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Summary 
 
Coral reefs may naturally flip between coral-dominated and algae-dominated states, 
when species' stocks trespass some threshold levels. This essay uses a stylized model of 
a coral reef to show how fishing may induce flips towards more algae-dominated states. 
Threshold effects have consequences for fisheries management, which are analyzed for 
open access fisheries and sole ownership. 
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Threshold effects in coral reef

fisheries

1 Introduction

Coral reefs are significant for human welfare because they produce a wide range

of natural resources and ecosystem services. They are crucial for fisheries because

they provide essential shelter for reproduction of many fish species that live as

adults in the open sea. They also offer services such as recreation opportunities,

nutrient cleaning, and protection from sea erosion. Recent concerns about bleaching,

overfishing, and eutrophication indicate that human activities may affect the way

in which coral reefs evolve over time. This may jeopardize future use of goods and

services produced within reefs.

This paper focuses on the effects of fishing in coral reefs and the reefs’ potential

for sustainable resource production. Coral reefs may have at least two stable states:

coral-dominated and algae-dominated. Scheffer et al. [34] pointed out that sudden

drastic changes to a contrasting state can interrupt smooth changes in such ecosys-

tems. Such shifts typically occur when some kind of threshold is crossed. Shifts

between coral-dominated and algae-dominated states affect the reefs’ capacities to

sustain production of resources and services. This paper models the economics of

fisheries in a coral reef that may shift between two different states. Classic results

for open access and sole ownership are revisited. Though the analysis focuses on

coral reefs, it could apply to any fisheries where there are threshold effects similar

to the ones observed in coral reefs.

The economics of fisheries tends to rely upon Schaefer-type biological models

(Schaefer [32]), which usually represent fish biomass growth using a logistic function.

This is the case in the two seminal papers that modeled the economics of fisheries in

a static and a dynamic setting, respectively (Gordon [13] and Scott [35]). Smith [39]

provided a theoretical ground for dynamic open-access models of natural resources.
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34 Essay I: Threshold effects in coral reef fisheries

Plourdes [30] used optimal control to determine the optimal rate of harvest for a

renewable resource such as fisheries. In 1976, Clark [8] attempted to study multi-

cohort fisheries but pointed out that analytic solutions were difficult to produce.

Munro and Scott [26] reviewed the principal results in the economics of fisheries and

drew attention to problems that the common property nature of fishery resources

creates.

Research inspired mainly by Holling [18] [19] presented new ways to model ecosys-

tems. Scheffer [33] and Carpenter and Cottingham [6] studied shallow lakes. These

researchers—independently of one another—derived a nonlinear model with one state

variable, where the nonlinearity had a sigmoid form. Using this model, they showed

that large nutrient loads into a lake could induce a flip from a clear to a turbid

state. Several economists, working in collaboration with ecologists, have used this

model to produce new results for management of such lakes.1 In particular, Brock

and Starrett [4] gave a complete treatment of the optimal management of a deter-

ministic version of a lake model. Mäler et al. [25] and Xepapadeas et al. [42] derived

the resource use that would result if the lake was managed under common pro-

perty. They also provided conditions under which the optimal management solution

could be obtained using taxes. Wagener [41] showed that heteroclinic bifurcation2

manifolds limit the parameter region for which Skiba points3 occur–for one state

control systems with one co-state variable. He gave a local criterion that ensures

the existence of Skiba points in systems with small discount rates.

All these papers modeled thresholds using a flipping mechanism that smoothly

went between a low and a high level, without jumps. In contrast, Nævdal [28] mo-

deled optimal regulation of eutrophying lakes, fjords, and rivers in the presence of

what could be called hard thresholds. He used a dichotomous function that instan-

taneously jumped between a high and low level when the threshold was crossed.

This implied that there must be jumps in shadow prices when the threshold was

trespassed. Smooth thresholds seem more appealing for at least two reasons: One

convenient reason is that while the functional form is more complicated for a smooth

1See Carpenter, Ludwig and Brock [7], Carpenter, Brock and Hansson [5], Mäler, Xepapadeas

and de Zeeuw [25], Brock and Starrett [4], and Xepapadeas, de Zeeuw, and Mäler [42].
2A heteroclinic bifurcation occurs when the unstable separatrix of a saddle becomes the stable

separatrix of another saddle (Hubbard and West [20]).
3Initial states for which trajectories going to different steady states yield the same welfare level

(Skiba [38]).
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threshold, jumps in variables can be avoided. They would require using heavy mo-

deling tools. Another reason is that natural scientists, who should be better in-

formed about the topic than economists, seem to prefer a smooth way of modeling

thresholds4.

Section 2 explains typical features of coral reefs and presents a model where algae

and fish play a major role in coral reefs’ dynamics. Section 3 shows how to model

fishing and how uncertainty about some parameter values may affect the outcome.

Section 4 models and discusses the effects of open access fisheries. Section 5 models

sole ownership. Section 6 simulates both management models using a specific cost

function. Section 7 contains concluding remarks.

2 The coral reef ecosystem

2.1 Typical features5

A typical coral reef is a colony of up to tens of thousands of tiny animals (polyps).

Inside each animal lives a microscopic form of algae, the zooxanthellae, which color

the corals and provide them with food through photosynthesis. In exchange, the

corals contribute with food for the microscopic algae and with protection frommany

predators that live in the reefs. Reefs, in turn, supply a habitat for many marine

species. Reefs also act as nurseries for several thousand species that can spend the

rest of their lives in the oceans’ open waters (Davidson [11]).

Coral reefs are known for their beauty, high biological diversity, high produc-

tivity, and complex dynamics. Their high productivity makes them indispensable

to some tropical marine ecosystems and hence to local people. Coral reefs produce

many goods and services, such as tourism, fish, coastal protection, and ingredients

for medicines. They also sustain other ecosystems such as mangroves (Hoegh and

Guldberg [17]).

Coral reef specialists generally agree that coral reefs can assume at least two

stable forms: coral-dominated and algae-dominated. The algae-dominated state

can eventually lead to mass coral mortality, possibly followed by depletions of reef

4See Murray [27], Gurney and Nisbet [14], Scheffer [33], and Carpenter and Cottingham [6].
5I thank Miriam Huitric from the Beijer Institute for many discussions on coral reefs and hints

about relevant literature. Any mistakes are mine.
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Figure 1: Coral reef model

fisheries. Physical and biological erosion may then make it difficult for the coral

population to recover6 (Done [12]). The algae-eating fish are pointed out as an

important factor for regulating algae through grazing (Hughes [21]).

2.2 Modeling a coral reef

The complexity that characterizes coral reefs implies that it is difficult to model

their dynamics in a simple way. Figure 1 shows a flow model of what seem to be the

main interactions in a coral reef. This paper focuses on the areas that are circled.

Except for fishing, the remaining parts enter as parameters.

Two differential equations build a coral reef model. They show changes in bio-

mass of algae (A) and fish (H) at time (t), respectively. Fish play a crucial role

because they feed on algae, thereby limiting their biomass. Appendix A contains

6In Jamaica, for example, a combination of overfishing, damage from hurricanes, and diseases

mostly threaten the corals. Latent damages due to overfishing implied that the synergistic effects of

hurricanes and diseases lead to a major shift in the reef, toward an algae-dominated state (Hughes

[21]).
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the model developed for the purpose of this paper7. For computational purposes,

the model is rewritten in a dimensionless form to reduce the number of parameters

to those necessary for the dynamics.

Algae grow by absorbing a given load of nutrients n. In this stylized model, a

load of nutrients n gives n new algae. Algae die naturally at a rate d. Fish eat algae

at a rate e per fish. So the equation of motion for algae is:

·

A = n− dA− eAH

Fish have a logistic growth with the growth rate normalized to 1. The fish biomass

that is sustainable in absence of any predation, also called carrying capacity, is equal

to the algae biomass A. The logistic termH
(
1 −

H
A

)
represents fish biomass growth.

Predators consume fish. They are usually very mobile and search for spots where

prey are abundant and abandon spots where prey are scarce. A model that includes

spatial aspects and predator migration between different spots would be a realistic

way to represent coral reef dynamics. Such a model would also be rather complex.

For simplicity, predator biomass is assumed constant in time and enters the model

only through a predation rate. The effects of a variable predator population can be

partly controlled by analyzing changes in predation rate.

Predation has a sigmoid form. It is low below a threshold value at which a

switch occurs and predation becomes high, reaching its saturation value. When fish

biomasses are small, predators spend most of the time searching for food. When the

biomasses increase, the propensity to find food increases and is convex. When the

threshold is realized fish are so abundant that searching for food requires little time.

Rather, most time can be spent ingesting food. If fish biomasses further increase,

the saturation point is reached, and time is spent ingesting food. The propensity to

find food is still increasing, but it is now concave.

Let f be the rate of predation defined in appendix A. The threshold between low

and high predation, also called half-saturation fish biomass, is normalized to 1. In

other words, for a fish population of one unit, predators could catch half the amount

of food they would have caught if they did not have to spend time searching for food.

Predation can be written fHq

1+Hq
, where q > 1 is a constant that affects the curvature

of the sigmoid function. The higher the q, the steeper the predation is around the

7I thank Stephen Carpenter (Center for Limnology, University of Wisconsin) for showing and

explaining this model to me. Any shortcomings of the model are my responsibility.
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threshold. At the limit, when q goes toward infinity, predation makes a discrete

jump between 0 and 1 when the threshold is crossed. If f = 0 (no predation), there

is no threshold effect in the coral reef. The equation of motion for fish is:

·

H = H

(
1 −

H

A

)
−

fHq

1 +Hq

Populations of algae and fish evolve over time, following the system of differential

equations SYS1:

·

A = n− dA− eAH (SYS1:1)
·

H = H

(
1−

H

A

)
−

fHq

1+Hq
(SYS1:2)

Hirsh and Smale [16], Kuznetsov [24], and Takeuchi [40] presented methods to study

such dynamic systems. Appendix B shows that the ecosystem may have one, two,

or three interior steady states and one boundary steady state: H = 0, A =
n

d
.
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Figure 2: Phase diagram for the ecosystem

Figure 2 analyzes the system’s dynamics for the case with four steady states, in

a phase diagram drawn in the (H,A) plane. Let ζ (H) = H (1 +Hq) and ξ (H) =
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1 +Hq
− fHq−1. The graphs of functions u (H) = n

d+eH
and v (H) = ζ(H)

ξ(H)
represent

points in the plane for which algae and fish biomass respectively are invariant (
·

A = 0

respectively
·

H = 0). For H = 0,
·

H = 0 regardless of the value of A. It is easy to see

that u is monotonically increasing in n and decreasing in d and e. The function v is

monotonically increasing in f and decreasing in q if H < 1, it otherwise increases.

The phase diagram is drawn for the parameter values in appendix D.8 Let

H∗

0 , H
∗

1 , H
∗

2 and H∗

3 denote the four steady states ordered in decreasing value of

the sustained fish population. Steady state H∗

0 is a boundary state in which fish are

extinct. It is a saddle point and can only be reached from points on the vertical axes;

that is, states with no fish. H∗

1 and H∗

3 are stable. H∗

1 represents a state with many

algae and few fish in contrast to H∗

3 , which is a state with many fish and few algae.

State H∗

2 is a saddle point. A trajectory that starts from any initial point in the

interior of R2
+
goes asymptotically toward one of the stable steady states. A curve,

called the separatrix, separates the two stable steady states’ basins of attraction9

(Kuznetsov [24]). The separatrix goes through saddle point H∗

2 .
10 Any initial state

to the right of this curve evolves toward steady state H∗

3 . Any initial state to the

left of it evolves toward H∗

1
. So the separatrix defines a threshold between coral-

dominated and algae-dominated states. Figure 2 illustrates some trajectories and

the approximate location of the separatrix.

Changes in parameter values affect the graph levels of u and v and the number

of steady states. For relatively low u compared to v, only H∗

0
and H∗

1
remain. This

occurs when the nutrient load n is relatively low or when death rate d, consumption

rate e, or predation rate f are relatively high. For a relatively high u compared to

v, only H∗

0
and H∗

3
remain. This occurs when the nutrient load n is high enough or

when death rate d, consumption rate e, or predation rate f are relatively low.

8Note that for some parameter values (if f = 1+H
q

Hq−1 for some feasible value of H), the graph

of v (H) has discontinuities in some points; this does not seem to affect characteristics of steady

states.
9These are the regions in space from which any starting trajectory goes asymptotically toward

the same steady state.
10The separatrix is the stable manifold of saddle point H∗

2
.
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3 Effects of fishing

This paper does not consider fishing methods that affect coral or algae biomass

directly. Thus fishing only enters the equation of motion for fish. Fish harvest h (t)

is traditionally modeled as a function of catchability coefficient η, fishing effort E,

the stock of fish, the number of fishermen or vessels (K), and some constants α and

β, usually both equal to 1(Munro and Scott [26]):11

h (t) = KηEαHβ

With α = β = 1, the fish harvest is h (t) = KηEH and the equation of motion for

fish becomes:
·

H = H

(
1−

H

A

)
− f

Hq

1 +Hq
−KηEH

For positive effort and catchability, fishing implies that the curve representing
·

H = 0

shifts upward. This upward shift increases in effort and catchability. Figure 3

50

25

0

H

A

H

A

Figure 3: Effects of fishing

represents a phase diagram with fishing. The non-fishing situation is drawn as the

thinnest line. This figure helps predict some potential effects of fishing.

11One could also argue for modeling catchability as dependent on herbivore stocks in the ecosys-

tem. But to allow for comparisons with more traditional fishery models, catchability is assumed

constant.
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• If fishing pressure is relatively low, the phase diagram that represents the

fishing ecosystem is topologically equivalent12 to the phase diagram for the

ecosystem without fishing. So for most initial points, fishing implies that

the ecosystem ends up in a topologically equivalent steady state. The only

difference is that the steady state is slightly more algae-dominated.

• The saddle point H∗

2
becomes less algae-dominated so the separatrix shifts

to the right. This implies that the algae-dominated state’s basin of attrac-

tion increases to the detriment of the coral-dominated state’s basin. Even

small changes in fishing efforts may then have large, long-term effects on the

ecosystem. Suppose the sizes of algae and fish biomasses corresponded to the

crossed ring in figure 4. If the fishing effort was relatively low, so that the

 

A

H

*

3
H

*'

1
H

Figure 4: Flipping mechanisms

lower curve represented
·

H = 0, algae and fish biomasses would evolve toward

the coral-dominated steady state and end up in H∗

3
. Suppose that fishing

increased so that the upper curve represented
·

H = 0. Suppose further that

the system was in a state near the separatrix. The separatrix would shift to

the right, the initial state ending up in the algae-dominated state H∗′

1
’s basin

of attraction. In the end the increase in fishing effort would induce a shift

from coral-domination to algae-domination. Even when fishing did not cause

12See Kuznetsov [24] for a definition of topologically equivalent dynamic systems.
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a shift, the increase of the algae-dominated steady state’s basin of attraction

would imply higher flipping risks after external shocks. Such external shocks

are, for example, fish disease and nutrient shortage.

• An increase in fishing efforts could have even larger effects if the harvest be-

comes so large that a bifurcation occurs and the coral-dominated state disap-

pears. The only remaining stable state would be algae-dominated and would

attract all trajectories with strictly positive fish populations.

These mechanisms presume a world of complete knowledge. But in the real

world, complete knowledge may not be possible. There are many sources of un-

certainty; assume (without loss of generality) that one parameter is uncertain, for

example, consumption rate e, for which only the probability distribution is known.

Uncertainty about the consumption rate implies that the level of curve
·

A = 0 is

unknown. Knowledge of e’s probability distribution can only be used to state that

there is a possible 90% chance that the u graph is found between the bold curves in

figure 5. Fishing may then have different effects, depending on the initial state and

5

25

0

H

A

H

A

Figure 5: Effects of uncertainty

the true location of u’s graph. Suppose the true location was such that it was close

to the highest bold curve. Then a small harvest would only cause a slight shift in

the curve representing
·

H = 0 and would not affect the phase diagram’s topological
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properties. The system would still go toward a steady state near the no-fishing

steady state, unless the initial state was very close to the separatrix to begin with.

If u’s graph was situated near the lowest bold curve instead, then a dramatic change

could occur, even if the system was not near the separatrix to begin with. In that

case, the harvest need not be very large to cause bifurcation, and there would be

only one stable algae-dominated state left.

When there is uncertainty, a flip can occur in a situation that is perceived as

business as usual and may not be observable before long after it has occurred. When

the flip is observed, the intervention needed to return to the coral-dominated state’s

basin of attraction is much greater than if it would have been discovered earlier.

If a bifurcation has occurred, returning to a coral-dominated state might not be

possible unless fishing is completely prohibited and new fish are introduced. These

restorations imply welfare costs for society.

To deal with parameter uncertainties, one can simulate the model with an entire

set of possible parameter values. Such simulations produce the steady states’ distri-

bution, given the parameter values’ distributions. This enables an opportunity to

localize bifurcations and determine the risks of flipping.

Thus far, the fishing effort is exogenous. The remainder of the paper studies

management models for fisheries, in which the fishing effort is endogenously deter-

mined. Even if all parameters are known, thresholds complicate the dynamics of

ecosystems. The analysis focuses on the effects of the ecosystems’ complexities, par-

ticularly the existence of thresholds on open access (section 4) and sole ownership

(section 5).

Assume that fishermen cannot influence the market outcome and sell their har-

vests at a constant price p. The fishing effort E is costly and can only take values

in its domain (E ∈ Ξ). The cost of fishing C (E) is assumed to be increasing and

convex in effort, so C ′ (E) > 0, C ′′ (E) > 0. The harvesting revenue is the price mul-

tiplied by the individual harvest. So a fisherman’s profit from harvesting at time t

is:

Π(E,H,K) = pηEH − C (E)
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4 Open access

4.1 The model

This section uses Smith [39] to analyze open access fisheries using the model de-

veloped in section 3. Assume that reef fisheries are open access. Fishermen choose

the effort level to maximize their profit. The condition pηH = C ′ (E) is necessary

and sufficient for profit maximization, because profit is concave in fishing efforts.

This means that profit maximization requires the marginal cost of effort to equal

the market value of the total amount of available fish. Positive profits attract new

fishermen while negative profits drive them away. By assumption, the flow of fish-

ermen is proportional to pure profit, where φ > 0 is a behavioral constant13 for the

fishery:
·

K = φ (pηEH − C (E))

The equations of motion (SYS2) and the profit maximizing condition (1) characterize

the open access ecosystem.

·

A = n− dA− eAH (SYS2:1)

·

H = H

(
1−

H

A

)
− f

Hq

1 +Hq
−KηEH (SYS2:2)

·

K = φ (pηHE − C (E)) (SYS2:3)

pηH = C ′ (E) (1)

With cost of effort being strictly convex, the marginal cost of effort is an invertible

function. Equation (1) offers then a unique solution: the optimal fishing effort is

uniquely determined for a given fish biomass. Let Eo (H) ≡ (C ′)−1 (pηH). It can

be replaced for in SYS2. This gives:

·

A = n− dA− eAH

·

H = H

(
1−

H

A

)
− f

Hq

1 +Hq
−KηEo (H)H

·

K = φ (pηHEo (H)− C (Eo (H)))

13φ could also represent some function of profit. For example, a large profit would give fishermen

incentives to rapidly enter the market, while a small profit would not attract them as quickly.
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Let Ko, Ao
and Ho be respectively the number of fishermen, and the stocks of algae

and fish. Assuming Ho �= 0 in steady state:

Eo = Eo (Ho) (2)

Ao =
n

d+ cHo

(3)

Ho =
C (Eo (Ho))

pηEo (Ho)
(4)

Ko =
1

ηEo (Ho)

(
1−

H
o

n
(d+ cHo)− f

Hoq−1

1+Hoq

)
(5)

The number of steady states in open access depends only on the fishery’s cost func-

tion as stated in proposition 1.

Proposition 1 A steady state exists if and only if the average cost is lower than

the market value of the total available fish stock for some levels of fish stock while

the opposite is true for other levels of fish stock. The steady state is unique if the

average cost is monotonous.

Proof. Once Ho and Eo are given, equations (3) and (5) uniquely determine the

algae population and number of vessels. So the number of steady states depends on

the number of positive solutions in E to equation (1) and the number of positive

solutions in H to the equation (4). Convexity of costs insures that (1) has a unique

solution. Thus the number of steady states depends on the number of fix points of

equation (4).

This depends on the average cost of effort as a function of fish stock. Define

C : R++
→ R

++,H → C (H) = C(Eo(H))
Eo(H)

, as the average cost as a function of fish

stock. Note that C is continuous by assumptions on C if fishing effort does not

equal zero. It is easy to graphically verify that (4) has a fix point if and only if there

are at least two different levels of fish stocks H1 and H2 such that pηH1 < C (H1)

and pηH2 > C (H2) . Moreover, if the average cost is monotonous, the fix point is

obviously unique, which means that the system has a unique steady state.

The predation term drives threshold effects in the model. This term appears

only in equation (5) for f �= 0. The case f = 0 corresponds to a fishery model with

no threshold effects. Proposition 2 follows directly from equations (2-5).

Proposition 2 Steady state levels of algae, fish and effort remain as if there were

no threshold effects but there are fewer fishermen.
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This result is not too surprising because fishermen do not account for ecosystem

dynamics in open access. Rather, they maximize profits and then decide about enter-

ing the market depending on whether the profit is positive or negative. This means

that threshold effects can only affect the decisions of fishermen through changes in

profits. Thus the zero profit condition implies that only the number of fishermen or

vessels is affected.

4.2 Comparison with unexploited reefs

The effect of open-access fishery on the ecosystem is better understood by comparing

SYS2 with the corresponding system SYS1 when there is no fishing activity. Assume

50

25

0

H

A

H

A

Figure 6: Fishing with different price levels for fish, K = 10

the same conditions as in proposition 1 so that the steady state is unique. Let

w (H) = ζ(H)
ξ(H)−KηEo(1+Hq)

. w’s graph represents a projection of manifold
·

H = 0

for open access fishery in the (H, A)-plane. The function u’s graph represents a

projection of manifold
·

A = 0. A projection of manifold
·

K = 0 is a vertical line in

the (H,A) plane. Assume that the predation rate is so small that ξ (H) > 0, that

is, f < 1+Hq

Hq−1 .
14 For strictly positive levels of fish populations,

w (H) > v (H)⇔ ξ (H) > KηEo (1 +Hq)

w (H) < 0 < v (H)⇔ ξ (H) < KηEo (1 +Hq)

14If this assumption did not hold we would have v (H) < 0 on some interval where herbivore

population would decrease.



Essay I: Threshold effects in coral reef fisheries 47

Note that in intervals where ξ (H) < KηEo (1 +Hq), fish populations continuously

decrease. If this occurs when H is small, fish may become depleted in the long run.

Note that there is a discontinuity for values of H such that ξ (H) = KηEo (1 +Hq),

corresponding to vertical asymptotes in w’s graph.

Figure 6 represents functions u, v, and w. The thin curves represent a price level

of 0.2 (lower curve) and 0.3 (higher curve). The number of fishermen (vessels) is

arbitrarily set toK = 10. The fat curve represents the corresponding situation when

there is no fishing. The dynamics in the (H,A) plane are similar in open access and

in the unexploited ecosystem. Figure 7 draws an equivalent diagram for K = 15,

5

100

0

H

A

H

A

Figure 7: Fishing with different price levels for fish, K = 15

showing that the level of w increases with the number of fishermen.

A steady state occurs at the point where u, w and the vertical line that represents
·

K = 0 in plane (H,A) intersect. Typically, there is a maximum of one such steady

state in a plane, but there might be several such planes depending on whether or not

the cost function meets the assumptions in proposition 1. Whether such a steady

state is algae-dominated or coral-dominated depends on the cost function, which

determines where
·

K = 0 intersect with the other curves.

In any case, the steady states are more algae-dominated compared to the un-

exploited ecosystem because for any positive number of vessels K, the w graph

lies either above the v graph or in the negative part of space. When proposition

1 holds, the only steady-state candidate is more algae-dominated than any other
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algae-dominated state in the unexploited ecosystem.

5 Sole ownership

5.1 The model

Suppose a sole profit-maximizing fisherman owned a coral reef fishery: K = 1. She

controlled the fish biomass levels through a fishing effort E, which was her unique

control variable. Recall that harvest is h (t) = EηH for K = 1.

Assume further that the owner was knowledgeable about coral reef dynamics

and had an infinite horizon (powerful but usual, convenient assumptions). She

wanted to maximize the present value of discounted profits from fishing given the

reef dynamics. Algae and fish biomasses cannot be negative. The problem is:

max
E∈Ξ

∫
∞

0

(pEηH − C (E)) e−ρt
dt (6)

s.t
·

A = n− dA− eAH (7)
·

H = H

(
1−

H

A

)
− f

Hq

1 +Hq
− EηH (8)

A ≥ 0,H ≥ 0, h = EηH (9)

Pontryagin’s maximum principle helps solve this problem. Note that lim sup
A→0

·

A = n

and lim sup
H→0

·

H = 0, so the non-negativity constraints are probably not binding. Ar-

row and Kurz [1], Hestenes [15], and Seierstad and Sydsæter [37] developed methods

to solve such problems when there are constraints on state variables. Crépin [9]

shows in appendix how such constraints can be treated in a similar problem where

there are binding constraints. To simplify this problem’s solution, assume that no

constraint is ever binding. The presentation below follows Seierstad and Sydsæter.

Let H (E,A,H, λ) be the current-value Hamiltonian and λ ≡ λ (t) represent a vector

of shadow prices:

H (E,A,H, λ) = pEηH − C (E) (10)

+λA (n− dA− eAH) + λH

(
H

(
1 −

H

A

)
− f

Hq

1+Hq
−EηH

)

The necessary conditions for E∗ to be optimal are:
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• For v.e.15 t ∈ R
+, E∗

≡ E∗ (t) maximizes H (E,A∗,H∗, λ) for all E ∈ Ξ.

Assume that at least one effort level is optimal and yields a positive discounted

sum of all future profit.16 Given that the Hamiltonian is concave in E, E∗ is

such a maximum if and only if:

pηH − C ′ (E∗)− λHηH ≤ 0 (11)

This remains with equality for an interior solution, which means that optimal

harvest is such that net marginal benefits from harvesting equal marginal costs.

Marginal benefits consist of the market value of the available fish stock (pηH).

Marginal costs are the sum of the marginal cost of effort C ′ (E∗) and the total

value of the available fish stock if it remains in the ecosystem (λHηH).

• λ is continuous and has a derivative v.e. given by

·

λA (t) = λAρ+ λA (d + eH) − λH
H2

A2
(12)

·

λH (t) = λHρ− pEη + λAeA (13)

−λH

(
1−

2H

A
− fq

Hq−1

(1 +Hq)2
− Eη

)

These conditions are also sufficient, if for all admissible j (t) ≡ (H (t) , A (t))T :

• lim inf
t→+∞

λ (t) (j (t)− j∗ (t)) ≥ 0

• ̂H (A,H, λ) = max
E∈Ξ

H (E,A,H, λ) is concave in (A,H).

Let ̂HHH be the maximized Hamiltonian’s second derivative with regard to H.

Appendix C shows that ̂H (A,H, λ) is concave if and only if conditions (14) and (15)

remain:

λH ≥ 0 (14)

̂HHH ≤ −A3

(
2λH

H

A2 − λAe
)2

2λHH
2

(15)

15Following Seierstad and Sydsæter, let v.e. represent virtually every or virtually everywhere,

which includes all points except a finite, countable number.
16
∫
∞

0
(pE∗ηH −C (E∗)) e−ρtdt > 0 for some E

∗

.
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With the cost of effort being strictly convex, the marginal cost of effort is an

invertible function. Equation (11) then has a unique solution and the optimal fishing

effort is uniquely determined for a given fish biomass:

E∗ (H,λH) ≡ (C ′)−1 (ηH (p− λH)) (16)

Because C ′ is monotonously increasing, E∗ is also monotonously increasing in η,

H, and p and decreasing in λH . The equations of motion (SYS3) of the modified

dynamic Hamiltonian system are:

·

A = n− dA− eAH (SYS3:1)
·

H = H

(
1 −

H

A

)
− f

Hq

1+Hq
−E∗ (H,λH) ηH (SYS3:2)

·

λA = λAρ+ λA (d+ eH)− λH
H2

A2
(SYS3:3)

·

λH = λH

(
ρ− 1 +

2H

A
+ fq

Hq−1

(1 +Hq)2

)
+ λAeA− (p− λH)E

∗ (H, λH) η

(SYS3:4)

It is challenging to determine how many potential steady states this system may

have. One can easily see that the partial equation system (SYS3:1, SYS3:3) has a

unique steady state in (A,λA) expressed as a function of H and λH . Replacing this

solution in equations SYS3:2 and SYS3:4 gives a two-dimensional system. Normally

this is difficult to solve because both equations involve polynomials of higher order

in H (and possibly in λH, depending on the cost function). So there will typically

be several values of H, which solve the system SYS3. Each of these corresponds to

a steady state of SYS3. Numerical simulations (section 6) give better ideas about

the number and characteristics of such steady states.

If there is a steady state, then it is such that
·

A =
·

H =
·

λA =
·

λH = 0; obviously

λA and λH must have the same sign, otherwise
·

λA �= 0. The concavity conditions

require that λH > 0 so both shadow prices are most probably positive in an optimal

steady state’s neighborhood. This leads to proposition 3:

Proposition 3 Both algae and fish have a positive shadow price near an optimal

steady state.
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5.2 Comparisons with open access and unexploited ecosys-

tems

How does the exploited ecosystem behave compared with the natural ecosystem

SYS1? Methods for analyzing such dynamic systems can be found in Brock and

Malliaris [3]. They present a series of stability results, which are difficult to apply

here because the ecosystem equations are rather complicated. But it is easy to show

that the saddle-path property proven in Kurz [23] still holds true even when the

ecosystem equations are not concave. This is done in Crépin [10].

A proper phase diagram for the system would require four dimensions, but one

can imagine projections in the algae/fish plane. Recall the functions u (H) , v (H) ,

and w (H) representing manifolds
·

A = 0 and
·

H = 0 in the unexploited ecosystem

(SYS1) and in open access (SYS2) respectively (see sections 2.2 and 4.2). These

functions can represent steady algae and fish biomasses in a four-dimensional phase

diagram. They are two-dimensional manifolds in a four-dimensional space because

the dynamics of algae and fish biomasses are uncoupled from the dynamics of shadow

prices. What happens in the (H,A) plane is independent of the shadow prices in

SYS1 and SYS2.

For sole ownership, the
·

A = 0 manifold is also a graphic representation of u (H).

Representing the
·

H = 0 manifold is more challenging because it depends on shadow

prices; for that reason, it is four-dimensional. Let z be the level of algae stocks such

that
·

H = 0 for given fish stocks and shadow prices. Using previous notations from

section 2.2:

z

(
A,H,

·

λ

)
=

ζ (H)

ξ (H)− E∗

(
H,λH

(
A,H,

·

λ

))
η (1 +Hq)

implicitly defines z and λH

(
A,H,

·

λ

)
solves the partial equation system (SYS3:3-

SYS3:4). The levels of algae and fish biomasses in a sole-owner managed coral

reef depend on the optimal effort level and on the difference between market and

shadow prices for fish. If the market price is higher than the shadow price, a steady

level of fish population requires a larger algae population than in an unexploited

ecosystem. This means that if SYS3 has several steady states, the one that is

more algae-dominated and the one that is less algae-dominated will both become

more algae-dominated compared to corresponding steady states in the unexploited
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ecosystem. If the market price is lower than the shadow price, the opposite is true,

which may result in a negative fishing effort. If the market price for fish is low, the

owner may want to implant or insert new fish and abstain from fishing for a period

of time to secure future opportunities.

Comparison with the ecosystem in open access involves comparing KEo (H)

with E∗ (H,λH). Recall that K > 1 and (C ′)−1 increases monotonously because

C ′ does. This means that unless λH is very large and negative, K (C ′)−1 (pηH) >

(C ′)−1 (ηH (p− λH)) so KEo (H) > E∗ (H,λH). For that reason, z is typically

found below w if the shadow price for fish is positive or not too negative. When

concavity conditions are verified, z is always below w. So under usual circumstances,

such as when fish have a positive value in the ecosystem, the optimal steady level

for fish stocks is found above the corresponding level in open access.

Compared to more traditional fishery models, the threshold term enters SYS3:2

and SYS3:4, so it should affect the steady state levels and the number of feasible

steady states.

6 Simulations

The systems are simulated with an ad hoc cost function: C (E) = aE2+F, where a is

a positive constant, and F is a fixed cost. The parameter values used for benchmark

simulation are in appendix D. With this specific cost function, the optimal effort in

open access is Eo (H) = pηH

2a
and SYS2 becomes:

·

A = n− dA− eAH (SYS2:1)

·

H = H

(
1 −

H

A

)
− f

Hq

1+Hq
−K

p (ηH)2

2a
(SYS2:2)

·

K = φ

(
(pηH)2

4a
− F

)
(SYS2:3)

The optimal effort in sole ownership is E∗ (H,λH) =
(p−λH)ηH

2a
and SYS3 becomes:

·

A = n− dA− eAH (SYS3:1)

·

H = H

(
1−

H

A

)
− f

Hq

1 +Hq
−

(p− λH) (ηH)2

2a
(SYS3:2)



Essay I: Threshold effects in coral reef fisheries 53

·

λA = λAρ+ λA (d + eH)− λH
H

2

A2
(SYS3:3)

·

λH = λH

(
ρ− 1 +

2H

A
+ fq

Hq−1

(1 +Hq)2

)
+ λAeA−

(p− λH)
2
η2H

2a

(SYS3:4)

SYS2’s and SYS3’s steady states were simulated using MATHCAD17. Appendix E

contains a table with the values of all steady states, given the parameter values

in appendix D. The sole-owner ecosystem (SYS3) has four feasible steady states:

S3.1−S3.4. The number of steady states varies with parameter values. All feasible

steady states are saddle points. Changes in the fixed cost F do not affect the

sole-owner system, but parameter a does. When a increases, fish biomass tends to

increase and for a > 0.05, two new steady states appear. The unique open-access

steady state S2 greatly depends on cost variables. If the fixed cost is large enough

(about 0.17, given other parameter values), fishermen do not find it profitable to

fish, which means that there are no feasible open-access steady states. The same is

true when a is larger than about 8.28.

This shows that the cost function affects both management models in different

ways. Also note that S2 is more algae-dominated than any of the feasible interior

steady states in sole ownership, which are more algae-dominated than the corre-

sponding states in the natural ecosystem. This verifies the expected results from

comparisons in sections 4 and 5.

MATHCAD was used to simulate trajectories in the sole-ownership case. Using

the method of reverse shooting18, the stable manifold for each steady state could be

derived for the sole-owner ecosystem. This is pictured in figure 8.

Simulations19 using the method developed in Beyn, Pampel, and Semmler [2]

indicate the existence of Skiba points in SYS3. Skiba points are threshold points at

which trajectories toward two different steady states yield the same welfare. Such

a point is, for example, somewhere around P = (0.1, 3.57). Starting from P and

following the optimal path toward S3.1 or S3.3 yields the same welfare of 0.033

units. For all initial points that were tested, trajectories toward S3.2 yielded a

17MATHCAD is a computer program that can perform numeric calculations or find general

symbolic solutions to mathematical problems.
18See Judd [22] for details on this method.
19The program codes in MATLAB can be acquired from the author
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Figure 8: Stable manifolds in SYS3

negative expected welfare. This indicates that S3.2 may never be an optimal steady

state. Simulations of trajectories toward S3.4 are difficult to test because three of

the variables are equal to zero. This steady state may also be suboptimal because

once the stable manifold is reached, from then on, social welfare is equal to zero.

The sets of all Skiba points form this system’s Skiba manifolds. There is one

Skiba manifold for each pair of optimal steady states. Only some of these Skiba

points have been located; the task of locating them all would be too tedious. Ac-

cording to Beyn et al. [2], the Skiba manifolds’ dimension should equal the number

of state variables. So a Skiba manifold should be of dimension 2.20 To approxi-

mate the Skiba manifolds, one can use the initial state variables as continuation

parameters.

The parameters chosen for the simulation are improvised and have nothing to

do with the empirical data. Meanwhile, if the model’s general features are correct,

use of ad hoc parameters still gives qualitative results, which should be reliable for

the case studied. For the natural ecosystem and the open-access case, it is relatively

easy to check how the parameter values affect the curves when varied, which may

lead to bifurcations.

20Except when there are more than two optimal trajectories from a Skiba point or when the

dimension of the stable manifold differs from the number of state variables (Beyn et al [2, p. 266]).
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In the case of sole ownership, the results’ sensibility to variations of economic

parameters was studied. This showed the occurrence of bifurcations for every para-

meter tested. For some parameter values, steady states may appear or disappear.

In general, higher parameter values lead to the disappearance of some steady states.

The saddle point property seemed more robust to changes in parameter values, ex-

cept for variations in effort and discount rate. For discount rates higher than about

0.4, the steady state S3.2 had three positive eigenvalues. For discount rates higher

than 1, S3.4 also had three positive eigenvalues. For high catchability (η ≥ 2),

steady state S3.3 became less stable (three eigenvalues with positive real parts).

7 Concluding remarks

This paper shows that accounting for threshold effects substantially changes the

dynamics and steady states of coral reefs in open access and sole ownership.

Open-access fisheries may typically cause a bifurcation toward a unique algae-

dominated steady state. This state can support fewer fishermen than if there were no

threshold effects. Traditional results on the inefficiency of open access are reinforced.

In the real world, there is open access to many coral reef fisheries. In the context of

this paper’s results, the multiple concerns about eutrophication and shifting coral

reefs are not surprising. They reflect that the open-access coral reef fisheries may

be approaching their long-term steady state, which is algae-dominated compared to

natural equilibria.

The results for sole ownership of the reefs’ fisheries differ substantially from those

obtained in traditional fishery models. Instead of a unique steady state, threshold

effects imply that the controlled system can have several steady states. Depending

on the initial state, the optimal path leads toward different optimal states. There are

also some initial states for which several paths are optimal. This implies that even

an optimized coral reef can shift between different states, such as after an external

shock like disease or a hurricane.

The possibility of multiple steady states implies that policy recommendations for

sole-owner fishermen cannot rely on simple marginal rules such as those calculated in

traditional fishery models. Owners must calculate all future benefits from fisheries

to rule out the paths toward steady states that are suboptimal. This is difficult in an

uncertain and changing world. Meanwhile, failing to do so implies that owners face
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the risk of choosing the wrong path, which could result in an even more detrimental

steady state.

These results explain the need for new policy instruments in fisheries. Safe

minimum standards, including fishing quotas, have been used; but as Munro and

Scott [26] pointed out, this typically leads to excess capacity in the fishing fleet if

there is open access. The task for policy makers is much harder than previous results

indicated. They must find some way to solve the inefficiency problems related not

only to open access but also to the difficulty in finding the best path when several

steady states may be optimal.

It may take time before a shift is discovered. This is worrisome because even if

the short-term effects of a shift are small, the long-term effects can be quite large

and even irreversible. For these reasons, it is challenging to try and detect flips early

to make available as many management opportunities as possible. This explains the

need for work on new ways to treat such problems.

The results obtained in this paper depend on the model studied. The paper

examines the effects of parameter uncertainty. In particular, mistakes about pa-

rameter values may be serious because parameter changes can cause bifurcations.

This means that even if the model is correct, bad parameter estimates may lead to

qualitatively misleading policy recommendations. In addition to that, the formu-

lation of the model is a major uncertainty. Many of the mechanisms that govern

coral reefs are still unknown to scientists, so the model used may have missed some

aspects, such as an important category of variables or some important movement

of motions. We need to better learn how to cope with this kind of uncertainty. An

important task for natural scientists is to recognize key features in ecosystems and

to be able to model them as simply as possible so that their models can become

useful for natural resource management.

A Dynamic model of coral reefs

These two differential equations may represent the dynamics in a coral reef:

·

x = N −Dx− Cxy (17)

·

y = Gy
(
1 −

y

Kx

)
− F

yq

Y q + yq
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where x and y are the populations of algae and fish, respectively, N is a load of

nutrients, D is the natural death rate, and C is the rate of consumption by fish.

The fish population has a growth rate G and carrying capacity K per unit of algae.

F is the maximum average number of fish that predators, not including humans,

catch per unit of time. Y is the half-saturation fish population and q is a positive

constant that affects the sigmoid function’s curvature.

Following Segel [36], I scaled the system to obtain a simpler dimensionless form,

which was easier to analyze. Let xu, yu and tu be the units in which algae, fish, and

time are measured and let A = x

xu
, H =

y

yu
and τ = t

tu
be dimensionless populations

of algae, fish, and time, respectively.

·

A =

∂A

∂τ
=

∂x

∂t

xu
tu = tu

(
N

xu
−DA− CAyuH

)

·

H =

∂H

∂τ
=

∂y

∂t

yu
tu = tu


GH

(
1−

Hyu

KAxu

)
−

F

yu

Hq(
Y

yu

)
q

+Hq




Choose xu =
yu
K
, yu = Y, tu =

1

G
to find:

·

A =

1

G

(
NK

Y
−DA− CY AH

)

·

H = H

(
1−

H

A

)
−

F

Y G

Hq

1 +Hq

Now let n ≡ NK

Y G
, d ≡ D

G
, e ≡ CY

G
, and f ≡ F

Y G
and we obtain a dimensionless system

with the dynamic properties similar to the original system (17):

·

A = (n− dA− eAH) (SYS1)
·

H = H

(
1 −

H

A

)
− f

Hq

1 +Hq

B Number of interior steady states

A steady state of SYS1 must solve

0 = n− dA− eAH

0 = H

(
1 −

H

A

)
− f

Hq

1+Hq

This equation system has one boundary steady state,
(
n

d
, 0

)
. If fish biomass is non-

negative, A∗

=
n

d+eH∗
is the unique interior steady state of the algae biomass. Given
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A
∗, the fish biomass in an interior steady state solves: 1 −

H

n
(d+ eH) = f H

q−1

1+Hq
.

So the steady state fish biomass is the value(s) of H at the intersection(s) between

the curves κ (H) = 1 − H

n
(d + eH) and γ (H) = f H

q−1

1+Hq
. The parameters are all

strictly positive, so κ is a concave function of H, and the graph of κ is a concave

parabola with the maximum at H = −

d

2e
< 0. Only positive values of H are feasible

so the relevant maximum is at H = 0, which gives the intercept on the vertical axis:

κ (0) = 1. The curve cuts the horizontal axis when H = 1

2e

(
−d +

√
(d2 + 4cn)

)
.

The graph of κ is plotted in figure 9 for e = d = n = 1.
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Figure 9: Graph of κ

Computation of the first and second derivatives of γ gives

γ ′ (H) = f
Hq (q − 1−H

q)

H2 (1 +Hq)2
(18)

γ ′′ (H) = f
(q2 − 3q + 2)Hq

− (q2 + 3q − 4)H2q + 2H3q

H3 (1 +Hq)3

So γ has a maximum of one non-negative interior extremum at H = (q − 1)
1

q .

Suppose q ≥ 2, the function γ increases from 0 until it reaches its maximum at

Y = (q − 1)
1

q (where γ
(
(q − 1)

1

q

)
= (q−1)

q−1

q

q
) and starts to decrease toward the

horizontal axis, which is an asymptote ( lim
H→+∞

γ (H) = lim
H→+∞

f 1
1

Hq−1+H
= 0

+).

At most, the curve has two inflection points at

H1 =

(
1

4
q2 + 3

4
q − 1 − 1

4
q
√
(q2 + 6q − 7)

)1

q

and

H2 =

(
1

4
q
2 + 3

4
q − 1 + 1

4
q

√
(q2 + 6q − 7)

)1

q

.
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For q = 3, the curve has two inflection points: H1 =
1

2

3

√(
28 − 12

√
5
)
and

H2 =
1

2

3

√(
28 + 12

√
5
)
. For q = 2, the curve has one inflection point at H =

√
3.

Note that when q becomes large, the two inflection points approach 1: H1 from

below and H2 from above, which yield a steeper peak around the maximum at

̂H = (q − 1)
1

q
. The graph of γ is plotted in figure 10 for f = 1 and q = 1 (thin

0
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1
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Figure 10: Graph of γ for several values of q

decreasing curve), q = 2 (dotted curve), q = 6 (thin convex-concave curve), and

q = 100 (bold curve).

The characteristics of both functions imply that for q > 1, they can intersect

once, twice, or three times, depending on the parameter values. This gives one, two,

or three interior steady states.

C Concavity conditions

̂H (A,H, λ, µ) ≡ H (E∗, A,H, λ, µ) is concave inA andH if (−1)r ∆r ≥ 0 for r = 1, 2

where ∆r are the principal minors of order r in the Hessian for ̂H (A,H, λ,µ) . (See

Nikaido [29]). E∗ (H, λH) = (C ′)−1 (ηH (p− λH)) so

̂H (A,H,λ, µ) ≡ (p− λH) (C ′)
−1

(ηH (p− λH)) ηH − C
(
(C ′)

−1
(ηH (p− λH))

)

+λA (n− dA− eAH) + λH

(
H

(
1−

H

A

)
− f

Hq

1 +Hq

)
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So the corresponding Hessian is:(
ĤAA ĤAH

ĤHA ĤHH

)
where ĤAH = ĤHA = 2λH

H

A2 − λAe and
̂HAA = −2λH

H2

A3 .

The conditions for a concave Hamiltonian amount to:

• λH ≥ 0

• −2λH
H

2

A3
̂HHH −

(
2λH

H

A2 − λAe
)2
≥ 0

So even if the shadow price of fish is positive, the second concavity condition is

not necessarily satisfied unless ̂HHH is negative and large enough. These conditions

can be rewritten:

λH ≥ 0

̂HHH ≤ −A
3

(
2λH

H

A2 − λAe
)2

2λHH2

D Parameters

d 1 algae death rate (per year)

e 1 share of algae eaten (per fish per year)

f 1.6 rate of predation

n 30 nutrient loading

q 4 curvature of the predation

p 0.1 price

ρ 0.02 discount rate

η 0.5 catchability

a 0.5 cost parameter

F 0.001 fixed cost



Essay I: Threshold effects in coral reef fisheries 61

E Steady states

The feasible steady states (positive populations) are in bold.

System name A H λA λH K

SYS1 −5.335 −6.623

H
∗

3
6.466 3.64

H∗

2
11.315 1.651

H∗

1
13.378 1.243

H∗

0
30 0

SYS2 S2 15.836 0.894 10.976

284.164 −0.89443 −76.082

SYS3 −1.431E + 3 −1.021 −3.795E − 3 7.212

−104.155 −1.288 −3.422E − 3 5.997

−4.975 −7.03 1.861E − 3 −5.602E − 3

S3.1 7.243 3.142 9.44E− 4 0.021

S3.2 12.307 1.438 8.43E− 4 0.152

S3.3 13.883 1.161 1.69E− 5 5.272E− 3

S3.4 30 0 0 0

34.881 −0.14 5.29E − 4 28.925
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