Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited
Paul Mensink
NOTA DI LAVORO 124.2004

OCTOBER 2004
ETA – Economic Theory and Applications

Paul Mensink, independent

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm
Social Science Research Network Electronic Paper Collection:
http://ssrn.com/abstract=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
Corso Magenta, 63, 20123 Milano (I), web site: www.feem.it, e-mail: working.papers@feem.it
Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited

Summary

This paper analyzes incentives for polluting firms to exchange abatement cost information under the non-linear pollution tax scheme (‘differential tax’) introduced by Kim and Chang [J. Regul. Econom. 5, 1993, 193-197]. It shows that polluting firms have - under mild conditions - an incentive to join a coalition whose members mutually truthfully exchange information as well as commit themselves with respect to their abatement decisions. As a result, the differential tax triggers instantly - i.e. no abatement adaptation is needed – efficient abatement levels without the regulator knowing marginal abatement costs. Consequently, this paper shows that differential taxation results in lower social costs than traditional non-linear taxation which triggers efficient emissions only after a period of non-efficient abatement.

Keywords: Externalities, Pollution taxes, Coalition formation, Non-linear taxation, Asymmetric information, Co-operative game theory

JEL Classification: C71, D62, D82, Q20

I would like to thank Till Requate for a stimulating discussion and Albrecht Bläsi, Henk Folmer, Rein Haagsma, Ross McKitrick and Dagmar Nelissen for valuable comments with respect to earlier versions of this paper. All remaining errors are mine.

Address for correspondence:

Paul Mensink
Independent
Zeye Strasse 30
24106 Kiel
Germany
E-mail: pgcmensink@yahoo.com
1 Introduction

To minimize social costs in the presence of environmental pollution, one option a regulator has to internalize externalities is through pollution taxation. To be able to set the correct emission tax, however, this regulator should know (future) abatement costs across industries. Unfortunately, polluters have in general no incentive to reveal their true abatement costs - Kwerel (1977) and Dasgupta et al. (1980) dealt with this issue - or just do not know them yet due to uncertainty about future innovation options available.

Non-linear taxation has been suggested as one solution in cases where marginal abatement costs are not known by the regulator (Kim and Chang, 1993; Kaplow and Shavell, 2002). Under non-linear taxation the marginal tax level is a function of aggregated emissions and mimics marginal damages, doing potentially a better job in equalizing marginal abatement and marginal damage costs than standard (linear) taxation with its constant marginal tax level. Unfortunately, the problem has not been solved how potential polluters should resolve the uncertainty with respect to emissions of other firms - emissions that determine the tax level under a non-linear taxation scheme. If abatement decisions involve sunk costs or take time to be implemented this uncertainty will lead to inefficiencies because firms will not or only at high costs be able to pollute instantly at the socially optimal level.

Several attempts were made to guide the polluting firms to the efficient emission level in the presence of non-linear taxation under asymmetric information. These included (i) a tax adjustment rule that automatically changes the tax level as a function of actual emissions, resulting - after an unspecified period of time - in the socially efficient emission level\(^1\) (Karp and Livernois, 1994), (ii) firm commitment to the reported emissions that determine the tax level under a non-linear taxation scheme. If abatement decisions involve sunk costs or take time to be implemented this uncertainty will lead to inefficiencies because firms will not or only at high costs be able to pollute instantly at the socially optimal level.

\(^1\) Under the condition that firms behave non-strategically. If they behave strategically there is a trade-off between speed of convergence of the tax level and its efficiency in equilibrium.
abatement costs to prevent excessive under-reporting of abatement costs leading to better forecasts of the emission and tax level (Bulckaen, 1997), and \(iii\) abatement based on conjectures about emissions by other firms (McKitrick, 1999). In the latter paper, McKitrick proved that the simple non-linear ‘differential tax’ suggested by Kim and Chang (1993) triggers the socially optimal level of pollution in the long run, without the regulator knowing marginal abatement costs. ‘Long run’ refers to the time that it takes for firms to sequentially adapt their abatement decisions - based on conjectures with respect to emissions by other firms - until the socially optimal emission level is reached.

This paper analyzes incentives for firms to form coalitions to exchange information with respect to their abatement behavior under the above-mentioned ‘differential tax’ and discusses the welfare effects of this coalition formation. In game-theoretic terms: the paper analyzes the welfare effects of a cooperative game with asymmetric information that is the result of the announcement of a differential pollution tax (Allen, 1997). A prominent role in the analysis plays the commitment to announced abatement behavior as was originally suggested by Bulckaen (1997).

Section 2 introduces the model. Section 3 and section 4 present the results on information exchange and coalition formation respectively. Section 5 concludes with a discussion.

## 2 The model

Total emissions \(E\) of an environmental pollutant causes in monetary terms quantifiable damages \(D(E)\), with \(D'(E) > 0\) and \(D''(E) > 0\). Set \(I\) represents the set of \(n\) polluting firms, and the firms in \(I\) have the opportunity to reduce emissions, but face abatement costs \(C_i(e_i)\), where \(e_i\) is the emission level of firm \(i\), with \(C_i(e_i) > 0\) if and only if \(0 < e_i < e_{\text{max}}\); \(C'_i(e_i) < 0\); and \(C''_i(e_i) > 0\). Emissions of the polluting firms sum up to
\[ E = \sum_{i \in I} e_i. \] The firms are not flexible with respect to their abatement level in the sense that they cannot - or only at high costs - change emissions immediately and therefore have to decide on the emission abatement level one period before the actual emissions take place.

The regulator does not know the abatement costs of the firms. Firm \( i \) does not know the abatement costs of firm \( j \) either, but has at least some subjective expectation of the emission which is denoted by \( \hat{e}_{ij}^2 \).

The regulator’s aim is to minimize social costs, i.e. minimize \( \sum_{i \in I} C_i(e_i) + D(\sum_{i \in I} e_i) \). The social optimum, therefore, is characterized by the first order conditions:

\[
-\frac{\partial C(e_i)}{\partial e_i} = \frac{\partial D(\sum_{i \in I} e_i)}{\partial e_i} \quad \forall i \in I \tag{1}
\]

Let \( e_1^*, ..., e_n^* \) be the socially efficient emission levels that solve equation system 1 and let \( E^* = \sum_{i \in I} e_i^* \). As in McKitrick (1999, p.356) the standard Cournot assumption is employed that firms do not believe their abatement decision will simultaneously change other firms’ emission levels.\(^3\)

Following Kim and Chang (1993) and McKitrick (1999) we assume that the regulator announces it will levy a charge of \( D(E) - D(E - e_i) \) on firm \( i \)'s emission \( e_i \). The rationale of this tax is that the marginal emission tax paid by firm \( i \) is always equal to

\(^2\)One might consider to specify \( \hat{e}_{ij} \) properly, for example by introducing explicit stochastics in the model: firm \( i \) does not know the vector \( \theta_j, j \neq i \), that determines the abatement costs firm \( j \). It does know, however, a distribution of stochastic vector \( \theta_j \), and developed - based on that knowledge - a subjective expectation of the emissions of firm \( j \) denoted by \( \hat{e}_{ij} \) given a particular policy. In my view this would make the analysis in this paper unnecessarily complex and less general and would therefore distract from its quintessence.

\(^3\)Because this assumption also underlies the analysis in McKitrick (1999), the results derived in this paper are as general as they are in McKitrick (1999).
marginal damage costs, thereby minimizing social costs.\(^4\) The announcement of the differential tax scheme is assumed to be made prior to any abatement decision of the firms.

To analyze what will happen after this announcement, we first introduce the *emission reaction commitment contract*. This contract is crucial for the rest of the analysis.

**Definition 1** An ‘emission reaction commitment contract’ between members of coalition\(^5\) \(S \subseteq I\) is a contract where firm \(j \in S\) commits itself to an emission reaction function \(e_j^S(E_j^S)\).

If firm \(j\) signed the above mentioned contract we will say ‘firm \(j\) committed itself to emission reaction curve \(e_j^S(\cdot)\)’. By means of this emission reaction commitment contract each firm in the coalition commits itself to an endogenous abatement effort: by signing the emission reaction commitment contract the firm commits itself to emit \(e_j^S(\tilde{E}_j^S)\), where \(\tilde{E}_j^S = \tilde{E}^S - \tilde{e}_j^S\) and \(\{\tilde{E}^S, \{\tilde{e}_j^S | j \in S\}\}\) is the solution of the equation system

\[
\begin{align*}
  e_i^S &= e_i^S(E_i^S), \forall i \in S \tag{2} \\
  E^S &= \sum_{i \in S} e_i^S \tag{3} \\
  E_i^S &= E^S - e_i^S \tag{4}
\end{align*}
\]

From Brouwers fixed point theorem it directly follows that there exists a solution \(\{\tilde{e}_j | j \in S\}\) of equations 2-4 as long as emissions are bounded and the functions \(e_j^S(\cdot)\) are continuous.\(^6\) Neither of these assumptions seem to be over-restrictive. Moreover, if

\(^4\)Moreover, the total tax burden for each individual firm is smaller than under linear taxation as was pointed out by McKitrick (1999)

\(^5\)In this section we will - for the time being - assume such a coalition is given. In section 4 we will deal with the question how such a coalition is formed.

\(^6\)Conditions for uniqueness of the solution will be discussed in the context of theorem 4.
the firms in $S$ would found a body that calculates $\hat{E}^S$ there would be no need for the firms to provide the other firms in $S$ with their reaction curves which might contain strategic information. As a result, these commitments together establish the actual abatement efforts of the firms in $S$: firm $i \in S$ will emit $\hat{e}_i^S$. Now two questions can be asked: i) What is the best emission reaction function a firm can commit itself to if it would sign such a contract? And ii), will it be attractive for a firm to sign the contract? In other words, is it attractive for a firm to join the coalition? The first question is answered in section 3. The second question will be dealt with in section 4.

3 Commitment and information exchange

Let $\hat{E}_j^S$ be the subjective expectation of firm $j$ with respect to the emissions of firms $i \in \bar{S}$, where $\bar{S} = I \setminus S$ and $i \neq j$. That is, $\hat{E}_j^S$ is the subjective expectation of firm $j$ with respect to the emissions of the firms outside the coalition.

**Theorem 2** Suppose firms $j \in S$, with $j \neq i$, committed themselves to reaction curves $e_j^S(E_j^S)$ respectively. Then for firm $i \in S$, given subjective emission expectations $\hat{E}_i^S$, the best reaction function to commit to is

$$e_i^S(E_i^S) = \arg \min \{C(e_i) + D(\hat{e}_i^S + E_i^S + e_i) - D(\hat{E}_i^S + E_i^S)\}.$$ 

Proof: Theorem 2 follows directly from the definition of the operator $\arg \min$ which generates the emission decision that minimizes the costs of the firm given the tax scheme and the subjective emission expectation.\(^7\)

---

\(^7\)Here the assumption that firms do not believe their abatement decision will simultaneously change other firms’ emission levels is crucial.
Corollary 3 Suppose firms \( j \in I \) with \( j \neq i \) committed themselves to reaction curves \( e_j^I(E_j^I) \) respectively. Then for firm \( i \) there is no better reaction function to commit to then \( e_i^I(E_i^I) = \arg\min \{C(e_i) + D(E_i^I + e_i) - D(E_i^I)\} \).

Corollary 3 follows directly from theorem 2 by selecting \( S = I \). Given these reaction curves, there is good reason to believe the firms can find the solution \( \{\tilde{e}_j^I | j \in I\} \) of equations 2 and 3: emulating the adjustment rule suggested by McKitrick (1999) meant for long run adaptation by means of an algorithm that converges to the fixed point, the firms in \( I \) can find \( \{\tilde{e}_j^I | j \in I\} \) directly and will behave accordingly. We are now ready to address the welfare consequences of corollary 3, i.e. the welfare aspects of \( \{\tilde{e}_j^I | j \in I\} \):

Theorem 4 If firms \( i \in I \) commit to reaction curves \( e_i^I(E_i^I) = \arg\min \{C(e_i) + D(E_i^I + e_i) - D(E_i^I)\} \), then \( \tilde{e}_i = e_i^* \) for all \( i \), and therefore \( \tilde{E}^I = E^* \). That is, all firms will emit at the social optimal level.

Proof: If \( \tilde{E}_i^I \) is the realized total emission level of all firms except \( i \), the emission level firm \( i \) committed itself to, \( e_i^I(\tilde{E}_i^I) = \arg\min \{C(e_i) + D(\tilde{E}_i^I + e_i) - D(\tilde{E}_i^I)\} \), satisfies the first order conditions in equation 1 by virtue of the \( \arg\min \) operator. This of course holds for all \( i \in I \). Consequently, it follows from equations 3 and 4 that \( \tilde{E}_i^I - \tilde{e}_i^I = \tilde{E}_i^I \) indeed is the emission level of all firms expect \( i \). Which proves the theorem.\(^8\) By combining corollary 3 and theorem 4 we find that if all firms would sign the most attractive emission reaction commitment contract from their point of view, this would

\(^8\)This theorem is closely related to proposition 3 in McKitrick (1999). Theorem 4 also gives a clue with respect to uniqueness of the solution of equations 2-4: If \( S = I \) and if \((e_1^*,...,e_n^*)\) is unique, then the solution of the equations 2-4 must also be unique. A socially optimal emissions vector \((e_1^*,...,e_n^*)\) itself is unique under the assumptions with respect to the derivatives of \( C(e_i) \) and \( D(E) \) as formulated in section 2.
result in the efficient emission level. From the point of view of the regulator it seems
to be very attractive if all firms would sign a contract like that. So the question is: do
firms have an incentive to sign a contract like that? I.e. under what circumstance will
they join the coalition? We will deal with that question in the following section.

4 Coalition formation

With the question whether firms have an incentive to join the coalition we enter the
field of cooperative game theory.

4.1 Coalition formation: cooperative games with asymmetric
information

In section 3 we implicitly defined a cooperative game with asymmetric information,
where the pay-off from joining a coalition is equal to the abatement cost reduction plus
the tax burden reduction resulting from mutual information exchange and commitment
(e.g. Mas-Colell et al., 1995; Allen, 1997; Schwalbe, 1999).

Though the abatement cost and tax burden reduction resulting from mutual informa-
tion exchange and commitment can easily be shared among members of a coalition,
we will analyze the incentives for firms to join a coalition in the absence of transfers.
The reason for that is that the cost and tax burden reductions depend on subjective
ex ante emission estimates. As a result, measures of individual contributions to the
collective cost reduction effort - like Shapley values - can neither ex-ante nor ex-post be
determined unambiguously, which makes agreements with respect to ex-post transfers
very unlikely. Consequently, we implicitly interpret the game as a cooperative game
with asymmetric information and non-transferable utility (Allen, 1997).
Within the coalition information is shared completely among coalition members. This characteristic of coalition formation within a cooperative game with asymmetric information was first described as *full communication system* in the seminal paper by Wilson (1978, p.807). The fundamental difference with the set-up in Wilson (1978) is that in this paper - as argued above - the assumption is adopted that no transfers can be agreed upon. So only information is shared among coalition members. Due to the special characteristics of the good ‘information’ compared with traditional goods - information cannot be returned if one is not satisfied, i.e. one cannot be forced to forget (e.g. Hirshlifer and Riley, 1992, section 5.2) - the relevance of concepts like ‘core’ and ‘blocking’ seem to be limited in our application: once a firm is in the coalition and found out about the value of the information good there is no way it could leave the coalition and form another coalition.

Unaware of a rigorous and applicable treatment of this special form of game\(^9\), I will take an intuitive approach to analyze the incentives for coalition formation in the following of this section.

### 4.2 Coalition formation: an intuitive approach

By joining \( S \), firm \( i \) gets reliable information on the individual reaction functions and abatement decisions of the members of \( S \) and therefore has better information about the future total emission level and the future marginal tax level it will face. As a result, one would expect firm \( i \) to do a better job in minimizing the sum of reduction costs and tax payments if it joins the coalition.

Following the same reasoning, one would believe that members of the coalition would always welcome a new member: if firm \( i \) joins \( S \), members of the coalition will get reliable information with respect to the abatement decision of firm \( i \), and therefore will

\(^9\)Suggestions will be welcomed by the author.
be better able to anticipate the marginal tax level. Reality, unfortunately, turns out to be slightly more complex.

The following theorem answers the question what exactly makes it attractive or unattractive for a firm to join the coalition:

**Lemma 5** If firms \( j \in S \subseteq I \) committed themselves to \( e^S_j(E^S_j) \), then firm \( i \) joining the coalition - thereby forming the new coalition \( S' = S \cup \{i\} \) - would be confronted with two effects on its costs: 1) an effect caused by adapting its own abatement decision after receiving correct information on emission decisions of the members of the coalition, and 2) an effect caused by changing abatement behavior of the firms in the coalition after they received the correct information on the emission decision by firm \( i \).

Proof: Let \( \hat{e}^S_i \) be the emission decision by firm \( i \) if it does not join the coalition, and let \( \tilde{e}^{S'}_i \) be the emission decision by firm \( i \) when it does:

\[
\hat{e}^S_i = \arg \min \{C_i(\hat{e}^S_i) + D(\hat{E}^S_i + \hat{E}^S_i + \hat{e}^S_i) - D(\hat{E}^S_i + \hat{E}^S_i)\} \tag{5}
\]

\[
\tilde{e}^{S'}_i = \arg \min \{C_i(\tilde{e}^{S'}_i) + D(\tilde{E}^{S'}_i + \tilde{E}^{S'}_i + \tilde{e}^{S'}_i) - D(\tilde{E}^{S'}_i + \tilde{E}^{S'}_i)\} \tag{6}
\]

Now let \( R E^S_i \) be the realized emissions of the firms in \( S \) after the tax system has been introduced, and let \( K^S_i(\cdot) \) be the abatement plus tax costs that firm \( i \) has to pay if a coalition \( S \) was formed. Then if firm \( i \) did not join the coalition its costs would be:

\[
K^S_i(\hat{e}^S_i) = C_i(\hat{e}^S_i) + D(R E^S_i + \hat{E}^S_i + \hat{e}^S_i) - D(R E^S_i + \hat{E}^S_i).
\]

If firm \( i \) joined the coalition its costs will be:

\[
K^{S'}_i(\tilde{e}^{S'}_i) = C_i(\tilde{e}^{S'}_i) + D(R E^{S'}_i + \tilde{E}^{S'}_i + \tilde{e}^{S'}_i) - D(R E^{S'}_i + \tilde{E}^{S'}_i).
\]

So firm \( i \) gains from joining the coalition if \( K^S_i(\hat{e}^S_i) - K^{S'}_i(\tilde{e}^{S'}_i) \) is positive. This difference can be decomposed into two terms:

\[
K^S_i(\hat{e}^S_i) - K^{S'}_i(\tilde{e}^{S'}_i) = K^S_i(\hat{e}^S_i) + [K^S_i(\hat{e}^S_i) - K^S_i(\tilde{e}^{S'}_i)] - K^{S'}_i(\tilde{e}^{S'}_i) \tag{7}
\]

\[
= [K^S_i(\hat{e}^S_i) - K^S_i(\tilde{e}^{S'}_i)] + [K^S_i(\tilde{e}^{S'}_i) - K^{S'}_i(\tilde{e}^{S'}_i)] \tag{8}
\]
Equation 8 reveals two effects:

**Effect $\alpha$** This is the cost change resulting from firm $i$ having more information on the emission decisions of the firms in the coalition.

**Effect $\beta$** This is the cost change resulting from an adaptation of the emission decisions by the firms in the coalition.

End of proof.

Under standard second order conditions the cost change caused by Effect $\alpha$ will be positive (i.e. joining the coalition reduces abatement costs plus tax costs) if $\hat{E}^S_i + \tilde{E}^S_i$ is closer to $R\hat{E}^S_i + \tilde{E}^S_i$ than $\hat{E}^S_i + \hat{E}^S_i$. That is, when joining the coalition leads to a more realistic estimation of total emissions. This will be the case in general, because firm $i$ after joining the coalition will have perfect information with respect to emissions of the firms in $S$, in stead of its subjective estimate.

The sign of Effect $\beta$, however, is ex ante less clear. It will be negative if the firms in the coalition raise their emissions after finding out about the reaction function of firm $i$, i.e. when they found out - after $i$ joined the coalition - that they over-estimated firm $i$’s emissions. This effect will be close to zero if the errors of the firms in $S$ with respect the emission decision by firm $i$ level each other more or less out.

Under assumption 6 firm $i$ will join the coalition:

**Assumption 6** Firm $i \notin S$ believes the cost reducing Effect $\alpha$ is larger than its (potentially cost raising) Effect $\beta$.

In general one would expect that assumption 6 is satisfied: the larger the summed emissions of the members of $S$ are relative to those of the individual firm $i$, the larger Effect $\alpha$ will be relative to Effect $\beta$. Moreover, the less successful firm $i$ is in suggesting
his marginal emission reduction costs will be higher than they actually are, the less positive will Effect $\beta$ be. In the situation at hand it seems difficult for firm $i$ to deceive structurally, because firms - inside and outside the coalition - expect it to cheat and therefore will for example base their subjective expectations on independently reported data, not on those provided by firm $i$.

Now we turn to the question in what circumstances individual members of the coalition would gain from firm $i$ joining the coalition.

**Lemma 7** Member $j$ of coalition $S$ is confronted with two effects when firm $i \notin S$ joins the coalition, thereby forming the new coalition $S' = S \cup \{i\}$: 1) an effect through adaptation of the abatement decision of $j$ itself, originating from receiving correct information on abatement behavior of firm $i$, and 2) an effect through adaptation of the behavior of the other firms due to new information on behavior of firm $i$.

Proof: Let us define $e^*_j$ as follows:

$$e^*_j := \arg\min\{C_j(e_j) + D(\hat{E}_j^S - \hat{e}_i^S + \tilde{e}_j^S + e_j) - D(\hat{E}_j^S - \hat{e}_i^S + \tilde{e}_i^S + \tilde{E}_j^S)\}.$$  

The net reduction in costs for a firm $j \in S$ resulting from firm $i$ joining the coalition is equal to

$$K^S_j(\tilde{e}_j^S) - K^S_{j'}(\tilde{e}_{j'}^{S'}) = K^S_j(e_j^*) + [K^S_j(e_j^*) - K^S_j(e_j^*)] - K^S_{j'}(\tilde{e}_{j'}^{S'})$$
$$= \left[\frac{[K^S_j(\tilde{e}_j^S) - K^S_j(\tilde{e}_{j'}^{S'})]}{\text{Effect } a} + \frac{[K^S_j(e_j^*) - K^S_{j'}(\tilde{e}_{j'}^{S'})]}{\text{Effect } b}\right]$$  

**Effect a.** Effect $a$ is the cost change caused by adaptation of the abatement decision by firm $j$ after receiving reliable information on the abatement decision of firm $i$.

**Effect b.** Effect $b$ is the cost change caused by adaptation of the other firms in the coalition due to reception of information on the abatement decision of firm $i$. 

13
End of proof.

If $\hat{E}_j^S - \hat{e}_j^S + \bar{e}_j^S + \bar{E}_j^S + e_j$ is closer to $R\hat{E}_i^S + \bar{E}_i^S$ than $\hat{E}_i^S + \bar{E}_i^S$, then the first effect will have a downward effect on the costs of firm $j$. If knowledge of the true emission level of firm $i$ is closer to the realized emission level, then Effect $\alpha$ will lower the cost. This will in general be the case. Because the sign of the second effect is unclear, it is to be expected - if systematic deception fails - firms in the coalition gain from new members entering the coalition.

We will formulate this as an assumption:

**Assumption 8** Firms $j \in S$ believe the negative Effect $a$ on their costs to be larger than the (potentially positive) Effect $b$.

Summarizing the results of our analysis in this section so far: in general one can say firms will be inclined to form ‘information exchange and commitment coalitions’ if the value of the information with respect to the true emission decisions by the other firms is higher than the lower tax payment and reduction costs caused by successful deception of the other firms. The latter ability is likely to be affected by the distrust by the other firms who are aware of this attitude, making joining the coalition more sensible for individual firms.

We are now ready to formulate the main result of this paper:

**Theorem 9** If

- information exchange and legal services are relatively cheap, and
- firms do not believe their abatement decisions will simultaneously change other firms’ emission levels, and
- assumptions 6 and 8 hold,
then the announcement of tax level $D(E) - D(E_i)$ for firms $i \in I$, an announcement preceding abatement decisions of the firms, automatically results in a the socially efficient abatement level through the formation of a coalition consisting of all firms that exchange and commit themselves to emission reaction curves.

Proof: Theorem 9 follows directly from corollary 3, theorem 4, and lemmas 5 and 7.

If the firms are made aware of this mechanism they might as well start committing to reaction curves with respect to the largest possible coalition $I$, instead of starting with small coalitions. This would reduce the total sum of transaction costs to only a fraction of the original costs. This observation makes the first condition in theorem 9 less stringent. Please note also that the standard Cournot assumption (the second condition in theorem 9) gets more realistic the more polluting firms there are.

5 Conclusions and discussion

Kim and Chang (1993) showed that the Nash equilibrium resulting from the implementation of a simple non-linear ‘differential pollution tax’ is socially efficient without the regulator knowing marginal abatement costs. This equilibrium will, however, only be attained if firms know the emissions of other firms and can costless adapt to abatement decisions by other firms. This seems to be restrictive because usually abatement decisions involve sunk costs or take time to be implemented.

McKitrick (1999) addressed this problem and showed that under the ‘differential pollution tax’ suggested by Kim and Chang (1993), firms might follow a clever abatement adaptation strategy, and will - by sequentially adapting their emission levels - eventually emit the socially optimal amount. As a result, McKitrick concluded that the ‘differential tax’ triggers the socially efficient emission level in the long run, where ‘long
run’ refers to the fact that it takes several abatement adaptation decisions by the firm to reach the socially efficient emission level.

In this paper it was shown that in the presence of the ‘differential tax’

- firms will emit at the socially efficient level if they are member of a coalition of firms that mutually exchange information with respect to their future abatement decisions and committed themselves to act accordingly, and

- firms have - under mild conditions - an incentive to join the coalition of firms that exchange information and commit themselves to act accordingly.

These results hold under the condition that firms assume they cannot influence the emission of other firms by means of their emission decision - the standard Cournot assumption that is not unreasonable in case of many polluting firms. As a result, the ‘differential pollution tax’ suggested by Kim and Chang (1993) leads instantly - i.e. without abatement adaptation - to efficient abatement levels, without any information requirement for the regulator.

Consequently, the differential pollution tax leads to lower social costs than traditional non-linear pollution taxation adaptation schemes that only reach the efficient emission levels after an usually unspecified period of time in which firms adapt their emissions to new tax levels until an equilibrium is reached. During this period marginal abatement costs are not equal to marginal damage costs which results in higher social costs than under the differential tax scheme that reduces social costs to the theoretical minimum instantly.

This result suggests that the differential tax should play a major role in the analysis of environmental policy instruments when (future) abatement costs are uncertain, for example in the presence of innovation with respect to pollution reducing technologies.
6 Bibliography


NOTE DI LAVORO PUBLISHED IN 2003


PRIV 2.2003 Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review

PRIV 3.2003 Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market


KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition

ETA 6.2003 Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model

SIEV 7.2003 Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers

NRM 8.2003 Elissaios PAPYRakis and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?

CLIM 9.2003 A. CAPARROS, J.-C. PEREAU and T. TAIZDAÏT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information

KNOW 10.2003 Giorgio BRUNELLO and Dina CHECCHI: School Quality and Family Background in Italy

CLIM 11.2003 Efrem CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis

KNOW 12.2003 Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art


KNOW 14.2003 Maddy JANSENS and Chris STEYAERT (lix): Theories of Diversity within Organisation Studies: Debates and Future Trajectories

KNOW 15.2003 Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (lix): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life

KNOW 16.2003 Alexandra BITUSIKOVA (lix): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia

KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOV (lix): A Stage Model of Developing an Inclusive Community

KNOW 18.2003 Selma van LONDON and Arie de RUIJTER (lix): Managing Diversity in a Glocalizing World Coalition Theory


PRIV 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lix): Monopoly with Resale


PRIV 22.2003 Marco LiCalzi and Alessandro PAVAN (lix): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions

PRIV 23.2003 David ETTINGER (lix): Bidding among Friends and Enemies

PRIV 24.2003 Hannu VARTTAJAINEN (lix): Auction Design without Commitment


PRIV 26.2003 Christine A. PARLOUR and Uday RAJAN (lix): Rationing in IPOs

PRIV 27.2003 Kjell G. NYBORG and Ilya A. STREBULAEV (lix): Multiple Unit Auctions and Short Squeezes

PRIV 28.2003 Anders LUNANDER and Jan-Eric NIELSSON (lix): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts


PRIV 30.2003 Emiel MAASLAND and Sander ONDERSTAL (lix): Auctions with Financial Externalities

ETA 31.2003 Michael FINUS and Bianca RUNDHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games

KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty

PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?

KNOW 34.2003 Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis

ETA 35.2003 Alessandra DEL BOCA, Marzio GALEOTTI and Paola ROTA: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation
One Thousand Working Papers

Carlo CARRARO, Alessandro LANZA and Valeria PAPPONETTI: One Thousand Working Papers
NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavo RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union


PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISHWANATH (lxxvi): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (lxxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (lxxv): Primary Market Design: Direct Mechanisms and Markets


PRA 11.2004 Bjarni BRENDSTRUP and Harry J. PAARSCH (lxxi): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (lxxv): Equilibrium in the Two Player, k-Doubl Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSEN (lxxv): Auctions as Coordination Devices


PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxxi): Competition and Cooperation in Divisible Goods Auctions: An Experimental Examination

PRA 16.2004 Maria STRYSZOWSKA (lxxvi): Late and Multiple Bidding in Competing Second Price Internet Auctions

CCMP 17.2004 Simon Bout YOUSSEF: R&D in Cleaner Technology and International Trade

NRM 18.2004 Angelo ANTOCI, Simone BORGHESI and Paolo RUSSU (lxxvi): Biodiversity and Economic Growth: Stabilization Versus Preservation of the Ecological Dynamics

SIEV 19.2004 Anna ALBERINI, Paolo ROSATO, Alberto LONGO and Valentina ZANATTA: Information and Willingness to Pay in a Contingent Valuation Study: The Value of S. Ensmo in the Lagoon of Venice


NRM 21.2004 Jacqueline M. HAMILTON (lxxvi): Climate and the Destination Choice of German Tourists


NRM 23.2004 Pius ODUNGA and Henk FOLMER (lxxvi): Profiling Tourists for Balanced Utilization of Tourism-Based Resources in Kenya


NRM 26.2004 Juan Luis EUGENIO MARTÍN, Noelia MARTÍN MORALES and Riccardo SCARPA (lxxvii): Tourism and Economic Growth in Latin American Countries: A Panel Data Approach

NRM 27.2004 Raúl Hernández MARTÍN (lxxvii): Impact of Tourism Consumption on GDP. The Role of Imports


NRM 29.2004 Marian WEBER (lxxvi): Assessing the Effectiveness of Tradable Landuse Rights for Biodiversity Conservation: an Application to Canada's Boreal Mixedwood Forest

NRM 30.2004 Todd BJORNDAHL, Phoebe KOUNDOURI and Sean PASCOE (lxxvi): Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting


CTN 33.2004 Wilson PEREZ: Divide and Conquer: Noisy Communication in Networks, Power, and Wealth Distribution


ETA 39.2004 Alberto CAVALIERE: Price Competition with Information Disparities in a Vertically Differentiated Duopoly

PRA 40.2004 Andrea BIGANO and Stef PROOST: The Opening of the European Electricity Market and Environmental Policy: Does the Degree of Competition Matter?

CCMP 41.2004 Micheal FINUS (lxx): International Cooperation to Resolve International Pollution Problems
KTHC 42.2004 Francesco CRESPi: Notes on the Determinants of Innovation: A Multi-Perspective Analysis
CTN 43.2004 Sergio CURRARINI and Marco MARINI: Coalition Formation in Games without Synergies
CTN 44.2004 Marek ESCHRUELA-VILLAR: Cartel Sustainability and Cartel Stability
NRM 45.2004 Sebastian BERVOETS and Nicolas GRAVEL (lxvi): Appraising Diversity with an Ordinal Notion of Similarity: An Axiomatic Approach
NRM 46.2004 Signe ANTHON and Bo JELLESMARK THORSSEN (lxvi): Optimal Afforestation Contracts with Asymmetric Information on Private Environmental Benefits
NRM 48.2004 Ekin BIROL, Agnes GYOVAI and Melinda SMALE (lxvi): Using a Choice Experiment to Value Agricultural Biodiversity on Hungarian Small Farms: Agri-Environmental Policies in a Transition al Economy
CCMP 49.2004 Gernot KLEPPER and Sonja PETERSON: The EU Emissions Trading Scheme. Allowance Prices, Trade Flows, Competitiveness Effects
GG 50.2004 Scott BARRETT and Michael HOEL: Optimal Disease Eradication
CTN 51.2004 Dinko DIMITROV, Peter BORM, Raud HENDRICKX and Shao CHIN SUNG: Simple Priorities and Core Stability in Hedonic Games
SIEV 52.2004 Francesco RICCI: Channels of Transmission of Environmental Policy to Economic Growth: A Survey of the Theory
NRM 54.2004 Ingo BRÄUER and Rainer MARGGRAF (lxvi): Valuation of Ecosystem Services Provided by Biodiversity Conservation: An Integrated Hydrological and Economic Model to Value the Enhanced Nitrogen Retention in Renatured Streams
NRM 55.2004 Timo GOESCHL and Tun LIN (lxvi): Biodiversity Conservation on Private Lands: Information Problems and Regulatory Choices
NRM 56.2004 Tom DEDEURWAERDERE (lxvi): Bioprospection: From the Economics of Contracts to Reflexive Governance
CCMP 57.2004 Katrin REHDANZ and David MADDISON: The Amenity Value of Climate to German Households
NRM 59.2004 Valentina BOSETTI, Mariaëster CASSINELLI and Alessandro LANZA (lxvi): Using Data Envelopment Analysis to Evaluate Environmentally Conscious Tourism Management
NRM 60.2004 Timo GOESCHL and DaniLO CAMARGO IGLOI (lxvi): Property Rights Conservation and Development: An Analysis of Extractive Reserves in the Brazilian Amazon
CCMP 61.2004 Barbara BUCHNER and Carlo CARRARO: Economic and Environmental Effectiveness of a Technology-based Climate Protocol
NRM 63.2004 Györgyi BELA, György PATAKI, Melinda SMALE and Mariann HAJDÚ (lxvi): Conserving Crop Genetic Resources on Smallholder Farms in Hungary: Institutional Analysis
NRM 64.2004 E.C.M. RUIJGROK and E.E.M. NILLESEn (lxvi): The Socio-Economic Value of Natural Riverbanks in the Netherlands
EIA 66.2004 Giannis VARDAS and Anastasios XEPAPADEVAS: Uncertainty Aversion, Robust Control and Asset Holdings
GG 67.2004 Anastasios XEPAPADEVAS and ConStadinis PASSA: Participation in and Compliance with Public Voluntary Environmental Programs: An Evolutionary Approach
GG 68.2004 Michael FINUS: Modesty Pays: Sometimes!
NRM 69.2004 Trond BJØRNDAL and Ana BRASÃO: The Northern Atlantic Bluefin Tuna Fisheries: Management and Policy Implications
CTN 70.2004 Alejandro CAPARRÓS, Abdelhakim HAMMOUDI and Tarik TAZDAÏT: On Coalition Formation with Heterogeneous Agents
IEM 71.2004 Massimo GIOVANNINI, Margherita GRASSO, Alessandro LANZA and Matteo MANERa: Conditional Correlations in the Returns on Oil Companies Stock Prices and Their Determinants
IEM 72.2004 Alessandro LANZA, Matteo MANERa and Michael MCALEER: Modelling Dynamic Conditional Correlations in WTI Oil Forward and Futures Returns
SIEV 73.2004 Margarita GENIUS and Elisabetta STRAZZera: The Copula Approach to Sample Selection Modelling: An Application to the Recreational Value of Forests
CCMP 74.2004 Rob DELLINK and Eeko van IERLAND: Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment
ETA 75.2004 Rosella LEVAGGI and Michele MORETTO: Investment in Hospital Care Technology under Different Purchasing Rules: A Real Option Approach
CTN 76.2004 Salvador BARBERÁ and Matthew O. JACKSON (lxv): On the Weights of Nations: Assigning Voting Weights in a Heterogeneous Union
CTN 77.2004 Alex ARENAS, Antonio CABRALES, Albert DÍAZ-GUILERA, Roger GUIMERA and Fernando VEGA-REDONDO (lxv): Optimal Information Transmission in Organizations: Search and Congestion
CTN 78.2004 Francis BLOCH and Armando GOMES (lxv): Contracting with Externalities and Outside Options
CTN 79.2004  Rabah AMIR, Effrosyni DIAMANTOUDI and Licun XUE (lxx): Merger Performance under Uncertain Efficiency Gains

CTN 80.2004  Francis BLOCH and Matthew O. JACKSON (lxx): The Formation of Networks with Transfers among Players

CTN 81.2004  Daniel DIERMIEIER, Hulya ERASLAN and Antonio MERLO (lxx): Bicameralism and Government Formation


CTN 83.2004  Kfir ELIAZ, Debraj RAY and Ronny RAZIN (lxx): Group Decision-Making in the Shadow of Disagreement

CTN 84.2004  Sanjeev GOYAL, Marco van der LEIJ and José Luis MORAGA-GONZÁLEZ (lxx): Economics: An Emerging Small World?

CTN 85.2004  Edward CARTWRIGHT (lxx): Learning to Play Approximate Nash Equilibria in Games with Many Players

IEM 86.2004  Finn R. FØRSUND and Michael HOEL: Properties of a Non-Competitive Electricity Market Dominated by Hydroelectric Power

KTHC 87.2004  Eliasios PAPYRakis and Reyer GERLAGH: Natural Resources, Investment and Long-Term Income


IEM 89.2004  A. MARKANDYA, S. PEDROSO and D. STRÉMIKIENI: Energy Efficiency in Transition Economies: Is There Convergence Towards the EU Average?

GG 90.2004  Rolf GOLOMBEK and Michael HOEL: Climate Agreements and Technology Policy

PRA 91.2004  Sergei IZMALKOV (lxx): Multi-Unit Open Ascending Price Efficient Auction

KTHC 92.2004  Gianmarco I.P. OTTAVIANO and Giovanni PERI: Cities and Cultures

KTHC 93.2004  Massimo DEL GATTO: Agglomeration, Integration, and Territorial Authority Scale in a System of Trading Cities, Centralisation versus devolution

CCMP 94.2004  Pierre-André JOUVEY, Philippe MICHEL and Gilles ROTILLON: Equilibrium with a Market of Permits

CCMP 95.2004  Bob van der ZWAAN and Reyer GERLAGH: Climate Uncertainty and the Necessity to Transform Global Energy Supply

CCMP 96.2004  Francesco BOSELLO, Marco LAZZARIN, Roberto ROSON and Richard S.J. TOL.: Economy-Wide Estimates of the Implications of Climate Change: Sea Level Rise

CTN 97.2004  Gustavo BERGANTIÑOS and Juan J. VIDAL-PUGA: Defining Rules in Cost Spanning Tree Problems Through the Canonical Form

CTN 98.2004  Siddhartha BANDYOPADHYAY and Mandar OAK: Party Formation and Coalitional Bargaining in a Model of Proportional Representation

GG 99.2004  Hans-Peter WEIKARD, Michael FINUS and Juan-Carlos ALTAMIRANO-CABRERA: The Impact of Surplus Sharing on the Stability of International Climate Agreements

SIEV 100.2004  Chiara M. TRAVISI and Peter NIJKAMP: Willingness to Pay for Agricultural Environmental Safety: Evidence from a Survey of Milan, Italy, Residents


NRM 102.2004  Valentina BOSETTI and David TOMBERLIN: Real Options Analysis of Fishing Fleet Dynamics: A Test

CCMP 103.2004  Alessandra GORIA e Gretel GAMBARELLI: Economic Evaluation of Climate Change Impacts and Adaptability in Italy


PRA 106.2004  Kira BÖRNER: The Political Economy of Privatization: Why Do Governments Want Reforms?

PRA 107.2004  Pehr-Johan NORBÅCK and Lars PERSSON: Privatization and Restructuring in Concentrated Markets

SIEV 108.2004  Angela GRANZOTTO, Fabio PRANOVI, Simone LIBRALATO, Patrizia TORRICELLI and Danilo MAINARDI: Comparison between Artisanal Fishery and Manila Clam Harvesting in the Venice Lagoon by Using Ecosystem Indicators: An Ecological Economics Perspective

CTN 109.2004  Somdeb LAHIRI: The Cooperative Theory of Two Sided Matching Problems: A Re-examination of Some Results

NRM 110.2004  Giuseppe DI VITA: Natural Resources Dynamics: Another Look

SIEV 111.2004  Anna ALBERINI, Alistair HUNT and Anil MARKANDYA: Willingness to Pay to Reduce Mortality Risks: Evidence from a Three-Country Contingent Valuation Study

KTHC 112.2004  Valeria PAPPONETTI and Dino PINELLI: Scientific Advice to Public Policy-Making

SIEV 113.2004  Paulo A.L.D. NUNES and Laura ONOFRI: The Profile of a “Warm-Glower”: A Note on Consumer’s Behavior and Public Policy Implications

IEM 114.2004  Patrick CAYRADE: Investments in Gas Pipelines and Liquefied Natural Gas Infrastructure What is the Impact on the Security of Supply?

IEM 115.2004  Valeria COSTANTINI and Francesco GRACECCA: Oil Security: Short- and Long-Term Policies

IEM 116.2004  Valeria COSTANTINI and Francesco GRACECCA: Social Costs of Energy Disruptions

IEM 117.2004  Christian EGENHOFER, Kyriakos GIALOGLOU, Giacomo LUCIANI, Maroessa BOOTS, Martin SCHLEEPERS, Valeria COSTANTINI, Francesco GRACECCA, Anil MARKANDYA and Giorgio VICINI: Market-Based Options for Security of Energy Supply

IEM 119.2004  Giacomo LUCIANI: Security of Supply for Natural Gas Markets. What is it and What is it not?
IEM 120.2004  L.J. de VRIES and R.A. HAKVOORT: The Question of Generation Adequacy in Liberalised Electricity Markets
KTHC 121.2004  Alberto PETRUCCI: Asset Accumulation, Fertility Choice and Nondegenerate Dynamics in a Small Open Economy
NRM 122.2004  Carlo GIUPPONI, Jaroslaw MYSLAK and Anita FASSIO: An Integrated Assessment Framework for Water Resources Management: A DSS Tool and a Pilot Study Application
ETA 124.2004  Paul MENSINK: Instant Efficient Pollution Abatement Under Non-Linear Taxation and Asymmetric Information: The Differential Tax Revisited
(lxix) This paper was presented at the ENGIME Workshop on “Mapping Diversity”, Leuven, May 16-17, 2002
(lx) This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications”, organised by the Fondazione Eni Enrico Mattei, Milan, September 26-28, 2002.
(lxi) This paper was presented at the Eighth Meeting of the Coalition Theory Network organised by the GREQAM, Aix-en-Provence, France, January 24-25, 2003.
(lxii) This paper was presented at the ENGIME Workshop on “Communication across Cultures in Multicultural Cities”, The Hague, November 7-8, 2002.
(lxiii) This paper was presented at the ENGIME Workshop on “Social dynamics and conflicts in multicultural cities”, Milan, March 20-21, 2003.
(lxiv) This paper was presented at the International Conference on “Theoretical Topics in Ecological Economics”, organised by the Abdus Salam International Centre for Theoretical Physics - ICTP, the Beijer International Institute of Ecological Economics, and Fondazione Eni Enrico Mattei – FEEM Trieste, February 10-21, 2003.
(lxv) This paper was presented at the EuroConference on “Auctions and Market Design: Theory, Evidence and Applications” organised by Fondazione Eni Enrico Mattei and sponsored by the EU, Milan, September 25-27, 2003.
(lxvi) This paper has been presented at the 4th BioEcon Workshop on “Economic Analysis of Policies for Biodiversity Conservation” organised on behalf of the BIOECON Network by Fondazione Eni Enrico Mattei, Venice International University (VIU) and University College London (UCL), Venice, August 28-29, 2003.
(lxvii) This paper has been presented at the international conference on “Tourism and Sustainable Economic Development – Macro and Micro Economic Issues” jointly organised by CRENoS (Università di Cagliari e Sassari, Italy) and Fondazione Eni Enrico Mattei, and supported by the World Bank, Sardinia, September 19-20, 2003.
(lxviii) This paper was presented at the ENGIME Workshop on “Governance and Policies in Multicultural Cities”, Rome, June 5-6, 2003.
(lxix) This paper was presented at the Fourth EEP Plenary Workshop and EEP Conference “The Future of Climate Policy”, Cagliari, Italy, 27-28 March 2003.
(lxx) This paper was presented at the 9th Coalition Theory Workshop on “Collective Decisions and Institutional Design” organised by the Universitat Autònoma de Barcelona and held in Barcelona, Spain, January 30-31, 2004.
### 2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Series</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>

### 2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Series</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td>Carlo Carraro</td>
</tr>
</tbody>
</table>