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1 Introduction

In economics the importance of space has long been recognized in the

context of location theory,1 although as noted by Krugman (1998) there

has been some neglect in the systematic analysis of spatial economics,

associated mainly with difficulties in developing tractable models of im-

perfect competition which are essential in the analysis of location pat-

terns. After the early 1990s there was a renewed interest in spatial

economics, mainly in the context of new economic geography,2 which

concentrates on issues such as the determinants of regional growth and

regional interactions, or the location and size of cities (e.g. Krugman,

1993).

In environmental and resource management problems the majority

of the analysis has been concentrated on taking into account the tem-

poral variation of the phenomena, and has been focused on issues such

as the transition dynamics towards a steady state, or the steady-state

stability characteristics. However, it is clear that when renewable and

especially biological resources are analyzed, the spatial variation of the

phenomenon is also important. Biological resources tend to disperse in

space under forces promoting “spreading”, or “concentrating” (Okubo,

2001); these processes along with intra and inter species interactions in-

duce the formation of spatial patterns for species. In the management of

economic-ecological problems, the importance of introducing the spatial

dimension can be associated with a few attempts to incorporate spatial

issues, such as resource management in patchy environments (Sanchirico

and Wilen, 1999, 2001; Sanchirico, 2004; Brock and Xepapadeas, 2002),

the study of control models for interacting species (Lenhart and Bhat,

1992; Lenhart et al., 1999), the control of surface contamination in water

bodies (Bhat et al. 1999), or the creation of marine reserves (Neubert,

2003).

1See for example Alfred Weber (1909), Harold Hotelling (1929), Walter Christaller
(1933), and August Löcsh (1940) for early analysis.

2Krugman (1998) attributes this new research to: the ability to model monopolis-
tic competition using the well known model of Dixit and Stiglitz (1977); the proper
modeling of transaction costs; the use of evolutionary game theory; and the use of
computers for numerical examples.
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In the economic-ecological context, a central issue that this paper at-

tempts to explore is under what conditions interacting processes charac-

terizing movements of biological resources, and economic variables which

reflect human actions on the resource (e.g. harvesting effort), could gen-

erate steady-state spatial patterns for the resource and the associated

economic variables. That is, a steady-state concentration of the resource

and the economic variable which is different at different points in a given

spatial domain. We will call this formation of spatial patterns spatial

heterogeneity, in contrast to spatial homogeneity which implies that the

steady state concentration of the resource and the economic variable is

the same at all points in a given spatial domain.3

As stated by Levin (2002) pattern formation and the emergence of

robust patterns as asymptotic outcomes of dynamical systems is the

first aspect of the two main processes characterizing complex adaptive

systems,4 the other being evolution. A common framework for study-

ing pattern formation is the use of the concept of diffusion as central

concept in modelling the movements in space-time of populations of

species, chemicals or other state variables, which are interacting locally

and redistribute via random movements.. Diffusion is thus defined as a

process whereby the microscopic irregular movement of particles such as

cells, bacteria, chemicals, or animals results in some macroscopic regu-

lar motion of the group (Okubo and Levin, 2001; Murray, 1993, 2003).

Biological diffusion is based on random walk models, which when cou-

pled with population growth equations, lead to general reaction-diffusion

systems.5 As stated by Okubo, et al. (2001, p. 348),

“In general a diffusion process in an ecosystem tends to give

rise to a uniform density of population in space, [that is spa-

tial homogeneity]. As a consequence it may be expected that

3Trivially all dynamic models where spatial characteristics and dispersal are ig-
nored lead to spatial homogeneity.

4Following Levin (1999) complex adaptive systems can be defined by three prop-
erties: (i) diversity and individuality of components; (ii) localized interactions among
those components; and (ii) an autonomous process that uses the outcomes of those
interactions to select a subset of those components for replication or enhancement.

5When only one species is examined the coupling of classical diffusion with a
logistic growth function leads to the so-called Fisher-Kolmogorov equation.
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diffusion, when it occurs, plays the general role of increasing

stability in a system of mixed populations and resources.

...However there is an important exception known as diffu-

sion induced instability, or diffusive instability. This excep-

tion might not be a rare event especially in aquatic systems.”

It was Alan Turing (1952) who suggested that under certain con-

ditions reaction-diffusion systems, which have an asymptotically stable

equilibrium in the absense of diffusion can generate spatially heteroge-

neous patterns under diffusion.This is the so-called Turing mechanism

or Turing effect for generating diffusion instability.6 The Turing effect

implies that an initially spatially homogeneous state can be transformed

into a stable patterned state under purturbations induced by diffusion.

Levin (2002) presents other mechanisms that can act as pattern gen-

erators, althought the Turing mechanism has a central part in his dis-

cussion. However Levin, and as far as we know other researchers in the

field, do not treat optimal management of a Turing dynamical mecha-

nism as we do this in the current paper. We use the classical problem of

optimal harvesting of a renewable resource as a leading example, but we

believe our paper will help in formulating an analytically tractible ap-

proach to the optimal management of general complex adaptive systems

as discussed by Levin.

In this context the purpose of this paper is to explore the impact of

the Turing mechanism on the emergence of diffusive instability in opti-

mal control problems in space-time using as a leading example a unified

economic/ecological model of optimal resource management. This is a

different approach to the one most commonly used to address spatial

issues, which is the use of metapopulation models in discrete patchy en-

vironments with dispersal among patches (e.g. Sanchirico and Willen,

1999; Sanchirico, 2004). The use of the Turing mechanism allows us to

analyze in detail conditions under which diffusion could produce spatial

6It should also be noted that the emergence of spatial homogeneity or not depends
on boundary conditions associated with the spatial domain. If there is no flux on
the boundary of the spatial domain (zero flux conditions), then spatial homogene-
ity might be expected, although as it will be shown, the Turing mechanism under
appropriate conditions can generate spatial heterogeneity with zero flux conditions.
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heterogeneity and generation of spatial patterns, or spatial homogene-

ity. Thus the Turing mechanism can be used to reveal conditions which

generate spatial heterogeneity in models where ecological variables in-

teract with economic variables. When spatial heterogeneity emerges the

concentration of variables of interest (e.g. resource stock or harvesting

effort) in a steady state, are different in different locations of a given

spatial domain.

The importance of the Turing mechanism in spatial economics has

been recognized by Fujita et al. (1999, chapter 6) in the analysis of core-

periphery models. Our analysis extends this approach mainly by explicit

introduction of diffusion processes governing interacting economic and

ecological variables in continuous time space in optimal management

models, and by developing the ideas for the emergence of spatial het-

erogeneity in an optimizing context by an appropriate modification of

Pontryagin’s maximum principle.

In particular we consider the emergence of spatial heterogeneity in

the context of an optimizing model, where the objective of a social plan-

ner is to maximize a welfare criterion subject to resource dynamics that

include a diffusion process. We present a suggestion for extending Pon-

tryagin’s maximum principle to the optimal control of diffusion. Al-

though conditions for the optimal control of partial differential equations

have been derived either in abstract settings (e.g. Lions 1971) or for spe-

cific problems,7 our derivation not only makes the paper self contained,

but it is also close to the optimal control formalism used by economists,

so it can be used for analyzing other types of economic problems, where

state variables are governed by diffusion processes. Furthermore, the

Pontryagin principle developed in this paper allows for an extension of

the Turing mechanism for generation of spatial patterns, to the optimal

control of systems under diffusion.

A new - to our knowledge - characteristic of our continuous space-

time approach is that we are able to embed Turing analysis in an optimal

control recursive infinite horizon approach in a way that allows us to

7See for example Lenhart and Bhat (1992); Lenhart et al. (1999); Bhat et al.
(1999); Raymond and Zidani (1998, 1999).
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locate sufficient conditions on parameters of the system (for example, the

discount rate on the future, and interaction terms in the dynamics) for

diffusive instability to emerge even in systems that are being optimally

controlled. This mathematically challenging problem becomes tractable

by exploiting the recursive structure of the utility and the dynamics in

our continuous space/time framework in contrast to the more traditional

approach of discrete patch optimizing models. This is so because the

symmetries in the spatial structure coupled with the recursivity in the

temporal structure of our framework reduce the potentially very large

number of state and costate variables to a pair of “sufficient” variables

that describe the dynamics of the whole system. We believe that our

framework will be quite easily adaptable to other applications, including

an extension of the classical Ramsey-Solow growth model to include

spatial externalities. Colin Clark’s classic volume (1990), as well as the

work of Sanchirico and Wilen (1999, 2001), is very suggestive, but they

do not contain the unification of Turing analysis with infinite horizon

temporally recursive optimal control problems that we present here.8

Here, we use our methodology to study an optimal fishery manage-

ment problem under biomass diffusion. For the fishery problem, our

results suggest that diffusion could alter the usual saddle point char-

acteristics of the spatially homogeneous steady state as defined by the

modified Hamiltonian dynamic system. In an analog to the Turing mech-

anism for an optimizing system, spatial heterogeneity in a steady state

could be the result of optimal management. In particular we locate con-

ditions for the Turing set of parameters inducing diffusive instability to

be non-empty in the case where we have, under a positive discount rate,

a saddle point steady state when diffusion is zero. On the other hand

diffusion could stabilize, in the saddle point sense, an unstable steady

state of an optimal control problem.

8We would note again that the Turing mechanism is not the only source of spa-
tial heterogeneity in resource management models. As shown by Neubert (2003), a
spatially heterogeneous steady state emerges in the temporal equilibrium of a bioeco-
nomic model of optimal harvesting and marine reserve design, where the associated
Hamiltonian function is linear in harvesting effort.

6



2 On the Optimal Control of Diffusion: An Exten-

sion of Pontryagin’s Principle

In this section we explicitly introduce optimization and we analyze the

effects of the optimal control of diffusion processes in the emergence of

spatial heterogeneity through diffusion driven instability.

We start by considering an optimal control problem defined in the

spatial domain z ∈ Z = [z0, z1] and the time domain t ∈ [t0, t1]. Let
x (t, z) , u (t, z) be the scalar state and control variables respectively at

time t and spatial point z, taking values in compact sets X and U . Let
f (x (t, z) , u (t, z)) be a net benefit function satisfying standard concavity

assumptions and consider the following optimal control problem:

max
{u(t,z)}

Z z1

z0

Z t1

t0

f (x (t, z) , u (t, z)) dtdz (1)

s.t.
∂x (t, z)

∂t
= g (x (t, z) , u (t, z)) +D

∂2x (t, z)

∂z2
(2)

x (t0, z) given,
∂x (t, z)

∂z

¯̄̄̄
z=z0

=
∂x (t, z)

∂z

¯̄̄̄
z=z1

= 0 : zero flux (3)

x (t, z0) = x (t, z1) = 0 : hostile boundary, x (t0, z) z ∈ (z0, z1) given
(4)

In the above problem the transition equation (2) states that the rate

of change of the state variable, e.g the concentration of a biological re-

source or some other stock, at a given spatial point is determined by

a general growth function g (x (t, z) , u (t, z)) which reflects the kinetics

of the state variable, and by dispersion reflected by D ∂2x(t,z)
∂z2

. In (2)

D > 0 is diffusivity or the diffusion coefficient and the basic assump-

tions regarding diffusion are those of the classical approach (or Ficksian

diffusion), stating that the flux of the resource is proportional to the gra-

dient of the resource concentration and that the movement is from high

to low concentration. The first part of (3) provides initial conditions,

while the second part is a zero flux condition. By zero flux condition

it is assumed that there is no external biomass or effort input on the
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boundary of the spatial domain.9 Conditions (4) are an alternative set

of boundary conditions indicating that the exterior of the spatial domain

(z0, z1) is completely hostile to the resource (e.g. Murray, 2003, Vol II, p.

120; Neubert, 2003). So if x denotes a species, (4) imply that individuals

that cross the boundary die.

Problem (1) is an optimal control problem in fixed and finite time

and spatial domains. The zero flux terminal condition (3) corresponds

to a “free endpoint problem” for the state variable, since the terminal

value of the state variable is not a priori specified at terminal time or

terminal space. The hostile boundary condition (4) can be associated

with a type of a “fixed endpoint problem” for the state variable, since

the terminal value of the state variable is zero at terminal space for all

t. These terminal conditions will be used to specify the appropriate

transversality conditions for the problem.

Problem (1) to (4) has been analyzed in more general forms (e.g.

Lions, 1971). We however choose to present here an extension of Pon-

tryagin’s principle for this problem, because it is in the spirit of optimal

control formalism used by economists, and thus can be used for other ap-

plications, but also because it makes the whole analysis in the paper self

contained.10 Furthermore, as noted in the introduction, the use of Pon-

tryagin’s principle in continuous time space allows for a drastic reduction

in the dimensionality of the dynamic system describing the phenomenon

and makes the problem tractable. Our results are presented below, with

proofs in the Appendix.

Maximum Principle under diffusion: Necessary Conditions
- Finite time horizon (MPD-FT). Let u∗ = u∗ (t, z) be a choice of

instrument that solves problem (1) to (4) and let x∗ = x∗ (t, z) be the

associate path for the state variable. Then there exists a function λ (t, z)

such that for each t and z.11

9The zero flux boundary conditions is imposed so that the organizing pattern is
self-organizing and not driven by boundary conditions (Murray 2003, Vol II, p.82).
10Similar conditions have been derived for other cases. such as the control of

parabolic equations (Raymond and Zidani,1998, 1999), boundary control (Lenhart
et al., 1999), or distributed parameter control (Dean Carlson et al., 1991; Lenhart
and Bhat, 1992).
11In some cases in order to simplify notation, and when no confusion arises, sub-
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1. u∗ = u∗ (t, z)maximizes the generalized Hamiltonian function

H (x (t, z) , u (t, z) , λ (t, z)) =

f (x (t, z) , u (t, z)) + λ (t, z)

∙
g (x (t, z) , u (t, z)) +D

∂2x (t, z)

∂z2

¸
or under appropriate concavity assumptions:

fu + λ (t, z) gu = 0 (5)

2.

∂λ (t, z)

∂t
=− ∂H

∂x
−D

∂2λ (t, z)

∂z2
= −

µ
fx + λ (t, z) gx +D

∂2λ (t, z)

∂z2

¶
(6)

∂x (t, z)

∂t
=g (x (t, z) , u∗ (t, z)) +D

∂2x (t, z)

∂z2
(7)

evaluated at u∗ = u∗ (x (t, z) , λ (t, z)) .

3. The following transversality conditions holdZ z1

z0

λ (t1, z) x (t1, z) dz = 0, ⇒ λ (t1, z) = 0, z ∈ [z0, z1] (8)
For zero flux boundary conditions (3) it also holds that
∂λ (t, z1)

∂z
=

∂λ (t, z0)

∂z
= 0 (9)

The result can also be extended to infinite time horizon problems

scripts associated with functions denote partial derivatives.
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with discounting. In this case the problem is:Z z1

z0

Z ∞

t0

e−ρtf (x (t, z) , u (t, z)) dtdz , ρ > 0 (10)

s.t
∂x

∂t
= g (x (t, z) , u (t, z)) +D

∂2x (t, z)

∂z2
(11)

x (t0, z0) given,
∂x (t, z)

∂z

¯̄̄̄
z=z0

=
∂x (t, z)

∂z

¯̄̄̄
z=z1

= 0 : zero flux (12)

x (t, z0) = x (t, z1) = 0 : hostile boundary,x (t0, z) , z ∈ (z0, z1) given
(13)

Maximum Principle under diffusion: Necessary Conditions
- Infinite time horizon (MPD-IT). Let u∗ = u∗ (t, z) be a choice of

instrument that solves problem (10) to (13) and let x∗ = x∗ (t, z) be the

associate path for the state variable. Then there exists a function λ (t, z)

such that for each t and z

1. u∗ = u∗ (t, z)maximizes the generalized current value Hamiltonian

function

H (x (t, z) , u, λ (t, z)) =

f (x, u) + λ (t, z)

∙
g (x (t, z) , u (t, z)) +D

∂2x (t, z)

∂z2

¸
,

or under appropriate concavity assumptions:

fu + λ (t, z) gu = 0 (14)

2.

∂λ (t, z)

∂t
=ρλ (t, z)− ∂H

∂x
−D

∂2λ (t, z)

∂z2
= (15)

ρλ (t, z)−
µ
fx + λ (t, z) gx +D

∂2λ (t, z)

∂z2

¶
∂x (t, z)

∂t
=g (x (t, z) , u∗ (t, z)) +D

∂2x (t, z)

∂z2
(16)

evaluated at u∗ = u∗ (x (t, z) , λ (t, z))
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3. Transversality conditions at infinity are part of the sufficient con-

ditions given below.

It is clear that conditions (5)-(9) or (14)-(16) can characterize the

whole dynamic system in continuous time space. It is interesting to note

that (15) - (16) is a modified dynamic Hamiltonian system defined in

continuous space time. In this system the diffusion coefficient for the

costate variable is negative, and it is the opposite of the state variable’s

diffusion coefficient. Since the costate variable can be interpreted as the

shadow value of the resource stock, negative diffusion implies that the

movement in space is from low shadow values to higher shadow values.

Furthermore, the opposite signs of the diffusion coefficient for the state

and the costate variable imply that time ‘runs backward’ in the state

variable and ‘runs forward’ in the costate variable which is a forward

capitalization type variable in capital theoretic terms.

The conditions derived above are essentially necessary conditions.

Sufficiency conditions can also be derived by extending sufficiency theo-

rems of optimal control. Proofs are provided in the Appendix.

Maximum Principle under diffusion: Sufficient conditions -
Finite time horizon
Assume that functions f (x, u) and g (x, u) are concave differentiable

functions for problem (1) to (4) and suppose that functions x∗ (t, z) , u∗ (t, z)

and λ (t, z) satisfy necessary conditions (5)-(9) for all t ∈ [t0, t1] , z ∈
[z0, z1] and that x (t, z) and λ (t, z) are continuous with

λ (t, z) ≥ 0 for all t and z. (17)

Then the functions x∗ (t, z) , u∗ (t, z) solve the problem (1) to (4). That

is, the necessary conditions (5) - (9) are also sufficient.

The result can also be extended along the lines of Arrow’s sufficiency

theorem. We state here the infinite horizon case.

Maximum Principle under diffusion: Sufficient conditions -
Infinite time horizon
Let H0 denote the maximized Hamiltonian, or H0 (x, λ) = max

u
H (x, u, λ) .

If the maximized Hamiltonian is a concave function of x for given λ, then
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functions x∗ (t, z) , u∗ (t, z) and λ (t, z) that satisfy conditions (14)-(16)

for all z ∈ [z0, z1] and the transversality conditions

lim
t→∞

e−ρt
Z z1

z0

λ (t, z) dz ≥ 0, lim
t→∞

e−ρt
Z z1

z0

λ (t, z)x (t, z) dz = 0 (18)

or

lim
t→∞

e−ρtλ (t, z)x (t, z) = 0 when (λ (t, z) , x (t, z)) ≥ 0 ∀ t, z (19)

solve the problem (10) to (13).

3 Optimal Harvesting under Biomass Diffusion

Having established the optimality conditions, we are interested in the im-

plications of diffusion on optimally controlled systems regarding mainly

the possibility of emergence of spatial heterogeneity under optimal con-

trol, but also the possibility of diffusion acting as a stabilizing force for

unstable steady states under optimal control. To illustrate our approach

we use a classical case from ecological economics, namely the optimal

harvesting of a renewable biological resource (e.g. fishery). Let x (t, z)

denote the concentration of the biomass of a renewable resource (e.g.

fish) at spatial point z ∈ Z, at time t, with x taking non-negative values
in a compact set X , and Z a one-dimensional spatial domain such that
0 ≤ z ≤ a. Boundary conditions could be either zero flux at z = 0 and

z = a, that is, ∂x(t,z)
∂z

¯̄̄
z=0

= ∂x(t,z)
∂z

¯̄̄
z=a

= 0, or of the hostile type that

is, x (t, 0) = x (t, a) = 0, implying that fish do not survive outside the

spatial domain. Biomass grows according to a standard concave growth

function F (x) and disperses in space with a constant diffusion coefficient

D, or
∂x (t, z)

∂t
= F (x (t, z))−H (t, z) +D

∂2x (t, z)

∂z2

HarvestingH (t, z) of the resource is determined asH (t, z) = qx (t, z)E (t, z) ,

where E (t, z) denotes harvesting effort (e.g. boats) at spatial point z

and time t, taking non-negative values in a compact set E , and q > 0 is

the catchability coefficient. The total cost of applying effort E (t, z) at

location z is given by an increasing and convex function c (E (t, z)) in

effort. Let benefits from harvesting at each point in space be given by
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an increasing and concave function S (H (t, z)) . The optimal harvesting

problem in space-time is then defined as:

max
E(t,z)

Z ∞

0

Z
Z
e−ρt [S (H (t, z))− c (E (t, z))] dzdt (20)

s.t.
∂x (t, z)

∂t
= F (x (t, z))− qx (t, z)E (t, z) +D

∂2x (t, z)

∂z2
(21)

x (0, z) given, and zero flux on 0, a, or (22)

x (t, 0) = x (t, a) = 0, x (0, z) , z ∈ (0, a) given (23)

Following the results of the previous section,MPD-IT implies that the
optimal control maximizes the generalized current value Hamiltonian for

each location z,

H =S (H (t, z))− c (E (t, z) , z)+ (24)

μ (t, z)

∙
x (t, z) (s− rx (t, z))− qx (t, z)E +D

∂2x (t, z)

∂z2

¸
Setting S

0
(H (t, z)) = p (z) > 0, necessary conditions for theMPD-IT,

omitting t to simplify notation, imply

∂H
∂E (z)

= 0 or (p (z)− μ (z)) qx (z) = c
0
(E (z)) (25)

E0 (z) =E (x (z) , μ (z)) , E0 (z) ≥ 0, if p (z)− μ (z) ≥ 0, (26)

∂E

∂x
=
(p− μ) q

c00
> 0 ,

∂E

∂μ
= −qx

c00
< 0 for all z (27)

Then, the Hamiltonian system in space time becomes:

∂x

∂t
=F (x)− qxE (x, μ) +D

∂2x

∂z2
= G1 (x, μ) +D

∂2x

∂z2
(28)

∂μ

∂t
=
h
ρ− F

0
(x) + qE (x, μ)

i
μ− pqE (x, μ)−D

∂2μ

∂z2
= G2 (x, μ)−D

∂2μ

∂z2

(29)

The Hamiltonian system (28) - (29) indicates that in the optimally

controlled system the resource’s biomass moves from high concentration

to low concentration, while the biomass shadow value moves in space
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from points of low value to points of high value. The purpose of our

analysis is to examine conditions under which the optimally controlled

diffusion system (28) - (29) could either produce a spatially heteroge-

neous pattern that will persist in the steady state, in the sense that the

biomass concentration and the biomass shadow value will be different in

different points of the spatial domain, or that the system will settle to a

spatially homogeneous, or ‘flat’, state where the biomass concentration

and the biomass shadow value are the same in every point of the spatial

domain. We will explore the possibility of the Turing mechanism acting

as a driver for inducing spatial heterogeneity.

3.1 The Turing mechanism in optimally controlled

systems

The Turing mechanism for generating diffusion instability in reaction

diffusion systems relies on the analysis of the stability of a spatially ho-

mogeneous (or ‘flat’) steady state of the associated dynamical system

under perturbations induced by diffusion. In the optimally controlled

system this implies that the Turing effect should be examined in associ-

ation with the stability of the spatially homogeneous steady state of the

Hamiltonian system (28) - (29). A “flat” steady state (x∗, μ∗) for this

system is determined as the solution of ∂x
∂t
= ∂μ

∂t
= 0 for D = 0. Given

the nonlinear nature of (28) - (29), although it is possible to derive gen-

eral conditions for the emergence of Turing instability, it not possible to

derive closed form solutions and verify whether the conditions for the

emergence of Turing instability are satisfied in a non-empty parameter

set.

Since we feel it is important at this stage to verify the emergence

of Turing instability in an optimally controled system under diffusion,

a task which to our knowledge has not been performed, we will replace

the non-linear control problem with its linear quadratic approximation

and verify the emergence of Turing instability for the linear quadratic

model. In this way we can derive precise conditions under which Turing

instability can emerge in linear quadratic models or models that can be

formulated in terms of their linear quadratic approximations.
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We start by replacing problem (20) - (23) with its linear quadratic

approximation. In doing so we extend the method developed by Fleming

(1971), and Magill (1977)12 - by which a non-linear optimal stochastic

control problem is replaced by a simpler linear quadratic optimal sto-

chastic control problem - to the case in which a deterministic control

problem (such as a resource management problem), where the transi-

tion of the system is described by a partial differential equation with a

diffusion term, and not by an ordinary differential equation, is replaced

by a linear quadratic approximation.

Proposition 1 Let (x∗, μ∗) be a flat steady state of the Hamiltonian
system (28) - (29) satisfying the optimality conditions (14)-(16). Let

E∗ be the corresponding steady-state effort, and H∗ = qE∗x∗. Then un-

der certain conditions problem (20) - (23) can be replaced by the linear

quadratic (LQ) problem:

max
u(t,z)

Z ∞

0

Z
Z
e−ρt

∙
−Q
2
y2 − R

2
u2
¸
dzdt Q,R, ρ > 0 (30)

s.t.
∂y (t, z)

∂t
= Sy (t, z)−Gu (t, z) +D

∂2y (t, z)

∂z2
, S,G > 0 (31)

y (0, z) given, and zero flux on 0 and a, or (32)

hostile boundary y (t, 0) = y (t, a) = 0, y (0, z) , z ∈ (0, a) given (33)

where

(y (t, z) , γ (t, z) , p (t, z)) = (34)

(x (t, z)− x∗, E (t, z)−E∗, μ (t, z)− μ∗)

and u (t, z) = γ (t, z) +
N

B
y (t, z) , N T 0, B < 0 (35)

and the initial state x0 = x (0, z) is close to x∗ for all z ∈ Z.

For the derivation and the definitions of the parameters of the LQ

problem see Appendix.

Following the results of the previous section,MPD-IT implies that
optimal control maximizes the generalized current value Hamiltonian for
12See also Judd (1996) for a similar approach.
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the LQ problem for each location z,

H = −Q
2
y2 − R

2
u2 + p (t, z)

∙
Sy −Gu+D

∂2y

∂z2

¸
(36)

The necessary conditions for theMPD-IT, omitting t to simplify nota-
tion, imply

∂H
∂E (z)

=−Ru− pG = 0⇒ u0 = −G
R
p (37)

with E=u0 +E∗ −N/B ≥ 0 ¡
= 0 if u0 +E∗ < N/B

¢
(38)

Then, the Hamiltonian system in space time becomes:

∂y (t, z)

∂t
=Sy (t, z)− G

R
p (t, z) +D

∂2y (t, z)

∂z2
(39)

∂p (t, z)

∂t
= [ρ− S] p (t, z) +Qx (t, z)−D

∂2p (t, z)

∂z2
(40)

3.1.1 Existence of the Turing mechanism in optimally con-
trolled LQ system

The flat steady state for (y∗, p∗) for the LQ problem is determined as

the solution of ∂y
∂t
= ∂p

∂t
= 0 of (39) - (40) for D = 0. It is clear by the

homogeneity of the flat system (39) - (40) that the origin is the steady

state, or (y∗, p∗) = (0, 0) . The stability of this steady state depends on

the Jacobian matrix

J =

"
S G/R

Q ρ− S

#
Therefore for the flat steady state we have tr(J) = ρ > 0 and det J =

(ρ− S)S −G/R. Hence, if det J > 0 the steady state is unstable, while

if det J < 0 the steady state has the local saddle point property. In

the saddle point case there is a one-dimensional manifold such that for

any initial value of y there is an initial value for p, such that the system

converges to the origin along the manifold.

The idea behind the Turing mechanism for diffusion driven instability

and pattern formation is that an asymptotically stable, in the absence of

diffusion, spatially homogeneous steady state, can be destabilized locally
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by perturbations induced by diffusion. The result of this instability could

be the emergence of a regular stable patterned distribution of biomass

and its shadow value across the spatial domain.

To analyze the impact of diffusion consider the Jacobian of the full

Hamiltonian system (39) - (40), to obtain:

wt = Jw+D̃wzz , (41)

w=

Ã
y (t, z)

p (t, z)

!
, wt =

Ã
∂y/∂t

∂p/∂t

!
wzz =

Ã
∂2y/∂z2

∂2p/∂z2

!
, D̃ =

Ã
D 0

0 −D

!
(42)

Following Murray (2003) we consider the time-independent solution of

the spatial eigenvalue problem

Wzz + k2W=0, Wz=0, for z = 0, a (43)

where k is the eigenvalue. For the one-dimensional domain (0, a) we

have solutions for (43) which are of the form

Wk (z) = An cos
³nπz

a

´
, n = ±1, ±2, ..., (44)

where An are arbitrary constants. Solution (44) satisfies the zero flux

condition at z = 0 and z = a.13 The eigenvalue is k = nπ/a, and

1/k = a/nπ is a measure of the wave-like pattern. The eigenvalue k

is called the wavenumber and 1/k is proportional to the wavelength

ω : ω = 2π/k = 2α/n. Let Wk (z) be the eigenfunction corresponding

to the wavenumber k. We then look for solutions of (41) of the form

w (t, z) =
X
k

cke
λtWk (z) (45)

Substituting (45) into (41), using (43) and canceling eλt we obtain for

13If we are to use the hostile boundary conditions (4) then the solution would be
of the formWk (z) = An sin

¡
nπz
a

¢
, n = ±1,±2, ..., so that boundary conditions are

satified at 0 and a.
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each k or equivalently each n, that λWk = JWk − Dk2Wk. Since we

require non-trivial solutions forWk, λ must solve¯̄̄
λI − J + D̃k2

¯̄̄
= 0

Then the eigenvalue λ (k) as a function of the wavenumber is obtained

as the roots of

λ2 − ρλ+ h
¡
k2
¢
= 0 (46)

h
¡
k2
¢
= −D2k4 +D (2S − ρ) k2 + det J (47)

where the roots are given by:

λ1,2
¡
k2
¢
=
1

2

³
ρ±

p
ρ2 − 4h (k2)

´
It should be noted that the flat (no diffusion) case corresponds to k2 = 0,

so that h (k2 = 0) = det J, and λ1,2 = 1
2

³
ρ±pρ2 − 4 detJ

´
. We exam-

ine the implication of diffusion in the case where the spatially homoge-

neous steady state is a saddle point, that is λ2 < 0 < λ1 for k2 = 0, and

diffusion generates spatial heterogeneity through the Turing mechanism.

In this case det J < 0. Since tr J > 0 the spatially homogeneous

system converges to the flat steady state (x∗, p∗) = (0, 0) along the

stable manifold. On this manifold and in the neighborhood of the steady

state, for any initial value of y there is an initial value of p such that the

spatially homogeneous system converges to the flat steady state. For the

optimally-controlled system the optimal solution in the neighborhood of

the steady state is such thatÃ
y0 (t, z)

p (t, z)

!
= C2v2e

λ2t , for all z (48)

whereC2 is a constant determined by initial conditions on y and transver-

sality conditions, and v2 is the eigenvector corresponding to λ2. In par-

ticular for the linearized system the transversality condition at infinity,

limt→∞ e−ρt
R∞
0

p (t, z) y0 (t, z) = 0 for all z, forces the constant C1 as-

sociated with positive root λ1 to be zero. Thus by choosing C2 such
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that initial conditions on y and transversality conditions at infinity are

satisfied, the initial conditions for p are selected such that the linearized

system ends on the stable manifold. The corresponding path for the op-

timal control u is given by u0 = (−G/R) p (t, z) for all z. Solution (48)
can be used to define the stable manifold as a function p = φ (y) , and

the associated optimal policy function u0 = ψ (y) . By choosing appro-

priate values for y in the neighborhood of the steady state, such that

yL < y∗ < yU , the stable manifold can be represented by the set

MS = {(y, p) : p = φ (y) , y ∈ (yL, yU)} (49)

For any point along the manifold the state-costate system converges to

the spatially homogeneous steady state.

We consider now the impact of a perturbation induced by diffusion.

Under diffusion the smallest root λ2 is given by

λ2
¡
k2
¢
=
1

2

³
ρ−

p
ρ2 − 4h (k2)

´
, k2 =

n2π2

a2
(50)

Then,

• If 0 < h (k2) < ρ2/4 for some k, then λ2 becomes real and positive.

• If h (k2) > ρ2/4 for some k, then both roots corresponding to λ2

are complex with positive real parts.

In both cases above, the linearly stable steady state (y∗, p∗) ∈MS be-

comes unstable to spatial disturbances. Therefore if h (k2) > 0 for some

k, then λ2 (k
2) > 0 and the optimally controlled Hamiltonian system

becomes unstable to spatial perturbations, in the neighborhood of the

flat steady state and along the stable manifold. From (47) the quadratic

function h (k2) is concave, and therefore has a maximum. Furthermore,

h (0) = detJ < 0 and h
0
(0) = (2S − ρ) . Then h (k2) has a maximum

for

k2max : h
0 ¡
k2max

¢
= 0, or k2max =

(2S − ρ)

2D
> 0, for (2S − ρ) > 0 (51)
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If h (k2max) > 0 or−D2k4max+D (2S − ρ) k2max+det J > 0, and 2S−ρ > 0,
then there exist two positive roots k21 < k22 such that h (k

2) > 0 and

λ2 (k
2) > 0 for k2 ∈ (k21, k22) . Using (51) the existence of two positive

roots k21 < k22 requires

(2S − ρ)2

4
+ det J > 0 , or (52)

(2S − ρ)2

4
+ (ρ− S)S − QG

R
=
ρ2

4
− QG

R
> 0 (53)

The interval (k1, k2) determines the range of the unstable modes associ-

ated with the spatial heterogeneous solution, while h (k2) is the disper-

sion relationship associated with the optimal control problem.14 Diffu-

sion driven instability in the optimally controled system emerges if the

maximum of the dispersion relationship is in the positive quadrant along

with the negative condition on the Jacobian of the flat system. These

conditions are summarized below.

(ρ− S)S − QG

R
< 0 (54)

2S − ρ> 0 (55)
ρ2

4
− QG

R
> 0 (56)

with

k21,2 =
(2S − ρ)±p(ρ2 − 4QG/R)

2
> 0 (57)

The set of parameters for which (54)-(56) is satisfied is the Turing space.

It is clear that for ρ = 0 the Turing space is empty and diffusion driven

instability does not emerge. However for higher discount rates and for

appropriate values ofQ,G, S andR, the Turing space need not be empty.

This is shown in figure 1 where the Turing space is defined in the (ρ,R)

space for given values of Q,G, S.

[Figure 1]

The inequality (54) is satisfied above line BB, the inequality (55)

14For a detailed analysis of the dispersion relationship in problems without opti-
mization, see Murray (2003).
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is satisfied below the line 2SCD, while the inequality (56) is satisfied

above the line AA. Thus the Turing space is the area DCB.

Assume that for a parameter constellation (ρ, S,R,Q,G) the Turing

set is not empty. Then the optimal spatially heterogeneous solution,

under zero flux boundary conditions emerging from (44) and (45), is the

sum of unstable modes or

w0 (t, z) ∼
n2X
n1

Bn exp

∙
λ2

µ
n2π2

a2

¶
t

¸
cos

nπz

a
, k2 =

³nπ
a

´2
where λ2 (k2) > 0 for k2 ∈ (k21, k22) , n1 is the smallest integer greater or
equal to ak1/π and n2 is the largest integer less than or equal to ak2/π,

and the wavenumbers k1 and k2 are such that h (k2) > 0. Since λ2 (k2) >

0 for k2 ∈ (k21, k22) only these modes grow with time; all the remaining
modes for which λ2 (k

2) < 0 tend to zero exponentially. Assume that

the spatial domain is such that there is only one unstable wave number,

or n = 1. Then the only unstable mode is cos (πz/a) , and the growing

instability is determined by

w0 (t, z) ∼ B1 exp
∙
λ2

µ
π2

a2

¶
t

¸
cos

πz

a
(58)

where the vector of constants B1 is determined by initial conditions.

Since the instability occurs on the stable manifold of the linearized sys-

tem (49) it would be natural to choose initial conditions for y and p on

this manifold. Take B1 = (�x, �p) , then using the definition of w from

(42) we have that the optimal spatially heterogeneous solution evolves

approximately as:

y0 (t, z) ∼ �x exp

∙
λ2

µ
π2

a2

¶
t

¸
cos

πz

a
,
π2

a2
= k2 (59)

p (t, z) ∼ �p exp

∙
λ2

µ
π2

a2

¶
t

¸
cos

πz

a
(60)

Solutions (59) - (60) indicate that diffusion causes the spatially homo-

geneous steady state to be transformed into a wave-like pattern as t

increases. This of course is spatial heterogeneity since the biomass and
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its shadow value will, at any given point in time, have different val-

ues in different spatial points. Then the path for optimal effort in the

neighborhood of the flat steady state will be determined as u0 (t, z) =

(−G/R) p (t, z) , while the spatially heterogeneous optimal effort is de-
termined, using (34) and (35) as:

E0 (t, z) = E∗+u0 (t, z)− N

B
= E∗− G

R
p (t, z)− N

B
, E0 (t, z) ≥ 0 (61)

Furthermore a conjecture can be stated. For the optimal paths

(y0 (t, z) , u0 (t, z)) of the solution to the LQ problem, an analog in time-

space of a Michel-type transversality condition (Michel, 1982) is verified.

This transversality conditions implies that the maximum of the Hamil-

tonian of the LQ problem for every spatial point is zero when t goes

to infinity. Following Michel (1982) the maximum of the Hamiltonian

should verify for every (t, z) that:

Hmax (t, z)= e−ρt
∙
−Q
2

¡
y0 (t, z)

¢2 − R

2

¡
u0 (t, z)

¢2
+ (62)

p (t, z)

µ
Sy0 (t, z)−Gu0 (t, z) +D

∂2y (t, z)

∂z2

¶¸
Substituting (59) - (60) into (62), taking the limit as t→∞ and noting

that, by the definition of a steady state, for all z the term

p (t, z)

∙
Sy0 (t, z)−Gu0 (t, z) +D

∂2y (t, z)

∂z2

¸
(63)

is zero as t→∞, we obtain

lim
t→∞

Hmax (t, z)= (64)

lim
t→∞

∙
−1
2
e(2λ2−ρ)t

∙
Q�2x +

G2

R
�2p

¸
cos2

³πz
a

´¸
=0

since, as can be seen from (50), 2λ2 < ρ.

The value function of the LQ problem

V (y (0, z) , 0, 0) = sup

Z ∞

0

Z
Z
e−ρt

∙
−Q
2
y2 − R

2
u2
¸
dzdt (65)
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should verify that:

V
¡
y0 (0, z) , 0, 0

¢
= (66)Z ∞

0

Z
Z
e−ρt

∙
−Q
2

¡
y0 (t, z)

¢2 − R

2

¡
u0 (t, z)

¢2¸
dzdt =

−1
2

Z ∞

0

e(2λ2−ρ)t
Z
Z
e(2λ2−ρ)t

∙
Q�2x +

G2

R
�2p

¸
cos2

³πz
a

´
dtdz (67)

which is finite since 2λ2 < ρ, indicating that the LQ problem is well

posed. These results can be summarized in the following proposition.

Proposition 2 For an optimal harvesting system of an LQ form or for
a non-linear system that can be adequately approximated by an LQ sys-

tem, which exhibits the saddle point property at a steady state in the

absence of diffusion, it is optimal, under biomass diffusion and for a

certain set of parameter values, to have emergence of diffusive instabil-

ity, induced by the Turing mechanism. Diffusive instability leads to a

spatially heterogeneous optimal path where the biomass and its shadow

value will, at any given point in time, have different values in different

spatial points.

The significance of this proposition, which extends the concept of

the Turing mechanism to the optimal control of diffusion, is that spatial

heterogeneity and pattern formation, resulting from diffusive instability,

might be an optimal outcome under certain circumstances. For regu-

lation purposes and for the harvesting problem examined above, it is

clear that the spatially heterogeneous steady-state shadow value of the

resource stock, and the corresponding harvesting effort, can be used to

define optimal regional fees or quotas. Although the full characterization

of the spatially heterogeneous steady state is outside the purpose of this

paper, since our target is to show the existence of the Turing mechanism

in optimally controlled systems, there are some inferences that can be

heuristically made from the results obtained by the LQ problem.

If the LQ approximation is an adequate one for the non-linear system,

it is expected that a saddle point steady state of the non-linear system

(x∗, μ∗) will also be destabilized by perturbations caused by diffusion
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through the Turing effect.15 With a non-empty Turing space, spatially

heterogenous solutions similar to (59) - (60) grow exponentially. This

however cannot be valid for all t, since then exponential growth would

imply that (x, μ) → ∞ at t → ∞. However, the kinetics of the Hamil-

tonian system (28) - (29) and the transversality conditions at infinity

(18) should bound the solution in the positive quandrant.16 This im-

plies that for a subset of the spatial domain the resource stock and its

shadow value are above the flat steady-state levels and for another sub-

set they are below the flat steady-state levels, in a wave-like pattern. In

this case an ultimate steady-state spatially heterogeneous solution for

the optimally controlled system will emerge.17 This steady state can be

characterized by taking the steady state of (28) - (29) and defining the

dynamic system in the spatial domain [0, a] .

0 = F (x)− qxE (x, μ) +D
∂2x

∂z2
, or −G1 (x, μ) = D

∂2x

∂z2
(68)

0 =
h
ρ− F

0
(x) + qE (x, μ)

i
μ− pqE (x, μ)−D

∂2μ

∂z2
, (69)

or G2 (x, μ) = D
∂2μ

∂z2
(70)

Setting v = ∂x
∂z
, u = ∂μ

∂z
, we obtain the first-order system

−G1 (x, μ)=D
∂v

∂z
(71)

v=
∂x

∂z
(72)

G2 (x, μ)=D
∂u

∂z
(73)

u=
∂μ

∂z
(74)

Under zero flux boundary conditions the boundary conditions for this

system are v (0) = v (a) = 0, and u (0) = u (a) = 0 from zero flux,

15It should be noticed that it was around this steady state that the LQ approxi-
mation was carried out.
16See Murray (2003, Vol II, pp. 93-94) for this type of argument.
17In this context it may be shown (Segel and Levin, 1976) that the destabilized

spatially homogeneous pattern is replaced asymptotically by a stable spatially het-
erogeneous solution.
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while under hostile boundary conditions we have x (0) = x (a) = 0 and

μ (0) = μ (a) = 0.

3.1.2 Diffusion as a stabilizer

We examine now the case where the spatially homogeneous steady state

is unstable, that is Reλ1,2 > 0 for k2 = 0, and diffusion acts as a

stabilizing form. Since tr J > 0 , this implies that det J > 0. Let

∆D = ρ2 − 4 [detJ ] > 0 so that we have two positive real roots at

the flat steady state. Diffusion can stabilize the system in the sense of

producing a negative root. For the smallest root to turn negative or

λ2 < 0, it is sufficient that h (k2) < 0. The quadratic function (47) is

concave, and therefore has a maximum. Furthermore h (0) = det J > 0

and if h
0
(0) = (2F − ρ) > 0 there is a root k22 > 0, as shown in figure

2, such that for k2 > k22, we have λ2 < 0. The solutions for y (t, z) and

p (t, z) will be determined by the sum of exponentials of λ1 and λ2. Since

we want to stabilize the system we set the constant associated with the

positive root λ1 equal to zero. Then the solution will depend on the sum

of unstable and stable modes associated with λ2.

[Figure 2]

Following the previous procedure the solutions for y and p will be of

the form: Ã
y (t, z)

p (t, z)

!
˜

n2X
0

Cn̂ exp

∙
λ2

µ
n2π2

a2

¶
t

¸
cos

nπz

a
+

NX
n2

Cn exp

∙
λ2

µ
n2π2

a2

¶
t

¸
cos

nπz

a
, (75)

where n2 is the smallest integer greater or equal to ak22/π and N > n2.

Since λ2
³
n2π2

a2

´
< 0 for n > n2, all the modes of the second term of (75)

decay exponentially. So to converge to the steady state we need to set

Cn̂ = 0, then the spatial patterns corresponding to the second term of

(75) will die out with the passage of time and the system will converge

to the spatially homogeneous steady state (y∗, p∗) = (0, 0).

This result can be summarized in the following proposition.
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Proposition 3 For an optimal harvesting system of an LQ form or for
a nonlinear system that can be adequately approximated by an LQ system,

with an unstable steady state in the absence of diffusion, it is optimal,

under biomass diffusion and for a certain set of parameter values, to

stabilize the steady state. Stabilization is in the form of saddle point

stability where spatial patterns decay and the system converges along one

direction to the previously unstable spatially homogeneous steady state.

The significance of this proposition is that it shows that under dif-

fusion it is optimal to stabilize a steady state which was unstable under

spatial homogeneity.

4 Concluding Remarks

The present paper seeks to provide a conceptual framework for studying

pattern formation in optimally controlled systems associated with eco-

nomic applications. Considering the Turing mechanism as the pattern

generator we develop the optimal control of a dynamical system under

diffusion by appropriately extending Pontryagin’s maximum principle.

Using as our leading example the classical problem of harvesting of a

renewable resource (fishery) we show that, when we have a saddle point

equilibrium with zero diffusion for a positive discount rate, then there

exists a non-empty parameter set such that the Turing mechanism acting

on the associated Hamiltonian Dynamic System implies that the optimal

choice of control (harvesting effort) in time-space leads to the emergence

of a spatial pattern for both the resource stock (state variable) and its

corresponding shadow value (costate variable). In the same context we

show that, when we have an unstable steady state with zero diffusion,

then the presence of diffusion in the optimal harvesting problem can, in

certain cases, stabilize an unstable spatially homogeneous steady state.

The methodological approach developed in this paper can be linked

to further research in the optimal management and the design of opti-

mal policies for general complex adaptive systems arising in economics,

where self organizing aspects reflected in notions such as ‘the invisi-

ble hand’ or Pareto optimality are complemented by policy interactions

aiming at directing the system to a desired outcome (Levin, 2002). The
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spatial and pattern formation aspect of these complex adaptive systems,

with the Turing mechanism acting as a pattern generator, when coupled

with policy interventions produce the type of optimal control problem

in space-time studied in this paper.

In more general terms the Turing mechanism is one pattern generator

that can be used in the study of socio-economic systems in the context

of developing statistical mechanics approaches aiming at exploring how

individual microscopic interactions give rise to macroscopic phenomena

(Durlauf, 1997). It should be noted that the application of pattern gener-

ators to complex socio-economic systems has yet to overcome tractability

issues, although there are some exceptions such as the Large Type Limit

concept (Brock et al., 2005) and its generalization (Diks and Vander-

weide, 2003) that provide an analytically tractable pattern generator for

stock market applications. The use of the Turing mechanism as pat-

tern generator in recursive infinite horizon optimal control developed in

this paper, apart from its usefulness in studying other economic applica-

tions and pattern formation in time-space, can also be useful as a basis

for extending the analysis to general pattern generating systems where

patterns emerge from individual agent heterogeneity into macroscopic

dynamics and macroscopic patterns.
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Appendix
Extension of Pontryagin’s Principle: Necessary conditions
We develop a variational argument along the lines of Kamien and

Schwartz (1981, pp. 115-116). Problem (1) to (4) can be written as:

J =

Z z1

z0

Z t1

t0

f (x (t, z) , u (t, z)) dtdz =

Z z1

z0

Z t1

t0

{f (x (t, z) , u (t, z))

λ (t, z)

∙
g (x (t, z) , u (t, z)) +D

∂2x

∂z2
− ∂x

∂t

¸¾
dtdz (76)

We integrate by parts the last two terms of (76). The λ (t, z) ∂x
∂t
term

becomes

(−1)
Z z1

z0

Z t1

t0

λ (t, z)
∂x

∂t
dt =Z z1

z0

∙
−λ (t1)x (t1) + λ (t0)x (t0) +

Z t1

t0

x (t, z)
∂λ

∂t
dt

¸
dz (77)

The term λ (t, z)D ∂2x
∂z2

becomes

D

Z z1

z0

Z t1

t0

λ (t, z)
∂2x (t, z)

∂z2
=

D

Z t1

t0

"
λ (t, z1)

∂x (t, z)

∂z

¯̄̄̄
z=z1

− λ (t, z0)
∂x (t, z0)

∂z

¯̄̄̄
z=z0

−
Z z1

z0

∂x (t, z)

∂z

∂λ (t, z)

∂t
dz

#
dt =

(78)

−D

Z t1

t0

∙Z z1

z0

∂x (t, z)

∂z

∂λ (t, z)

∂t
dz

¸
dt

by the zero flux conditions (3) on the state variable, or by setting λ (z1) =

λ (z0) = 0 if we use the hostile boundary conditions x (z1) = x (z0) = 0.
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Integrating by parts once more we have

(−1)D
Z t1

t0

∙Z z1

z0

∂x (t, z)

∂z

∂λ (t, z)

∂t
dz

¸
dt =

D

Z t1

t0

∙
−∂λ (t, z1)

∂z
x (t, z1) +

∂λ (t, z0)

∂z
x (t, z0)

+

Z z1

z0

x (t, z)
∂2λ (t, z)

∂z2

¸
dzdt (79)

Thus (76) becomesZ z1

z0

Z t1

t0

f (x (t, z) , u (t, z)) dtdz =Z z1

z0

Z t1

t0

[f (x (t, z) , u (t, z)) + λ (t, z) g (x (t, z) , u (t, z))

+x (t, z)
∂λ (t, z)

∂t
+ x (t, z)D

∂2λ (t, z)

∂z2

¸
dtdz

+

Z z1

z0

[−λ (t1, z)x (t1, z) + λ (t0, z)x (t0, z)] dz+

D

Z t1

t0

∙
−∂λ (t, z1)

∂z
x (t, z1) +

∂λ (t, z0)

∂z
x (t, z0)

¸
dt (80)

We consider a one parameter family of comparison controls u∗ (t, z) +

�η (t, z) , where u∗ (t, z) is the optimal control, η (t, z) is a fixed function

and � is a small parameter. Let y (t, z, �) , t ∈ [t0, t1] , z ∈ [z0, z1] be the
state variable generated by (2) and (3) or (4) with control u∗ (t, z) +

�η (t, z) , t ∈ [t0, t1] , z ∈ [z0, z1] . We assume that y (t, z, �) is a smooth
function of all its arguments and that � enters parametrically. For � = 0

we have the optimal path x∗ (t, z) ; furthermore all comparison paths

must satisfy initial and zero flux or hostile boundary conditions. Thus,

y (t, z, 0)=x∗ (t, z) , y (t0, z, �) = x (t0, z) fixed (81)
∂y (t, z)

∂z

¯̄̄̄
z=z0

=
∂y (t, z)

∂z

¯̄̄̄
z=z1

= 0 , zero flux (82)

y (t, z1, �)= y (t, z0, �) = 0 hostile boundary (83)

When the functions u∗, x∗and η are held fixed, the value of (1) evaluated
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along the control function u∗ (t, z)+�η (t, z) and the corresponding state

function y (t, z, �) depend only on the single parameter �. Therefore,

J (�) =

Z z1

z0

Z t1

t0

[f (y (t, z, �) , u∗ (t, z) + �η (t, z))] dtdz

or using (80)

J (�) =

Z z1

z0

Z t1

t0

[f (y (t, z, �) , u∗ (t, z) + �η (t, z))

+ λ (t, z) g (y (t, z, �) , u∗ (t, z) + �η (t, z))

+y (t, z, �)
∂λ (t, z)

∂t
+Dy (t, z, �)

∂2λ (t, z)

∂z2

¸
dtdz

+

Z z1

z0

[−λ (t1, z) y (t1, z, �) + λ (t0, z) y (t0, z, �)] dz

+D

Z t1

t0

∙
−∂λ (z1)

∂z
y (t, z1, �) +

∂λ (z0)

∂z
y (t, z0, �)

¸
dt (84)

Since u∗ is a maximizing control the function J (�) assumes the maximum

when � = 0. Thus dJ(�)
d�

¯̄̄
�=0

or

dJ (�)

d�

¯̄̄̄
�=0

=Z z1

z0

Z t1

t0

∙µ
fx + λgx +

∂λ (t, z)

∂t
+D

∂2λ (t, z)

∂z2

¶
y� + (fu + λgu) η (t, z)

¸
dtdz+Z z1

z0

[−λ (t1, z) y� (t1, z, �) + λ (t0, z) y� (t0, z, �)] dz+

D

Z t1

t0

∙
−∂λ (z1)

∂z
y� (t, z1, �) +

∂λ (z0)

∂z
y� (t, z0, �)

¸
dt = 0 (85)

• In (85) y� (t0, z, �) = 0, since y (t0, z, �) = x (t0, z) fixed by initial

conditions. Next we impose the conditionZ z1

z0

λ (t1, z) β (t1, z) = 0 (86)

for all β (t1, z) piecewise continuous functions in [z0, z1] . It follows,
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using Athans and Falb’s (1996, p260) fundamental lemma that

λ (t1, z) = 0 , z ∈ [z0, z1] (87)

Furthermore if we impose zero flux conditions on λ, then,

∂λ (t, z1)

∂z
=

∂λ (t, z0)

∂z
= 0 (88)

Conditions (86) or (87) and (88) can be used as transversality

conditions. Then we obtain from ((85))

∂λ

∂t
=−

µ
fx + λgx +D

∂2λ

∂z2

¶
(89)

fu + λgu = 0 (90)

• If we use hostile boundary conditions then from (83), y (t, z1, �) =

y (t, z0, �) = 0 fixed, and y� (t0, z, �) = y� (t, z1, �) = 0 in (85). Then

(89) and (90) are obtained by imposing transversality conditions

(86) or (87).

So if we define a generalized Hamiltonian function

H = f (x, u) + λ

∙
g (x, u) +D

∂2x

∂z2

¸
then by (89) and (90) optimality conditions become conditions (5) - (15),

along with the appropriate transversality conditions.

The infinite horizon case with discounting is obtained by following

the same approach and using Arrow and Kurz (1970, Chapter II.6).¤
Extension of Pontryagin’s Principle: Sufficiency
Suppose that x∗ (t, z) , u∗ (t, z) , λ (t, z) satisfy conditions (5) and (15)

and let x (t, z) , u (t, z) functions satisfy (2). Let f∗, g∗ denote functions

evaluated along (x∗ (t, z) , u∗ (t, z)) and let f, g denote functions evalu-

ated along the feasible path (x (t, z) , u (t, z)) . To prove sufficiency we
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need to show that

W ≡
Z z1

z0

Z t1

t0

(f∗ − f) dtdz ≥ 0

From the concavity of f it follows that

f∗ − f ≥ (x∗ (t, z)− x (t, z)) f∗x + (u
∗ (t, z)− u (t, z)) f∗u (91)

Then

W ≥
Z z1

z0

Z t1

t0

[(x∗ (t, z)− x (t, z)) f∗x + (u
∗ (t, z)− u (t, z)) f∗u ] dtdz

(92)

=

Z z1

z0

Z t1

t0

∙
(x∗ (t, z)− x (t, z))

µ
−∂λ (t, z)

∂t
− λ (t, z) g∗x −D

∂2λ (t, z)

∂z2

¶
(93)

+ (u∗ (t, z)− u (t, z)) (−λ (t, z) g∗u)] dtdz

=

Z z1

z0

Z t1

t0

λ [g∗ − g − (x∗ (t, z)− x (t, z)) g∗x − (u∗ (t, z)− u (t, z))] g∗udtdz ≥ 0
(94)

Condition (93) follows from (92) by using conditions (5) and (15) to

substitute for f∗x and f
∗
u . Condition (94) is derived by integrating first by

parts the terms involving ∂λ
∂t
, substituting for ∂x

∂t
from (2), and using the

transversality conditions, as has been done above, then by integrating

twice the terms involving ∂2λ
∂z2

and using again the zero flux or the hostile

boundary conditions. The non-negativity of the integral in (94) follows

from (17) and the concavity of g.

The result can be easily extended along the lines of Arrow’s suffi-

ciency theorem (Arrow and Kurz, 1970, Chapter II.6) with a transver-

sality condition at infinity.

lim
t→∞

e−ρt
Z z1

z0

λ (t, z) dz≥ 0, lim
t→∞

e−ρt
Z z1

z0

λ (t, z)x (t, z) dz = 0, or(95)

lim
t→∞

e−ρtλ (t, z)x (t, z)= 0 when (λ (t, z) , x (t, z)) ≥ 0 for all t, z(96)
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Linear - Quadratic Approximation of the Optimal Control
Problem under Diffusion
First we derive the LQ approximation for the general problem and

then we apply it to the problem of optimal harvesting.

Consider the general optimal control problem under diffusion.

max
{u(t,z)}

Z z1

z0

Z t1

t0

f (x (t, z) , u (t, z)) dtdz (97)

s.t.
∂x (t, z)

∂t
= g (x (t, z) , u (t, z)) +D

∂2x (t, z)

∂z2
(98)

x (t0, z) given,
∂x (t, z)

∂z

¯̄̄̄
z=z0

=
∂x (t, z)

∂z

¯̄̄̄
z=z1

= 0 , zero flux (99)

x (t, z0) = x (t, z1) = 0, hostile boundary x (t0, z) , z ∈ (z0, z1) given
(100)

with the Hamiltonian function

H (x (t, z) , u (t, z) , λ (t, z)) = f (x, u) + λ

∙
g (x, u) +D

∂2x

∂z2

¸
(101)

For problem (97) - (100) let (x∗, u∗, λ∗) be a flat optimal steady state

associated with the Hamiltonian system (5)-(6) for D = 0. This optimal

steady state satisfies the optimality conditions (5)-(9). Our approach is

to extend the method developed by Fleming (1971) and Magill (1977),

by which a non-linear optimal stochastic control problem is replaced by a

simpler linear quadratic optimal stochastic control problem, to the case

of a deterministic control problem, such as (97) - (100) where the transi-

tion of the system is described by a PDE with a diffusion term and not by

a stochastic ODE. Assume that the diffusion process (98) starts close to

the steady state or that x0 = x (0, z) starts close to x∗ for all z ∈ Z, and

let (y (t, z) , γ (t, z) , p (t, z)) = (x (t, z)− x∗, u (t, z)− u∗, λ (t, z)− λ∗) .

Perturb the control u by letting

u (t, z) = u∗ + ε (u (t, z)− u∗) = u∗ + εγ (t, z) (102)
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For a control of the form (102) we adapt Athans and Falb (1966 page

261) to focus on perturbations of the form below,

x (t, z) = x∗ + εy (t, z) + ε2ξ (t, z) + o
¡
ε2, t, z

¢
(103)

where y and ξ are first and second order state perturbations respectively

and o (ε2, t, z)→ 0 as ε2 → 0 uniformly in (t, z) .

Athans and Falb (1966, pp. 254-265) show that control perturbations

of the form (102) lead to state perturbations of the form (103) under

appropriate regularity conditions for the case where Z is one point. We
proceed heuristically here. Substituting (103) and (102) into (98), the

g (x, u) function describing the kinetic of the state variable, we obtain

g
¡
x∗ + εy (t, z) + ε2ξ (t, z) + o

¡
ε2, t, z

¢
, u∗ + εγ (t, z)

¢
(104)

Substituting also for x (t, z) in the derivative ∂x(t,z)
∂t

and∂
2x(t,z)
∂z2

, using

(103) and expanding as a Taylor series around (x∗, u∗) , we obtain18

ε
∂y (t, z)

∂t
+ ε2

∂ξ (t, z)

∂t
= g (x∗, u∗) + gx

¡
εy + ε2ξ

¢
+ gu (εγ) + w

0
Ww +

+εD
∂2y (t, z)

∂z2
+ ε2D

∂ξ2 (t, z)

∂z2
+ higher order terms (105)

w =
¡
εy + ε2ξ, εγ

¢0
,W =

Ã
gxx gxu

gux guu

!

where all derivatives are evaluated at the flat steady state. Divide (105)

by ε and then take the limit as ε → 0, and note that g (x∗, u∗) = 0

because (x∗, u∗) is a steady state, to obtain the linear approximation of

(98) around the flat steady state as

∂y (t, z)

∂t
=+gxy (t, z) + guγ (t, z) +D

∂2y (t, z)

∂z2
(106)

with y (t0, z) = 0 for all z. (107)

If, using the equality of the ε-terms in (105) we cancel these terms, divide

by ε2 and then take the limit ε2 → 0, we obtain a differential equation

18Subscripts denote derivatives.
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in the second-order state perturbation

∂ξ (t, z)

∂t
= gxξ (t, z) +

gxxξ (t, z) + guuγ (t, z) + 2gxuξ (t, z) γ (t, z) +D
∂2ξ (t, z)

∂z2
(108)

with ξ (t0, z) = 0 for all z. (109)

Write the performance functional (97) using the Hamiltonian func-

tion (101) with x (t, z) and u (t, z) given by the perturbations (103) and

(102) and with λ (t, z) evaluated along the optimal path λ∗ (t, z) , as

J (u) =

Z z1

z0

Z t1

t0

∙
H (x (t, z) , u (t, z) , λ∗ (t, z))− λ∗ (t, z)

∂x (t, z)

∂t

¸
dtdz

(110)

Write the performance functional along an optimal path as

J (u∗) =
Z z1

z0

Z t1

t0

∙
H (x∗ (t, z) , u∗ (t, z) , λ∗ (t, z))− λ∗ (t, z)

∂x∗ (t, z)
∂t

¸
dtdz

(111)

then

J (u)− J (u∗) =Z z1

z0

Z t1

t0

[H (x (t, z) , u (t, z) , λ∗ (t, z))−H (x∗ (t, z) , u∗ (t, z) , λ∗ (t, z))

−λ∗ (t, z) ∂ (x (t, z)− x∗ (t, z))
∂t

¸
dtdz (112)

By expanding around the optimal steady state (x∗, u∗, λ∗) we obtain,

35



with derivatives evaluated at the optimal steady state,19

J (u)− J (u∗) =
Z z1

z0

Z t1

t0

∙
Hxεy (t, z) +Huεγ (t, z) +

1

2
v0Qv

+o
¡
ε2, t, z

¢
+ λ∗ (t, z)

∂ (x (t, z)− x∗ (t, z))
∂t

¸
dtdz (113)

v =(εy (t, z) , εγ (t, z))
0

(114)

Q (y, γ)=

Ã
HxxHxu

HuxHuu

!
=

Ã
fxx fxu

fux fuu

!
+ λ∗

Ã
gxx gxu

gux guu

!
(115)

In (113) integrate by parts the term λ∗ (t, z) ∂(x(t,z)−x
∗(t,z))

∂t
as in (77) to

obtainZ z1

z0

[−λ (t1, z) [x (t1, z)− x∗ (t1, z)] + λ (t0, z) [x (t0, z)− x∗ (t0, z)]

+

Z t1

t0

[x (t, z)− x∗ (t, z)]
∂λ∗ (t, z)

∂t
dt

¸
dz (116)

In (116) the first term in the bracket is zero by transversality conditions,

the second term is zero by initial conditions on the state perturbation,

while the third term under the integral can be written, using (103) and

the optimality conditions, as:

−Hx
∂ (x∗ + εy (t, z) + ε2ξ (t, z) + o (ε2, t, z)− x∗ (t, z))

∂t
(117)

Furthermore Hu = 0 by the optimality conditions. Substituting into

(113) dividing by ε and taking limits we obtain

J (u)− J (u∗) =
Z z1

z0

Z t1

t0

1

2
v0Qvdtdz (118)

Therefore a “good approximation” of problem (97) - (100) can be ob-

tained if we replace in problem (97) - (100) the function f (x (t, z) , u (t, z))

with 1
2
v0Qv and the transition equation (98) with the linearized diffusion

equation (106).

19See Athans and Falb (1966) for such an expansion in the context of deriving
necessary conditions for standard control problems without diffusion.
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The same substitution can be made in an infinite horizon problem

by replacing the transversality condition used to simplify (116) with

the requirement that we require controls that produce solutions for the

state variable that grow by less than discounting. This approximation is

similar to the one produced by Magill (1977) for the optimal stochastic

control problem. It should be noted that since the diffusion coefficient

D is independent of the state and the control, this term drops out from

the approximation of the objective, but enters the problem through the

linearized diffusion equation. It is clear that extra terms including the

diffusion coefficient should be added into the approximating matrix Q

in the general case where D = D (x, u) .

Application to the Optimal Harvesting Problem

We apply this result to the optimal harvesting problem (20) - (23).

Let (x∗, E∗, μ∗) be the flat steady state for this problem, and define

U (x,E) = [S (H (t, z))− c (E (t, z))] . Following our results above we

obtain

1

2
v0Qv=L0 (y, γ) =

1

2

"
y

γ

#T "
A N

N B

#"
y

γ

#
= (119)

1

2

£
Ay2 + 2Nyγ +Bγ2

¤
(120)

A=Uxx (x
∗, E∗) = S

00
(H∗) (H∗)2 + μ∗F

00
(x∗) (121)

N =UxE (x
∗, E∗) = q

h
S
00
(H∗)H∗ + S

0
(H∗)

i
(122)

B=UEE (x
∗, E∗) = S

00
(H∗) (qx∗)2 − c

00
(E∗) (123)

H∗= qE∗x∗ (124)

where, A < 0 by the concavity of benefit and growth functions and the

fact that the shadow value of the resource is non-negative at the steady

state, N ≷ 0, and B < 0 by the concavity of the benefit function and

the convexity of the cost function.

Following Brock and Malliaris (1989) we make a change in units, so

that

u = γ +
N

B
y (125)
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Then we have

L0 (y, u) =
1

2

∙µ
A− N2

B

¶
y2 +Bu2

¸
(126)

Furthermore, the linearized transition equation becomes

∂y (z, t)

∂t
=
h
F

0
(x∗)− qE∗

i
y (z, t)− qx∗γ (z, t) +D

∂y2 (z, t)

∂z2
=(127)

Fy (z, t)−Gγ (z, t) +D
∂y2 (z, t)

∂z2
, or (128)

∂y (t, z)

∂t
=

µ
F − GN

B

¶
y (t, z)−Gu (t, z) +D

∂2y (t, z)

∂z2
(129)

where G = qx∗ > 0 for a positive steady state for the resource. In order

to have a well posed LQ problem with a concave net benefit function and

a transition equation with positive growth for the resource, we assume:µ
A− N2

B

¶
=−Q < 0 (130)

B=−R < 0 (131)µ
F − GN

B

¶
=S > 0 (132)

The LQ approximation around the flat steady state of the original spatial

problem is

max
u(t,z)

Z ∞

0

Z
Z
e−ρt

∙
−Q
2
x2 − R

2
u2
¸
dtdz Q,R, ρ > 0 (133)

s.t.
∂y (t, z)

∂t
= Sy (t, z)−Gu (t, z) +D

∂2x (t, z)

∂z2
, F,G > 0 (134)

y (0, z) given, and zero flux on 0, a, or (135)

y (t, 0) = y (t, a) = 0, y (0, z) , z ∈ (0, a) given (136)

¤
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