Impure Public Goods and Technological Interdependencies
Andreas Löschel
and Dirk T.G. Rübbelke

NOTA DI LAVORO 60.2005

MAY 2005

CCMP – Climate Change Modelling and Policy

Andreas Löschel, Zentrum für Europäische Wirtschaftsforschung
Dirk T.G. Rübbelke, Department of Economics, Chemnitz University of Technology

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=717404

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Impure Public Goods and Technological Interdependencies

Summary
Impure public goods represent an important group of goods. Almost every public good exerts not only effects which are public to all but also effects which are private to the producer of this good. What is often omitted in the analysis of impure public goods is the fact that – regularly – these private effects can also be generated independently of the public good. In our analysis we focus on the effects alternative technologies – independently generating the private effects of the public good – may have on the provision of impure public goods. After the investigation in an analytical impure public good model, we numerically simulate the effects of alternative technologies in a parameterized model for climate policy in Germany.

Keywords: Impure public goods, Climate policy, Rationing

JEL Classification: H41, C61, Q53, Q54

Address for correspondence:
Dirk T.G. Rübbelke
Department of Economics
Chemnitz University of Technology
Chemnitz 09107
Germany
Phone: +49 0 371 531 4212
Fax: +49 0 371 531 4372
E-mail: dirk.ruebbelke@wirtschaft.tu-chemnitz.de
1 Introduction

In economics public goods are regularly treated as pure public goods, although most public goods are not “purely public”. The reason for doing so most likely lies in the simplicity of pure public goods analysis. In contrast, the analysis of public goods which are not purely public tends to become rather complex.

Pioneering work with respect to the issue of impure public goods has been provided by Cornes and Sandler (1984), who developed an approach to analyze impure public goods where the considered consumer’s utility function is defined over three characteristics. They suggested to apply this approach to an activity like philanthropy. This idea has later been elaborated by Andreoni (1986, 1989, 1990). Andreoni’s works initiated a new strand of literature which is associated with the expression “warm-glow giving”.

Many further analyses of impure public goods followed which were based on the approach suggested by Cornes and Sandler. Results were obtained which could not be observed by employing the simple pure public good approach. So, Cornes and Sandler (1994) illustrated in a comparative static analysis that quite surprising results may arise within an impure public good model. In fact, in their modelling, they analyzed the joint production of characteristics of different degrees of publicness. Their analysis demonstrated that substitutability and complementarity of the private and pure public characteristics generated by the public good play a crucial role with respect to comparative static responses. Such effects could - of course - not be observed in pure public good models, since these models exclusively focus on the public good’s pure public characteristic and disregard private ancillary characteristics of public goods. Ihori (1992,1994) analyses some further comparative static properties of impure public good models, but his modelling differs from the one suggested by Cornes and Sandler (1994).

And despite its complexity, joint production and impure public goods modelling became an attractive device in the economics discipline. Joint characteristic or joint production models have been used to analyze, e.g., climate protection (Sandler (1996), Rübbelke (2003)), environmentally friendly consumption (Kotchen (2005)), financing of public radio stations (Kingma and McClelland (1995)), military alliances (Sandler and Murdoch (1990), Sandler and Hartley (2001)), refuse collection (Dubin and Navarro (1988)), and terrorism (Rübbelke (2005)).

Additional interest in impure public goods models may arise because of the topicality of the global public goods discussion (Kaul et al. (1999)). Probably almost every global
public good provision represents a joint production of several characteristics of different
degrees of publicness, i.e., global public goods production is an impure public goods
production.¹

So, preservation of tropical forests may be considered as a global impure public good.
A pure public characteristic of this public good is the preservation of biodiversity which
provides genetic material that may contain cures for diseases representing dangers for all
humans. Another pure public characteristic is the global climate protecting impact of the
forests’ carbon storage. But as Sandler (1997: 97) points out: “Not all of the benefits of
the forests are global public goods; many are either private goods or public goods whose
benefits are either specific to the host nation or to neighboring nations.” Such private
benefits are derived, e.g., from reduced soil erosion and preservation of watersheds.

Reducing poverty by raising foreign aid also provides several characteristics of different
degrees of publicness. In March 2002, US President George W. Bush announced the
first significant raise in U.S. development assistance in a decade. This represents a 50
percent increase over current development assistance (Diamond 2002: 2). Before, the US
aid budget has fallen from 0.24 percent of GDP in the mid-1980s to 0.1 percent in 2002.
The recent sharp increase in the US foreign aid has been justified by the claim that the
reduction of poverty will combat terrorism.² Therefore, we face a global public character-
istic which we may denote “international security”. Furthermore, the reduction of poverty
by paying transfers generates monetary benefits in the poor regions. These benefits are
mainly perceived regionally and are ‘private’ to the transfer-receiving region (the transfers
can be employed to improve national infrastructure, to construct new hospitals or schools
etc.).

The same line of reasoning can be applied to other global issues like climate protection,
international combat of diseases or protection of international waters. Examples of impure
public goods of smaller geographical dimension are, e.g., theaters or universities. Of
course, there is an audience enjoying shows in the theater. However, according to Baumol
and Bowen (1966), performing arts may also raise local identity and international prestige.
Hence, we observe a kind of private (enjoyed exclusively by the audience) as well as a
locally/regionally public (enjoyed by the whole region) characteristic. Similarly, students

¹Sandler and Hartley (2001: 880) even stress: “The joint product model is relevant for virtually every
public good scenario.” And joint production is in general associated with characteristics of different
degrees of publicness.

²President Bush pointed out in his speech at the United Nations Financing for Development Conference
in Monterrey, Mexico: “We fight against poverty because hope is an answer to terror.”
get education in universities (private characteristic), but a university also provides benefits to its whole region by attracting companies (regionally public characteristic).

Although impure public good models found application in many fields of economics, one issue has been widely neglected until recently: the effect of alternative technologies on the models’ results. The neglect of alternative technologies may cause an overstatement of the benefits of a joint production technology and may therefore result in an inefficient level of joint production. Let us consider the example of climate policy. A climate policy which raises energy efficiency, for example, tends to reduce the required level of fossil fuels to be combusted. This reduction is, on the one hand, associated with a mitigation of greenhouse gas emissions and, consequently, provides climate-protection and primary benefits. On the other hand, the reduction is associated with ancillary effects in the shape of, e.g., a decline in other pollutants’ emissions like \(SO_2\) emissions. Several studies predict that the associated ancillary benefits even exceed the primary benefits. However, regularly, it is at least implicitly postulated that the ancillary benefits can only be acquired by climate policies. Yet, desulphurisation installations would also be an effective means to reduce \(SO_2\) emissions and these installations do not protect the climate. A priori, it is not clear from a welfare economics’ point of view whether it is more efficient to mitigate \(SO_2\) by means of desulphurisation installations or by means of climate policies, since the implementation costs of the different technologies may diverge. Provided a country would consider desulphurisation installations to be more attractive, an augmented use of such installations would reduce the ancillary benefits of climate policy and, therefore, would tend to reduce total benefits of climate protection. This, again, mitigates the attractiveness of climate policy. As this example discloses, quantities and prices/costs of the alternative technologies exclusively producing the private characteristic, are crucial for the ancillary benefits of climate policy to be expected, and consequently, for the efficient policy design. Changes in these parameters have an impact on the efficient impure public good level, in our example, on the optimal climate policy level.

One of the rare exceptions in the literature that takes account of the role of alternative technologies, is the joint supply model suggested by Posnett and Sandler (1986).

3 Since climate protection is the primary aim of climate policy, the benefits derived from climate protection are called the primary benefits of climate policy.

4 For an overview of studies and ratios between primary and ancillary benefits, see Pearce (2000).

5 Of course, if equal cost would prevail, the climate policy option is more attractive, since it additionally provides primary benefits.

6 Yet, in the case where joint products are strong complements, different and quite surprising demand responses can be observed, see Cornes and Sandler (1994).
They analyze a consumer’s decision between two different commodities. One commodity is a private good whose purchase is associated with and tied to the finance of a public output (joint production). The other commodity is a purely private good. Therefore, they consider two different technologies providing private good consumption, one which is associated with joint production and one without joint production. This idea is now revived in Section 2, where we present a more general setting of the comparative statics model suggested by Cornes and Sandler (1994).\footnote{This modification has first been suggested by Rübbelke (2002, 2003).} The integration into the comparative statics model, however, requires the analysis of three instead of two commodities. By this extension different levels of substitutability between the jointly provided private goods/characteristics and other private goods can be captured, i.e. heterogeneity among private goods/characteristics is taken into account. Only a certain group of private goods is considered to represent an adequate substitute for the joint production’s private characteristic, and this group is assumed to be regulated by a central authority. As we will show, these extensions are sensible for analyzing several real-world impure-public-goods examples. The focus of the comparative statics analysis in Section 3 will be on the two parameters directly associated with the substitute: its prices and quantities.

Afterwards, in Section 4, our paper goes beyond the analytical analysis of comparative statics by replicating the analytical approach into the sphere of numerical simulation. We employ the impure-public-good example of climate policy in Germany in order to simulate the comparative statics in the framework of a parameterized simulation model.

Section 5 stresses the main findings of the simulation model and compares them to the analytical findings. Results which could be found in the simulations but not in the analytical model are highlighted. Section 6 concludes.

2 An Impure Public Good Model

In the subsequent sections, an agent’s decision on public good provision is analyzed in an impure public good model, where the comparative static properties are investigated with respect to modifications in the impure-public-good independent production technology of the private characteristic which is also generated by the public good. The agent’s responses are expressed in terms of parameters associated with standard price taking functions.
2.1 Characteristics of Impure Public Goods

Similar to Posnett and Sandler (1986), we consider an impure public good whose private characteristic can also be generated independently of the public characteristic. We analyze the impact of the independent generation of the joint production’s private characteristic on agents’ willingness to provide the impure public good. Hence, the level of the independent generation as well as its price have to be considered. In order to analyze the impact of the independent generation of the private characteristic on agents’ willingness to provide the public good, we have to formulate an agent’s utility maximization problem in a way that takes explicit account of the characteristics of the joint production. Agents’ preferences are not expressed in commodity space but in characteristic space, i.e. not the amount of commodities acquired but the amount of characteristics enjoyed are crucial for the agents’ maximization problems.\footnote{For a distinction of characteristics and commodities see Cornes (1992: 139).} We distinguish the characteristics provided by the impure public good according to their degree of publicness:

- **Pure public characteristic:** No agent of the considered ‘model world’ can be excluded from its consumption and it exhibits non-rivalry.
- **Private characteristic:** The private characteristic of an impure public good provision can be exclusively enjoyed by the agent making this provision. The public good contributing agent may be an individual, a region or a country.

2.2 Utility Function and Characteristics

We consider an agent whose preferences with respect to the consumption of three characteristics - \(y_1 \), \(y_2 \) and \(X \) - are represented by a continuous utility function, \(U(y_1, y_2, X) \), that is strictly increasing and strictly quasi-concave and everywhere twice differentiable. The country consumes three commodities:

- **First private good:** Each unit of the first generates one unit of \(y_1 \) for the country at a price \(p_y = 1 \). The commodity represents a bundle of private goods to the country and it may be thought of to be identical to the characteristic \(y_1 \). The symbol \(y_1 \) can consequently be used to denote either the first characteristic or the good that generates it. \(y_1 \) is used as the numeraire good in all that follows.

- **Second private good:** The second commodity \(s \) generates the private characteristic \(y_2 \).

\[U(y_1, y_2, X) \]
The generated characteristic \(y_2 \) is identical to the one which arises from the impure public good. One unit of \(s \) is assumed to have the price \(p_s \) and to generate one unit of characteristic \(y_2 \). Therefore, \(s \) does not only denote the consumption of the second commodity, it also stands for the amount of characteristic \(y_2 \) generated by this commodity.

Impure public good: The third good \(q \) represents the impure public good and has a price \(p_q \). Each unit generates \(\beta \) units of the public characteristic \(X \). Furthermore, the impure public good additionally produces \(\alpha \) units of the private characteristic \(y_2 \).

The total consumption of the public characteristic \(X \) by agent \(i \) equals the sum of his own contribution \(x_i = \beta q_i \) and the other \(n - 1 \) agents’ contributions \(\tilde{X}_i = \beta \tilde{Q}_i \):

\[
X = x_1 + x_2 + \ldots + x_n = \sum_{j=1}^{n} x_j = x_i + \tilde{X}_i = \beta \sum_{j=1}^{n} q_j = \beta (q_i + \tilde{Q}_i).
\]

(1)

2.3 Constraints Limiting the Welfare Maximization

There are three constraints limiting the feasible consumption set from which the agent chooses his most preferred point:

- The first constraint is represented by the conventional budget constraint:

\[
y_1 + p_s s + p_q q = I, \tag{2}
\]

with \(p_q > p_s \). Hence, the agent spends his whole income on the consumption of the three commodities.

- The Nash-Cournot assumption is made that an individual agent takes the other agents’ generation of the public characteristic

\[
\tilde{X} = X - \beta q \tag{3}
\]

as exogenously given. Furthermore, the parameter \(\beta \) is considered to be the same across all agents, which is equivalent to assuming that \(\tilde{Q} \) is taken as given.

- We assume that an agent has to provide an exogenously fixed quantity of \(s \) units of characteristic \(y_2 \) directly. It is assumed that this obligation is laid down by a national or international regulation. The unit cost of \(s \) is also assumed to be exogenously determined. Therefore,

\[
s = \bar{s} \quad \text{and} \quad p_s = \bar{p}_s. \tag{4}
\]
In the formulation of the agent’s consumption problem, (4) is substituted into (2) and (3). Furthermore, the technological condition $q = \frac{y_2 - s}{\alpha}$, can be employed to remove q from the constraints and to express agent i’s maximization problem as

$$\max_{y_1, y_2, x_i} U(y_1, y_2, X)$$

subject to

$$y_1 + \bar{p} s \bar{s} + p_q \left(\frac{y_2 - \bar{s}}{\alpha} \right) = I \quad \text{and} \quad -\beta (y_2 - \bar{s}) + \alpha X = \alpha \bar{X}. $$

Figure 1: Constraints and Welfare Maximum.

Figure 1 illustrates the constraints restricting the agent’s utility maximization: the constraint on the left-hand side is depicted by the plane ABCD and the constraint on the right-hand side is represented by plane T’U’V’. The distance between U and the origin of the three axis measures the total level of the pure public characteristic generated by the other agents, \bar{X}. Starting from the point U the agent has to buy \bar{s} units of the second characteristic directly (constraint 3). Thus, we move to point U’; starting from
this point the agent may buy units of the impure public good \(q \) or the private good \(y_1 \). The consumption of impure public good \(q \) and private good \(y_1 \) is limited by the aforementioned constraint depicted by plane ABCD. Therefore, the set of points that satisfy all three constraints lies on the line which links point F to the point G. One of the indifference curves from the set of indifference curves representing the agent’s convex preferences over the three characteristics is tangent to the line FG. The tangential point represents the allocation providing the highest attainable utility level. In Figure 1 the point \(\mathcal{E} \) represents this point. Strict convexity of preferences guarantees that there is a unique point of tangency \(\mathcal{E} \).

2.4 Virtual Magnitudes

Let us next formulate the restrictions limiting an agent’s consumption by using parameters associated with familiar price-taking behaviour. Therefore, we have to introduce virtual magnitudes. These magnitudes (virtual prices and income) have to guarantee that a consumer chooses to take precisely the same amount of each commodity as he consumes on the efficient point \(\mathcal{E} \). Since the externalities of the public characteristic have to be considered, not the monetary income is of main importance but the virtual income. The virtual income may also be denoted ‘hypothetical income’, ‘full income’ or ‘social income’. Becker (1974: 1063) defines ‘social income’ as “the sum of person’s own income (his earnings, etc.) and the monetary value to him of the relevant characteristics of others”. We denote the three hypothetical or virtual prices of the characteristics and the hypothetical income that would lead a price-taking agent to choose the characteristics bundle in \(\mathcal{E} \) by \(\psi_1, \psi_2, \psi_3 \), and \(\mu \) respectively.

If it is warranted that the virtual budget constraint containing the virtual magnitudes, \(\mu = \psi_1 y_1 + \psi_2 y_2 + \psi_3 X \), induces a price-taking agent to choose the allocation \(\mathcal{E} \), the virtual magnitudes could be employed in order to form the virtual budget plane PQR that allows for abandonment of the other restricting planes in Figure 1. The points \(\mathcal{E}, F \) and \(G \) have to be located in the plane PQR. Thus, the virtual magnitudes depend on the location of the tangential point \(\mathcal{E} \) between FG and the indifference surfaces, and the point \(\mathcal{E} \) itself depends on the observed parameters of the choice problem \(p_s, p_q, I, \bar{X}, \bar{s}, \alpha, \beta \). Consequently, it is required that:

\[
\psi_i = f_i(y_1, y_2, X) = \psi_i(p_s, p_q, I, \bar{X}, \bar{s}, \alpha, \beta),
\]

\(^9\)The set of indifference curves are not depicted in Figure 1.
\[\mu = f_\mu(y_1, y_2, X) = \mu(p_s, p_q, I, \bar{X}, s, \alpha, \beta). \]

The functions \(\psi_i \) reflect the slopes in the relevant directions of the indifference surface at the allocation \(\mathcal{E} \). Since only the relative magnitudes are relevant, the virtual price of the first characteristic can be set equal to unity. The virtual income function \(\mu \) determines the income that puts the budget plane on the level where it has the tangency point with the indifference surfaces in \(\mathcal{E} \). Consequently, the plane PQR would support consumption of a price-taking agent at allocation the agent’s efficient allocation \(\mathcal{E} \).

2.5 Linkage Between Exogenous and Virtual Parameters

The linkage of the virtual magnitudes to the exogenous parameters has to meet the following requirements:

- The unit price the agent is willing to pay for the impure public good is equal to the price \(p_q \) that is actually paid. This price has to coincide with the valuation of the characteristics generated by the unit of the impure public good. The virtual prices reflect these valuations. Per unit of the impure public good \(\alpha \) units of \(y_2 \) and \(\beta \) units of \(X \) are provided such that:

\[
\begin{align*}
p_q &= \alpha \psi_2(\Theta) + \beta \psi_3(\Theta).
\end{align*}
\]

Here, \(\beta \psi_3(\Theta) \) represents the benefits derived from the public and \(\alpha \psi_2(\Theta) \) the benefits derived from the private characteristics of a unit of the impure public good. Furthermore, the vector \(\Theta \) gathers the observed parameters \(\bar{p}_s, p_q, I, \bar{X}, s, \alpha, \beta \).

- In addition to the provision of \(y_2 \) by \(s \), the provision of the impure public good generates \(y_2 \). The amount by which characteristic 2 is augmented by the agent’s provision of the impure public good has to be proportional to the amount by which the agent augments the other agents’ provision of the public characteristic:

\[
\begin{align*}
\beta \{D_2(\psi_2(\Theta), \psi_3(\Theta), \mu(\Theta)) - s\} &= \alpha \{D_3(\psi_2(\Theta), \psi_3(\Theta), \mu(\Theta)) - \bar{X}\}.
\end{align*}
\]

\(D_k \), with \(k = 2, 3 \), stands for the uncompensated demand functions with respect to characteristics 2 and 3 respectively.

- The virtual income of agent \(i \) must be consistent with the value of the chosen allocation at \(\mathcal{E} \):

\[
\begin{align*}
\mu(\cdot) &= y_1 + \psi_2(\cdot)y_2 + \psi_3(\cdot)X \\
&= y_1 + \psi_2(\cdot)y_2 + \psi_3(\cdot)(x + \bar{X})
\end{align*}
\]
Using equations (6), (7), (8) as well as the facts that \(I = y_1 + p q - \frac{\alpha}{s} + p_s s \) and \(y_2 = \alpha q + s \), virtual income can be expressed:

\[
\mu(\cdot) = y_1 + p_s s + p_q q + \psi_3 \tilde{X} + (\psi_2 - p_s) s = I + \psi_3 \tilde{X} + (\psi_2 - p_s) s. \tag{9}
\]

The expression for \(\mu(\cdot) \) in (9) deviates from the commonly employed expression of virtual income by the term \((\psi_2 - p_s) s\). This is due to the fact that in the considered case the production of \(s \) is allowed to be suboptimal low and the virtual price \(\psi_2 \) may not be equal to the price \(p_s \). If no inefficient low level of \(s \) prevails, the prices \(p_s \) and \(\psi_2 \) coincide and the term \((\psi_2 - p_s) s\) vanishes.

3 Comparative Statics

An agent can modify the extent of impure-public-good independent generation of the second private characteristic. The raised efforts in such independent generation affect the attractiveness of impure-public-good provision. The same holds with respect to price variations of the impure-public-good independent generation of the second private characteristic. The impacts of these effort and price variations are analyzed in the subsequent sections.

3.1 Variation of the Independent Generation of the Second Characteristic

In order to determine the impact of an increased impure-public-good independent generation of the second characteristic on the impure-public-good provision level, we have – in a first step – to differentiate equations (6), (7) and (9) with respect to \(s \). This differentiation yields

\[
0 = \alpha \psi_2 s + \beta \psi_3 s,
\]

\[
\beta(D_{22}\psi_2 s + D_{23}\psi_3 s + D_{2\mu}\mu_s) - \beta \mu_s = \alpha(D_{32}\psi_2 s + D_{33}\psi_3 s + D_{3\mu}\mu_s),
\]

where \(D_{k2} = \frac{\partial D_k}{\partial \psi_2}, D_{k3} = \frac{\partial D_k}{\partial \psi_3}, D_{k\mu} = \frac{\partial D_k}{\partial \mu}, \psi_2 s = \frac{\partial \psi_2}{\partial s}, \psi_3 s = \frac{\partial \psi_3}{\partial s} \) and \(\mu_s = \frac{\partial \mu}{\partial s} \).
This system can be written:

\[
\begin{bmatrix}
\alpha & \beta & 0 \\
\beta D_{22} - \alpha D_{32} & \beta D_{23} - \alpha D_{33} & \beta D_{32} - \alpha D_{33} \\
-s & -\bar{X} & 1
\end{bmatrix}
\begin{bmatrix}
\psi_{2s} \\
\psi_{3s} \\
\mu_s
\end{bmatrix}
= \begin{bmatrix}
0 \\
\beta \\
\psi_2 - p_s
\end{bmatrix}.
\]

Second, we employ Cramer’s rule and set \(\alpha = \beta = 1\) for simplicity reasons. This yields the following price and income responses:

\[
\psi_{2s} = \frac{(D_{2\mu} - D_{3\mu})(\psi_2 - p_s) - 1}{\Omega},
\]

\[
\psi_{3s} = \frac{1 - (D_{2\mu} - D_{3\mu})(\psi_2 - p_s)}{\Omega},
\]

\[
\mu_s = \bar{X} \frac{1 - (D_{2\mu} - D_{3\mu})(\psi_2 - p_s)}{\Omega} + s \frac{(D_{2\mu} - D_{3\mu})(\psi_2 - p_s) - 1}{\Omega} + \psi_2 - p_s,
\]

where \(\Omega = \frac{\partial C_2}{\partial \psi_3} - \frac{\partial C_2}{\partial \psi_2} - \frac{\partial C_3}{\partial \psi_3} + \frac{\partial C_3}{\partial \psi_2} > 0\). Here, \(C\) stands for compensated demand functions.

As already mentioned above, virtual prices and income can be expressed as functions of the exogenous parameters \(p_s, p_q, s, \bar{X}, I, \alpha, \beta\). By definition virtual magnitudes have to ensure that the succeeding condition holds with respect to the uncompensated demand of the agent:

\[
D_k^*(\Theta) = D_k(\psi_2(\Theta), \psi_3(\Theta), \mu(\Theta)), \quad k = 1, 2, 3. \tag{10}
\]

Now, in a third step, the differentiation of (10) with respect to \(s\), substitution of the calculated price and income responses and application of the Slutsky decomposition yields the following responses (for an extensive discussion of the calculations see Rübbelke (2002, 2003)):

\[
D_{2s} = \frac{C_{23} - C_{22}}{\Omega} + D_{2f}(\psi_2 - p_s), \tag{11}
\]

\[
D_{3s} = D_{2s} - 1 = \frac{C_{33} - C_{32}}{\Omega} + D_{3f}(\psi_2 - p_s). \tag{12}
\]

Provided that the characteristics 2 and 3 do not represent very strong complements and as long as the virtual price \(\psi_2\) of characteristic 2 exceeds the price \(p_s\) for direct provision of this characteristic, the response of the demand \(D_2\) to an increase in \(s\) is positive. This is on the one hand due to the fact that – provided both characteristics behave like normal goods
– an income rise will increase the demand for both characteristics and hence, the second terms on the right-hand sides of both responses are positive (see Rübbelke (2002, 2003)). On the other hand this is due to the exclusion of the case of very strong complements, and therefore \(C_{23} > C_{22} \).\(^{10}\) The latter causes the first term of (11) also to be positive.

The sign of the response of \(D_3 \) is ambiguous since the difference between \(C_{33} \) and \(C_{23} \) is negative. Hence, it is ambiguous whether the provision of the impure public good will rise or decrease.

Yet, if it is assumed that \(p_s \) equals \(\psi_2 \), then the response \(D_{2s} \) is definitely positive and the response in \(D_{3s} \) is definitely negative. Then, the overall response of the provision of the impure public good is negative since direct provision of the second characteristic crowds out indirect provision via impure public good provision.

3.2 Variation of the Price of the Technology Which Generates the Second Characteristic Independently

Let us next analyze the impact of a change in the price of the impure-public-good independent generation of the second private characteristic. By differentiation of equations (6), (7) and (9) with respect to \(p_s \), we get

\[
\begin{align*}
0 &= \alpha \psi_{2p_s} + \beta \psi_{3p_s}, \\
\beta(D_{22}\psi_{2p_s} + D_{23}\psi_{3p_s} + D_{2\mu}\mu_{p_s}) &= \alpha(D_{32}\psi_{2p_s} + D_{33}\psi_{3p_s} + D_{3\mu}\mu_{p_s}), \\
\mu_{p_s} &= \psi_{3p_s}\tilde{X} + (\psi_{2p_s} - 1)s.
\end{align*}
\]

This can be expressed:

\[
\begin{bmatrix}
\alpha & \beta & 0 \\
\beta D_{22} - \alpha D_{32} & \beta D_{23} - \alpha D_{33} & \beta D_{2\mu} - \alpha D_{3\mu} \\
-s & -\tilde{X} & 1
\end{bmatrix}
\begin{bmatrix}
\psi_{2p_s} \\
\psi_{3p_s} \\
\mu_{p_s}
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
-s
\end{bmatrix}.
\]

By application of Cramer’s rule and setting \(\alpha = \beta = 1 \), we get the following price and income responses:

\[
\psi_{2p_s} = \frac{-s(D_{2\mu} - D_{3\mu})}{\Omega},
\]

\(^{10}\)Consider, that compensated cross-price responses are symmetric; see Deaton and Muellbauer (1980: 43-45) as well as Cornes (1992: 71-72).
\[\psi_{3p_s} = \frac{s(D_{2\mu} - D_{3\mu})}{\Omega}, \]

\[\mu_{p_s} = \tilde{X} s \frac{(D_{2\mu} - D_{3\mu})}{\Omega} + s \frac{-s(D_{2\mu} - D_{3\mu})}{\Omega} - s. \]

By differentiating (10) with respect to \(p_s \), applying the Slutsky decomposition and substituting the calculated price and income responses, we get:

\[
D_{2p_s} = D_{3p_s} = s \frac{(C_{22} - C_{23})D_{3\mu} + (C_{33} - C_{32})D_{2\mu}}{\Omega} = -(sD_{21}).
\] (13)

Thus, a rise in the price for direct acquisition of characteristic 2 induces only an income effect. This is in line with Neary and Roberts (1980: 34) who point out that an increase in the price of a rationed good simply forces the consuming household to pay more for the rationed consumption level. Because the uncompensated demand for characteristics 2 and 3 decrease, the agent will lower his impure-public-good provision level. However, the latter result is a consequence of the model assumption that the independent generation of joint products cannot be substituted by a generation which is associated with the impure public good production. Otherwise, the higher opportunity cost of the independent generation may cause the impure-public-good provision level to rise.

4 Numerical Simulation

Since our analytical solutions are not clear-cut, we employ the impure-public-good example of climate policy in Germany to numerically simulate the effects of alternative technologies in a parameterized model. The simulation model reveals directions of impacts where the analytical model has ambiguous results and gives insights into the magnitude of effects associated with changes in the quantity and the price of the impure-public-good independent generation of the second private characteristic.

4.1 Impure Public Goods: The Example of Climate Policy

Since climate policy, e.g., in the shape of a CO₂ tax, provides pure public as well as private characteristics, it can be regarded as an impure public good. Pure public and private characteristics are provided by climate policy (see Figure 2).

The pure public characteristic subsumes the effects generated by climate policy that can be enjoyed globally, irrespective of which country abates. The pure public characteristic provided by climate policy is climate protection. No country can be excluded from
its consumption and it exhibits non-rivalry. Benefits resulting from climate protection are
the primary benefits of climate policy.

Climate policy also provides some *private characteristic* with purely local/regional
influence that can be exclusively enjoyed by countries/regions generating climate policy.
The benefits, which countries enjoy from consuming the private characteristic are the
ancillary or secondary benefits.

![Diagram of Economic-Policy (e.g. CO\textsubscript{2}-Tax) and GHG Abatement Measures]

Figure 2: Primary and Ancillary/Secondary Benefits.

Yet, we have to take account of the fact that the ancillary benefits can also be gener-
ated independently of climate policy. Desulphurization installations, for example, reduce
the emission of \(SO\textsubscript{2}\) independently of climate policy. So, the higher the level of such instal-
lations, the lower will be the (marginal) ancillary benefits of climate policy. Subsequently,
we will focus on the ancillary effect of \(SO\textsubscript{2}\) emission mitigation.

4.2 The Simulation Model

This section describes the data used to parameterize the analytical model presented in
Section 2 in order to simulate numerically the effects of changes in the quantity and
prices of the alternative technology which are analyzed analytically in Section 3. For the
calibration we consider the example of climate policy in Germany in the year 2010 where
\(CO\textsubscript{2}\) emission reductions is the impure public good and \(SO\textsubscript{2}\) emission reduction is the
private environmental good.

To parameterize the benchmark demand for the impure public good and the private environmental good we assume that international obligations are revealed preferences for the national provision of the two goods, CO_2 and SO_2 emission reductions. The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC) which entered into force in February 2005 imposes greenhouse gas emission limits for industrialized countries (UNFCCC (1997)). In May 2002, the European Union (EU) ratified the Kyoto Protocol committing itself to a reduction of EU-wide greenhouse gas emissions by 8% vis-à-vis 1990 emission levels during 2008-2012. The aggregate EU reduction requirement has been redistributed among individual Member States according to an EU-internal Burden Sharing Agreement resulting in a reduction requirement for Germany of 21% (CEC (1999a)). Given CO_2 emissions of 952 MtCO_2 in Germany and 3,068 MtCO_2 in the EU in 1990, the emission targets associated with the Kyoto Protocol amount to 752 MtCO_2 for Germany and 2,823 MtCO_2 for the EU. Projected emissions for 2010 (the base-year for our model simulations) amount to 839 MtCO_2 for Germany and 3,311 MtCO_2 for the EU (CEC (2001a)). This yields a benchmark demand for CO_2 emission reduction for Germany of $q = 87$ MtCO_2. We assume that real emission reductions are only achieved in Europe and that the Kyoto Protocol is in addition reduced to symbolic policy (Löschel and Zhang (2003)). The other agents’ provision of the impure public good is then $\tilde{Q} = 401$ MtCO_2. In 1990, SO_2 emissions were 5280 ktSO_2. They are projected to decrease to 740 ktSO_2 until 2010 (CEC (2001a)). Given the German SO_2 emission target of 520 ktSO_2 in 2010 stated in the EU directive on National Emission Ceilings for certain atmospheric pollutants (CEC (2001b)), the demand for the private environmental good SO_2 emission reduction is $y_2 = 220$ ktSO_2.

The parameter α that describes the extent of SO_2 emission reduction that is generated through the reduction of CO_2 emissions is estimated through simulation experiments with the GEM-E3 model for Europe (Capros et al. (1997)). It is a full scale general equilibrium model for 15 European countries, linked through endogenous bilateral trade. The environmental module of GEM-E3 concentrates on three environmental problems: (i) global warming, (ii) problems related to the deposition of acidification emissions and (iii) ambient air quality linked to acidifying emissions and tropospheric ozone concentration. Hence, it considers energy-related emissions of primary pollutants CO_2, NO_X, SO_2, VOC and particulates. There are two mechanisms of emission reduction explicitly specified in the model: substitution between fuels and between energetic and non-energetic inputs.
and emission reduction due to a decline in production and consumption. We simulate with the GEM-E3 model a scenario where Germany reaches its burden sharing emission level of CO$_2$ through a domestic permit system. In this scenario the marginal cost of CO$_2$ abatement (price of the impure public good) is $p_q = 29.0$ Euro$_{97}/tCO_2$ and $\alpha = 1.30$ ktSO$_2/MtCO_2$. The amount of SO$_2$ emission reduction that is generated through reduction of CO$_2$ to reach the German Kyoto obligations is 113 ktSO$_2$. The benchmark quantity of SO$_2$ emission reduction that has to be provided independent of climate policy to reach the EU National Emission Ceilings is therefore $s = 107$ ktSO$_2$.

The marginal costs of SO$_2$ reductions by different control technologies for Germany in the current legislation (baseline) scenario for 2010 is taken from the Regional Air Pollution Information and Simulation (RAINS) model (Cofala and Syri (1998)), which is applied as a scenario analysis tool in the context of the international negotiations under the UN/ECE Convention on Long-range Transboundary Air Pollution and for the development of the acidification and ozone strategies of the European Union (Alcamo et al. (1990)). RAINS concentrates on the technical emission control options, which do not imply structural changes of the energy system. Five broad groups of technical emission control options are distinguished: (i) the use of low-sulphur fuels, including fuel desulphurization, (ii) in-furnace control of SO$_2$ emissions, (iii) conventional wet flue gas desulphurization processes, (iv) advanced, high efficiency methods for capturing sulphur from the flue gas, and (v) measures to control process emissions. The marginal cost for 107 ktSO$_2$ reduction or equivalently the benchmark price of the alternative technology amounts to $p_s = 4,920$ Euro$_{97}/tSO_2$.

The total budget is taken from the macroeconomic assumption for Germany in the baseline scenario “European Environmental Priorities” (Capros et al. (2000), CEC (1999b)): \(I = 2,561,000 \text{ million Euro}_{97} \).

We employ a linear logarithmic utility function of the form

\[U = \gamma_1 \ln y_1 + \gamma_2 \ln y_2 + \gamma_3 \ln X \]

and calibrate the parameter in the utility function such that our benchmark data set is replicated. Table 1 summarizes the benchmark parameter values for the numerical simulations. In the simulation runs we then vary the benchmark values of the quantity s and the price p_s of the alternative technology.
Table 1: Benchmark Parameter Values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_1</td>
<td>(in M Euro97)</td>
<td>2,557.95</td>
</tr>
<tr>
<td>p_y</td>
<td>(Euro97)</td>
<td>1</td>
</tr>
<tr>
<td>s</td>
<td>(ktSO$_2$)</td>
<td>107</td>
</tr>
<tr>
<td>p_s</td>
<td>(Euro97/t CO$_2$)</td>
<td>4,920</td>
</tr>
<tr>
<td>q</td>
<td>(MtCO$_2$)</td>
<td>87</td>
</tr>
<tr>
<td>p_q</td>
<td>(Euro97/t CO$_2$)</td>
<td>29</td>
</tr>
<tr>
<td>\dot{Q}</td>
<td>(MtCO$_2$)</td>
<td>401</td>
</tr>
<tr>
<td>\dot{X}</td>
<td>(MtCO$_2$)</td>
<td>401</td>
</tr>
<tr>
<td>x</td>
<td>(MtCO$_2$)</td>
<td>87</td>
</tr>
</tbody>
</table>

5 Simulation Results and the Impure Public Good Model

The simulation yielded some interesting results which either confirm our analytical investigation or reveal the direction of impacts given ambiguous results in the analytical model. Furthermore, our findings turn out to have surprising implications. In contrast to the analytical model, the simulation study allows us to have an explicit look on changes in utility levels induced by changes of individual parameters.

The effects induced by a change in the price of the second private good are in line with the predictions of the impure public good model (see Figure 3). A rising price causes the consumption of all goods y_1, y_2, q (as well as welfare) to decline, which is due to the negative income effect exerted by the increase in the price of the rationed good. The income effect is the only effect resulting from the increase in p_s, as Neary and Roberts (1980) as well as our analytical analysis show. Therefore, the simulation result is not very surprising but confirms the appropriateness of our analytical approach. We can observe from Figure 3, how virtual income and utility level decline with rising price levels of the rationed good.

In contrast to the unambiguous impacts of the increase in p_s predicted by the analytical impure public good model, the model’s forecasts of effects of a change in the level s of the consumption of the second private good on the impure public good provision were ambiguous. The analytical model predicted that the increase in s may raise or reduce the provision level q of the impure public good. In our simulation model, we find a negative
Figure 3: Effects induced by a change in the price of the second private good p_s (percentage change vs. benchmark value).

effect of the increase in the second private good consumption level on impure public good provision q. This decline in impure public good provision is accompanied by a rise in welfare and virtual income levels. Yet, utility levels increase at a declining pace with rising levels of s.

A very interesting and surprising result is that variations in the price p_s of the rationed second private good do only have minor negative impacts on climate protection levels q compared to variations in the levels of the rationed good s (see Figures 3 and 4). With respect to our example of climate policy, this means that an increase in the prices of technologies independently (of climate policy) generating private ancillary effects of climate policy (like desulphurisation installations reducing SO_2 emissions) does not have a very strong negative impact on climate protection levels. In contrast, regulations prescribing higher standards for pollution control of local or regional air pollutants tend to have a significant negative impact on climate protection levels. Nevertheless, these regulations tend to improve welfare, although the welfare improvement rises at a slower pace with increasing emission control. The welfare improvement is due to the suboptimal low provision of SO_2 emission control in the baseline scenario: with increasing control levels, the marginal benefits of SO_2 emission control decline.
6 Conclusions

There exists a great variety of application options for impure public good models. In fact, almost every public good has an impure public character especially when we regard international public goods.

The analytical model we presented in Section 2 addresses such impure public goods. Yet, in many cases, the private characteristic of the impure public good can be produced by different means. Therefore, in contrast to standard public good models, we introduced a third technology, generating the private characteristic of the impure public good independently. We supposed this technology to be rationed and it was in the center of the focus of our analysis. We derived by means of our analytical model the impact this technology’s application and price have on the provision level of the impure public good. Therefore, we investigated influences which are omitted in standard pure public good models, which do not take account of private characteristics associated with public good provision.

In order to check and refine the results of the analytical study, we employed a simulation model for the example of climate policy in Germany. Here, climate protection represents the global public characteristic of the impure public good ‘climate policy’,
while SO_2 abatement represents the private characteristic, from an individual country’s point of view. In fact, most options to reduce the emission levels of the greenhouse gas CO_2 turn out to be simultaneously reducing the emissions of SO_2. However, the emissions of SO_2 can also be mitigated independently of climate policy by means of desulphurisation installations, which represent the technology independently generating the private characteristic of the impure public good.

We had to take account of the fact that the degrees of publicness vary with divergent entities considered. So, in standard analyses local/regional air pollution reductions represent a public good for inhabitants of the respective local/regional area. Yet, on the international scale we considered, abatement of local/regional air pollution turns out to become a private good from an individual country’s point of view (while still representing a public good for individual inhabitants living in the area enjoying higher air quality).

The results of the simulations confirmed the findings of the analytical model. So, the increase of the price of climate-policy independent SO_2 abatement exerts a negative income effect. Consequently, the abatement has a negative impact on impure public good provision, and therefore on climate protection levels. As our explicit illustration of welfare effects in the framework of the simulation model shows, welfare levels unambiguously decline with the considered price increases.

In contrast to the ambiguous results of our analytical representation with respect to the impacts of an increase in the provision of the rationed good, we found unambiguous effects of such an increase in our simulation model. The provision of the impure public good decrease with increasing levels of the rationed private good. Due to the inefficiently low provision level in the baseline scenario, the increased production of the rationed good caused an improvement of welfare.

Interestingly, the impact of the price increase of SO_2 abatement has minor effects on climate protection levels compared to increases in the climate-policy-independent enhancement of SO_2 abatement. Consequently, it turns out to be likely that stricter regulations on air-pollution may cause the attractiveness of climate policy to decline significantly, while price increases of this control tend to have only minor effects.
7 References

<table>
<thead>
<tr>
<th>Note di Lavoro Pubblicati in 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEM 1.2004</td>
</tr>
<tr>
<td>ETA 2.2004</td>
</tr>
<tr>
<td>PRA 3.2004</td>
</tr>
<tr>
<td>ETA 4.2004</td>
</tr>
<tr>
<td>PRA 7.2004</td>
</tr>
<tr>
<td>PRA 8.2004</td>
</tr>
<tr>
<td>PRA 9.2004</td>
</tr>
<tr>
<td>PRA 10.2004</td>
</tr>
<tr>
<td>PRA 11.2004</td>
</tr>
<tr>
<td>PRA 12.2004</td>
</tr>
<tr>
<td>PRA 13.2004</td>
</tr>
<tr>
<td>PRA 14.2004</td>
</tr>
<tr>
<td>PRA 15.2004</td>
</tr>
<tr>
<td>CCMP 16.2004</td>
</tr>
<tr>
<td>NRM 17.2004</td>
</tr>
<tr>
<td>NRM 18.2004</td>
</tr>
<tr>
<td>SIEV 19.2004</td>
</tr>
<tr>
<td>NRM 21.2004</td>
</tr>
<tr>
<td>NRM 22.2004</td>
</tr>
<tr>
<td>NRM 23.2004</td>
</tr>
<tr>
<td>NRM 24.2004</td>
</tr>
<tr>
<td>NRM 26.2004</td>
</tr>
<tr>
<td>NRM 27.2004</td>
</tr>
<tr>
<td>CSR 28.2004</td>
</tr>
<tr>
<td>NRM 29.2004</td>
</tr>
<tr>
<td>NRM 30.2004</td>
</tr>
<tr>
<td>CTN 33.2004</td>
</tr>
<tr>
<td>KTHC 35.2004</td>
</tr>
</tbody>
</table>
Auctions
Price Sealed-Bid Auctions
the Incidence of Commissions in Auction Markets
Maximization and the Multiple-Good Monopoly
and Evidence from Timber Auctions
Roberto BURGUET

Bookbuilding is Dominating Auctions

Real Option Analysis
Environmental Taxation Game
Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEV

Influence of World Energy Prices
for Public Goods: Finite Versus Continuous Mixing in Logit Models
Analysis of Climate Change Impacts on Tourism

William B. CLARK, Riccardo SCARPA Kenneth G. WILLIS and Melinda ACUTT

Information: The Differential Tax Revisited

Resources Management: A DSS Tool and a Pilot Study Application

IEM 122.2004
Carlo GIUPPONI, Jaroslav MYSIAK and Anita FASSIO: An Integrated Assessment Framework for Water Resources Management: A DSS Tool and a Pilot Study Application

IEM 123.2004

ETA 124.2004
Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited

NRM 125.2004
Mauro FABIANO, Gabriella CAMARSA, Rosanna DURSI, Roberta IVALDI, Valentina MARIN and Francesca PALMISANI: Integrated Environmental Study for Beach Management: A Methodological Approach

PRA 126.2004
Irena GROSFELD and Iraj HASHI: The Emergence of Large Shareholders in Mass Privatized Firms: Evidence from Poland and the Czech Republic

CCMP 127.2004
Maria BERRITTELLA, Andrea BIGNANO, Roberto ROSON and Richard S.J. TOL: A General Equilibrium Analysis of Climate Change Impacts on Tourism

CCMP 128.2004
Reyer GERLAGH: A Climate-Change Policy Induced Shift from Innovations in Energy Production to Energy Savings

NRM 129.2004
Elisattos PAPYRakis and Reyer GERLAGH: Natural Resources, Innovation, and Growth

PRA 130.2004
Bernardo BORTOLOTTI and Mara FACCIO: Reluctant Privatization

SIEV 131.2004
Riccardo SCARPA and Mara THIENE: Destination Choice Models for Rock Climbing in the Northeast Alps: A Latent-Class Approach Based on Intensity of Participation

SIEV 132.2004

IEM 133.2004
Santiago J. RUBIO: On Capturing Oil Rents with a National Excise Tax Revisited

ETA 134.2004
Asción DIAZ: Political Competition when Media Create Candidates’ Charisma

SIEV 135.2004
Anna ALBERINI: Robustness of VSL Values from Contingent Valuation Surveys

CCMP 136.2004
Gernot KLEPPER and Sonja PETERSON: Marginal Abatement Cost Curves in General Equilibrium: The Influence of World Energy Prices

ETA 137.2004
Herbert DAWID, Christophe DEISSENBERG and Pavel ŠEVČÍK: Cheap Talk, Gullibility, and Welfare in an Environmental Taxation Game

CCMP 138.2004
ZhongXiang ZHANG: The World Bank’s Prototype Carbon Fund and China

CCMP 139.2004
Reyer GERLAGH and Marjan W. HOFKES: Time Profile of Climate Change Stabilization Policy

NRM 140.2004
Chiara D’ALPAOS and Michele MORETTO: The Value of Flexibility in the Italian Water Service Sector: A Real Option Analysis

PRA 141.2004
Patrick BAJARI, Stephanie HOUGHTON and Steven TADELIS (lxxi): Bidding for Incomplete Contracts

PRA 142.2004
Susan ATHEY, Jonathan LEVIN and Enrique SEIRA (lxxi): Comparing Open and Sealed Bid Auctions: Theory and Evidence from Timber Auctions

PRA 143.2004
David GOLDREICH (lxxi): Behavioral Biases of Dealers in U.S. Treasury Auctions

PRA 144.2004
Roberto BURGUET (lxxi): Optimal Procurement Auction for a Buyer with Downward Sloping Demand: More Simple Economies

PRA 145.2004

PRA 146.2004

PRA 147.2004
Claudio MEZZETTI, Aleksandar PEKE and Ilia TSETLIN (lxxi): Sequential vs. Single-Round Uniform-Price Auctions

PRA 148.2004
John ASKER and Estelle CANTILLON (lxxi): Equilibrium of Scoring Auctions
Philip A. HAILE, Han HONG and Matthew SHUM (lxxi): Nonparametric Tests for Common Values in First-Price Sealed-Bid Auctions

PRA 150.2004
Francois DEGEORGE, Francois DERRIEN and Kent L. WOMACK (lxxi): Quid Pro Quo in IPOs: Why Bookbuilding is Dominating Auctions

CCMP 151.2004
Barbara BUCHNER and Silvia DALL’OLIO: Russia: The Long Road to Ratification. Internal Institution and Pressure Groups in the Kyoto Protocol’s Adoption Process

CCMP 152.2004
Carlo CARRARO and Marzio GALEOTTI: Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model

PRA 153.2004
Alejandro M. MANELLI and Daniel R. VINCENT: Does Endogenous Technical Change Make a Difference in Climate Policy Analysis? A Robustness Exercise with the FEEM-RICE Model

ETA 154.2004
Nicola ACOCELLA, Giovanni Di BARTOLOMEO and Wilfried PAUWELS: Is there any Scope for Corporatism in Stabilization Policies?

CTN 155.2004
Johan EYCKMANS and Michael FINUS: An Almost Ideal Sharing Scheme for Coalition Games with Externalities

CCMP 156.2004
Cesare DOSI and Michele MORETTO: Environmental Innovation, War of Attrition and Investment Grants

ETA 159.2004 William BROCK and Anastasios XEPAPADEAS: Spatial Analysis: Development of Descriptive and Normative Methods with Applications to Economic-Ecological Modelling

KTHC 160.2004 Alberto PETRUCCHI: On the Incidence of a Tax on Pure Rent with Infinite Horizons

IEM 161.2004 Xavier LABANDEIRA, José M. LABEAGA and Miguel RODRIGUEZ: Microsimulating the Effects of Household Energy Price Changes in Spain

NOTE DI LAVORO PUBLISHED IN 2005

CCMP 1.2005 Stéphane HALLEGATTE: Accounting for Extreme Events in the Economic Assessment of Climate Change

CCMP 2.2005 Qiang WU and Paulo Augusto NUNES: Application of Technological Control Measures on Vehicle Pollution: A Cost-Benefit Analysis in China

CCMP 3.2005 Andrea BIGANO, Jacqueline M. HAMILTON, Maren LAU, Richard S.J. TOL and Yuan ZHOU: A Global Database of Domestic and International Tourist Numbers at National and Subnational Level

CCMP 4.2005 Andrea BIGANO, Jacqueline M. HAMILTON and Richard S.J. TOL: The Impact of Climate on Holiday Destination Choice

ETA 5.2005 Hubert KEMPF: Is Inequality Harmful for the Environment in a Growing Economy?

CCMP 9.2005 Angelo ANTOCI: Environmental Resources Depletion and Interplay Between Negative and Positive Externalities in a Growth Model

NRM 11.2005 Francesco SINDICO: The GMO Dispute before the WTO: Legal Implications for the Trade and Environment Debate

PRCG 14.2005 Clara GRAZIANO and Annalisa LUPORINI: Ownership Concentration, Monitoring and Optimal Board Structure

CSRM 15.2005 Parashar KULKARNI: Use of Ecolabels in Promoting Exports from Developing Countries to Developed Countries: Lessons from the Indian Leather-Footwear Industry

KTHC 16.2005 Adriana DI LIBERTO, Roberto MURA and Francesco PIGLIARU: How to Measure the Unobservable: A Panel Technique for the Analysis of TFP Convergence

KTHC 17.2005 Alireza NAGHAVI: Asymmetric Labor Markets, Southern Wages, and the Location of Firms

KTHC 18.2005 Alireza NAGHAVI: Strategic Intellectual Property Rights Policy and North-South Technology Transfer

KTHC 19.2005 Mombert HOPPE: Technology Transfer Through Trade

PRCG 20.2005 Roberto ROSON: Platform Competition with Endogenous Multithoming

CCMP 21.2005 Barbara BUCHNER and Carlo CARRARO: Regional and Sub-Global Climate Blocs. A Game Theoretic Perspective on Bottom-up Climate Regimes

CTN 23.2005 Michael FINUS, Pierre v. MOUCHE and Bianca RUNDSHAGEN: Uniqueness of Coalitional Equilibria

CTN 25.2005 Somdeb LAHIRI: The Core of Directed Network Problems with Quotas

NRM 27.2005 Massimiliano MAZZANTI and Anna MONTINI: The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities

CCMP 28.2005 Laurent GILOTTE and Michel de LARA: Precautionary Effect and Variations of the Value of Information

NRM 29.2005 Paul SARFO-MENSAH: Exportation of Timber in Ghana: The Menace of Illegal Logging Operations

CCMP 30.2005 Andrea BIGANO, Alessandra GORIA, Jacqueline HAMILTON and Richard S.J. TOL: The Effect of Climate Change and Extreme Weather Events on Tourism

NRM 31.2005 Maria Angeles GARCIA-VALINAS: Decentralization and Environment: An Application to Water Policies

NRM 32.2005 Chiara D’ALPAOS, Cesare DOSI and Michele MORETTO: Concession Length and Investment Timing Flexibility

CCMP 33.2005 Joseph HUBER: Key Environmental Innovations

CTN 34.2005 Antoni CALVÓ-ARMENGOL and Rahmi İLKILIÇ (lxxii): Pairwise-Stability and Nash Equilibria in Network Formation

CTN 35.2005 Francesco FERI (lxxii): Network Formation with Endogenous Decay

CTN 36.2005 Frank H. PAGE, Jr. and Myrna H. WOODERS (lxxii): Strategic Basins of Attraction, the Farsighted Core, and Network Formation Games
Alessandra CASELLA and Nobuyuki HANAKI (lxxii): Information Channels in Labor Markets. On the Resilience of Referral Hiring

Matthew O. JACKSON and Alison WATTS (lxxii): Social Games: Matching and the Play of Finitely Repeated Games

Anna BOGOMOLNAIA, Michel LE BRETON, Alexei SAVVATEEV and Shlomo WEBER (lxxii): The Egalitarian Sharing Rule in Provision of Public Projects

Francesco FERI: Stochastic Stability in Network with Decay

Aart de ZEEUW (lxxii): Dynamic Effects on the Stability of International Environmental Agreements

C. Martijn van der HEIDE, Jeroen C.J.M. van den BERGH, Ekko C. van IERLAND and Paulo A.L.D. NUNES: Measuring the Economic Value of Two Habitat Defragmentation Policy Scenarios for the Veluwe, The Netherlands

Matthew O. JACKSON and Alison WATTS (lxxii): Social Games: Matching and the Play of Finitely Repeated Games
This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications” organised by Fondazione Eni Enrico Mattei and sponsored by the EU, Milan, September 25-27, 2003

This paper has been presented at the 4th BioEcon Workshop on “Economic Analysis of Policies for Biodiversity Conservation” organised on behalf of the BIOECON Network by Fondazione Eni Enrico Mattei, Venice International University (VIU) and University College London (UCL), Venice, August 28-29, 2003

This paper has been presented at the international conference on “Tourism and Sustainable Economic Development – Macro and Micro Economic Issues” jointly organised by CRENOS (Università di Cagliari e Sassari, Italy) and Fondazione Eni Enrico Mattei, and supported by the World Bank, Sardinia, September 19-20, 2003

This paper was presented at the ENGIME Workshop on “Governance and Policies in Multicultural Cities”, Rome, June 5-6, 2003

This paper was presented at the Fourth EEP Plenary Workshop and EEP Conference “The Future of Climate Policy”, Cagliari, Italy, 27-28 March 2003

This paper was presented at the 9th Coalition Theory Workshop on “Collective Decisions and Institutional Design” organised by the Universitat Autònoma de Barcelona and held in Barcelona, Spain, January 30-31, 2004

This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by Fondazione Eni Enrico Mattei and Consip and sponsored by the EU, Rome, September 23-25, 2004

This paper was presented at the 10th Coalition Theory Network Workshop held in Paris, France on 28-29 January 2005 and organised by EUREQua.
2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

2005 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Sustainable Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRCG</td>
<td>Privatisation Regulation Corporate Governance</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>