

some key nonlinearities. Since rents are dissipated in the steady state under open access, the 

focus is entirely on transition dynamics. With an open access institutional structure, only a 

dynamic model has the ability to quantify welfare effects of policy changes that affect the 

environmental basis for the fishery.  Finally, this paper attempts to integrate natural resource 

economics and multiple fields in ecology with common spatial and temporal scales. 
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 The paper is organized as follows. Section II reviews the general policy context of 

estuarine nutrient pollution and discusses the specific background for the Neuse River Estuary 

and the blue crab fishery. Section III describes the lumped-parameter model and places it in the 

context of previous work in bioeconomics. Section IV describes the model is parameterization. 

Section V presents results, and Section VII discusses our results and outlines modeling issues for 

future research on coupled ecological and economic systems. 

 

II. Policy Context 

 

Nutrient Pollution, Hypoxia, and Fisheries 

 Nutrient pollution poses a number of threats to ecosystem services in coastal waters. 

Excess nutrients have been linked to increased primary productivity, hypoxia and anoxia, 

changes in the composition of the planktonic community, toxic algal blooms, decreased diversity 

in the trophic system, and increases in disease (NRC, 2000, p. 85). These problems are often 

interrelated. We focus on the link between primary productivity and low oxygen levels. As 

primary productivity increases in a water body, the system can become eutrophic, or over-

enriched with organic material. Increased organic material stimulates oxygen demand. In an 

estuary, increased oxygen demand combined with stratification in the water column—a fresh 

water layer sitting on top of a salt water layer—can lead to hypoxia or anoxia in the bottom 

waters.  

 Hypoxia and anoxia can have substantial consequences for a wide range of species. In the 

Gulf of Mexico, which is experiencing large-scale hypoxic events, hypoxia affects the spatial 

distribution of species including Atlantic Croaker and brown shrimp (Craig and Crowder, 2004), 

as well as sea turtles and marine mammals (Craig et al., 2001). Hypoxia can lead to mortality of 

sedentary benthic organisms, many of which are prey species for demersal fish and shellfish 

(Peterson et al, 2000). Finally, hypoxic effects can reverberate through the entire food web. Baird 
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et al (2004) suggest that hypoxia affects trophic efficiency by diverting energy from higher 

trophic levels to lower trophic levels.  

 In an estuarine environment, nitrogen is typically the limiting nutrient to growth in 

primary productivity, whereas phosphorous more often is limiting in lake environments (NRC, 

2000, p. 65). Though there are exceptions, nitrogen limitation in estuaries is primarily 

attributable to the tendency for low nitrogen fixation by estuarine planktonic communities (NRC, 

2000, p. 78). At low levels of nutrient loading, enhancing primary productivity may actually 

increase fishery productivity. However, once an estuary reaches eutrophic levels, additional 

primary productivity tends to decrease dissolved oxygen levels in the bottom waters of estuaries 

and lead to anoxic or hypoxic conditions. Caddy (1993) depicts this stylized relationship between 

fishery productivity and different trophic states as an inverted-U shaped curve. At low (high) 

levels of nutrient enrichment, fishery productivity increases (decreases) with additional nutrient 

loading. Throughout this paper we assume that any policy-induced changes in nutrient loadings 

would not be enough to push the system out of a dystrophic or eutrophic state. That is, the 

system is always in the region in which fishery productivity is declining as more nutrients are 

added. Otherwise, reducing nutrient loadings could have perverse welfare impacts. 

 

Nutrient Pollution in the Neuse River Watershed 

 Nutrient pollution in North Carolina's Neuse River Watershed has generated substantial 

public debate. Under the United States Clean Water Act, states are required to develop Total 

Maximum Daily Load (TMDL) plans for water bodies that do not meet water quality criteria, 

and these plans "must identify the amount by which point and nonpoint sources of pollution must 

be reduced in order for the water body to meet its stated water quality standards" (NRC, 2001, p. 

2). The Neuse River Estuary is currently in a eutrophic state and, though there is some scientific 

debate on the subject, is thought to be nitrogen-limited. As a result, North Carolina has 

developed a TMDL to address nitrogen loadings (NCDENR-DWQ, 2001).  

 5



   

 We examine commercial fishery productivity in the Neuse as one portion of the total 

economic benefits that would emerge from reduced nutrient pollution. Paerl et al. (1998) 

document a connection between eutrophication in the Neuse Estuary and low dissolved oxygen 

levels. Several studies show how low oxygen levels, in turn, affect a range of demersal fish and 

shellfish species in the Neuse as well as their prey, including croaker, blue crab, spot, shrimp, 

menhaden, silver perch, southern flounder, weakfish, pinfish, hogchoker, and clams (Eby and 

Crowder, 2002, 2004; Powers et al, 2004; Eby et al., 2004). Powers et al. (2004) highlight the 

potential cascade effects through the trophic system, while Eby and Crowder (2002) and Eby et 

al. (2004) emphasize how species avoidance of hypoxia can result in sublethal effects by altering 

their habitat use. In this paper, we particularly focus on how nutrient pollution affects the blue 

crab fishery in the Neuse River, Estuary, and in the contiguous Pamlico Sound. Our application 

is illustrative of a larger fisheries policy concern. In North Carolina, nine species that depend on 

estuarine soft-bottom habitat made up more than two thirds of total dockside commercial 

fisheries revenues statewide from 1994-96 (Peterson et al., 2000). 

 

Hypoxia and the North Carolina Blue Crab Fishery 

 Blue crabs have both ecological and economic importance. Blue crabs can serve as a 

keystone predator in an estuary (Miller, 2003). They have a complex life cycle with life stages 

spent in marine and estuarine environments (Etherington and Eggleston, 2000).  Blue crabs eat a 

wide variety of foods including bivalves, crustaceans, fish, marine worms, plants, and detritus. 

They are preyed upon by a variety of species as well, including sea turtles, and they are prone to 

cannibalism of juveniles. When they are available, blue crabs prefer to eat bivalves such as clams 

(Chesapeake Bay Program, 2004). Quantifying the ecological effects of hypoxia alone is 

complicated because multiple ecological pathways are involved. Adult blue crabs are highly 

mobile and can move up to 125 nautical miles in a season (Miller, 2003). As a result, adult blue 

crabs can avoid hypoxia. In the Neuse Estuary, hypoxia varies over space and time. Blue crabs 

respond to hypoxic events by moving to shallow oxygenated areas near river edges (Selberg, 
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Eby, and Crowder, 2001). When blue crabs migrate, they may experience increased competition 

for food sources. Preferred blue crab prey, in contrast, are sedentary and can experience 

mortality as a result of hypoxia. Thus, there is a direct effect of hypoxia that stimulates blue crab 

migration and an indirect effect that reduces prey availability in the hypoxic area.  

 The blue crab fishery is the most valuable commercial fishery in North Carolina and 

consists of three product types sold dockside: hard shell, soft shell, and peeler. Nominal ex vessel 

revenues across all three categories totaled $34.44 million in 2002 and peaked at $44.96 million 

in 1998. The bulk of landings are hard shell, accounting for 96.6% of the 37,592,317 pounds 

landed in 2002. Blue crab landings in 2003 accounted for more than one third of all landed value 

in North Carolina commercial fisheries. Figure 1 depicts catch and real revenues (in 2002 

dollars)1 from 1950-2002. The landings time series data are from the NOAA Fisheries 

Commercial Landings Data Website (NOAA Fisheries, 2004). Burgess and Bianchi (2004) 

report recent figures on fishermen, vessels, and trips. The number of fishermen landing hard blue 

crab ranged from 2,161 in 1994 to a peak of 2,338 in 1997 and down to 1,550 in 2002. Vessels 

follow a similar pattern: 2,474 in 1994, a peak of 3,418 in 1996, and down to 1,900 in 2002. 

Trips also followed this pattern (109,603 in 1994, a peak of 119,557 in 1998, and 82,633 in 

2002).  The North Carolina blue crab fishery is conducted mostly during the summer season with 

88% of harvest taking place in May through October (NCDENR-DMF FMP, 2004).  

 The North Carolina blue crab fishery is a large share of the total for the Eastern United 

States. North Carolina blue crab comprised 13.46% of total blue crab landings from 1950-93 and 

24.24% of landings from 1994-2002 (NCDENR-DMF FMP, 2004). In spite of the high value of 

the blue crab fishery for North Carolina and the value of blue crabs elsewhere, we are unaware of 

any prior bioeconomic analysis to examine blue crab fishery regulation.2  

                                                           
1 To compute real revenues, we used the Bureau of Labor Statistics CPI All Urban Consumers for 1950-1977 and 
switch to CPI South Size D (the smallest rural category) when it becomes available in 1978.   
2 Upadhyaya, Larson, and Mixon (2002) use a simultaneous equations econometric model to explore the "costs" of 
regulation in the Maryland blue crab fishery, but they in no way account for the bioeconomic nature of the problem.  
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 Current and proposed management tools for the North Carolina blue crab fishery are all 

open access alternatives (NCDENR-DMF FMP, 2004).3 Current management includes a license 

requirement, a minimum size limit, blue crab spawning sanctuaries, and several gear restrictions 

including limitations on crab dredging and specifications on crab pots. Some gear restrictions are 

spatially and temporally varying as well. The North Carolina General Assembly (NCGA) placed 

a moratorium on new licenses that took effect July 1, 1994. The moratorium and the existing 

crab licenses were scheduled to expire June 30, 1999. NCGA established an interim crab license 

until October 2000 while discussion of effort management continued. Meanwhile, the Fishery 

Reform Act of 1997 capped the Standard Commercial Fishing License starting July 1, 1999, but 

the cap was not able to limit entry on blue crab. In September of 1999, the Marine Fisheries 

Commission decided that it would not continue to pursue limited entry and would focus only on 

open access options. Thus, limited entry for blue crab effectively expired when the interim blue 

crab license expired in 2000. 

  

III. Model Description 

 

 The lumped-parameter model is a system of ordinary differential equations that 

represents changes in the stock of nutrients, algae levels, spatially explicit populations of the blue 

crab and prey availability, total fishing effort, and the spatial distribution of fishing effort. The 

goal of this system is to trace changes in nutrient loadings all the way through to impacts on 

fishery rents, which provide a meaningful economic metric. However, changes in nutrient levels 

do not directly affect fishery harvest. Instead, nutrient loadings coupled with hydrodynamics 

alter the ecosystem that supports the fishery. Specifically, increased nutrients stimulate the 

production of algae in the estuary and provide a precursor to hypoxia. Hypoxic events, which 

tend to be spatially delineated in the estuary, affect prey availability and can induce blue crab 

emigration from hypoxic to oxygenated zones. Fishing pressure, in turn, responds to the overall 
                                                           
3 We rely on the draft blue crab fishery management plan (NCDENR-DMF FMP, 2004) for all of the information in 
this paragraph.  
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status of the blue crab resource and its spatial distribution. Thus, changes in the fishery that are 

attributable to nutrient loadings can only be uncovered as they filter through complex ecological 

and economic dynamics. In this sense, the model aims to measure market benefits of ecosystem 

services that have not been measured before. Nevertheless, we acknowledge that analysts may 

also be interested in simpler metrics like additional catch or revenue that a fishery can sustain in 

the long run with a reduction in nutrient pollution. Our model measures these changes as well. 

 Nutrient loadings and algal growth have simple model structures. Denoting t as time, the 

stock of nutrients (N(t)) in the estuary evolve according to: 

(1) 

re a dot indicates the ti e derivative, L(t) denotes nutrient loadings and ω captures the 

5  

( ) ( ) ( ),tNtLtN ω−=  

whe m

natural rate of decay.4 For purposes of optimizing the model (in future analysis), it will be 

necessary to preserve the time-dependency of loadings.  However, to gain some qualitative

insights initially, we assume that nutrient loadings are constant over time, ( ) ,LtL = and any 

policy change would modify this constant rate.6 We model algae (A(t)) with logistic growth 

where the intrinsic growth rate is normalized to one, and the carrying capacity is a linear scal

of nutrient stock with a parameter µ : 

(2) ( ) ( ) ( ) ( )

ing 

[ ]tNtAtAtA µ−= 1 .7  

                                                           
4 In work on the economics of non-convex ecosystems and of shallow lakes specifically (Dasgupta, and Maler, 

003; Brock and Starrett, 2003; Arrow, Dasgupta, and Maler, 2003), phosphorous recycling is also modeled and is 

( )[ ]

2
the source of nonconvexities in the ecosystem. To extend our model to include nutrient recycling, we could add a 
parameter σ rewrite (1) as: 

(1') ( ) ( ) ( )[ ]( ) 21 tN
t

+
+ . 

timizing the model, which is beyond the scope of this paper, would involve setting up and solving an optimal 
ntrol problem with at least three controls, six states, and a variety of non-negativity constraints.  

t 
tness of the 

 the physics of sediment 
 

might 

2tNNtLtN −=
σω

5 Op
co
6 Obviously, this simplification ignores seasonality in loadings. However, given that nutrient accumulation does no
translate instantaneously into algal blooms, considering an annual average is appropriate. The robus
assumption can thus be evaluated by the extent of inter-annual variation in loadings. 
7 A potentially interesting extension of this model would be to incorporate algal biomass hysteresis. The residence 
time of organic matter in estuaries involves fresh and saltwater interchange as well as
transport (Geyer et al., 2000), so even if algae carrying capacity is reduced in response to nutrient loadings, it could
take some time to cycle the oxygen demand in sediments out of the system. To account for this possibility, we 
modify (2) to follow the nutrient recycling in (1'): 
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In this way, the long-run stock of algal blooms is limited by the nutrient stock, and the dynamics 

of algal growth are influenced by the dynamics of nutrient accumulation. Note that with constant 

nutrient loadings, the steady-state nutrient stock and algae stock are: ϖLN =∞ and 

ϖµLA =∞ .  

 For tractability, we model a two-patch bioeconomic system to study the effects of 

s 

ent 

 

o 

e) 

e 
8

ibe the population dynamics: predators in each 

patch and prey in each patch. Blue crabs are the predators and are subject to fishing mortality and 

environmental limits on their abundance that include prey abundance. Prey in the model are a 

                                                                                                         

hypoxia on the blue crab fishery. In this lumped-parameter model, a patch can be viewed a

either shallow versus deep water or estuary versus the sound. Both interpretations are consist

with the effects that we get, and the difference would be in the parameterization. We treat Patch 

1 as the estuary and Patch 2 as the Pamlico Sound. Due to depth, currents, and other aspects of 

hydrodynamics, we assume that Patch 1 is susceptible to algal blooms and thus can experience 

hypoxia. As such, the algae stock in (2) is assigned to Patch 1. In contrast, we assume that Patch

2 does not have excess algae growth and hence has no hypoxia. Another way of interpreting the 

model is that Patch 2 has only background effects of algae, and when a hypoxic event occurs, 

Patch 2 is relatively more oxygenated than Patch 1. Because we limit algae growth to Patch 1, 

this model is inappropriate for considering doomsday scenarios in which nutrient loadings are s

severe that the entire estuary is hypoxic or anoxic at all times. One can imagine that such a 

scenario would destroy the environmental basis for the fishery (at least the basis in the Neus

and comparisons among policy alternatives with marginal changes in loadings would be less 

meaningful than global ones (in the mathematical sense). In the population dynamics below, w

also assume that the patches are of equal size.  

 There are four state equations that descr

                                                                                  

( ) ( ) ( ) ( )[ ] ( )[ ]
( )[ ]2

2

1
1

tA
tAtNtAtAtA

+
+−=

ψµ . (2')

 
8 This assumption could be relaxed by introducing additional parameters. 
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c site of infaunal species, mostly clams, that are unable to move across patches. Hence, we

explicitly model preferred prey of adult blue crabs. We do not model potentially differential 

impacts of hypoxia on the various components of their diets, preferred or otherwise, and assum

that hypoxia affects preferred prey but does not affect non-preferred prey. Since blue crabs are 

scavengers and eat a wide variety of organic material at various life stages (http://www.blue-

crab.org/lifecycle1.htm), we implicitly model non-preferred prey using a lumped-parameter 

approach.  Denote predators and prey in Patch i as Xi(t) and Yi(t) respectively. There are five 

components of predator population dynamics. The first three components follow Ragozin and

Brown (1985) and Wilen and Brown (1986) and model logistic growth of each species separa

from the Lotka-Volterra predator-prey interaction terms. These authors neither consider spatia

differentiation of the resource nor explicit environmental effects on the resource. In our setting

this is equivalent to assuming no hypoxia and no spatial connectivity between patches. The crab 

populations would thus evolve according to: 

(3) ( ) ( ) ( )

ompo  

e 

 

te 

l 

, 

[ ] ( ) ( ) ( ),1 thtXtYktXtXrtX iiixiixi −+−= α   

where rx and kx are crab intrinsic growth and carrying capacity terms, α captures increased 

growth due to prey availability, and hi(t) is patch-specific harvest. There are several advantages 

odeling logistic growth and predator-prey interactio tely. First, the model can 

term. 

nd 

y-

rrying 

of m n separa

consider a reproductive speed of adjustment rx that may not be captured by the α predation 

This is particularly important for specifying the dynamics correctly in a bioeconomic setting 

because the rate of fishable biomass accumulation affects the time profile of fishery rents a

thus the present value of different harvest paths. It is important to note that present values can 

differ even after conditioning on the same total quantity harvested over time or the same stead

state harvest. Second, the parameter kx captures other environmental limits besides prey 

availability. These include habitat size, habitat quality (part of which we will model explicitly 

through effects of hypoxia), and non-human predation on the predators (including blue crab 

cannibalism). Note that kx  is not "carrying capacity" in the traditional sense but rather ca

capacity conditional on no available preferred prey. This approach has the virtue of permitting 
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positive crab populations in Patch 1 even when lack of oxygen has severely curtailed the 

availability of preferred prey. It assumes that other sources of prey, e.g. dead fish or plant matte

is available in roughly constant supply over time and is not affected by hypoxia. Ultimately, the

extent to which a severely hypoxic zone can sustain a crab population is an empirical ques

and the extreme case of no crab viability can be modeled by driving kx to zero.  

 The two last components of predator population dynamics account for the direct effects 

of hypoxia and spatial connectivity of the patches. Both of these terms affect predator migration

between the patches. Our approach is in the spirit of previous bioeconomic mod

r, 

 

tion, 

 

els of habitat 

ed 

ial to 

en 

 in 

f 

 

 

dependence (Kahn and Kemp 1985; McConnell and Strand 1989; Swallow 1990; Barbier and 

Strand 1998; Knowler,  Barbier, and Strand 2001), but in our model environmental quality 

degradation does not reduce the availability of the harvested species directly; stocks are affect

indirectly through migration and prey availability. We do not explicitly model hydrodynamic 

conditions that cause hypoxic events. Instead, we model average responses to hypoxia 

precursors, namely algae. This approach is useful in that it preserves the deterministic structure 

of the model and avoids the complications of seasonality and additional state equations to 

describe water column dynamics. It does come at a cost, since our model has the potent

miss important aspects of hypoxia that are associated with extreme events (in the tails of the 

distribution), and averaging over the episodic nature of hypoxia creates a disconnect betwe

empirical observations of the physical environment and model parameters. With these caveats

mind, we posit the percent change in predator population in Patch 1 is a decreasing function o

algae and for simplicity specify a linear relationship with a single parameter ξ. Modeling the 

direct effect of hypoxia as emigration from deoxygenated areas, as opposed to retarded growth or 

increased natural mortality, follows the empirical findings of Selberg, Eby, and Crowder (2001)

and Eby and Crowder (2002). Beyond hypoxic-induced immigration, we model migration as a

linear function of the difference in relative prey density across the two patches. If prey per unit of 

predator is larger in Patch 1 (Patch 2) than in Patch 2 (Patch 1), predators migrate towards Patch 

1 (Patch 2). This patch framework draws on Sanchirico and Wilen (1999) but arguably is less 
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lumped in that there is a structural determinant of predator flows, namely the prey densities. 

With these two components added to (3), and denoting responsiveness to relative prey density as 

φ, the population dynamics for predators in each patch are: 

(4) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ],  

(5)

)()(1 22111111111 tXtYtXtYtXtAthtXtYktXtXrtX xx −+−−+−= φξα

and 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ].)()(1 22111222222 tXtYtXtYtXtAthtXtYktXtXrtX xx −−+−+−= φξα  

orm ensures that absolute prey differentials do not lead to migration of more than the 

lation in a patch, and migration is limited when both predator and prey populations are 

ed up or down. 

ure 

ons 

ach patch has a logistic growth component and a predator-prey interaction 

ompo

b 

lly, 

 

This f

popu

scal

 The population dynamics of the preferred prey species have some similarity in struct

to predator population dynamics, but the effects of hypoxia are quite different. Like in equati

(4) and (5), prey in e

c nent. As a lumped-parameter model, we ignore the possibility that the composition of 

different prey species changes over time. Without loss of generality, we normalize prey carrying 

capacity to one such that steady-state prey populations are one in each patch when there is no 

hypoxia and no predation.9 Unlike the predator state equations, there is no harvest of the 

preferred prey. Also unlike predator dynamics, the prey are stationary, i.e. they do not migrate 

from one patch to the other. For blue crab, this assumption is reasonable because most blue cra

prey are bivalves that burrow into the sand and are unable to migrate purposefully.10 Fina

since the prey are stationary, we model the effects of hypoxia as creating extra prey mortality in

Patch 1.11 Mathematically, this appears the same as the prey having two predators, one of which 

                                                           
9 Because prey are not harvested, we are not interested in the level but rather the population as a share of its 
potential. 
10 Larval dispersal of prey between patches is a potential confounding factor, but lumped-parameter models of this 
sort are not capable of modeling life history characteristics explicitly. 
11 An additional source of prey mortality that we do not model is the possibility that hypoxic conditions can increase 

 
o include this effect by endogenizing the predation parameters α and β, but this extension would add 

re improving for the fishery. 

prey susceptibility to predators by decreasing their burial depths (Taylor and Eggleston). The model could be
extended t
additional nonlinearity and nonconvexity. This extension, coupled with economic dynamics, could create the 
perverse situation in which increasing nutrient loadings would be welfa
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is algae. Patch 1 prey dynamics have all three components, while Patch 2 prey state dynamics 

have just two because we assume that hypoxia has only background effects on Patch 2: 

(6) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )tYtAtYtXtYtYrtY y 111111 1 ρβ −−−= , and 

(7) ( ) ( ) ( )[ ] ( ) ( )tYtXtYtYrtY y 22222 1 β−−= . 

e that we have just three additional param ters to describe the prey state equations: intrinsic 

 

ffects 

ents 

ere are two key states that we track and that together with an 

ssump

 in 

tates 

each patch. Formally, 

Not e

growth of prey (ry), predator-prey interaction coefficient (β), and hypoxia-related prey deaths 

(ρ). All of these are lumped-parameters, but ρ is unique to the model in this paper and requires

additional attention. The model does not explicitly track sediment oxygen demand. Instead, it 

assumes that sediment oxygen demand is implicit in the stock of algae. Thus, ρ captures two 

important features of the system: 1) the effect of primary productivity on sediment oxygen 

demand and 2) the effect of sediment oxygen demand on prey mortality. The first of these e

is implicitly folded into the parameter ξ in (4) and (5) as well, but as will be discussed in the next 

section, there is no information available to pin down ξ, so a wide range of values must be 

considered. In contrast, we will be able to provide some empirical basis for the two compon

of ρ. By construction, our model assumes a form of natural insurance in that patch 2 is sheltered 

from the direct effects of hypoxia. 

 Turning to the economics, th

a tion on the production technology will close the model and determine bioeconomic 

outcomes. These states are the spatially-explicit levels of fishing effort (E1(t) and E2(t)), and

the case of blue crab, can be thought of as the number of traps in each patch at each point in 

time. Following Smith (2002) and Smith and Wilen (2003), it is useful to reformulate these s

as total fishing effort E(t) and its spatial distribution. With just two patches, knowing total effort 

and the share of effort in one patch (πi) fully determines the total amount of effort allocated to 

(8) ( ) ( ) ( )tEtEtE 21 += ,  

(9) ( ) ( ) ( )tEttE ii π= , and 
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(10) ( ) ( ) .,121 ttt ∀=+ ππ  

 The blue crab fishery in North Carolina is has been essentially open access for most of its 

ory. There are some lim s on gear technology but no formal limits on entry, and though there 

 a temporary morato n new permits, we assume that it was not in effect long enough to 

mentally alter the open access dynamics of the fishery. Thus, total effort in the model 

follows a dynamic open access rent dissipation model originally formulated by V. Smith (1968, 

1969) and empirically estimated for the fur seal fishery in Wilen (1976). Total fishery rents 

(Π (t)) are simply the difference between fishing revenues and fishing costs where c represents 

a combined constant marginal cost of fishing equipment and opportunity cost of time, and 

δ captures the opportunity cost of investing in the equipment (cost of capital and depreciation): 

hist it

was rium o

funda

total

(11)  ( ) ( ) ( )[ ] ( ) ( )tEcththptTotal δ+−+=Π 21 . 

Note that we also assume a constant price (p) and that crab fishermen are price-takers. Price-

taking is not a very strong assumption given that blue crab are harvested in many regions al

he east coast of the U.S., the North Carolina harvest in recent years is about a quarter of the 

ong 

t

the Neuse and Pamlico combined harves is roughly one third of the NC harvest, and 

changes in nutrient pollution are not likely to affect harvest magnitudes greatly.12  Whether 

aggregate harvest in this fishery could influence regional prices enough to warrant endogenizing 

price is an empirical question beyond the scope of this research. Constant price is an analytical 

convenience for assessing the theoretical properties of the model, but in future work the 

simulation could incorporate a price path that tracks actual price data with an additional state 

equation.  For evaluating present value rents later in the paper, we will denote r as the discount 

rate and recognize that the opportunity cost of investment is related to the discount rate such that 

δ'(r) > 0. Thus, the link between the cost of capital and the more general concept of time value of 

money is the reason to separate c and δ as separate components of the cost of effort. Following 

                            

total, t 

                               
12 We can re-visit this issue if the model produces large changes in quantities harvested that would question the 
price-taking assumption. 
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open access theory (Gordon, 1954; V. Smith, 1968, 1969; Wilen, 1976), total effort evolves 

ccording to average rent per unit of effort rather than marginal rent: 

(12) ( ) ( ) ( )[ ]

a

( ) ( ){ }δγ +−= + cptE tE
thth 21 . 

Note that in the steady-state, as in Sanchirico and Wilen (1999), this effort adjustment condition 

is simply a two-patch generalization of the familiar condition that catch-per-unit-effort equals the 

rice ratio. 

  

cost-p

 The share of effort in each patch responds to relative density of blue crabs according to a 

logistic probability density function. For Patch 1, effort share is: 

(13) ( ) ( )( )
( )( ) ( )( )tXtX 21

1 expexp θθ +

This approach is consistent with the empirical literature on broad 

tX 1exp θ
. 

fishery choice (Bockstael and 

Opaluch, 1983) as well as specific fishing location choice (Smith, 2002). Selberg, Eby, and 

Crowder (2001) conduct a survey of blue crabbers in the Neuse and find that they recognize low 

. 

(14) 

tπ =

oxygen water and move their crab pots in response to environmental conditions.13 We use just a 

single parameter θ  to model the responsiveness (over space) to different levels of abundance

We do not incorporate any sluggish adjustment over time for simplicity, but this extension could 

be done as Smith (2005) does empirically to model state dependence. So that we can stack our 

system of differential equations, we take the time derivative of (13) and simplify to obtain: 

( ) ( ) ( )[ ]
( ) ( )[ ]( ) ( ) ( )[ ]( )tXtXtXtX

tXtX

1221

21
1 exp2exp −++−

−
θθ

θ

To close the model, we assume a simple Schaefer (1957) production function for harvest:14 

t =π . 

                                                          

( ) ( ) ( )tXtqEth iii = , (15) 

 
13 Since blue crabs essentially crowd into the oxygenated areas during a hypoxic event, there may be an effect on the 
catchability coefficient q, and not just an increase in CPUE associated with an increase in patch 2 biomass (holding 

ort constant).   eff
14 This function can be generalized easily to a more flexible Cobb-Douglas that incorporates decreasing returns to 
effort. For now, we start with the simpler specification to gain qualitative insights with less nonlinearity in the stock 
effect. 
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where q is a catchability coefficient assumed constant across the patches. With this simple 

production form and using (8) and (9), (12) reduces to: 

(16) ( ) ( ) ( ) ( ) ( )[ ] ( ){ }δππγ +−+= ctXttXtpqtE 2211 . 

Using (10), we can simplify (16) to: 

( ) ( ) ( ) ( )( ) ( )[ ] ( ){ }δππγ +−−+= ctXttXtpqtE 2111 1 .(17)  

ption of the system that is a function of seven state variables 

 A(t), X1(t), X2(t), Y1(t), Y2(t),E(t), and π1(t)], parame rs, and initial conditions.  

ents numerous challenges. For some of the 

arameters, empirical estimates simply do not exist or the data are of such poor quality that 

eanin

 

ts 

our 

s 

rview 

To summarize, we now have a descri

[N(t), te

 

IV. Parameterizing the Model 

 

 Parameterizing the model described above pres

p

m gful statistical inference is not feasible. For others, empirical estimates in the ecology 

literature do exist but apply to vastly different spatial and temporal scales. In many cases, the

studies that provide empirical estimates involve very different model structures and not just 

different scales. Finally, some parameters pose units problems as well. With all of these cavea

in mind, by parameterizing the model we seek to accomplish five objectives: 1) demonstrate 

methodology for quantifying partial ecosystem service values, 2) provide an initial estimate of 

the magnitude of value (albeit one with considerable uncertainty), 3) explore qualitative insights 

from the model and whether parameter values affect qualitative patterns in the dynamics, 4) 

identify parameters to which the value of ecosystem services is sensitive, and 5) illustrate 

challenges in coupling ecological and economic models for policy analysis. Our actual figure

for present value rents should be interpreted with caution. Appendix A provides a brief ove

of the parameterization in table form. Our strategy is to draw directly from the empirical 

literature to the extent possible. When estimates are unavailable, we back out parameters that are 

internally consistent with empirical estimates for other quantities in the model. 
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 For parameter values in (1) and (2) and hypoxia-related parameters in (4)-(6), we r

work from Mark Borsuk's Ph.D. Dissertation at Duke University and related work with co-

authors. Borsuk develops a Bayesian hierarchical network model that addresses

ely on 

 a number of 

 

gs 

e 

s 

t 

n are 

BERN 

ich 

ecological and hydrological features of the nutrient pollution in the Neuse River and Estuary 

(Borsuk, Stow, and Reckhow, 2003a, 2004a), called Neu-BERN. This model is one of three

models featured in the Neuse TMDL to evaluate the consequences of reducing nitrogen loadin

in the Neuse (NCDENR-DWQ, 2001). One advantage of Neu-BERN is that it describes a rang

of outcomes probabilistically rather than just providing a point estimate. Another advantage i

that Neu-BERN is able model various features of the system without forcing a common temporal 

or spatial scale. Features enter as nodes, which are modeled as marginal probabilities, and 

outcomes that involve multiple nodes are joint probabilities. One disadvantage, however, is tha

it is not equipped to handle dynamics across nodes. In our context, dynamics are essential 

because the fishery is rent dissipating; steady-state rents with and without nitrogen reductio

identically equal to zero by construction. The welfare effects of water quality improvements can 

only be recovered from the transition to the steady state. Thus, the model structure of Neu-

is inappropriate for our purposes, but it provides useful empirical information. In building a 

dynamic model with common spatial and temporal scales, we sacrifice the scale flexibility of 

Neu-BERN and the ability to make probabilistic statements about outcomes. We can still 

evaluate different combinations of parameters through sensitivity analysis but cannot say wh

outcomes are more likely in a statistical sense. 

 In (1), we rely on static models to choose two parameters: baseline loading ( L ) an

nitrogen decay rate ω. While seemingly straightforward, baseline loading is complicated by 

variability in the flow of the Neuse River. Stow

d 

 and Borsuk (2003) compute flow-adjusted 

e

y 

R-

cay 

nitrogen concentration various locations in the Neuse in the 1980s and 1990s. The m dian 

nitrogen concentrations across locations are approximately 1.3 mg/L in 1991-1994 prior to an

policy-induced reductions in nitrogen. Neither these authors nor the Neuse TMDL (NCDEN

DWQ, 2001) accounts for lags in the decay of nitrogen stock. This suggests that nitrogen de
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rate ω might be relatively rapid. We choose ω = 0.95 based on our judgment and adjust L =1.2 

so that the steady-state nitrogen concentration is approximately 1.3. 

 The parameter µ in (2) maps steady-state nitrogen concentration into algal carrying 

capacity. Borsuk, Stow, and Reckhow (2004b) estimate five log-linear regression models of 

chlorophyll response to temperature, total nitrogen, and several transformations of water flow. 

r on 

en. 

point 

ince the effect is instantaneous, it is not necessary to model algae accumulation and 

nse; they 

r 

 

on 

mics 

Each model represents a different part of the Neuse. Given the functional form, the paramete

total nitrogen is a percentage change in chlorophyll in response to a one unit change in nitrog

This fits directly into our model with the caveat that our model implicitly builds in a lag in 

chlorophyll response. The implicit intrinsic growth rate of chlorophyll in our model is 1.0, so 

approach the steady state is quite fast. The point estimates of the five models range from 0.22 to 

0.70 with standard errors as small as 0.15 and as large as 0.62. We choose 0.40 as an initial 

estimate.  

 We assume that algal accumulation affects dissolved oxygen concentrations 

instantaneously, again with the caveat that our model does not explore the episodic nature of 

hypoxia. S

dissolved oxygen depletion separately. The parameters ξ and ρ are lumped in that se

combine the marginal effects of primary productivity (measured as algae levels) on dissolved 

oxygen levels and the effect of dissolved oxygen levels on the outcome of interest (migration fo

the blue crab and mortality for their clam prey). As modeled, empirical estimates do not appear

in the ecology literature, but we can use the decomposed effects to construct plausible parameter 

values. The first of these decomposed effects is the link between algae and dissolved oxygen. 

 Linking primary productivity to dissolved oxygen levels with some empirical basis 

inevitably confronts spatial and temporal scale mismatches as well as units problems. The spatial 

scale of the ecological data is often much finer than the model in this paper, so some aggregati

is necessary. Also, these data are typically not collected with dynamics in mind. When dyna
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do enter, they may be fast dynamics that do not match the economic dynamics.15 To deal with all 

of these issues, we compute an elasticity based on the model in Borsuk, Stow, Higdon, and 

Reckhow (2001) and evaluate it at the mean levels of parameters and concentrations of orga

matter and sediment oxygen demand across the Neuse River Estuary. The calculation implicitly 

assumes an instantaneous conversion of organic matter (attributable to primary production) into 

sediment oxygen demand.  

 Equation 9 in Borsuk

nic 

, Stow, Higdon, and Reckhow (2001) provides a simplified 

pth (h), 

 

expression for Sediment Oxygen Demand (SOD) as a function of carbon loadings (L), de

and parameters a, b, and k: 

bL ⎞⎛
kLh

aSOD ⎟
⎠

⎜
⎝ +

=
1

   

ary productivity is scaled to have a maximum of approximately one, depending on 

 

Since our prim

the nutrient concentration, an elasticity will eliminate the units problem (at least as a first order 

approximation). The elasticity of SOD with respect to K (ε) is: 

( ) ( ) ( )1 11 1 1

.
1

bb

SOD Lε ∂
=

L SOD
baL kLh kLh L SOD

b
kLh

− − −−

∂

= + +

=
+

 

Note that a cancels out entirely in the elasticity. Median parameters values in the Neuse Estuary 

f the baseline 

ce oxygen 

                            

are: b=0.785 and k=0.00085. Taking the average over Lower, Middle, and Upper Neuse, we 

have depth as hbar=3.0 and Lbar=43.2. Thus, evaluated at the means, ε=0.7071. 

 We next consider a range of sediment oxygen demand levels from 100% o

down to 50% of the baseline and we compute (in percentage terms) the corresponding decreases 

in primary productivity from the baseline (100%) using 1/ε. Finally, we linearize this 

relationship to get a marginal oxygen demand of 0.57 with a standard error of 0.03. Sin

                               
15 For example, Borsuk, Stow, Leuttich, Paerl, and Pinckney (2001) look at oxygen dynamics in the Neuse within-
season and focus on vertical stratification of the water column. Our model is simply not equipped to incorporate the 
episodic nature of vertical stratification and the corresponding time scale of days. 
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demand in the system is an instantaneous response, we can simply multiply 0.57 times the blue 

crab responsiveness to dissolved oxygen to construct ξ.  Similarly, we can build up prey 

mortality (ρ) by multiplying mortality as a function of dissolved oxygen by 0.79.  

 Selberg, Eby, and Crowder (2001) and Eby and Crowder (2002) have identified some 

oad range 

 To link dissolved oxygen to prey mortality in (6), we adapt empirical results from 

 the 

s 

 

 

 

ts in ρ, 

essment of North Carolina blue crab to estimate the logistic growth 

arame

                            

oxygen threshold concentrations for blue crabs, but we are not yet able to connect this 

information to the parameter ξ. For now, we examine the sensitivity to results over a br

of parameter values and maintain parameter values that ensure that migration biomass from 

patch 1 cannot exceed the quantity of biomass in patch 1. We begin with a moderate level of 

ξ=0.5. 

Borsuk, Powers, and Peterson (2002). These authors estimate a survival model of clams in

Neuse in response to changing dissolved oxygen levels. We subtract mean survival probabilitie

from their Table 3 to obtain mean cumulative mortality at three different levels of dissolved 

oxygen (0% reduction, 25% reduction, and 50% reduction). Then we regress baseline oxygen

demand (1, .75, .5) on mortality (.89, .77, .53) to obtain a slope of 0.72 and an intercept of .19.

Although results are not statistically significant with just three observations, the mortality 

relationship is well-approximated by a linear function (R2 = 0.97) in this range of dissolved

oxygen.16 To summarize, 0.72 will be the mortality component of ρ, and we will use the 

intercept to guide selection of intrinsic growth of prey. Combining the two marginal effec

we have ρ=0.79*0.72=0.57.  

 We rely on a stock ass

p ters in (4) and (5). Eggleston, Johnson, and Hightower (2004), EJH hereafter, consider 

intrinsic growth rates for blue crab that range from 0.20 to 2.0 and estimate carrying capacities 

that range from 102.29 million pounds to 526.60 million pounds in a surplus production model 

based on crab catch and pot data from 1953-2002. Note that smaller growth rates correspond to 

                               
16 When we include mean and median results from Borsuk, Powers, and Peterson (2002) Table 3, we have six 
observations in the regression and slope and intercept parameters are statistically significant at the 5% level. The 
slope parameter adjusts upward to 0.74, the intercept still rounds to 0.19, and the R2 drops to .95. 
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larger carrying capacities. We first adjust downward the range of blue crab intrinsic growth to 

account for the positive effect of predation in (4) and (5). Our low, medium, and high values ar

0.05, 0.75, and 1.5.  

 Next we need

e 

 to interpolate a relevant carrying capacity for the part of the NC fishery 

e of 

n (4) 

rn to finding values for kx and α. Because of the Lotka-Volterra dynamics, the 

that we are studying. EJH estimate that 7% of the fishery is conducted in the Neuse River and 

28% in the Pamlico Sound, which is the water body that the Neuse Estuary opens into. We 

assume that our model applies to this total 35% of the fishery. Thus, we assume that the rang

steady-state crab population combined across the two patches is 35% of the carrying capacity 

range in EJH. In the absence of hypoxia, and assuming that our two patches are of equal size, 

half of this capacity is then allocated to each patch. This steady-state population reflects 

predation, but with no hypoxia, the two patches are equal and all of the migration terms i

and (5) drop out.  

 We next tu

steady-state cycles and there is no analytical solution to ( ) ( ) 0== tYtX . Thus, we can fix one 

predator-prey parameter, hold one state near the steady state (near ( ) 0= ) and back out 

parameters using ( ) 0=tX . The parameter that we fix is β=0.001. T ws for blue crab

predation to account for between 3.6% and 19.5% of clam mortality. We take this range and

it to the maximum mortality from dissolved oxygen depletion (0.72) and the mortality intercept 

(0.19) to obtain a range of intrinsic growth rates for clam prey (1.11, 0.97, 0.95) that would 

prevent total stock collapse under the worst-case in-sample hypoxia scenario. Again, our pur

here is to explore marginal effects not the possibility for catastrophic changes if the Neuse River 

becomes far more eutrophic. Using Excel's nonlinear solver, we impose ( ) 0=tX  to recover 

parameters that correspond to low, medium and high values for rx. For kx

and 14.50; for α we have .025, .375, and .743. We acknowledge that this procedure is very ad 

hoc, but the need to apply such a procedure illustrates the mismatch of existing empirical 

tY

his allo  

 add 

pose 

 we have 78.07, 25.85, 

estimates and a model structure needed to answer the policy question at hand. 
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 We have no existing literature to guide our choice of the final biological parameter

The idea of this parameter is to link patches on the basis of relative prey availa

, φ. 

bility. An 

terpr  

the low 

e 

 D (the smallest 

rural cl

 

 

 

δ 

                                                          

in etation of this lumped-parameter mechanism is that it captures an incentive for blue crab

to re-colonize hypoxic areas after the hypoxic event ends. It is naturally bounded by 0 on 

end, and we assume that it is bounded on the high end by relative scaling of prey and predator 

carrying capacities in the model. We thus consider values of 5, 50, and 150.  

We now turn to the economic parameters of the model. For parameterizing the model, w

convert all past prices and costs to 2002 dollars using the BLS CPI South Size

assification) for 1978-2002. Prior to 1978, this CPI was not available, so we use CPI All 

Urban Consumers. In the simulations, we use a five-year weighted average price (1998-2002) 

across the three product categories (hard shell, soft shell, and peeler), so p = 0.87. The 

parameters c, δ, and γ do not appear in the literature, and there is insufficient data to estimate 

them econometrically with any degree of confidence. We rely on a detailed study of the

Chesapeake Bay blue crab fishery (Rhodes, Lipton and Shabman , 2001) for total cost on a per

trip basis. Their average total costs range from $229 to $279 in 1999 dollars for full-time

watermen.17 We convert to 2002 dollars and proceed with these estimates as the sum of c and δ. 

Until we conduct policy experiments modifying the discount rate, the decomposition of c and 

does not matter, so we report initial estimates in the next section without breaking down these 

parameters.18  

 
nd Shabman (2001) use a survey to obtain these cost estimates and compute them in two 

: ing up the various components of costs and explicitly asking watermen the minimum revenues 
needed to justify a fishing trip. They caution that whether these costs include opportunity cost of time depends on 

w the respondents interpreted the question. 
 

f 
itial attempt to decompose cost components. If we assume a discount 

ate 

lf of this 

17 Rhodes, Lipton, a
different ways  add

ho
18 By regressing lagged CPUE and lagged NC unemployment (to account for variability in opportunity cost), we can
estimate the share of average total cost that is exclusive of opportunity cost of time to be 70%. We do not use the 
implied values for costs from the regression because nothing is statistically significant, and we have only 7 years o
trip data. We run the regression simply as an in
rate r = 0.05, a constant rate of depreciation of 0.1, and take the average fixed cost numbers from Rhodes, Lipton, 
and Shabman (2001), we can estimate all of the relevant cost components. For the low ATC (240.45), Average 
Fixed Cost = 52.50, opportunity cost of time is 74.84, and user cost (δ)  is  7.875, which  implies c = 232.575. For 
the high ATC (292.95), Average Fixed Cost = 85.05, opportunity cost of time is 91.18, and user cost (δ)  is  12.758, 
which  implies c = 280.192. Again we need to stress that for the results reported  in the next section, this 
decomposition does not matter; it will only matter when we consider policy experiments in which the discount r
is allowed to change. At first blush, our numbers for opportunity cost of time seem reasonable. They imply that 
alternative employment, on average, would be worth roughly $10 per hour. Median household income for NC blue 
crabbers is in the $50,001-$75,000 bracket (NCDENR-DMF FMP, 2004). Assuming the crabber earns ha
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To parameterize the speed of adjustment γ, we need to make additional assumptions. 

First, because trip data are not available for a long enough period (and are influenced by the 

license moratorium), we need to backcast trips based on crab pot data. To do this backcasting, 

we assume total pots per trip is a stable relationship over 1984 - present. We then take the 

overlap period of pot and trip data (1994-2002), exclude 1995-97 because of possible over-

reporting of pots, and take the average pots per trip.19 Second, we take the implied trips from 

1984-2002 and compute one-period-ahead forecasts based on the rent dissipating effort equation 

(12). Finally, we solve for γ  by minimizing the sum of squared deviations. For the two sets of c 

and δ, the implied γ is surprisingly similar (45.37 and 46.81). 

We follow a similar one-period-ahead forecast procedure to parameterize catchability q. 

Here we set initial stock at carrying capacity, backcast trips all the way to 1953 using the 

procedure above, and search for a q that qualitatively matches the pattern of catch, and 

quantitatively matches the total over the time horizon as well as individual periods. This routine 

is similar to the calibration of catchability in Smith and Wilen (2003), in which no single 

objective over the time horizon adequately captures the nature of the calibration problem. For 

medium parameter values, we have q = 0.000003. 

The final economic parameter is the spatial adjustment parameter θ. Selberg, Eby, and 

Crowder (2001) show that blue crabbers are responsive in moving their crab pots to varying 

conditions but do not have a quantitative measure of how responsive they are. Thus, we rely on 

estimates from Smith and Wilen (2004), who report a short-run spatial adjustment elasticity of 

that ranges from 0.35 to 3.1 for spatial responsiveness in the sea urchin dive fishery with 11 

patches, implying a range of θ between .39 and 3.41. With just two patches, the elasticity of 

spatial adjustment in patch i is θ (1 -  πi), so ceteris paribus it is inevitably smaller. If we assume 

uniform spatial distribution of effort, the re-scaling of the implied θ is 0.55, so the range is 0.21 

                                                                                                                                                                                           
income, this implies an hourly average wage ranging from (based on 2000-hour work year) $12.50 to $18.75. These 
numbers are well above the implied opportunity cost of time. 
19 Crab pot data provided by Sean McKenna of NCDENR, Division of Marine Fisheries. 
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to 1.88. We choose 0.4 as the medium level because the larger elasticities in Smith and Wilen 

(2004) correspond to infrequently visited patches.  

We assume that the system starts at the steady-state values for the biophysical states N(t) 

and A(t) because the dynamics are fast relative to the economic dynamics, and there are no 

feedbacks from the fishery, i.e. the steady states are recursive. Thus, choosing these initial 

conditions for N(t) and A(t) is straightforward.  With the parameters above, we have N(0) = 

1.2632 and A(0) = 0.50526. 

We choose initial population levels for predators and prey in each patch to correspond to 

half of the logistic growth carrying capacity parameters. For predators, we thus choose 

X1(0)=X2(0)=0.5*kx=12.92 million pounds (for medium parameter values). Prey populations in 

each patch are scaled to the (0,1) interval in the absence of predation and hypoxia. We thus 

choose Y1(0)=Y2(0)=0.5.  

For initial economic parameters, we choose total effort to be 35% of the total trips in the 

NC blue crab fishery averaged over 2000-2002. This yields E(0) = 32,077. For the share in each 

patch, we treat the patches as representing equal size. Thus, to explore the behavior of the model, 

we start the patch share at π1(0)= π2(0)=0.5 .  

 Because our parameterization draws on a wide range of studies and adapts parameters 

from different model types, we do not have a clear roadmap for incorporating parameter 

uncertainty. That is, we cannot characterize the joint distribution of our parameters and draw 

repeatedly from that joint distribution to simulate the model. This is a limitation in comparison to 

the Neu-BERN model. However, what we gain from this sacrifice is the ability to incorporate 

dynamics explicitly on a scale that matters for human impacts. 

 

V. Results 

 

 We simulate the system in continuous time using Matlab's Ordinary Differential Equation 

Solver (ODE45). We consider a 30% reduction in nitrogen loadings, which is what the Neuse 
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TMDL calls for (NCDENR-DWQ, 2001). While our possible range of parameter values spans 

the range in EJH, for brevity we present a full set of results based on the medium levels of 

parameters. At these levels, with initial conditions set to half of the kx and implicit ky parameters, 

and assuming a real discount rate of 2.5%, a 30% reduction in nitrogen loadings sustained over a 

50-year time period generates an increases in present value rents of $2.56 million, a total catch 

increase of 12.4 million pounds, and a total increase in trips of 91,000. In percentage terms, these 

are increases of 7.7%, 3.6%, and 2.9% for rents, catch, and effort respectively. It is worth noting 

here that our welfare estimates assume that there are no consumer surplus gains from the policy 

changes. This implicitly assumes that the blue crab market demand is perfectly elastic in the 

range of policy-induced supply shifts. One could approximate consumer surplus changes by 

econometrically estimating the slope of the crab market demand, but this is beyond the scope of 

our paper.  

 Since fishery rent may not be the only metric that matters to policy-makers, we can 

examine the long-run impacts on catch and effort from the policy change. We take average catch 

and effort over the last two years of our 50-year simulation as an approximation of long-run 

effects. The baseline long-run catch and effort per year are 5.7 million pounds and 60,662 trips 

respectively. The increases from the 30% nitrogen reduction are 230,000 pounds and 2,270 trips. 

Trips per year is in the neighborhood of 60, which averages across full-time and part-time 

fishermen. This suggests that the water quality improvement would support 38 additional 

fishermen in the Neuse and Pamlico Sound in the long run.  

 Table 1 analyzes the sensitivity of our results (aggregated over 50 years) to the parameter 

µ, which maps nitrogen stock into the carrying capacity of algae. The results in bold repeat those 

described in the previous paragraph. The 30% reduction policy increases rents at an increasing 

rate as the parameter µ increases. Fortunately, we do have some empirical basis for µ, but there 

is still considerable uncertainty. Table 2 analyzes sensitivity to changes in the per trip cost (c + 

δ). Again, the results in bold repeat those described in the previous paragraph. In sharp contrast 

to Table 1, the welfare impacts of the 30% reduction policy are virtually unaffected by 

 26



   

differences in per trip cost. The change in total effort is stable across this range of costs as well. 

The main difference across the cost range is the total catch in the system. With lower costs, 

short-run rents are higher but are dissipated faster; there is more effort entry early in the time 

horizon. This excess entry tends to reduce the blue crab stocks, and the system can sustain a 

lower catch in the medium and long runs. Because of discounting, the losses in the medium run--

recall that long-run rents always tend to zero--under the lower cost scenario are offset by the 

short-run rent gains. Also of interest is that stocks are driven to zero if the per trip cost is low 

enough. We found that this can occur with a per trip cost below $100.  

 Table 3 explores the sensitivity of results to the economic speed of adjustment of total 

fishing effort, γ.  As in Tables 2 and 3, our point estimate results are in bold. In percentage terms,  

the speed of adjustment has virtually no impact on the results of the policy change for rents, 

catch, and effort. In magnitudes, slower speed of adjustment corresponds to larger baseline rents 

and thus larger gains from the reduction in nutrient pollution. When fishing effort responds 

faster, rents are dissipated faster. Given that the initial conditions start the system off with 

positive rents, faster rent dissipation means smaller present value rents. Faster effort response 

also means that stocks are driven down more quickly and can sustain a high catch for a shorter 

period of time. As a result, total catch is declining in γ. Finally, the magnitude of total effort 

changes very little in response to γ. In the short run, effort is higher, but in the long run, effort is 

lower as a result of depleted stocks. Thus, the short- and long-run effects on effort are nearly 

offsetting. 

 Figures 2-4 depict the system dynamics under the no reduction scenario. The qualitative 

patterns in figures for the 30% reduction scenario are similar, but the levels change in ways that 

conform to expectations.20 Figure 2 shows the paths of patch 1 and patch 2 blue crab populations 

and the populations of their preferred prey. They start from the same levels, the blue crab patch 1 

population is approaching a lower level than the patch 2 population. The long cycles reflect a 

combination of predator-prey dynamics, the economic dynamics in the system, and initial 

                                                           
20 These additional figures are available from the author. 
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conditions. The dampening amplitudes are a result of large overshooting in the economic sector 

and are consistent with other empirical open access results (e.g. Wilen, 1976). In contrast, prey 

populations approach steady-state levels smoothly. However, examining the data underlying 

these graphs reveal predator-prey cycles. The amplitudes of these cycles, however, are swamped 

by the importance of initial conditions. Figure 3 shows how fishing effort responds dynamically. 

The top panel depicts the long entry-exit cycles that are characteristic of open access fisheries 

with fixed costs. Effort share in patch 1 is cycling around 0.37, which ultimately reflects the 

impacts of nutrient pollution. Even at the level of spatial distribution of fishing effort, it takes 

quite some time for the system to settle down. Looking at this panel more closely, we see the 

presence of both long and short dynamics. The long dynamics have a period that matches that of 

the overall entry-exit pattern. The short dynamics reflect responsiveness to small fluctuations in 

blue crab populations as a result of predation, migration due to relative prey availability, and 

migration due to hypoxia. The bottom panel of Figure 3 tracks total catch over time and present 

value rents over time. Catch cycles with a similar magnitude to fishing effort. Amplitude 

differences reflect the concurrence of effort and biomass changes. There appear to be short 

dynamics as well, but they are less pronounced than they are in effort share. Present value rents 

have a similar pattern, but the effect of discounting dampens cycles rather dramatically after the 

first fifteen years. 

 Figure 4 shows blue crab migration decomposed into its two separate components. The 

first panel tracks migration due to relative prey abundance. The large-amplitude cycles reflect 

low point in the blue crab populations. When a predator population is in a trough, relative prey 

availability can change substantially over a short period.  Interestingly, the large cycles die out in 

year 20, but medium-sized cycles begin again around year 35. Blue crab migration due to 

hypoxia, as shown in the bottom panel, is smoother throughout. The pattern reflects long 

dynamic swings in the patch 1 blue crab population. Phase portraits (not shown here) of predator 

and prey populations show the usual cycling pattern of Lotka-Volterra models.  
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 Figures 5 and 6 look at the dynamic paths of rent differences and effort differences under 

the 30% reduction policy. In Figure 5, the most pronounced effect is the short-run rent 

difference. Although cycles continue well into the future, most of the rent impacts of the policy 

have materialized by the 15th year. This is partly a reflection of discounting but also a reflection 

of the open access rent dissipating process. Interestingly, rent differences are negative initially. 

This likely is a reflection of over- and undershooting somewhere in the system.  If we break 

Figure 5 into three sections, we essentially have a period of short-run transitory rents, a period of 

bioeconomic overshooting, and a period of rent dissipation near the bioeconomic steady state. 

The period of short-run transitory rents gives us an indication of how much value the 

environmental quality change can generate. In an optimized system, this initial positive cycle 

would be dampened and stretched out over an infinite horizon. Interpreting Figure 6 is less 

straightforward. The long cycle in this figure appears to be stretched. This may reflect the long 

cycles in the two scenarios being out of phase combined with short dynamics as well. Even once 

present value rents have nearly approached zero, there is still a fair amount of movement in the 

effort difference. 

 Naturally, one must ask how much of the changes in rents, catch, and effort are an artifact 

of initial conditions. To explore this issue, we use the same parameter values to run the model 

out 300 years with no reduction in nitrogen. We save the last year state values (approximate 

steady states) as initial conditions. Then we look at 50-year scenarios with and without the 30% 

reduction. With these initial conditions, a 30% reduction in nitrogen loadings sustained over a 

50-year time period generates an increases in present value rents of $2.75 million, a total catch 

increase of 13.4 million pounds, and a total increase in trips of 100,000. These numbers are 

similar to the simulation beginning at half of carrying capacities. The effect of nitrogen loadings 

in magnitude does not appear to be sensitive to initial conditions. Across the two sets of initial 

conditions, we obtain essentially the same estimate for welfare improvements from a 30% 

nitrogen reduction.  
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VI. Discussion 

 This paper develops a method to estimate the value of ecosystem services that support a 

commercial fishery with a solid microeconomic foundation. In particular, it uses a lumped-

parameter dynamic bioeconomic model to evaluate welfare changes from reduced nutrient 

pollution, which enhances ecosystem function by increasing dissolved oxygen, in terms of 

fishery rents. We illustrate the model using the North Carolina commercial blue crab fishery and 

examining the proposed 30% nitrogen reduction in the Neuse River Watershed. In this 

discussion, we provide additional context as well as some caveats for interpreting our ecosystem 

service values, and we suggest future research directions linking economic and ecological 

models by examining our own strategic modeling decisions. Along the way, we highlight the 

ways in which we lump parameters and how these ways are likely to affect policy analysis. 

 

Interpreting the Value of Ecosystem Services 

Our best point estimate for the value of a 30% reduction in nitrogen loadings is $2.56 

million, though this figure ranges from $195,000 to $7.51 million simply by varying parameters 

within what we consider to be a reasonable range. The TMDL plan does not require a benefit-

cost analysis, so we have little information on the magnitude of total economic benefits. Still, it 

is worth asking why this number is so small. To understand our value of a 30% nitrogen 

reduction, it is essential to highlight the coexistence of other value changes from that same 

reduction, the importance of fisheries management institutions in driving the value, and the large 

degree of parameter uncertainty in our model.  

The ecosystem service values that we measure are only a subset of the total that might 

emerge from a 30% reduction in nitrogen. Our values are partial largely because not all of the 

ecosystem values contribute to blue crabs, and not all values are rival in consumption. That is, 

capturing value in the blue crab fishery associated with reduced nutrient pollution does not 

necessarily diminish values of other ecosystem services associated with the same water quality 

improvement. Reducing hypoxia by decreasing nitrogen loading in the Neuse may benefit other 
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commercial fisheries as well as the blue crab fishery. Nitrogen reductions may also contribute to 

ecosystem values through trophic interactions that are not captured by benefits to fisheries. 

However, these values have not yet been quantified and arguably are more difficult to pin down.  

Previous economic research has analyzed how nitrogen reductions could enhance the 

value of recreational fisheries and other forms of recreation in the Neuse. In fact, the hypothesis 

that reduced nitrogen loadings will generate recreational fishery benefits is consistent with static 

non-market valuation studies of the Neuse (Kaoru, Smith and Liu, 1995; Mansfield and Smith, 

2002; Phaneuf, 2002). Interestingly, a 30% nitrogen reduction appears to pass a benefit-cost test 

based solely on recreational values (Smith, Schwabe and Mansfield, 1999). Thus, prior estimates 

of total recreational benefits dwarf the benefits to the most valuable commercial fishery in the 

state. The extent to which recreational and commercial benefits are rival with each other is an 

empirical question and one that is important for many fisheries around the world. We expect that 

the extent of rivalry will depend largely on institutional arrangements that limit access to the 

resource. 

Perhaps the most important reason that our welfare estimate seems small is the 

institutional structure of the blue crab fishery. North Carolina blue crabs are managed under open 

access, and open access dissipates rents in the long run. As a result, any values that an 

environmental quality improvement generates are necessarily transitory; no sustainable value can 

persist under open access. In contrast, under optimal management the economic benefits of 

reduced nitrogen would not be dissipated. The present value welfare change could thus be 

considerably larger. However, without analyzing optimal fisheries management, it is difficult to 

speculate on how big these benefits would be. Naturally, the next step in this research agenda 

would be to derive the optimal policy and compute present value rents under different nitrogen 

reduction scenarios. 

Our application illustrates the importance of institutions as a broad theme in the valuation 

of environmental resources. The value and not just the behavioral effect of an environmental 

change is actually contingent on the institutional context. McConnell and Strand (1989) make 
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this point in a conceptual model of water quality dependence of a commercial fishery, while 

Freeman (1991) makes this point in a static model of the Gulf Coast blue crab fishery that 

provides empirical welfare estimates of productivity changes in response to wetland acreage 

changes. The economic value of a water quality improvement in our case cannot be isolated from 

the open access setting any more than it can be isolated from the ecological processes. Krutilla 

and Eckstein (1958) first called attention to the importance of physical and economic 

interdependence in project evaluation. In a recent tribute article, Smith (2004) summarizes John 

Krutilla’s thinking about these economic, physical, and institutional interdependencies, writing 

that they “are not separable influences to what can be expected with policy intervention. They 

interact with each other altering the incentives and responses of people inside and outside 

markets.” (p. 1174) 

The interaction of institutions and value of ecosystem services naturally raises the 

question of how recreational blue crab fishing would be affected by different combinations of 

water quality changes and institutional settings. Under open access, recreators may contribute to 

the dissipation of gains from improved water quality by putting additional pressure on crab 

stocks. Similarly, potential gains from rationalizing the commercial crab fishery—and capturing 

more value from the crab resource itself and from the water quality improvement—could be 

offset to some degree by maintaining open access in the recreational sector. Optimal 

management would jointly consider recreational harvest, commercial harvest, and water 

quality.21  

Just as the open access assumption is a critical determinant of the dollar figure that we 

find for rent changes, the assumption of a representative agent is important as well. In that sense, 

the economic parameters in our model are lumped; they represent averages over the population 

of fishermen. Since economic parameters enter nonlinearly into present value rent sums, even 

introducing heterogeneity through parameters with symmetric distributions could affect 

                                                           
21 The conceptual bioeconomic literature on recreational and commercial fisheries emphasizes the jointness of 
recreational and commercial sectors in determining optimal management (McConnell and Sutinen, 1979; Bishop 
and Samples, 1980; Copes and Knetch, 1981). 
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outcomes. Moreover, Johnson and Libecap (1982) argue that with heterogeneous agents, rents 

are zero in open access “only for the marginal fisherman.” (p. 1012). Here again we see the 

importance of the institutional and larger economic context of a policy change. Whether or not 

there is fishing skill heterogeneity, fishermen almost certainly have varying opportunity costs 

that depend on connections to local economies, and these opportunity cost differences can affect 

the aggregate exertion of fishing effort. Though beyond the scope of this paper, introducing 

heterogeneity in the harvest sector could generate an additional source of rents attributable to 

differences in fishing skill. 

 Beyond the institutional considerations described above, it is worth interpreting our 

ecosystem values as a first order approximation purely for quantitative reasons. Since no prior 

study has been able to quantify the economic benefits to the blue crab fishery from reduced 

nutrient loading, or to any fishery for that matter, there does not exist a benchmark against which 

we can compare the magnitude of our result. Given that and the way that we parameterize the 

model, our quantitative results should be interpreted with caution, especially for non-marginal 

changes. First, we have only begun to explore the parameter space. Conducting a thorough 

sensitivity analysis will likely involve thousands of simulations. Second, all of the parameters in 

our empirical application involve substantial uncertainty. Most are adapted from studies that do 

not have a model like ours in mind; they deal with substantially different temporal and spatial 

scales, they involve different units, and the some of them have different functional forms. The 

model is quite sensitive to the parameter that maps nitrogen stock into steady-state algae. This 

parameter enters nonlinearly, so this sensitivity is not surprising. In terms of scientific 

interpretation, we need sound, statistically-based description of how much nitrogen affects 

chlorophyll production that, in turn, reduces dissolved oxygen levels. Most of the scientific 

literature that deals with this question addresses ecological dynamics that are too short (e.g. intra-

seasonal) for the type of long-run welfare analysis that we are conducting here.  

 Units of measurement could affect the results. For two parameters, we use elasticities to 

overcome units problems, but these elasticities must be evaluated at particular levels of the 
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variables. We assume mean levels, so any non-marginal change that pushes the system far from 

these values could also affect the elasticities. One might reasonably argue that a 30% reduction 

in nitrogen loadings is not a marginal change, but it is important to consider that the effects of 

nitrogen on blue crab filter through many ecological pathways, and nutrients are not the sole 

environmental basis for the fishery. To the extent that some of the ecological pathways dampen 

the effect of nitrogen rather than amplify it, we believe that our model works reasonably well. 

Overall, fruitful directions for future research thus include reducing uncertainty about key 

parameters and improving the match between ecological studies and economic studies in terms 

of spatial scale, temporal scale, and functional form.   

 

Linking Economics and Ecology  

 Many strategic modeling assumptions are necessary to trace a water quality improvement 

all the way to changes in fishery rents. It is useful for discussion to divide them roughly into 

assumptions that determine three types of effects: the direction of effects, the magnitude of 

effects, and the timing of effects. In dynamic models in which some metric is measured in 

present value, magnitude and timing are interrelated. For instance, pushing back a nominal gain 

several periods (a timing change) ultimately reduces the present value magnitude. To the extent 

that we can separate these two types of effects, we focus on nominal changes to categorize them. 

For lumped parameters, timing and magnitude are typically inseparable. 

 

Direction of Effects 

 The assumptions that determine the direction (or sign) of policy impacts are functional 

forms and parameter signs. Most of these assumptions are implicit parameter signs that are not 

controversial. Some examples include positive intrinsic growth, positive carrying capacity, 

positive prices, positive costs of fishing effort, and a negative predator-prey interaction in the 

prey state equations. We characterize most of our ecological system by linear processes. To the 

extent that nonlinearity is introduced, we have used predominantly convex modeling and have 
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focused on monotonic relationships between nutrients and fishery outcomes. Dasgupta and Maler 

(2004) caution against relying too heavily on convex models. Thus, important extensions would 

include introducing non-convexities and relaxing some of the linear assumptions in the model. 

This issue goes beyond matching functional form in our model to functional form in empirical 

ecological papers; it raises the possibility of multiple equilibria, chaos, and perverse welfare 

consequences of policy changes.  

Predator-prey responses to hypoxia are an important determinant of the direction of 

policy impacts. Though we do not model it, a potentially important nonmonotonicity may exist 

for these responses. Taylor and Eggleston (2000) find that there are sublethal effects in blue crab 

preferred prey at low levels of hypoxia. Specifically, clams burrow less deeply when there is low 

oxygen and thus can experience increased predation. In the short run, this effect could stimulate 

growth of blue crabs, and considering the effect of discounting, could generate a perverse 

welfare impact from reducing hypoxia. In other words, worsening hypoxia could temporarily 

stimulate blue crab stocks and lead to short-run fishery gains. In the long run, sustainable harvest 

would be lower, but given the rent dissipating nature of open access, long-run rents would still be 

zero. 

A related issue is our exclusive focus on the negative relationship between fishery 

productivity and nutrient enrichment. Formally, this restriction comes through our linear scaling 

of nutrient stock into algal carrying capacity. However, as Caddy (1993) showed, the negative 

relationship between nutrient enrichment and fishery productivity is just one part of a globally 

non-monotonic relationship. Our model is not equipped to analyze the impacts of increased 

nutrients in an under-enriched environment. There is a parallel here to the concept of hormesis in 

the dose-response literature on environmental pollution control. Hormetic substances are harmful 

at high doses but beneficial at low doses, and existence of hormesis can raise or lower optimal 

pollution control depending on control costs (Hammitt, 2004). Adapting the literature on 

hormesis to a dynamic bioeconomic setting is an interesting direction for future research that 

presents analytical and empirical challenges. 
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The impact of hypoxia on fishing behavior could also affect the direction of policy 

impacts. As modeled, hypoxia can only reduce welfare. However, it is possible that blue crab 

avoidance of hypoxia could increase catchability in the non-hypoxic patch. The idea here is that 

since blue crabs essentially crowd into the oxygenated areas during a hypoxic event, there may 

an increase in catch-per-unit-effort beyond that associated with an increase in patch 2 biomass 

(holding effort constant). This effect would potentially create perverse outcomes: short-term rent 

increases probably at the expense of long-term catch. In an open access setting, whether the 

increase in catchability would be welfare-improving would then hinge on the discount rate, and 

there is at least a theoretical possibility that decreasing hypoxia by reducing nutrient pollution 

would be welfare-reducing. Here again the importance of institutions is critical. Under a 

rationalized fishery, the positive catchability effect would be offset some (possibly all) by a 

negative stock effect that reduces long-run profitability. With open access, long-run profitability 

is zero either way. Overall, the possibility of perverse welfare effects presents interesting 

challenges for future research on valuing ecosystem services by linking economic and ecological 

models. 

 

Magnitude of Effects 

 A key determinant of the magnitude of changes from a water quality improvement is the 

way in which we model space. As described in Section IV, our model generates a type of natural 

insurance. Because patch 2 is not prone to hypoxia, there is a limit to how much nutrient 

pollution can affect our system. In the limiting case with severe nutrient pollution in patch 1, all 

blue crabs migrate to patch 2, and the entire fishery is conducted in patch 2. Even under open 

access, patch 2 serves as a contingent resource that insures against a complete collapse due to 

pollution. In an analogous common property exploitation problem, availability of groundwater 

can be viewed as a contingent resource when surface deliveries are stochastic (Provencher and 

Burt, 1993). Our assumption matches a spatial interpretation in which patch 1 is the estuary and 

patch 2 is the contiguous Pamlico Sound. Nutrient levels affect oxygen in the estuary, but there is 
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enough mixing in the Sound to eliminate the nutrient-induced oxygen depletion, at least in the 

range of current loadings.   

One could generalize our model to allow for differential hypoxic effects across patches 

by introducing an additional parameter. This would allow for an alternative spatial interpretation 

that corresponds to deep versus shallow water within the estuary. Of course, all of the biological 

parameterization would change to reflect the fact that the estuary alone is a smaller portion of the 

statewide crab fishery. Given our empirical setting, we argue that our parsimonious two-patch 

model provides meaningful estimates for policy analysis. For developing modeling strategies 

more generally, the researcher must ask: does interest lie in different spatial segments of the 

same water body or in connected water bodies that pollution may affect differentially. If the 

latter, is it possible to treat one as the index water body with no (or only background) effects of 

pollution? 

 Among the most striking results from our model is the lack of sensitivity to initial 

conditions; that is, initial conditions only have a tiny impact on the magnitude of policy 

outcomes. Upon closer examination, it is a combination of assumptions that drives this result, 

namely the linearity of the nitrogen stock and steady-state algae, the linearity of direct hypoxic 

effects, and the nature of open access rent-dissipating models. For the linearity assumptions, 

whether stocks are big or small and whether total effort is big or small, the nitrogen reduction 

leads to the same increase and approximate timing in fishery productivity. The magnitude and 

timing do not depend on the state of the system. This is the same intuition for why the open 

access structure matters. For a given increase in available rents associated with a productivity 

increase from less pollution, there is an extra amount of effort required to dissipate these rents. 

The level required does not depend on the level of existing effort because the Schaefer 

production function restricts the exponent on effort to one. Thus, the existing level of effort does 

not affect the difference between revenues and costs when the stock responds to the policy 

change; the difference is proportional to the increase in the stock whether existing effort is high 

or low.   
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 Our assumption of constant real price affects the magnitudes of several metrics that 

interest policy-makers. Given that blue crabs in the Neuse constitute a small share of overall east 

coast blue crab harvest, making price endogenous is unlikely to be worth the effort. However, we 

can easily introduce some exogenous growth in real prices to examine sensitivity to the constant 

price assumption. With 2% growth in real price, baseline rents (with no water quality 

improvement) are higher compared to constant prices, and the policy change generates a 

somewhat higher rent increase of $2.92 million. Total effort and long-run effort are also higher, 

but total catch and long-run catch are lower. This reflects the cost-price ratio effect in open 

access models.    

 

Timing  of Effects 

One of the key assumptions in our model is how quickly nutrient pollution can be cycled 

out of the system when loadings are reduced. We assume that nitrogen decays rapidly, and as a 

result, gains from reduced loadings materialize quickly. In reality, this decay could be slow. The 

consequence for policy impacts is that benefits to the fishery from nutrient reduction materialize 

later. We simulate a nitrogen decay rate of 0.475 (compared to our baseline of 0.95) and find that 

the present value rent increase from the policy change is $146,900 less than in the baseline. One 

of the features of the model that limits the size of this timing effect is the bioeconomic 

overshooting. When the system overshoots, rents go negative for a period. Pushing the positive 

rents back several periods also pushes back the negative rent overshooting period, so there is a 

loss from positive rent delays that is partially offset by the gain from negative rent delays. There 

may also be hysteresis in oxygen demand. This could be modeled with hysteresis in nutrients, as 

in Brock and Starrett (2003) and Maler, Xepapadeas, and de Zeeuw (2003) for shallow lakes, or 

hysteresis in the algae population. For an estuarine environment, it may be more realistic to do 

the latter. Without modeling hysteresis formally, the implications are less clear than simply 

speeding up or slowing down nutrient decay. However, we can speculate that measured from the 

status quo hysteresis would both delay the policy impact of a nitrogen reduction and decrease its 
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magnitude. Both of these effects would reduce the present value benefits of the policy. On the 

other hand, hysteresis would amplify the negative consequences of increased loadings, causing a 

greater benefit from avoiding additional loadings. 

A related timing effect is our assumption about the intrinsic growth of algae. Since we do 

not specify a species of algae, our model corresponds to some generic representative algae (or 

representative primary productivity). By assuming an intrinsic growth rate of 1.0, we assume that 

algae responds rapidly to changes in nutrient levels. A smaller intrinsic growth parameter would 

slow responsiveness, delay benefits, and thus lower the present value benefits of the policy 

change. On the other hand, a smaller parameter would also delay damages from increased 

nutrient levels and reduce the present value benefits of avoiding more pollution. With cycling 

due to open access, the net effect could have either sign. A simulation in which the intrinsic 

growth of algae is assumed to be 0.5 demonstrates this intuition; present value rent increase from 

the policy change is roughly $95,000 larger than in simulations using intrinsic growth of 1.0.  

Both of these timing effects illustrate a key difference between the traditional static 

approach to valuing water quality improvements and the dynamic bioeconomic approach in our 

paper. The static approach typically assumes a direct effect of water quality on behavior. When 

data on fish stocks are available, researchers can decompose this direct effect into the effect of 

water quality on the fish stock and the effect of fish stocks on behavior. The relationship between 

water quality and fish stocks is still a reduced-form one.  Static models by construction assume 

that the effects of a water quality improvement are instantaneous, and only a handful of 

researchers are able to relax the instantaneous effect assumption because doing so requires panel 

data. In contrast, our approach does not separate the timing of ecological impacts from the 

structure of the ecology and the resulting behavioral changes. These interdependencies can 

interact in nonlinear ways, and treating them as a sequence of reduced-form relationships could 

lead to different policy inferences.  

 

Lumped Parameters – Timing, Magnitude, and the Partial Reduced Form of a Coupled System 
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Economic speed of adjustment dramatically affects the timing and magnitude of gains 

from a policy change. When the harvest sector adjusts rapidly (slowly), baseline rents are small 

(large), and rent gains from the policy change are also small (large). Upon closer examination, 

this speed of adjustment parameter is also a lumped parameter. It reflects fixed costs of entry, 

constraints on available labor in the short run, as well constraints on available non-fishing 

employment in the short run. It is useful to lump these effects together in a dynamic fisheries 

model because they usually cannot be measured individually, whereas the speed of adjustment 

can be estimated econometrically like in Wilen (1976).  

As in any simulation model, the choice of a deterministic or a stochastic model can be a 

key strategic decision. Here we use a deterministic model for two reasons. First, since our 

problem is a new one in the literature, we seek to generate baseline insights with deterministic 

modeling. Second, point estimates are often more useful for policy-makers. One can debate the 

relative merits of stochastic and deterministic modeling in general or for any particular setting, 

but doing this is beyond the scope of our paper. Instead, we point to one aspect of the bio-

physical system that raises questions about deterministic modeling for this problem. Incidence of 

hypoxia does not unfold on a continuous basis but rather as a series of events governed by 

changes in hydrodynamic conditions. As an alternative to our approach, one could model the 

data generating process of these events. Since the effects of hypoxia enter linearly into our 

model, the importance of modeling stochasticity would likely hinge on the asymmetry of 

distributions characterizing hypoxic events and thickness of the tails. Adapting a lumped-

parameter model to deal with the episodic nature of hypoxia would be an interesting direction for 

future research.   

The ways in which our ecological parameters lump effects could matter even if results do 

not appear sensitive to the particular parameters. The hypoxia-related prey mortality parameter is 

a good example. This parameter captures the effect of increased algae on dissolved oxygen and 

the effect of dissolved oxygen on prey mortality in a multiplicative fashion. If both components 
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of this parameter are understated or overstated, the combined change could be substantial. This is 

a general problem of lumped-parameter models.  

Our treatment of space illustrates parameter lumping in a different way. There is no 

parameter that explicitly governs patch size. Rather, patch size is implicitly governed by 

population parameters. When predator carrying capacities are equal to each other across both 

patches and prey carrying capacities are as well, patch sizes are implicitly of equal size. But this 

illustrates a broader point about logistic-growth models: that these models implicitly characterize 

the quantity of available habitat. Logistic growth models also implicitly capture natural mortality 

through the interaction of carrying capacity and intrinsic growth.  

Of particular interest in a model of nutrient pollution is what the prey death parameter 

means when population parameters are lumped. Hypoxia can in principle lead to death and 

growth retardation. Over time at the population level, a lumped-parameter model cannot 

distinguish these effects, but it may not need to. The policy implications from a more detailed 

model that includes the effects of oxygen depletion on respiration of individual organisms may 

provide the same qualitative results and similar quantitative ones. Researchers need to ask how 

much would modeling the biological mechanism affect results, and is it worth the additional 

effort? 

The most important strategic modeling assumption is the actual choice of a lumped-

parameter model. A rough analogy can be drawn to an econometric choice among a structural 

model, a reduced form model, and a partial reduced-form. In other words, there exists a 

compromise choice between the two extremes. There may be ways of using structural 

information to provide over-identifying restrictions on a reduced-form model, and these in turn 

provide efficiency gains without having to estimate the structural model (Court, 1973). If we 

draw the analogy from statistical efficiency to the provision of scientific information, then a 

lumped-parameter model is like this partial reduced form. The true structure provides guidance 

for what we might consider in a lumped-parameter model. Clearly, the field of population 

dynamics has moved beyond the logistic growth model towards models with many parameters 
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that are more closely tied to observable quantities in nature. Yet, logistic growth can impose 

some restrictions that are consistent with the state of knowledge in many biological systems, and 

as in our model, features can be added to the basic structure to accommodate new knowledge. 

Our assumption of prey separability for the blue crabs is an example of this approach. We know 

that blue crabs have widely varying diets, but we also know that their preferred prey are 

particularly susceptible to hypoxia. Rather than discarding this information, we use it. We do not 

capture all of the ecosystem effects of hypoxia, but instead we capture ones that we think are of 

first-order importance for the blue crab fishery. Unfortunately, at the population level, we know 

very little quantitatively about interaction of blue crabs with their preferred prey. This raises the 

question: with problems quantifying population-level parameters, do researchers need to work 

from the ground up, presumably with some bioenergetic approach? 

The benefits of a lumped-parameter model are straightforward, but the costs are still in 

question. On the benefits side, the model provides a parsimonious representation of a coupled 

system that is consistent with the general structure of the problem. This parsimony allows a 

researcher to adapt the model in transparent ways to answer policy questions directly. For 

modeling coupled ecological and economic systems, which parameters are lumped and how they 

are lumped clearly makes a difference. The strategic modeling question is the following: is it 

worth the costs—in terms of intellectual effort and potentially lost precision—to aggregate over 

different model types and data scales to arrive at values for a lumped-parameter representation? 

If we begin with an ecological model and attach an economic one, we may answer this question 

differently than if we begin with an economic model and attach an ecological one. This may be 

the greatest challenge for bringing together ecological and economic models: from which point 

of view to begin. 
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Table 1: Sensitivity of Results to the Effect of Nitrogen on Primary Productivity 
 
 
 

ote: Assumes all other parameter values fixed at medium levels and 2.5% discount rate. Totals 

 

mu Loadings Implied A(0) Total PV Rents Change  in PV % Change Total Catch % Change Total Effort % Change Long-Run Catch Long-Run Effort
(million pounds) (1000s Trips) (million pounds) (1000s Trips)

0.05 Baseline 0.06316        39,814,000$     373.32 3,432 6.1384 65.892
0.05 30% Reduction 0.06316        40,009,000$     195,000$         0.5% 374.21 0.2% 3,439 0.2% 6.1513 66.047

0.1 Baseline 0.12632        39,077,000$     370.04 3,407 6.0982 65.354
0.1 30% Reduction 0.12632        39,512,000$     435,000$         1.1% 372.03 0.5% 3,422 0.4% 6.1282 65.702

0.2 Baseline 0.25263        37,366,000$     362.32 3,349 5.9975 64.068
0.2 30% Reduction 0.25263        38,386,000$     1,020,000$      2.7% 367.07 1.3% 3,384 1.0% 6.0737 64.911

0.4 Baseline 0.50526        33,124,000$     342.47 3,199 5.7003 60.662
0.4 30% Reduction 0.50526        35,687,000$     2,563,000$      7.7% 354.91 3.6% 3,291 2.9% 5.9303 62.93

0.6 Baseline 0.75789        28,043,000$     317.32 3,007 5.245 56.223
0.6 30% Reduction 0.75789        32,459,000$     4,416,000$      15.7% 339.86 7.1% 3,176 5.6% 5.7303 60.415

0.8 Baseline 1.01053        22,597,000$     288.22 2,780 4.647 51.125
0.8 30% Reduction 1.01053        28,813,000$     6,216,000$      27.5% 322.14 11.8% 3,039 9.3% 5.4585 57.382

0.9 Baseline 1.13684        19,930,000$     272.84 2,654 4.3554 48.563
0.9 30% Reduction 1.13684        26,872,000$     6,942,000$      34.8% 312.37 14.5% 2,963 11.6% 5.291 55.691

1 Baseline 1.26316        17,383,000$     257.15 2,523 4.128 46.043
1 30% Reduction 1.26316        24,888,000$     7,505,000$      43.2% 302.10 17.5% 2,883 14.2% 5.1022 53.906

 
 
N
are totaled over 50-year simulation. Long-run values are average per year over the last two years 
of each simulation. 
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Table 2: Sensitivity to Per Trip Costs 
 

ote: Assumes all other parameter values fixed at medium levels and 2.5% discount rate. Totals 

 

c + delta Loadings Total PV Rents Change  in PV % Change Total Catch % Change Total Effort % Change Long-Run Catch Long-Run Effort
(million pounds) (1000s Trips) (million pounds) (1000s Trips)

125 Baseline 44,461,000$   226.01 3,370 4.402 74.165
125 30% Reduction 47,019,000$   2,558,000$   5.8% 234.22 3.6% 3,464 2.8% 4.3475 76.058

175 Baseline 38,263,000$   275.49 3,324 3.1556 66.856
175 30% Reduction 40,784,000$   2,521,000$   6.6% 285.22 3.5% 3,415 2.8% 3.3185 68.759

225 Baseline 33,883,000$   325.59 3,228 4.9711 61.197
225 30% Reduction 36,456,000$   2,573,000$   7.6% 337.45 3.6% 3,319 2.8% 5.2012 63.44

240.45 Baseline 33,124,000$   342.47 3,199 5.7003 60.662
240.45 30% Reduction 35,687,000$   2,563,000$   7.7% 354.91 3.6% 3,291 2.9% 5.9303 62.93

275 Baseline 31,919,000$   381.04 3,141 7.1297 60.614
275 30% Reduction 34,422,000$   2,503,000$   7.8% 394.59 3.6% 3,233 2.9% 7.3491 62.809

325 Baseline 30,348,000$   435.09 3,068 8.4142 60.876
325 30% Reduction 32,747,000$   2,399,000$   7.9% 450.10 3.4% 3,159 3.0% 8.6546 62.903

375 Baseline 28,516,000$   485.16 3,000 9.2333 60.189
375 30% Reduction 30,831,000$   2,315,000$   8.1% 501.63 3.4% 3,089 3.0% 9.5265 62.14

 
 
N
are totaled over 50-year simulation. Long-run values are average per year over the last two years 
of each simulation. 
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Table 3: Sensitivity to Economic Speed of Adjustment 
 

ote: Assumes all other parameter values fixed at medium levels and 2.5% discount rate. Totals 

 

gamma Loadings Total PV Rents Change  in PV % Change Total Catch % Change Total Effort % Change Long-Run Catch Long-Run Effort
(million pounds) (1000s Trips) (million pounds) (1000s Trips)

15 Baseline 91,214,000$     405.89 3,093 6.727 61.687
15 30% Reduction 98,192,000$     6,978,000$   7.7% 424.15 4.5% 3,178 2.7% 6.8454 63.797

30 Baseline 51,063,000$     367.17 3,175 5.5887 65.006
30 30% Reduction 54,812,000$     3,749,000$   7.3% 380.91 3.7% 3,265 2.8% 5.837 67

40 Baseline 37,768,000$     348.69 3,199 5.2503 62.005
40 30% Reduction 40,659,000$     2,891,000$   7.7% 361.49 3.7% 3,290 2.8% 5.4859 64.2

45.37 Baseline 33,124,000$     342.47 3,199 5.7003 60.662
45.37 30% Reduction 35,687,000$     2,563,000$   7.7% 354.91 3.6% 3,291 2.9% 5.9303 62.93

50 Baseline 30,242,000$     339.45 3,197 6.2566 60.451
50 30% Reduction 32,573,000$     2,331,000$   7.7% 351.64 3.6% 3,290 2.9% 6.4771 62.74

60 Baseline 26,273,000$     337.93 3,198 7.0963 62.921
60 30% Reduction 28,205,000$     1,932,000$   7.4% 349.62 3.5% 3,292 2.9% 7.2763 65.112

75 Baseline 21,874,000$     336.26 3,218 6.2273 66.248
75 30% Reduction 23,375,000$     1,501,000$   6.9% 347.28 3.3% 3,311 2.9% 6.3746 68.199

100 Baseline 15,583,000$     326.84 3,230 5.362 60.791
100 30% Reduction 16,682,000$     1,099,000$   7.1% 337.20 3.2% 3,323 2.9% 5.5766 62.722

150 Baseline 11,319,000$     325.53 3,237 6.3249 66.844
150 30% Reduction 12,100,000$     781,000$      6.9% 335.73 3.1% 3,331 2.9% 6.4685 69.173

225 Baseline 7,594,000$       320.80 3,235 6.8168 63.601
225 30% Reduction 8,167,000$       573,000$      7.5% 330.56 3.0% 3,327 2.8% 7.2096 66.032

350 Baseline 5,017,000$       318.93 3,246 6.6801 64.286
350 30% Reduction 5,453,000$       436,000$      8.7% 328.35 3.0% 3,335 2.8% 7.1528 66.775

 
N
are totaled over 50-year simulation. Long-run values are average per year over the last two years 
of each simulation. 
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Figure 1: North Carolina Blue Crab Fishery Catch and Real Revenues 
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Figure 2: Blue Crab and Clam Populations With No Nitrogen Reduction and Initial Populations at  1/2 of kx 
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Figure 3: Time Paths of Effort, Harvest, and Rents 
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Figure 4: Blue Crab Migration with No Nitrogen Reduction
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Figure 5: Time Path of Policy Impacts on Rents 
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Figure 6: Time Path of Policy Impacts on Effort 
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Appendix A – Summary of Parameterization 

 

Equation(s) Parameter Name Value Source/Comment

1 Lbar 1.2 From Neuse TMDL (adjusted down from 1.3 to account some for stock in the 
system)

1 omega 0.95 A slow decay rate based on persistence of nutrients
2 mu 0.4 Borsuk , Stow, and Reckhow (2004b)

3, 4, 5 rx 0.75 Eggleston et al. (2004) 
3, 4, 5 kx 25.85            Eggleston et al. (2004). Carrying capacity scaled down to reflect the size of the 

fishery in the Neuse River and Pamlico Sound only. 
3, 4, 5 alpha 0.37              Backed out using Excel's nonlinear solver and imposing the steady-state 

condition in patch 1 (or 2) with no hypoxia
4, 5 phi 50 Scale intuition based on relative carrying capacities
4, 5 chsi 0.5

Allows for a wide range of responsiveness (and the potential for collapses in 
patch 1), less than or equal to corresponding rx to prevent negative populations.

6, 7 beta 0.001 Chosen to scale predation such that  abs(beta*kx) <ry
6, 7 ry 0.97              Clams are assumed fast growing (they are k-limited and not r-limited). 

Magnitude based on the survival regression in Borsuk, Powers and Peterson 
(2002) using minimum growth rate necessary to prevent population collapse 
under worst in-sample dissolved oxygen.

7 rho 0.79 Computed elasticity from Borsuk, Higdon, Stow, and Reckhow (2001) combined 
with Borsuk, Powers and Peterson (2002)

11, 12, 16, 17 p 0.87 Mean real price (weighted avg aggregated across hard, soft, 
and peeler, 1998-2002). In 2002 dollars using CPI Size D South

11, 12, 16, 17 c + delta 240.45 Rhodes, Lipton, and Shabman (2001) converted to 2002 dollars
12, 17 gamma 45.37            Estimated jointly with 1-period ahead forecasts on catch per trip data (1982-

2002) converting pots to trips and excluding 1994-1999 due to overreporting of 
pots. Pots converted to trips based on 2000-2002 trip data.

13, 14 theta 0.4 Smith and Wilen (2003)
15 q 0.00003 Using parms from Eggleston et al. (2004) calibrated to total catch across time 

and pattern of catch. 

Neuse share
of total NC

0.35
Share of the fishery in the Neuse River and Estuary + the Pamlico Sound

   Initial Conditions
1 N(0) 1.26              Loadings divided by w (start off at steady-state stock)
2 A(0) 0.51              Algae starts in a steady-state.

4, 5 X_1(0)=X_2(0) 12.92            1/2 of kx (bundled to pop. Parameters)
6, 7 Y_1(0)=Y_2(0) 0.50              1/2 of y carrying capacity
14 pi_1(0) 0.5 Initial effort allocated uniformly over space.
17 E(0) 32,077          35% of effort in the fishery (mean over 2000-2002)
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