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Competition and Irreversible Investments under Uncertainty 
 
 
Summary 
 
 
This paper examines the effect of competition on the irreversible investment decisions 
under uncertainty as a generalization of the “real option” approach. We examine this 
issue with reference to an industry where each firm has only one investment opportunity 
which is completely irreversible and the product market reveals an inverted U-shape 
relationship between firm profits and industry size. That is, there are positive 
externalities for low level of the market size and negative externalities at high level of 
the market size. In the latter case, which corresponds to the traditional competitive 
industries, firms invest sequentially as market profitability develops. In the former case, 
which corresponds to industries in which investments are mutually beneficial, firms 
invest simultaneously after profitability of the market has developed sufficiently to 
capture all network benefits and to recover the option value of waiting. Put together,  
these extensions of the “real option” analysis, with strategic interactions, may help to 
explain both the cases of rapid and sudden developments such as the recent internet 
investments and the cases of prolonged start-up problems while waiting for the market 
to develop as the story of fax machines shows. 
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1 Introduction

Investment is deÞned as the act of incurring an immediate cost in the ex-
pectation of future payoff. However, when the immediate cost is sunk (at
least partially) and there is uncertainty over future rewards, the timing of
the investment decision becomes crucial (Dixit and Pindyck, 1994, p.3). In
particular it is shown that irreversibility and uncertainty induce the Þrm to
invest optimally only when the value of the investment exceeds the value of
the option of waiting before making the irreversible decision.
This paper extends the above standard irreversible investment model,

taking strategic interactions into account. We deal speciÞcally with the case
where a large number of identical Þrms are engaged in an investment game
to enter a new product market and analyse the effect of competition on the
optimal investment strategy of the Þrms. We examine this issue with ref-
erence to an industry where each Þrm has only one investment opportunity
which is completely irreversible and the product market reveals an inverted
U-shape relationship between Þrm proÞts and industry size: that is, posi-
tive externalities tend to dominate for low initial market size levels, whereas
negative externalities tend to dominate at higher market size levels.
Although we do not refer in the paper to a particular product, there are

many markets that show, at least for some dimensions, greater proÞtability
when more then one Þrm has already invested. This situation could arise
in the case of goods that exhibit �network externalities� so that the utility
of each consumer increases as the total number of consumers purchasing the
same or compatible brands increases.1 One of many examples concerns the
decision by multiple rival Þrms to set up an interconnected network to satisfy
an interdependent demand for telecommunication services by a signiÞcant
number of potential customers (Rohlfs, 2001, p. 34). A different case is
when a high degree of complementarity between different goods is present
as for software and hardware. Generally, software packages are produced by
a large number of Þrms so that they can be used by the same hardware.
Thus the greater the variety of software supporting a certain hardware, the
greater the value of this hardware and the greater the utility consumers derive
directly from the variety of software supporting the speciÞc hardware. Some

1Jeffrey H. Rohlfs coined the term bandwagon effect for the beneÞt that a person enjoys
as a result of others� doing the same thing that he or she does, and speciÞcally he used
the term network externalities for the bandwagon effect that applies to the user set of a
comunication network (Rholfs, 2001)
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authors refer to this as �indirect network externalities� (Shy, 2001, p.52) or
�complementary bandwagon effects� (Rohlfs, 2001, p. 47-48 ). In other cases,
the utility of each consumer decreases as more consumers buy the good. This
occurs because of congestion, as the communication and information-based
industries are recently experiencing. If on one hand the introduction of a new
Web site increases the value of Internet to every existing user, on the other
hand the progressive increase of its use increases congestion measured in
term of excessive delay of transmission (longer connection time spent to load
a Web page) or loss of service altogether (Odlyzko, 1999). Congestion then
reduces consumers� utility of joining the Internet and passes this dis-beneÞt
to the Þrms by reducing the demand of access.2

The negative externalities case, with or without congestion, corresponds
to the traditional competitive industry in which the investment of one Þrm
lowers the proÞtability of the others. In this case the introduction of compe-
tition has two opposing effects which annul each other. Firstly, competition
reduces the expected proÞt ßow that derives from the investment which tends
to delay investment. Secondly, competition introduces a strategic beneÞt in
favour of the investment as it deters the investments by rivals. Leahy (1993)
Þrst discovered this property showing that the optimal investment strategy
of a competitive Þrm remains equal to that of a single Þrm in isolation. In
this case, Þrms enter sequentially as market proÞtability increases.
On the contrary, in the case where investments are mutually beneÞcial,

the optimal investment policy is essentially a question of coordination. As the
timing of a Þrm�s entry is inßuenced by the entry decisions of others, Leahy�s
result cannot be applied. Two equilibriums can emerge: either the industry
remains locked-in with no entry as long as very pessimistic expectations
dominate the market, or a mass of Þrms simultaneously runs to enter, driven
by the expected rents generated by the positive externalities.3 Excluding the
former for the sake of subgame-perfectness, we show that the level of market
proÞtability that triggers these Þrms� �network run� is the same as the one
that justiÞes the entry of the Þrst Þrm under negative externalities. In other
words, the Þrms make their decision simultaneously when the proÞtability of
the market has developed sufficiently to capture all bandwagon beneÞts and

2See, for example, DaSilva (2000) and Falkner et al. (2000), for a sarvey on the litera-
ture on how to price congestible networks as Internet.

3This is what Rohlfs (2001, p.16-17) deÞnes a chicken-egg problem: nobody joins the
network because the size of the network is zero, but the size of the network is nul because
no one has joined it.
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to recover the option value of waiting due to the irreversibility. This also
determines endogenously the optimal start-up size of the industry.
The paper is organized as follows. Section 2 presents the model and

states the main results of the paper, namely the optimal entry strategy in
the presence of positive and negative externalities. Section 3 deals with the
coordination equilibrium induced by positive externalities using a discrete-
time game. The approach of this section is left at a heuristic level to highlight
the link between a single Þrm�s decision and the beneÞts of coordinating
investment. The formal analysis for pure strategies is presented in section
4 showing the conditions according to which, given the other Þrms� policy
of entry, no individual Þrm Þnds it optimal to follow a different policy. By
the continuous time representation we show that the optimal policy is also
subgame perfect. Section 5 applies the main results to the decision of building
up a competitive network for satisfying a demand for telecommunication
services and section 6 places the paper in the context of the literature on
irreversible investment and market structure. Finally section 7 concludes.

2 The model

We consider the decision to enter a new market subject to uncertain returns
by a large number of identical Þrms. Yet, in order to focus exclusively on the
timing decisions we abstain from explicitly characterizing the product market
decisions (price or quantity), the Þrm size and, in line with this approach,
we assume that the entry costs required to initiate the technology projects
are given. This is summarized by the following assumptions:

Assumptions

1. At any time t an idle Þrm may decide to enter a new market. Firms
are risk-neutral and discount the future returns at the riskless interest
rate ρ.4

2. All Þrms are identical and their size dm is inÞnitesimally small with
respect to the market.

4Introducing risk aversion does not change the results since the analysis can be devel-
oped under a risk neutral probability measure (Cox and Ross, 1976; Harrison and Kreps,
1979).
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3. Each Þrm can enter by committing forever to a ßow cost w or under-
taking a single irreversible investment which requires an initial sunk
cost K = w/ρ.

4. Firms are free to enter. That is, in the free-entry game the Þrms Þrst
decide whether or not to enter (and pay the entry cost K) and then
compete for the available rents (generated by the positive externalities).
Since entry is irreversible the Þrms already in the market do not have
other decisions to make.

5. Each Þrm has zero operating options.5

6. Indicating by mt = m the number of Þrms currently active at time t
(incumbents), each of them yields a ßow of operating proÞts that we
abbreviate as:

π(m, θ) ≡ u(m)θ (1)

where θ is an industry-speciÞc shock. Time is continuous, t ∈ [0,∞),
and suppressed if not necessary.

7. The function u(m) is twice continuously differentiable in m, and it is
increasing over the interval [0, m̄) and decreasing thereafter (see Þgure
1). That is, there are positive externalities to investment which can
be caused by �network externalities� or the fact that the Þrms produce
complementary products, over [0, m̄). After m̄ it is better for any single
Þrm that the others have not invested: competition and/or congestion
occur. We also assume that at zero and at some Þnite number of Þrms
M (M >> m̄), proÞts falls to zero, i.e. u(0) = 0, and u(M) = 0, what-
ever the value of θ. As M could be arbitrarily large, this assumption is
harmless in our setting.

Figure 1 about here

8. Finally, the industry-speciÞc shock θ follows a geometric diffusion process:

dθ = αθdt+ σθdW with θ0 = θ and α, σ > 0. (2)
5This assumption allows us to focus on when, rather than whether, the entry takes

place. The most important operating option is the ability of the Þrm to reduce output or
even shut down and thereby avoid variable costs. The presence of operating options raises
the value of the Þrm, see MacDonald and Siegel (1985) and, for a thorough discussion,
Dixit and Pindyck (1994, chs. 6 and 7).
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Applying Itô�s Lemma to (1) and substituting (2) to eliminate dθ, an
expression for the proÞt process in terms of the shock and the number of
Þrms emerges as:

dπ = µ(m)πdm+ απdt+ σπdW, with π0 ≡ u(m0)θ0 = π (3)

where µ(m) ≡ u0(m)/u(m) captures the direct effect of entry. From (3), en-
try inßuences the level of proÞts through its effect on the market equilibrium
depending on the initial size of industry. In particular, given any value of
the shock θ, more Þrms in the market implies a higher or lower equilibrium
level of proÞts depending on the presence of positive µ(m) > 0 or negative
µ(m) < 0 externalities respectively. The rest of this section is devoted to
summarising the main properties of the entry process driven by (3), em-
phasizing the economic intuition behind it; the rigorous analysis is given in
Section 4.

2.1 Negative externalities

Although the inverted U-shape of (1) implies an entry process that meets pos-
itive externalities Þrst, we solve the investment problem by working backward
starting from the negative externalities interval.
If the initial size of the industry is m ≥ m̄, we expect entry to work in

the following way: for a Þxed number of Þrms, proÞts move according to
the above stochastic process with µ(m)πdm = 0. If proÞts then climb to a
level π∗ ≡ u(m)θ∗, entry will become feasible and at the moment of entry,
proÞts will drop downward along the function u(m). In technical terms this
means that the threshold π∗ becomes an upper reßecting barrier on the proÞt
process.6 ProÞts will then continue to move stochastically without the term
µ(m)πdm until another entry episode occurs.
Under this setting a (competitive) equilibrium can be deÞned as a sym-

metric Nash equilibrium in entry strategies which bound the proÞt process
of the Þrms. Although, in general, it is difficult to construct such an equilib-
rium, fortunately it can be built much more simply from the entry policy of
a single Þrm in isolation regardless of future entry decisions: �...., each Þrm
can make its entry decision by Þnding the expected present value of its proÞts
as if it were the last Þrm that would enter this industry, and then making the

6The proÞt function follows a regulated Brownian motion in the sense of Harrison
(1985).
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standard option value calculation. While the Þrm should entertain rational
expectations about the stochastic process θ, it can be totally myopic in the
matter of other Þrm�s entry decisions� (Dixit and Pindyck, 1994, p.291).
This remarkable property of the competitive equilibrium, Þrst discovered

by Leahy (1993), has an important operative implication: the optimal com-
petitive equilibrium policy need not take account of the effect of entry. The
proÞt level, say �π, that triggers entry by the single Þrm in isolation is iden-
tical to that of the Þrm that correctly anticipates the other Þrm�s strategies
π∗. That is, when a Þrm decides to enter claiming to be the last to enter
the industry, it is ignoring two things. First, it is thinking that its proÞt
ßow is given by u(m)θ with m hold Þxed forever. Thus, as u0(m) < 0, it is
ignoring that future entry by other Þrms, in response to higher value of θ,
will reduce its proÞts. Other things being equal, this would make entry more
attractive for the Þrm that behaves myopically. Second, it ignores the fact
that the prospect of future entry by competitors reduces its option value of
waiting. That is, pretending to be the last to enter the industry, the Þrm
also thinks that it still has a valuable option to wait before making an irre-
versible decision. Other things being equal, this makes the decision to enter
less attractive. The two effects offset each other, allowing the Þrm to act as
if it were in isolation. This offsetting behavior can be summarized by the
following result.

Result 1 The candidate policy for optimal entry in a competitive industry,
characterized by an initial mass of Þrms m ∈ [m̄,M), is described by
the following upper proÞt threshold:

u(m)θ∗(m) =
β1

β1 − 1
(ρ− α)K ≡ π∗(= �π), with

β1
β1 − 1

> 1 (4)

where ρ > α and β1 > 1 is the positive root of the auxiliary quadratic
equation Ψ(β) = 1

2
σ2β(β − 1) + αβ − ρ = 0.

Over the range [m̄,M), new additional entry occurs every time the
proÞts climb to the known threshold π∗; if proÞts stay below this barrier
no new investment is undertaken.

Proof. See Leahy (1993) and Section 4.

With m incumbents, an idle additional Þrm will enter if the present value
of its proÞts at entry u(m)θ∗(m)

ρ−α exceeds the cost of the investment K aug-
mented by the option of waiting to invest 1

β1−1K, i.e. by waiting a little the
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Þrm obtains a new observation of the market proÞtability, reducing its down-
side risk.7 We can have a better intuition of the competitive equilibrium by
writing the above threshold in terms of the shock θ. Since π∗ ≡ u(m)θ∗(m)
and u(m) is decreasing in the region [m̄,M], the optimal policy can be re-
stated by the following upward-sloping curve (Þgure 2):

θ∗(m) ≡ β1
β1 − 1

(ρ− α) K
u(m)

, for m ∈ [m̄,M) (5)

In the region above the curve, it is optimal to enter. A discrete mass
of Þrms will enter in a lump to move the proÞts level immediately to the
threshold curve. In the region below the curve the optimal policy is inaction:
Þrms wait until the stochastic process θ moves it vertically to θ∗(m) and
then again a mass of Þrms will jump into the market just enough to keep the
proÞts from crossing the threshold.

2.2 Positive externalities

Working backward towards the start-up of the industry, if the initial size m
is less than m̄, any potential entrant is subject to positive externalities, that
is the value of entering the industry depends on the number of Þrms who
have already entered. Therefore, the timing of a Þrm�s entry is inßuenced
by the entry decisions of others and intuition suggests that Leahy�s result
cannot be extended to cover this case: a single Þrm cannot continue to claim
to be the last to enter the industry in constructing its optimal entry policy.
The gist of our argument relies on the presence of �network beneÞts� so

the higher the number of Þrms in the industry, the greater the advantage in
terms of proÞt ßow. However, although investing is proÞtable, it is �more
expensive� to do it alone than to enter together with others or even later
on when others have already done so. This makes the Nash equilibrium
represented by the myopic trigger �π no longer subgame-perfect. By the Þrst-
mover disadvantage and the strategic nature of the timing decision, each Þrm
can do better by delaying entry. Generally speaking, potentially conßicting
preferences over appropriation of the positive �network beneÞts� make them
face a choice between no entry and agreement.

7In other words, the decision to enter entails the exercise of an option to delay, when
the Þrm enters its loss of ßexibility is given by 1

β1−1K.
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However, as all Þrms are subject to the same (industry-wide) uncertainty
shock, two equilibrium patterns are the only ones possible: either the industry
remains locked-in at the initial size, sustained by self-fulÞlling pessimistic
expectations8, or a mass of Þrms simultaneously runs to enter, driven by the
expected rents generated by the positive externalities. Excluding the former
for the sake of subgame-perfectness (see section 3 for a discussion of this case),
we are left with the latter. In this speciÞc case, we expect entry to work in
the following way: for a Þxed number of Þrms, proÞts move according to (3)
with µ(m)πdm = 0. If proÞts climb to π∗∗ ≡ u(m)θ∗∗, it will trigger an entry
of discrete size that raises the dimension of the industry instantaneously by
a jump. The exact form of the trigger π∗∗ as well as the size of the mass of
Þrms that jump into the industry upon reaching it is given in the following
result.

Result 2 The candidate policy for optimal entry in a competitive industry,
characterized by positive externalities and initial mass of Þrms m ∈
[0, m̄), is described by the following upper proÞt threshold:

π∗∗ ≡ u(m)θ∗∗(m) = u(m̄)θ∗(m̄), for m ∈ [0, m̄) (6)

Over the range [0, m̄), the optimal entry policy is to set the threshold
π∗∗ equal to the known threshold u(m̄)θ∗(m̄) where the proÞt ßow is
maximum. No Þrms enter if proÞts stay below this barrier, but a dis-
crete mass of (m̄−m) new Þrms �coordinate� entry the Þrst time that
π∗∗ is reached.

Proof. See Section 4.

An immediate corollary that follows from Results 1 and 2 is:

Corollary 1 The proÞt threshold that triggers the �network run� of (m̄ −
m) new Þrms is the same reßecting barrier that triggers the marginal
competitive entry under negative externalities at m̄:

u(m̄)θ∗(m̄) =
β1

β1 − 1
(ρ− α)K ≡ π∗∗(= π∗).

8The Þrms may delay entry till θ reaches, for the Þrst time, the upper level θ∗(m) which
indicates the �optimal� entry trigger for each idle Þrm in isolation.
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Again, we can have a better intuition of the equilibrium by writing the
above threshold in terms of the aggregate shock θ. Since π∗∗ ≡ u(m)θ∗∗(m)
and u(m) is increasing in the region [0, m̄), the optimal policy is given by a
ßat curve starting at θ∗∗(0) = θ∗(m̄) deÞned by:

θ∗∗(m) = θ∗(m̄) ≡ β1
β1 − 1

(ρ− α) K
u(m̄)

, for all m ∈ [0, m̄) (7)

Figure 2 summarizes the effect of positive externalities on entry. Thus
starting at m, if the initial shock is below the known trigger at m̄, all the
Þrms wait until the θ rises vertically to this level, and then �coordinate�
their entry to bring the size to the optimal level m̄. Once the optimal size is
reached and to the right of m̄, further decisions to enter proceed as explained
in the previous section with negative externalities. Intuitively, starting at any
m < m̄, (6) (or (7)) locates the optimal entry threshold so as to maximize
the total proÞts of the incremental number of Þrms that enter (m̄ − m).
The shock value θ∗(m̄) that triggers these Þrms� �network run� is the same
threshold that justiÞes a further marginal entry under negative externalities.
Section 4 conÞrms that this is in fact an equilibrium. No Þrm would

ever invest at a lower entry trigger since this trigger is based on the most
optimistic assessment with respect to the other Þrms, namely that they all
invest at θ∗(m̄). On the other hand no Þrm Þnds it convenient to delay its
entry given that the other Þrms invest, since θ∗(m̄) is also the investment
trigger of the rivals.

Figure 2 about here

2.3 Dynamics of Industry Investments

By Results 1 and 2 and inverting (4), we are able to represent the properties of
the industry�s dynamic entry pattern with positive and negative externalities.
The optimal boundary function:

m∗
t = θ

∗−1(θt;K, ρ, α, σ)

determines the optimal industry size as a function of the state variable θ
and the vector of parameters (K, ρ, α, σ). For movements of the shock to
the right of the boundary, new Þrms enter; if the shock stays on the left of
the boundary, no new investment is undertaken. Assuming as an example
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u(m) = m(40−m), ρ = 0.04, α = 0, σ = 0.2 (at annual rate) and normalizing
K = 10, 000 Þgure 3 below shows a possible entry pattern for this industry.

Figure 3 about here

The industry size process mt is singular: entry takes place only when
θ = θ∗(m), except for the initial jump to m̄ = 20 (M = 40) necessary to
bring θ into the region [θ∗(20),∞). Formally, we get:

m∗
t = 20 +

Z t

T 1

J[θ=θ∗]dm
∗
s

where T 1 = inf(t ≥ 0) | θ = θ∗(20)) and J[θ=θ∗] denotes the indicator function
for all the instants in which the process θ hits the upward-sloping curve θ∗(m).
From θ∗(20) ≡ β1

β1−1 = 2, it is evident that the Þrms invest when market
proÞtability is sufficient to guarantee that if they make their investment
decision simultaneously all the �network beneÞts� will be captured and the
option value of waiting, indicated by 1

β1−1 = 1, will be recovered.

3 Coordination and Pareto-dominant equilib-
ria: a heuristic analysis

This section is devoted to highlighting where the above Nash equilibrium
in pure entry strategies comes from and its perfectness. The approach of
this section, however, is more on a heuristic level; the formal analysis with
pure strategies is performed in the next section. Moreover, although the
heuristic analysis uses mixed strategies, we show that the optimal policy is
outcome equivalent to that in which the Þrms employ pure strategies. This
justiÞes formally proceeding in the next section as if each Þrm uses pure
strategies. Finally, although we use discrete time rather than continuous
time, the reference paper for analysing the timing of investment is Fudenberg
and Tirole (1985).
Let�s begin by assuming an industry of m ∈ [0, m̄) incumbent Þrms and a

sufficiently high number of all equal outsider Þrms looking to enter. To focus
on the basic question of the paper, we impose the following restrictions:

1. We start considering a one-shot-discrete-time game between a generic
ith Þrm and a pool of (m̄ − m)−i < M other Þrms. Although, for

12



convenience, we can refer to the (m̄−m)−i Þrms as the �other player�,
we consider strategies and payoffs of each individual Þrm;9

2. Since entry (investment) is irreversible the incumbents do not have
other decisions to make, while the outsiders choose a randomization
over {Enter, Don�t Enter} . We can therefore simply use the term Þrm
for the potential entrants.

3. The strategies (and payoffs) of all Þrms in the investment game are
taken at Þxed (stochastic) times: T 1 for θ∗(m̄), and T 2 for θ∗(m). Since
θ∗(m̄) < θ∗(m), then almost surely T 2 > T 1 > 0. When θ hits θ∗(m̄)
for the Þrst time, Þrm i �s action set is {Enter, Don�t Enter} . If Þrm
i decides to invest at T 1 its actions set becomes the null action �stay
in� forever. Conversely, if Þrm i does not invest at T 1 it must wait for
θ∗(m) to be reached before entering, i.e. it waits until it is optimal to
enter as a single Þrm in isolation.10

We shall relax some of these assumptions later.

3.1 Pure strategy equilibria

As stated, for the above one-shot-discrete-time game, each Þrm has two
strategies available at T 1: Entry (E) or go alone (No Entry, NE). Since
the deÞnition of T 1 implies that simultaneous entry is not optimal before T 1,
by convention we evaluate the payoffs by referring to time T 1. Then T 2 is
the �optimal� policy for each idle Þrm in isolation and payoffs are evaluated
accordingly. Finally, K is normalized to one.
Taking advantage of Fudenberg and Tirole�s notation, we deÞne the fol-

lowing four functions: the functionM(T 1) is the expected discounted value of
each Þrm if all invest together at T 1. The function L(T 1;T 2) is the (leader�s)
discounted value for the Þrm that invests at T 1 while all the rivals wait till
T 2.F (T 1;T 2) is the (follower�s) discounted value for the Þrm that waits till
T 2 before investing while the rivals go at T 1. Finally, as at T 2 it is always

9To avoid complication we do not consider the possibility of coalitions among the m̄
Þrms. See Bernheim, Peleg and Whinston (1987) for coalition games and the related
deÞnition of coalition-proof Nash equilibria.
10The same result holds if we assume that T 2 corresponds to any trigger θt with θ

∗(m̄) <
θt ≤ θ∗(m), see below.
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optimal to enter, FF (T 2) ≡ M(T 2) = L(T 2;T 2) = F (T 2;T 2) is the payoff
for joint-investment.
From the above deÞniton, if at time T 1 all m̄ −m Þrms simultaneously

enter, the net present value of the investment is :11

M(T 1) ≡ ET 1

·Z ∞

T1

e−ρtu(m̄)θtdt | θT 1 = θ∗(m̄)
¸
− 1 (8)

=

µ
u(m̄)θ∗(m̄)
ρ− α − 1

¶
=

1

β1 − 1
If none of them enter at T 1, under our Þxed time assumption, all wait

until T 2 > T 1 before entering. Then, by (25), their present value becomes:

FF (T 2) ≡ ET 1

½
e−ρ(T

2−T 1)

·Z ∞

T 2

e−ρtu(m̄)θtdt | θT2 = θ∗(m)
¸
− 1
¾

(9)

=

µ
u(m̄)θ∗(m)
ρ− α − 1

¶µ
θ∗(m̄)
θ∗(m)

¶β1

=

·
β1

β1 − 1
u(m̄)

u(m)
− 1
¸µ

u(m)

u(m̄)

¶β1

As β1 > 1 and u(m̄) > u(m), it follows that
1

β1−1 >
h

β1

β1−1
u(m̄)
u(m)

− 1
i ³

u(m)
u(m̄)

´β1

.
It is always convenient to coordinate.
Although we stated that Þrms have complete information, they have im-

perfect information, i.e. they choose their strategies without knowledge of
the other�s choice. Therefore, in our �two-player� game, we should also eval-
uate the payoff by a player who coordinates when the other fails to do so.
In particular, if at time T 1 the ith Þrm invests but the rest do not, its net
present value can be expressed as:

11As for m ≥ m̄ the optimal competitive equilibrium policy need not consider strate-
gically simultaneous entry of other Þrms (i.e. Result 1 holds), we simplify evaluating the
payoffs at entry without considering the option value of future new entry.
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(10)

L(T 1;T 2) ≡ ET1

"Z T2−∆T

T 1

e−ρtu(m+i)θtdt+

Z ∞

T 2−∆T
e−ρtu(m̄)θtdt | θT 1 = θ∗(m̄)

#
− 1

=

·
u(m+i)θ

∗(m̄)
ρ− α − 1

¸
+

·
(u(m̄)− u(m+i))θ

∗(m+i)

ρ− α
¸µ

θ∗(m̄)
θ∗(m+i)

¶β1

=

·
β1

β1 − 1
u(m+i)

u(m̄)
− 1
¸
+

β1
β1 − 1

u(m̄)− u(m+i)

ρ− α
µ
u(m+i)

u(m̄)

¶β1

where T 2 − ∆T = inf(t > T 1 | θ = θ∗(m+i)) is the Þrst time to which the
rivals respond by entering and m+i indicates that m (old) Þrms plus the
(new) ith are now present in the market. On the contrary, if at time T 1 the
(m̄−m)−i Þrms invest but the ith does not, the net present value of the ith
Þrm is equal to:

F (T 1;T 2) ≡ ET 1

½
e−ρ∆T

·Z ∞

T 1+∆T

e−ρtu(m̄)θtdt | θT 1 = θ∗(m̄)
¸
− 1
¾
(11)

=

µ
u(m̄)θ∗(m̄−i)

ρ− α − 1
¶µ

θ∗(m̄)
θ∗(m̄−i)

¶β1

=

·
β1

β1 − 1
u(m̄)

u(m̄−i)
− 1
¸µ

u(m̄−i)
u(m̄)

¶β1

That is, as θ∗(m) is decreasing for m < m̄, the �other player� who has
not coordinated responds �almost� immediately at T 1 + ∆T = inf(t > 0 |
θ = θ∗(m̄−i)).
By the properties of the above payoffs, we are able to conclude that the

following disequality holds:

Result 3 L(T 1;T 2) < FF (T 2) < F (T 1;T 2) < M(T 1)

Proof. See Appendix

The payoffs when a particular pair of strategies is chosen are given in the
appropriate cell of the bi-matrix below: the payoff to the ith Þrm is the one
at the top left of the cell.
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(m̄−m)−i

i
E NE

E M , M L , ..
NE F , .. FF , FF

Referring to the above bi-matrix, as each Þrm within the m̄−m can play
the role of ith and FF > L, the one-shot-discrete-time game presents only
two candidates for symmetric Nash equilibria in pure strategies: �all E� and
�all NE�. Nevertheless, although �all E� is the Pareto-dominant equilibrium,
it is not clear that it is the one that will be played. In fact, as Þrms are inÞn-
itesimally small, this makes F (T 1;T 2) 'M(T 1) and L(T 1;T 2) << FF (T 2),
and the above game resembles a �one-sided coordination game� where one
agent strictly prefers to match the action played by the other, with player i
strictly preferring to match the �other player� if it plays NE. Putting some
numbers in the cells of the above bi-matrix, the game can be illustrated by
the following example:

(m̄−m)−i

i
E NE

E 10 , 10 −5 , ..
NE 9 , .. 4 , 4

While the Pareto outcome (10,10) may tend to make the strategy (E,E) a
focal point of the game, playing NE is much safer for player i, as it guarantees
4 regardless of how the other �players� play. In this situation we are not
certain what outcome to predict.12 The same uncertainty remains even if we
extend the game to include mixed strategies.

3.2 Mixed strategy equilibria

In this case we write:
12Without entering into the details of coalition-proof equilibria, if the ith Þrm expects its

rivals to form a coalition, �all E� remains the only candidate for symmetric Nash equilibria
in pure strategies. To see that this is the case we have to complete the above bi-matrix
considering the payoffs of the (m̄−m)−i Þrms if, at time T 1, the ith Þrm coordinates but
they do not:
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� si(T 1) as the probability Þrm i enters (plays E) at time T 1, if it has
not previously entered, with i ∈ (m̄−m).

In pure strategies si(T 1) equals zero or one, that is it maps each Þrm�s in-
formation set θ(T 1) to one action: NE or E. In mixed strategies, si(T 1) maps
each Þrm�s information set θ(T 1) to a probability distribution over action.
Returning to the above one-shot-discrete-time game, if all the potential en-
trants are out of the market at time T 1, Þrm i�s expected present discounted

A(T 1;T 2) ≡ ET1

½
e−ρ(T

2−∆T−T 1)

·Z ∞

T2−∆T
e−ρtu(m̄)θtdt | θT2 = θ∗(m)

¸
− 1

¾
=

·
u(m̄)θ∗(m+i)

ρ− α − 1

¸µ
θ∗(m̄)

θ∗(m+i)

¶β1

=

·
β1

β1 − 1

u(m̄)

u(m+i)
− 1

¸µ
u(m+i)

u(m̄)

¶β1

The value of the (m̄−m)−i if they coordinate but the ith does not:

B(T 1;T 2) ≡ ET1

"Z T1+∆T

T1

e−ρtu(m̄−i)θtdt+

Z ∞

T 1+∆T

e−ρtu(m̄)θtdt | θT1 = θ∗(m̄)

#
− 1

=

·
u(m̄−i)θ∗(m̄)

ρ− α − 1

¸
+

·
(u(m̄)− u(m̄−i))θ∗(m̄−i)

ρ− α
¸µ

θ∗(m̄)

θ∗(m̄−i)

¶β1

=

·
β1

β1 − 1

u(m̄−i)
u(m̄)

− 1

¸
+

β1
β1 − 1

u(m̄)− u(m̄−i)
ρ− α

µ
u(m̄−i)
u(m̄)

¶β1

Furthermore, L(T 1;T 2) < A(T 1;T 2) and B(T 1;T 2) < F (T 1;T 2). Adding these payoffs,
the bi-matrix becomes:

(m̄−m)−i

i
E NE

E M , M L , A
NE F , B FF , FF

With FF (T 1;T 2) < A(T 1;T 2) (FF (T 2) ' A(T 1;T 2)) and B(T 1;T 2) > FF (T 2). Strat-
egy E strictly dominates NE for the coalition, which makes (E,E) the only Nash equilib-
rium.
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value is:

Pi(T
1) = si(T

1)
£
s−i(T

1)M + (1− s−i(T 1))L
¤

(12)

+(1− si(T 1))
£
s−i(T

1)F + (1− s−i(T 1))FF
¤

=
£
s−i(T

1)F + (1− s−i(T 1))FF
¤

+si(T
1)
£
s−i(T

1)(M − F ) + (1− s−i(T 1))(L− FF )
¤

where s−i(T
1) ≡ s(m̄−m)−i(T 1), indicates the probability that all the (m̄−m)−i

opponents play E. Following the usual procedure for solving a maximization
problem, we differentiate (12) with respect to the choice variable si(T 1) to
obtain the Þrst order condition:

s−i(T
1)(M − F ) + (1− s−i(T 1))(L− FF ) = 0

or:

�s−i(T
1) =

L(T 1;T 2)− FF (T 2)
[L(T 1;T 2)− FF (T 2)]− [M(T 1)− F (T 1;T 2)] (13)

Since FF (T 2) > L(T 1;T 2) andM(T 1) > F (T 1;T 2),we get 0 ≤ �s−i(T 1) ≤
1. Taking account of (13) we are able to rewrite (12) in a different way:

Pi(T
1) =

£
s−i(T

1)F + (1− s−i(T 1))FF
¤

(14)

+si(T
1) [(M − F )− (L− FF )] £s−i(T 1)− �s−i(T 1)¤

If the opponents� probability of playing E is sufficiently small, s−i(T
1) <

�s−i(T
1), Þrm i�s expected present discounted value is nonpositive, and Þrm

i maximizes its payoff by playing NE with certainty, i.e. si(T 1) = 0. If the
opponents� probability of playing E is sufficiently high, s−i(T

1) > �s−i(T
1),

Þrm i�s expected present discounted value is positive, and Þrm i maximizes
its payoff by coordinating entry with certainty, i.e. si(T 1) = 1. Finally, if
s−i(T

1) = �s−i(T
1), Þrm i�s expected present discounted value is zero, and

independent of the probability of entering selected by i.
Which equilibrium strategies are more plausible depends on the number

of players. If each Þrm plays E with an equal probability independent of the
others, this implies �s−i(T

1) =
Q
�si(T

1) = �si(T
1)m̄−m−i. To exemplify, let�s

assume an infant industry characterized by an initial mass of Þrms m = 0,
and m̄ = 20. It is easy to show that �s−i(T

1) = 0.9, which requires:

s
i
(T 1) ≥ �s

i
(T 1) = 0.91/19 = 0.994 47
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With a mass of m̄−m potential entrants, �all E� is the optimal strategy
only if each individual Þrm assesses the probability of E greater than 0.994 47.
In other words, going alone at T 2 �risk dominates� coordinate entry at T 1

in the sense of Harsanyi and Selten (1988).13 As the example suggests, when
there are more players, each player relies more on someone else coordinating.
The more Þrms that have to decide entry, the less likely the coordination.

3.3 Subgame perfect equilibria

So far we have presented the entry process as a simultaneous game justi-
fying it by assuming a fairly unrealistic situation in which the Þrms either
decided immediately (at T 1) or the period they had to wait before being
able to reconsider (observe) the possibility of entering was so long that it
was as if they were choosing their strategies simultaneously. However, if the
interval between the different decisions is shorter, even in continuous time,
the hypothesis of sequential decisions seems more realistic. In this case the
question is: can the Pareto superior coordinating outcome (E) be sustained
in a dynamic game? The answer is positive.
Before going on to the model in continuous time let�s go further with the

discrete-time game, formally adding the probability that Þrms enter between
T 1 and T 2. If at T 2 no Þrm has entered, as θ∗(m) is the �optimal� policy
for each idle Þrm in isolation, it will not be expedient for any Þrm to wait
further. This implies that si(T 2) = 1 for all i. Recalling that each Þrm in the
mass m̄−m can play the role of ith, proceeding inductively we can identify
at most three subgame perfect equilibrium strategies:14

(1) Firms play si(t) = 1 for t = T 1, for all i ∈ (m̄ − m) : the industry
shows coordinated entry;

(2) Firms play si(t) = 0 for t = T 1 and si(t) = 1 for t = T 2, for all
i ∈ (m̄−m) : the industry shows lock-in;

13A well-known example of a game with multiple equilibria is the one described in the
stag-hunt game; see Fudenberg and Tirole (1991, ch.1) for a thorough discussion of games
with multiple equilibria and Pareto optimality.
14Only Markov perfect equilibria are examined. That is, the equilibrium concept applied

is that of subgame perfect Nash equilibrium in Markov strategies for the exogenous variable
θ at which Þrms decide to enter.
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(3) Firms play si(t) = �s
i
(t) for t = T 1 and si(t) = 1 for t = T 2, for all

i ∈ (m̄ − m) : the positive externalities result in equilibrium
strategies in which all Þrms take a positive chance of making
a mistake in order to get the highest payoff.

Which of the three is the strategy proÞle that will be deÞnitely chosen
by the Þrms is generally difficult to assess, and working backward from the
last period does not help as it does not lead to uniqueness. However, if each
Þrm i behaves optimally along any enter probability path that includes the
mixed enter probabilities si(t) = �si(t) in T

1, the above arguments suggest
that the third subgame perfect equilibrium strategy will be payoff-equivalent
and outcome-equivalent to the Þrst one of the pure strategy equilibria: Þrms
enter at T 1 and the mixed probabilities are never implemented. This reduces
the subgame perfect equilibrium strategies to only pure strategies.
Maintaining the heuristic spirit of this section we proceed in arguing why

the strategy proÞle (1) is the most reasonable outcome of the game. We
do this checking that the strategy proÞle (1) yields a subgame perfect Nash
equilibrium as it is unimprovable in a single step, that is it never pays to
deviate from it in a single period while conforming to it thereafter.15 In
particular, we know that no strategy that calls for stay out at T 2 can be
a Nash strategy, because the same strategy with entry replacing stay-out
dominates it. But if all the Þrms have strategies calling for entry in the last
period, then a strategy calling for entry in the next-to-last period (i.e. at T 1)
is Nash perfect only if it shows that it is not optimal to deviate by replacing
entry with stay-out at T 1. This should rule out any strategy that does not
call for �all E� everywhere along the equilibrium path.16

Take (1) as a candidate strategy solution and suppose the ith Þrm deviates
in period T 1 to return to the candidate solution at T 2, i.e. it follows the
strategy proÞle (2). In order to verify if the one-step deviation is optimal,

15Essentially this is the one-step-deviation principle. This principle is an application
of the fundamental dynamic programming principle of pointwise optimization, which says
that a proÞle strategy is optimal if and only if it is optimal in each time period. For a proof
of the one-step-deviation principle see Fudenberg and Tirole (1991, p.109). Although this
principle applies, for both Þnite and inÞnite horizon game, provided that events in the
distant future are made sufficiently insigniÞcant through discounting, its use in the above
two-periods game can guide us as to how to come up with a candidate solution.
16It is also worth noting that the strategy �always E� is not a �dominant� strategy, as

it is in the one-shot game at T 2, because it is not the best response to various suboptimal
strategies at T 1.
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we evaluate, at time T 1, the difference in the net present value between (1)
and (2) as:

s−i(T
1)M + (1− s−i(T 1))L− FF ≥ 0.

This difference is positive if:

�s−i(T
1) ≡ FF (T 2)− L(T 1;T 2)

M(T 1)− L(T 1;T 2) < �s−i(T
1) < 1 (15)

By (15) if the opponents� probability of playing E is s−i(T
1) > �s−i(T

1),
Þrm i�s expected present discounted value is positive, and it maximizes its
payoff by coordinating entry with certainty, si(T 1) = 1. Simple application
of the above example shows that �s−i(T

1) = 0.6 much lower than �s−i(T
1) =

0.9. In other words, coordinating entry at T 1 becomes less risky.
If we now allow the Þrms to change their actions at any point in the

interval [T 1, T 2] (i.e. in the interval [θ∗(m̄), θ∗(m)]), intuition suggests that
there are an inÞnite number of symmetric equilibrium strategies like the one
described above, characterized by its movement date t which calls for entry
at T 1.
To understand how this can occur, there are two aspects of the entry game

in continuous time that must be considered. First of all, if after reaching
θ∗(m̄) Þrms do not coordinate in the expectation that no-one will enter, they
may still do so at any successive �instant�, say at t > T 1 with θt > θ

∗(m̄), at
the same proÞts u(m̄). By the Markov property of the state variable θ, this
game has inÞnite subgame equilibria which are Pareto ranked by their date
of entry with earlier entry being more efficient from the Þrms� point of view.
In fact, deÞning with L(t;T 2), FF (T 2−∆T ) andM(t) the respective payoffs
evaluated at t > T 1,the probability that the ith Þrm will play E decreases
as t increases without entry, and increases as the optimal entry time by the
single Þrm T 2 becomes more remote.17 That is:

Proposition 1 The per-period probability �s−i(t) ≡ FF (T 2−∆T )−L(t;T 2)
M(t)−L(t;T 2)

has the
following properties:
17To simplify, we indicate the interval [T 1, T 2] as a synonym of the interval

[θ∗(m̄), θ∗(m)] of the state variable θ.Obviously this is not always the case. In fact, al-
though the Þrms can make their entry decisions within an apparently Þnite time span
[T 2 − T 1], it is as if they can do so indeÞnitely. Owing to uncertainty, no Þrm can per-
fectly predict θ at each date and since θ follows a random walk there is, for each time
interval dt, a constant probability of moving up or down. Formally this mean that we
must consider only the time interval for which θt > θ∗(m̄). Having speciÞed this, we
continue to use the above synonym, conÞdent that it will not lead to confusion.
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1)
∂�s−i(t)
∂t

> 0 with limt→T2−∆T �s−i(t) = 1;

2)
∂�s−i(t)
∂T 2 < 0 with limT 2→∞ �s−i(t) =

β1−1
β1
;

3)
∂�s−i(t)
∂σ2 |T 2→∞< 0

Proof. See Appendix

In words, although for the ith Þrm delaying the decision to enter means
an expected reduction in the beneÞts of coordination with respect to go-
ing alone, i.e. M(t) − L(t;T 2), there is also an equivalent reduction in the
costs associated with the delay itself expressed in terms of an increase in the
advantage of going alone with respect to waiting T 2 and entering together,
i.e. FF (T 2 −∆T ) − L(t;T 2). The two effects offset each other so that the
opponents� probability threshold �s−i(t) that makes Þrm i�s expected present
discounted value positive converges to one as t increases and, consequently,
the probability of Þrm i entering if it has not previously entered si(t) tends
to zero.
The second part of the proposition says that the farther off the moment

when it will not be expedient for any Þrm to wait any longer, the lesser
the advantage of going alone and the greater the advantage of coordinating;
�s−i(t) decreases while si(t) increases. The intuition of this result relies on the
deÞnition of T 2. By (5), T 2 →∞ asm→ 0 : a smaller number of incumbents
implies more externalities in the market which increase the degree of coor-
dination among potential entrants. The greater the number of externalities
to be exploited, the lower the probability of mistakes and the coordination
problem becomes less severe.
The probability of mistakes is reduced also as uncertainty increases (the

third part of the proposition). The greater the uncertainty over future val-
ues of the shock θ, the larger the return the Þrms will demand before they
will consider making the irreversible investment, which translates into an
increase of θ∗(m̄).However, a high level of θ∗(m̄) if delays the moment at
which it becomes advantageous to enter, in the same way it signals that
the proÞtability of the market will be maintained even longer, which favours
coordination among potential entrants.
The second problem that must be considered is that in continuous time

games there is no notion of last time before t. The real line is not well
ordered and therefore induction cannot be applied. This denies the possibility
of building up an expected value such as (14), from which to deduce the
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optimal subgame perfect equilibrium strategies by working backward from
the end using (longer) subgames. Fudenberg and Tirole (1985), and Simon
and Stinchcombe (1989), to which we refer for further details, highlight the
fact that there is a loss of information in the attempt to represent continuous-
time equilibria as the limits of discrete time mixed strategy equilibria. They
argue that in these kind of games a strategy cannot be represented by a single
distribution function. To correct for this loss of information they extend the
strategy space to specify not only the cumulative distribution that player i
has entered by time t given that the others have not yet entered, but also the
intensity of atoms on the interval between [t, t + dt].18 With this formalism
these authors see continuous time as discrete-time with a length of reaction
(or information lag) that becomes inÞnitely negligible to allow the Þrms to
respond immediately to the rivals� actions. A class of continuous strategies is
then deÞned so that any increasingly narrow sequence of discrete-time grids
generates a convergent sequence of game outcomes whose limit is independent
of the grid sequence. In the limit when the period length converges at zero,
an entry will occur immediately regardless of the value assumed by the per-
period probability. However, the probability of having simultaneous entry
varies with this probability. In this speciÞc case, the Pareto superior joint
moving outcome of the above �one-sided coordination game�, all moving at
T 1, seems to be the most reasonable outcome of the game. Furthermore,
Simon and Stinchcombe (1989, p. 1198-1200) show that the Pareto superior
joint moving equilibrium is the unique equilibrium that survives iterated
elimination of weakly dominated strategies.

18In this speciÞc case, it is worth noting how the per-period probability (15) coincides
with the notion of �intensity of entry� introduced by Fudenberg and Tirole (1985). The
function value s̃−i(t) should be interpreted as the probability that the (m̄−m)−i opponents
play E in the matrix game below:

(m̄−m)−i

i
s̃−i(t) 1− s̃−i(t)

s̃i(t) M(t) , M(t) L(t;T 2) , ..
1− s̃i(t) F (t;T 2) , .. repeat the game
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4 A formal analysis

This section is devoted to the proof of Results 1 and 2. The aim is to
demonstrate that the candidate policies presented in (4) and (6) are indeed
optimal. As the simultaneous investment scenario by letting the Þrms play
mixed strategies is outcome equivalent to the one in which the Þrms employ
pure strategies, we conduct the analysis as if each Þrm uses a stopping rule
(a pure Markovian strategy) that speciÞes the critical value of the shock θ
beyond which the Þrms invest.19 We refer to some dynamic optimization
solutions extensively studied in the Operations Research literature where an
Itô process is constrained never to leave an (optimal) region (see Harrison and
Taksar, 1983, Karatzas and Shreve 1984, 1985; Harrison, 1985), and to some
well-known applications to the case of a competitive economy (see Leahy,
1993; Bartolini, 1993; Dixit and Pindyck, 1994). The results presented by
these authors can be applied with some modiÞcations to the problem at hand.
In particular, the special structure of the industry considered here leads to
some important new insights into the analysis.
For the optimal entry policy, the Þrst thing to do is to Þnd the value

of an established Þrm V (m, θ) as the expected discounted stream of proÞts
π(m, θ) ≡ u(m)θ, given each Þrm�s optimal future entry policy:

V (m, θ) = max
τ i
E0

"Z ∞

0

e−ρtu(mt)θtdt−
X
τ i

J[t=τ i]K | m0 = m, θ0 = θ

#
(16)

where J[t=τ ] is the indicator function that assumes the values one or zero
depending on whether the argument is true or false, and the expectation is
taken considering that the number of active Þrms may change over time by
new entry. A solution of (16) can be obtained starting within a time interval
where no new entry occurs. Over this interval the number of Þrms is Þxed
and the Þrm is an asset which pays a ßow of proÞts u(m)θ per unit of time,
and experiences a �capital� gain as θ evolves stochastically. The proÞts and
the expected �capital� gain must add up to the risk-adjusted return ρ if the

19Since Markovian strategies incorporate all the information relevant for the game, if
a player uses a Markovian strategy, then the best response that his rivals can adopt is
Markovian as well. This means that a Markovian equilibrium remains such even if the
players are allowed to use history-dependent strategies (Fudenberg and Tirole, 1991, p.
501).
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Þrm wishes to stay active (Bellman equation):

ρV (m, θ)dt = u(m)θdt+E[dV (m, θ)] (17)

Assuming V (m, θ) to be a twice-differentiable function with respect to θ
and using Itô�s Lemma to expand dV (m, θ), the no-arbitrage condition (17)
becomes a differential equation equal to:

1

2
σ2Vθθ(m, θ) + α

2Vθ(m, θ)− ρV (m, θ) + u(m)θ = 0 (18)

As long as the number of active Þrms m is Þxed, (18) is an ordinary
differential equation familiar in the option pricing methodology (Dixit and
Pindyck, 1994, p.179-180). Provided that ρ > α in order for the value of the
Þrm to be bounded, the general solution of (18) can be written as:

V (m, θ) = A(m)θβ1 +B(m)θβ2 + v(m, θ)

where 1 < β1 < ρ/α, β2 < 0 are, respectively, the positive and the negative
root of the characteristic equation Ψ(β) = 1

2
σ2β(β − 1) + αβ − ρ = 0, and

A, B are two constants to be determined.
To keep V (m, θ) Þnite as θ becomes small, i.e. lim

θ→0
V (m, θ) = 0, we discard

the term in the negative power of θ setting B = 0. Moreover, the boundary
conditions also require that limθ→∞ {V (m, θ)− v(m, θ)} = 0, where the sec-
ond term in the limit represents the discounted present value of the proÞt
ßows over an inÞnite horizon starting from θ (Harrison 1985, p.44):

v(m, θ) ≡ E0
·Z ∞

0

e−ρtu(m)θtdt | m0 = m, θ0 = θ

¸
=
u(m)θ

ρ− α (19)

The general solution then reduces to:

V (m, θ) = A(m)θβ1 +
u(m)θ

ρ− α (20)

Since the last term represents the value of the active Þrm in the absence
of new entry, then A(m)θβ1 is the correction of the Þrm�s value due to the
new entry and A(m) must therefore be negative.
To determine this coefficient for each m we need to impose some suitable

boundary conditions. First of all, perfect competition (free entry) requires

25



the idle Þrms to expect zero proÞts at entry. Then, indicating by θ∗(m) the
value of the shock θ at which the mth Þrm is indifferent between entry right
away or waiting another instant, the matching value condition requires:

V (m, θ∗(m)) ≡ A(m)θ∗(m)β1 +
u(m)θ∗(m)
ρ− α = K (21)

The Þrm�s competitive behavior keeps the value of active Þrms below the
level K, by increasing the number of Þrms in the market. Moreover, as we
assumed that the Þrm�s size is inÞnitesimal, then the trigger level θ∗(m) is
also a continuous function in m.
Secondly, it is worth noting that the number of Þrms m affects V (m, θ)

depending on the sign of θ∗(m). Since the term θβ1 in (21) is always positive,
any change inm either raises or lowers the whole function V (m, θ), depending
on whether the coefficient A(m) increases or decreases. This simpliÞes the
optimization of θ∗(m);by totally differentiating (21) with respect to m we
obtain:

dV (m, θ∗(m))
dm

= Vm(m, θ
∗(m)) + Vθ(m, θ∗(m))

dθ∗(m)
dm

= A0(m)θ∗β1 +
u0(m)θ∗

ρ− α +

·
A(m)β1θ

∗(m)β1−1 +
u(m)

ρ− α
¸
dθ∗(m)
dm

= 0

Furthermore, since each Þrm rationally forecasts the future development
of all the market and new entries by competitors, at the optimal entry thresh-
old we get Vm(m, θ

∗(m)) ≡ A0(m)θ∗β1 + u0(m)θ∗
ρ−α = 0 (Bartolini, 1993; propo-

sition 1).20 This reduces the above condition to:

Vθ(m, θ
∗(m))

dθ∗(m)
dm

≡
·
A(m)β1θ

∗(m)β1−1 +
u(m)

ρ− α
¸
dθ∗(m)
dm

= 0 (22)

In conjunction with the matching value condition (21), the above ex-
tended smooth pasting condition says that either each Þrm exercises its entry
option at the level of θ at which its value is tangent to the entry cost, i.e.
Vθ(m, θ

∗(m)) = 0, or the optimal trigger θ∗(m) does not change with m.

20Note that this is a generalization of the condition in Dixit (1993, p. 35). If the Þrm
claims to be unique or the last to enter the market, then u0(m) = A0(m) = 0 and the Þrst
order (22) reduces to Vθ(m, θ

∗(m)) = 0.
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While the former case means that the value function is smooth at entry and
the trigger is a continuous function of m, the latter case says that if this
condition is not satisÞed, a single Þrm would beneÞt from marginally an-
ticipating or delaying its entry decision. In particular if Vθ(m, θ

∗(m)) < 0
it means that the value of a Þrm is expected to increase if θ drops (invest-
ing now will be expected to lead to almost sure proÞts); on the contrary if
Vθ(m, θ

∗(m)) > 0 it means that an active Þrm would expect to make losses
versus a future drop in θ. In both situations (22) is satisÞed by imposing
dθ∗(m)
dm

= 0, and therefore the same level of shock may either trigger entry by
a positive mass of Þrms or lock-in the industry at the initial level of Þrms.21

The rest of the proof is devoted to showing that for them ≥ m̄ the smooth
pasting condition reduces to the traditional one, where Vθ(m, θ∗(m)) = 0 and
θ∗(m) is increasing inm. Form < m̄, we get Vθ(m, θ∗(m)) > 0 which requires
dθ∗(m)
dm

= 0.

4.1 Optimal trigger value with negative externalities

In the case of m ≥ m̄ we show two things: (1) the smooth pasting condition
(22) reduces to Vθ(m, θ

∗(m)) = 0; (2) the optimal competitive trigger θ∗(m)
is equivalent to the trigger of a Þrm in isolation, that is of a Þrm claiming to
be the last to enter the industry.
For (1), let�s consider the value of an active Þrm starting at the point

(m, θ < θ∗), that would follow the optimal policy hereafter. Indicating by
T the Þrst time that θ reaches the trigger θ∗, the optimal policy must then
satisfy:

V (m, θ) = max
θ∗
E0

·Z T

0

e−ρtu(m)θtdt+
Z ∞

T

e−ρTu(mt)θtdt | m0 = m, θ0 = θ

¸
(23)

= max
θ∗
E0

·Z T

0

e−ρtu(m)θtdt+ e−ρT max
θ∗

Z ∞

T

e−ρTu(mt)θtdt | m0 = m, θ0 = θ

¸
= max

θ∗
E0

·Z T

0

e−ρtu(m)θtdt+ e−ρTV (m, θ∗(m)) | m0 = m, θ0 = θ

¸
where V (m, θ∗(m)) represents the optimal continuation value of the Þrm.
Since, by (21), the present value of proÞts at T is K, the above value can be

21If this condition does not hold, the expected �capital� gain or loss at θ∗(m) would be
inÞnite due to the inÞnite variation property of the stochastic process θ.
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written as:

V (m, θ) = max
θ∗

·
u(m)E0[

Z T

0

e−ρtθtdt | θ0 = θ] +KE0[e−ρT | θ0 = θ]
¸
(24)

Moreover, the expected value that appears in the above expression can be
found by using some standard results in the theory of the regulated stochastic
processes22. In particular we use the fact that:

E0[

Z T

0

e−ρtθtdt | θ0 = θ] = θ − θβ1(θ∗)1−β1

ρ− α , and E0[e
−ρT | θ0 = θ] =

µ
θ

θ∗

¶β1

(25)
Substituting these expressions in (24) and rearranging, we get:

V (m, θ) = max
θ∗

"
u(m)θ

ρ− α −
µ
u(m)θ∗

ρ− α −K
¶µ

θ

θ∗

¶β1

#
(26)

Now, to choose optimally θ∗, the Þrst order condition is:

∂V

∂θ∗
=

·
(β1 − 1)

u(m)

ρ− α − β1
K

θ∗

¸µ
θ

θ∗

¶β1

= 0 (27)

and the optimal threshold function takes the form:

u(m)θ∗(m) =
β1

β1 − 1
(ρ− α)K ≡ π∗, with

β1
β1 − 1

> 1 (28)

Since u(m) is decreasing in the interval [m̄,M), θ∗(m) is increasing. More-
over, substituting (28) into (26) we can solve for A(m) which is negative as
required by (20):

A(m) = −Kθ
∗(m)−β1

β1 − 1
≡ −(π

∗)1−β1u(m)β1

β1(ρ− α)
< 0 (29)

Finally, substituting (29) into (26) and rearranging we obtain (20):

V (m, θ) = A(m)θβ1 +
u(m)θ

ρ− α ≡ −(π
∗)1−β1u(m)β1

β1(ρ− α)
θβ1 +

u(m)θ

ρ− α (30)

22For these results see Karlin and Taylor (1974, ch.7); Harrison and Taksar (1983);
Harrison (1985, ch.3), and for a non-technical review, Dixit and Pindyck (1994, 315-316)
and Moretto (1995).
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fromwhich it is easy to verify that Vm(m, θ) 6= 0 within the interval θ < θ∗(m)
and zero at the boundary.
For (2), let�s consider an idle Þrm pretending to be the last to enter the

industry. With m Þrms already active, if the Þrm decides to enter when the
shock is θ, it pays K and receives in return an asset that values v(m, θ) as in
(19). Write F (m, θ) for the value of its option to enter; this takes the form:

F (m, θ) = max
�θ
E0
n
e−ρT [v(m, �θ)−K] | m0 = m, θ0 = θ

o
(31)

where T indicates the Þrst time that θ hits the trigger �θ. Substituting (19)
and rearranging, we get:

F (m, θ) = max
�θ

(
[
u(m)�θ

ρ− α −K]E0[e
−ρT | θ0 = θ]

)
(32)

= max
�θ

Ã
u(m)�θ

ρ− α −K
!µ

θ
�θ

¶β1

Taking the derivative of the above expression with respect to �θ and solv-
ing it, it is easy to show that the optimal threshold is equivalent to (28).
Although at Þrst glance this result seems surprising, it is not. It is consistent
with the properties of the dynamic programming principle of optimality for
a symmetric Nash equilibrium in entry strategies. The optimality principle
says that an optimal path has the property that given the initial conditions
and control values over an initial period, the control over the remaining pe-
riod must be optimal for the remaining problem, with the state resulting
from the early decisions considered in the initial condition. This principle
matches with the deÞnition of subgame perfect Nash equilibrium where a
strategy proÞle is a Nash equilibrium if no Þrm has the incentive to deviate
from its strategy given that the other Þrms do not deviate (Fudenberg and
Tirole, 1991, p. 108).
Therefore, for the problem at hand, a perfect Nash equilibrium means

that if all Þrms follow a policy of entry, no individual Þrm can Þnd it optimal
to follow any other policy. Formally this implies Þnding a trigger level θ∗

such that a single Þrm Þnds it optimal to enter with the others. Suppose
that all Þrms have decided to enter at θ∗, with θ∗ > �θ. This cannot be a
Nash equilibrium since a single Þrm can do better by entering at �θ. In fact,
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since by (3) the myopic proÞt process and the competitive proÞt process are
identical until θ∗, the proÞt ßow that the Þrm is able to obtain following the
policy �θ is the best that it can do, at least till T. However, by the principle of
optimality this choice is also optimal for the rest of the period as (23) shows:
if the optimal policy of the single Þrm calls for it to be active at θ∗ tomorrow,
it is obvious that the optimal policy today is to enter at �θ. Finally, as (23)
is a continuous function in θ∗, the limit as θ∗ → �θ shows that �θ is a Nash
equilibrium (Leahy, 1993; proposition 1).
Another way of considering the same result is to compare (26) with (32).

The value of a competitive Þrm (26) that is active in the market is the
difference between the value of an active myopic Þrm and the value of an
inactive myopic Þrm as expressed by (32). Competition, therefore, not only
does not alter the incentive to trade an idle Þrm for an active Þrm but also
encourages both to have the same price at entry. Using (28) in equation (30)
gives V (m, θ∗(m)) − K = 0, i.e. in equilibrium Þrms expect zero proÞt at
entry (Dixit and Pindyck, 1994, ch.8).

4.2 Optimal trigger value with positive externalities

In the case of m < m̄ we have to show three things: (1) that a single Þrm
can no longer claim to be the last to enter the industry and, therefore, the
optimal competitive trigger is no longer equivalent to the trigger of a Þrm
in isolation; (2) that the candidate policy described in Result 2 satisÞes the
necessary and sufficient conditions of optimality; (3) that it is a subgame
perfect equilibrium.
For (1) and (2), let�s consider an (idle) Þrm that follows the optimal policy

θ∗(m). As θ∗(m) is decreasing in the interval m < m̄, the higher the number
of Þrms in the industry, the greater the proÞt ßow at entry. The (idle) Þrm
would then maximize its entry option by claiming to be always the last to
enter the market expecting an inadmissible upward jump in proÞts. To see
this more formally, consider a Þrm that claims to have been the last to enter
at θ = θ∗(m). By (19) its value is simply V (m, θ∗(m)) ≡ v(m, θ∗(m)) =
u(m)θ∗(m)

ρ−α . It is then easy to check that:

V (m, θ∗(m))− lim
θ→θ∗(m)

V (m, θ) =
K

β1 − 1
> 0 (33)

In (33) the inequality holds since it represents the correction due to the
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new entry (i.e. A(m)θβ1 in (20)). This contradicts the smooth pasting con-
dition Vθ(m, θ

∗(m)) = 0 and then the optimality of θ∗(m).
As all (idle) Þrms are equal, all expect an upward jump in proÞts at

θ = θ∗(m) if no other Þrm enters afterwards. This may induce each of them
to delay entry waiting for the others to enter Þrst. However, as θ∗(m) is
decreasing in the interval m < m̄, the upward jump in proÞts would decrease
as more Þrms have already entered and it disappears at m = m̄ where the
Þrm�s value function at entry is just the known function (30). This conÞrms
that: a) the candidate policy for the interval m < m̄ is to impose dθ∗(m)

dm
= 0;

b) the optimal level of shock that triggers entry is θ∗(m̄) where the proÞt
ßow is maximum for all the discrete sizes of investment (m̄−m); c) at m̄ the
necessary condition for optimality Vθ(m̄, θ∗(m̄)) = 0 turns out to be satisÞed
again.
To verify that the necessary conditions are satisÞed, let�s calculate the

value of an active Þrm starting at the point (m, θ), that would follow a
policy deÞned by two parameters: wait until the Þrst instant T at which the
process θ rises to a level c > θ, corresponding to an immediate increase of
the industry size to b > m. Making use of (23) the expected payoff V (m, θ)
from this policy is equal to:

V (m, θ) = E0

·Z T

0

e−ρtu(m)θtdt+ e−ρTV (b, c) | m0 = m, θ0 = θ

¸
(34)

= E0

·
u(m)

Z T

0

e−ρtθtdt+ e−ρTV (b, c) | m0 = m, θ0 = θ

¸
=

u(m)θ

ρ− α −
·
u(m)c

ρ− α − V (b, c)
¸µ

θ

c

¶β1

If the Þrm were able to choose the best moment for the industry size�s
jump as well as the dimension of the jump, the Þrst order conditions would
be:

∂V (m, θ)

∂c
=

·
(β1 − 1)

u(m)

ρ− α − β1
V (b, c)

c
+
∂V (b, c)

∂c

¸µ
θ

c

¶β1

= 0

∂V (m, θ)

∂b
=
∂V (b, c)

∂b

µ
θ

c

¶β1

= 0
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When b and c are chosen according to the candidate policy so that b = m̄
and c = θ∗(m̄) the value function reduces to (20) and the matching value
condition requires V (b, c) = K. These properties verify that the candidate
policy satisÞes the above Þrst order conditions.
By processing (33) we can say more about the necessary conditions. Let

the Þrm, as in (34), wait until the Þrst time the process θ rises to the myopic
trigger level c ≡ θ∗(b), corresponding to an immediate increase of the industry
size to b > m, and assume also that the Þrm expects no more entry after
b. Therefore its expected payoff V (b, θ) from this time onwards equals the
discounted stream of proÞts Þxed at u(b), i.e. by (19):

V (b, θ) =
u(b)θ

ρ− α (35)

Comparing (35) with (20) givesA(b) = 0.Therefore to obtain the constant
A(m), subject to the claim that beyond b no other Þrm will enter the market,
we substitute (20) into the condition Vm(m, θ

∗(m)) = 0 to getA0(m)θ∗(m)β1+
u0(m)θ∗(m)

ρ−α = 0 resulting in:

A0(m) = −θ
∗(m)1−β1u0(m)

ρ− α ≡ −(π
∗)1−β1

ρ− α
u0(m)
u(m)1−β1

(36)

Integrating (36) between m and b gives:Z b

m

A0(x)dx = −(π
∗)1−β1

ρ− α
Z b

m

u0(x)
u(x)1−β1

dx

Taking account of the fact that A(b) = 0, the above integral gives the
constant A(m) as:

A(m) =
(π∗)1−β1

β1(ρ− α)
£
u(b)β1 − u(m)β1

¤
(37)

Substituting (37) into (20), which we rewrite to make explicit its depen-
dence on the end size b, yields:

V (m, θ; b) =
(π∗)1−β1

β1(ρ− α)
£
u(b)β1 − u(m)β1

¤
θβ1 +

u(m)θ

ρ− α (38)

As long as u(b) > u(m) the Þrst term in (38) is positive and it forecasts
the advantage the Þrm would experience by the entry of b −m Þrms when
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θ hits θ∗(b). That is, if the Þrm were able to choose the optimal dimension
of the jump, it would be b→ m̄ which happens the Þrst time that θ reaches
θ∗(m̄). Thus, as opposed to before non-sequential investments are possibile,
the necessary conditions would coordinate an optimal simultaneous entry by
all the Þrms, i.e. θ∗(m̄) is a (symmetric) Pareto-dominant Nash equilibrium
for all m < m̄. Finally, if u00(m) < 0 the necessary conditions are also
sufficients.
As the stochastic process θ is common knowledge, each Þrm can foresee

the beneÞt from the entry of others and observing the realization of the
state variable θ instantaneously considers when to enter by maximizing (38).
In addition, as the reaction lags are literally nonexistent, no Þrm has the
incentive to deviate from the entry strategy θ → θ∗(m̄) and b → m̄ given
that the other Þrms do not deviate. Finally, since θ is a Markov process in
levels (Harrison, 1985, p.5-6), the conditional expectation (34) is in fact a
function solely of the starting states so that, at each date t > 0, the Þrm�s
values resemble those described in (38) which makes the equilibrium subgame
perfect.

5 Positive externalities and the case of telecom-
munication services

So far we consider the function u(m) as a reduced form of a more general
proÞt function or, in a simpler setting without operating costs, as the inverse
demand function of a network good. This section is devoted to developing
this application a bit further and to analysing the implications of the above
optimal entry policy for a network product. In this regard, we consider the
Þrms� decision to set up a network for satisfying a demand for telecommuni-
cation services.

5.1 Interconnection and competitive provider

Following the pioneering approach of Rohlfs (1974)23, we consider a group of a
M continuum of potential telecommunication customers uniformly indexed
by i ∈ [0,M ] and ranked in decreasing order of willingness to pay. We
interpret customers indexed by low i as those who place high valuation on

23See also Shy (2001) ch.5.
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the ability to communicate. The utility of a consumer indexed by i is deÞned
as:

Ui =

 (1− i
M
)q − u if s/he subscribes

0 if s/he does not subscribe
(39)

where q is the total number of consumers who actually subscribe and u is
the connection fee.24 To derive the consumers� aggregate demand for phone
services we look at the consumer m who is, for a given price u, indifferent to
subscribing or not subscribing the service. By (39) the indifferent consumer
is found by (1− m

M
)q − u = 0 and assuming fulÞlled-expectations about the

number of subscribers, we get q = m. Substituting we obtain the inverse
demand function for telecommunication services:

u(m) = (1− m

M
)m (40)

The inverse aggregate demand function (40) exhibits a path similar to
the one in Þgure 1. It is upward sloping at small demand levels (i.e. over
the interval [0, m̄)) and becomes downward sloping at high demand levels.
In particular u(0) = 0, u(M) = 0 and m̄ = M

2
. For any given m, u(m) is

therefore the reservation price of the marginal subscriber.
On the supply side, we assume that there are many idle Þrms ready to

provide telecommunication services with the following characteristics:

� Each Þrm can serve one single customer with a Þxed coefficient tech-
nology, i.e. each Þrm provides one unit of service per period.25 Thenm
indicates the total number of consumers that subscribe as well as the
size of the industry providing the phone system.

� Each Þrm can enter by building its own network at costK, but this cost
is sunk and the investment is irreversible (K is the cost of connecting
the house of a new customer to the total network).

24Congestion can be easily adpated to this model introducing an utility function of type
Ui = (1 − i

M
)f(q) − u, where the network effect is given by the function f(q) with the

properties that f(0) = 0, f 00(q) < 0 and there exist a maximum at some positive level of
subscribers (see Lee and Mason, 2001).
25It is worth noting that the quality of our results would not change if we assume that

each Þrm serves a single network with an equal number of costumers.
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� Interconnection is provided. That is, each Þrm may use the infrastruc-
ture owned by other Þrms in the industry paying a Þxed access price
per unit of time which is the same for all Þrms. Then m also indicates
the total dimension of the network.26

With m > 0 incumbent Þrms currently active, if the interconnection fees
are the only operative cost borne by the potential entrants, in view of (40),
each provider will expect to yield a ßow of operating proÞts equal to:

π(m, θ) ≡ u(m)θ = (1− m

M
)mθ (41)

where θ is a stochastic variable that summarises different kinds of randomness
from variable inputs to shifts of technology.

5.2 Equilibrium network size

Going on with the case of demand for telecommunication services m stands
for the number of users that subscribe before the network grows and gen-
erates bandwagon beneÞts, while m̄ = M

2
indicates the minimal demand-

based equilibrium network achieved by rolling over the upward-sloping part
of the inverse demand curve (40) by positive feedback. This positive feedback
process starts as θ reaches an upper level.

Proposition 2 The minimal demand-based size of the network M
2
is reached

by the connection of M
2
−m new customers when θ hits for the Þrst time the

upper level:

θ∗ ≡ β1
β1 − 1

(ρ− α)4K
M

Above this trigger more customers will be connected, following the rule:

θ∗(m) ≡ β1
β1 − 1

(ρ− α) K

(1− m
M
)m
, for m ∈ [M

2
,M)

In other words, M
2
is the minimal number of customers needed to ensure

that at least they will beneÞt from subscribing to the service at the fee u = M
4
.

26As the Þrms are inÞnitesimal and indistinguishable (as well as the customers) it seems
reasonable to assume an equal access price. This is equivalent to assuming free access
among Þrms.
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The timing to build up this minimal network depends on the evolution of
the exogenous shock θ. In the region below θ∗ the optimal policy is inaction,
the Þrst time that θ hits the level β1

β1−1(ρ− α)
4K
M
a mass of M

2
−m outsiders

coordinate their entry subscribing. Once the network has reached its minimal
size, on the right of M

2
further entries proceed as market demand increases.

Finally, while the mass of new subscribers strongly depend on the initial
user set m, the critical threshold does not. However, the degree of coordi-
nation among potential entrants increases as m decreases as there are more
externalities to be exploited (see proposition 1).

6 Comments on the literature

The previous section has shown that for m < m̄ the candidate policy θ∗(m̄)
is the unique threshold beyond which a mass (m̄ − m) of idle Þrms Þnds
it optimal to move simultaneously. This was done by showing that θ∗(m̄)
satisÞes the necessary and sufficient conditions of optimality for a single Þrm
that Þnds it optimal to enter with the others. It is also shown that once
entry has exhausted the positive externalities, new Þrms will enter following
the standard competitive rule (5) where in equilibrium the option value of
waiting does drop to zero. In this respect, our model is an extension of the
dynamic equilibrium in a competitive industry presented by Leahy (1993)
and Dixit and Pindyck (1994, ch.5).27 Contrary to that model we allow the
Þrms to experiment positive externalities before the industry reaches the size
where negative externalities apply. We Þnd that Þrms invest simultaneously
once the industry proÞtability has developed sufficiently to allow them to
capture all the externalities and to recover the option value of waiting. In
a duopoly model, Nielsen (2002) predicts a result similar to ours, namely
that the Þrms invest simultaneously at the market proÞtability given by the
duopoly proÞt.28 Thus Nielsen�s result (2002) holds more generally in a free
entry competitive framework.

27Baldursson (1998) extends Dixit and Pindyck�s model considering Cournot-Nash com-
petition. His analysis indicates that although qualitatively the investment process is sim-
ilar in oligopoly and competitive equilibrium, oligopoly quantitatively slows down invest-
ment.
28Huisman (2001, ch. 8) extends the Nielsen (1999) model introducing asymmetry

into the investment costs of the Þrms. Although cost asymmetry may reduce the positive
externality effect, both Þrms invest simultaneously and early in anticipation that the other
will invest early as well.
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Obviously simultaneous investments may arise under circumstances very
different from those considered here. For example in Bartolini (1993), simul-
taneous investment is driven by a constraint on the total size of the industry.
He considers a competitive industry where the Þrms initially enter follow-
ing the optimal policy as in Result 1, until a �critical� size is reached. At
this �critical� size, rent competition generates a �competitive run� that im-
mediately Þlls the rest of the quota. During this run the Þrms experience
a reduction of current proÞts in the attempt to capture the rent that the
constraint on the industry size is expected to generate. Unlike Bartolini,
in our model a run is generated by the maximization of the rent associated
with the positive externalities. These rents will be dissipated in the future
by competitive entry of Þrms with negative externalities. Moreover, as entry
is not constrained, the negative externalities do not lead to proÞt reduction
during the run. To see this formally, let�s start by imposing the free entry
zero-proÞts condition at m̄. That is:

V (m̄, θ∗(m̄))−K ≡ A(m̄)θ∗(m̄)β1 +
u(m̄)θ∗(m̄)
ρ− α −K = 0 (42)

Unlike Bartolini (1993), at the end of the run equation (42) implies
A(m̄) < 0, which gives (28) as optimal entry policy.29 Secondly, substituting
(38) into the extended smooth pasting condition (22) and letting b→ m̄, we
obtain: ·

Φ1−β1

β1(ρ− α)
£
u(m̄)β1 − u(m)β1

¤
β1θ

∗β1 +
u(m)

ρ− α
¸
dθ∗

dm
= 0 (43)

The term inside square brackets is always positive (i.e. there is no value
m0 ∈ (m, m̄) that makes it nil), and (43) holds with dθ∗

dm
= 0. That is, all

Þrms in the range (m, m̄) must enter at θ = θ∗(m̄).
In Grenadier (1996) on the other hand, simultaneous investment occurs

because two Þrms rush to enter a declining real estate market that will oth-
erwise leave space only for one Þrm. As developers see the market falling
they realise that if they continue to wait and none of them decide to invest,
they will be shut out of the market. Grenadier refers to this occurrence as a
�recession-induced construction boom�, however it occurs only if the initial

29If M = m̄ is the constraint on the total size of the industry then A(m̄) = 0 and eq.
(11) in Bartolini (1993) gives u(m̄)θ∗(m̄) = (ρ− α)K < π∗. However, as by assumption 6
M could be arbitrarily large this excludes �competitve run� in our model.
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level of demand is greater than the level that induces to optimally invest as
a follower.
In Moretto (2000), simultaneity arises because of a bandwagon effect on

entry costs. Two Þrms are engaged in an �attrition� game generated by
the presence of incomplete information plus positive externalities (�network
beneÞts�) on the investment costs: i.e. it is more expensive to go Þrst than to
adopt the technology coordinately or later on when others have already done
so. Although the Þrst-mover disadvantage leads to sequential investment,
if the asymmetry between Þrms is not too high the investment occurs as a
cascade: i.e. the beneÞts of going second after the Þrst Þrm has invested
induces the second to follow suit.30 At the opposite end, Huisman and Kort
(1999) show that simultaneous investments may arise also in the presence
of negative externalities. The model considers a preemption game where
two identical Þrms are active on a market and have the option to make an
irreversible investment in a new technology which results in higher proÞt
ßow. Although, in general, the presence of a Þrst-mover advantage leads
to a preemption equilibrium where one Þrm plays the role of leader, the
condition of both the Þrms being already active on the output market where
they compete does not exclude the possibility of both Þrms investing at the
same time. This happens in particular when the Þrst-mover advantage is so
low that both the Þrms prefer to delay investment and invest at a later time
jointly. Maison and Weeds (2001) show the same result in a similar duopoly
model. Although they consider the simultaneous presence of negative and
positive externalities, the only case in which both Þrms enter simultaneously
is when they know that if the investment occurred sequentially, the leader
would lose out considerably once the follower decided to enter.
Finally, all these recent works are built upon the seminal paper of Farrell

and Saloner (1986). These authors present a two-agent model of technology
investment with uncertainty about the timing of the investment, positive
externalities and irreversibility where each agent has to invest exogenously
at random opportunities driven by a Poisson process. They count cases of
preemption equilibrium as well as cases of joint adoption. However, if agents
are allowed to invest at any time and not just at occasional chances, many of
the features found by Farrell and Saloner would disappear leaving the basic

30Dosi and Moretto (1996, 1998) also examine a war of attrition game induced by
spillover beneÞts on the cost of adopting a �green� technology. They show that auction-
ing green investment grants is a better policy to stimulate simultaneous investment than
standard subsidies that lower investment costs.
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coordination problem due to the positive externalities.

7 Conclusion

In this paper we have offered an initial investigation into the effect of compe-
tition on the irreversible investment decisions under uncertainty of the Þrms
as generalization of the �real option� approach. We have considered a prod-
uct market that allows simultaneous treatment of two different cases, namely
those of positive externalities for low level of market size and negative ex-
ternalities for high level of market size. The latter case corresponds to the
traditional competitive industries in which the investment of one Þrm lowers
the proÞtability of the others. In this case, Þrms invest sequentially as the
market proÞtability develops.
The former case corresponds to industries in which investments are mutu-

ally beneÞcial: the investment of one Þrm increases the proÞtability of other
Þrms� investments. In this case we Þnd that Þrms invest simultaneously af-
ter the proÞtability of the market has developed sufficiently. By sufficient
we mean the proÞt level that triggers a Þrst investment under negative ex-
ternalities; this trigger determines endogenously the optimal start-up size of
the industry. Not excluding further improvements, putting together these
theoretical results may help to explain both the recent rapid and sudden de-
velopment that has occurred for internet investments, for example the setting
up of dotcoms on the World Wide Web for e-commerce, and the many pro-
longed start-up problems while awaiting market development as, for example,
the story of the digital fax machines shows (Rohlfs, 2001).31

Some extensions can be easily incorporated such as the inclusion of Þnitely-
lived capital projects, stage investments, growth options and operative op-
tions that lead to suspension or deÞnitive abandonment of the investments.
The model also permits study of the efficiency of the investment-entry pat-
tern. Is the equilibrium investment-entry time efficient? Does the efficient
entry pattern occur in equilibrium? This study can be conducted consider-
ing the cooperative solution where the investment decisions are determined
by maximizing the sum of the Þrms� value functions or introducing a true

31Both these are examples of interlinked network services competitively supplied. Each
consumer enjoys network externalities not only with respect to the consumers of his or
her own supplier. The history of the fax also illustrates the importance of interlinking in
making the demand grow to solve the start-up problem.
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social value function. Finally a more substantial modiÞcation concerns the
comparison with the case in which there is a monopolist which possesses all
the investment opportunities. Although intuitively the start-up problem in
this case is much simpler, of particular interest is the analysis of the start-
up conditions and the optimal network size. In the speciÞc, where network
externalities are present, it may be proÞtable for the monopolist to sacriÞce
proÞts in the short-run in the hope of raising prices in the future after the
demand has grown and consumers are enjoying network effects.
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A Appendix

A.1 Properties of FF (T 2), F (T 1;T 2),M(T 1) and L(T 1;T 2).

Lemma 1 M(T 1) > FF (T 2)

Proof. Recalling that T 2 = inf(t > 0 | θ = θ∗(m)) where θ∗(m) ≡
β1

β1−1
(ρ−α)
u(m)

, subsituting in FF (T 2) we obtain the following function:

ff(m) ≡ −
µ
u(m)

u(m̄)

¶β1

+
β1

β1 − 1
µ
u(m)

u(m̄)

¶β1−1
, for m ∈ [0, m̄) (44)

withM(T 1) ≡ ff(m̄). Now, making use of the variable x(m) = u(m)
u(m̄)

which is
monotonically increasing in m, with x = 1 for m = m̄ and x = 0 for m = 0,
we are able to simplify (44) as:

ff(x) ≡ − (x)β1 +
β1

β1 − 1
(x)β1−1 , for x ∈ [0, 1)

with ff(1) = 1
β1−1 , ff(0) = 0. Now, taking the derivative of ff(x) with

respect to x gives ff 0(x) = −β1 (x)β1−1 + β1 (x)
β1−2 = β1 (x)

β1−1 (x−1 − 1),
which is always positive for x < 1 (i.e. for m < m̄).

Lemma 2 FF (T 2) < F (T 1;T 2) < M(T 1)

Proof. As FF (T 2) ≡ ff(m̄−i), this follows directly from application of
the properties of ff(m).

Lemma 3 L(T 1;T 2) < FF (T 2).

Proof. Let�s deÞne the function l(x) ≡ ff(x) + g(x), where g(x) ≡
− 1
β1−1 (x)

β1 + β1

β1−1x − 1 and x(m) =
u(m)
u(m̄)

. As g(0) = −1, g(1) = 0 and

g0(x) = β1

β1−1 [1− (x)
β1−1] > 0 for all x, yields l(x) ≤ ff(x) for all x ∈ [0, 1).

Therefore, simple considerations show that L(T 1;T 2) ≡ l(m+i) < ff(m+i),
where the last inequality follows from the inÞnitesimal dimension of the ith
Þrm (see Þgure 4 below).
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Figure 4: ff(x) and l(x) with β1 = 2.

A.2 Monotonicity property of M,F and L

Let�s consider the case in which the Þrms coordinate at t > T 1 with θt >
θ∗(m̄). By the shape of θ∗(m), it is always possible to Þnd �m < m̄ such that
θt = θ

∗( �m) > θ∗(m̄). Then the payoff of m̄ −m Þrms coordinating at θt is
equivalent to the payoff, starting with �m active Þrms, of m̄ − �m Þrms that
do not enter at T 1 and all wait until T 2 before entering.

M(t) =

·
u(m̄)θ∗( �m)
ρ− α − 1

¸µ
θ∗(m̄)
θ∗( �m)

¶β1

(45)

= −
µ
u( �m)

u(m̄)

¶β1

+
β1

β1 − 1
µ
u( �m)

u(m̄)

¶β1−1
, for �m ∈ [m, m̄)
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and:

F (t;T 2) =

·
u(m̄)θ∗( �m−i)

ρ− α − 1
¸µ

θ∗( �m)
θ∗( �m−i)

¶β1

(46)

=

µ
u( �m−i)
u(m̄)

¶β1

+
β1

β1 − 1
µ
u( �m−i)
u(m̄)

¶β1−1
, for �m ∈ [m, m̄)

Noting that as now �m goes from m̄ to m as t goes from T 1 to T 2, the

term
³

θt
θ∗(m)

´β1

< 1 represents the discount factor. Applying Lemma 1 and
2 the following Lemma can be directly proved:

Lemma 4 1) M(t) ≡ ff( �m), and ∂M(t)
∂t

≡ ∂ff( �m)
∂ �m

< 0, for all �m ∈ [m, m̄);
2) F (t;T 2) ≡ ff( �m−i) < ff( �m) ≡ M(t), and ∂F (t;T2)

∂t
≡ ∂ff( �m−i)

∂ �m
<

0, for all �m ∈ [m, m̄);
3) if we allow t to increase towards T 2 (or equivalently �m → m ) we

obtain:
lim
t→T 2

M(t) = lim
t→T 2

F (t;T 2) = FF (T 2)

Although for the payoff of a player who coordinates when the other fails
to do so, L(t;T 2), we cannot refer directly to the ff(m) function, we are
able to show that:

Lemma 5 1) ∂L(t;T 2)
∂t

≡ ∂L(t;T2)
∂ �m

< 0, for all �m ∈ [m+i, m̄);
2) limt→T 2−∆T L(t;T 2) = FF (T 2 −∆T ).

Proof. First, the payoff L(t;T 2) is deÞned for all �m ∈ [m+i, m̄). By (10),
this follows from the deÞnition of T 2 − ∆T = inf(s > t | θs = θ∗(m+i)) as
the Þrst time to which the rivals respond by entering. Second, evaluating
directly the payoff for θt = θ

∗( �m) we get:

L(t;T 2) =

·
u(m+i)θ

∗( �m)
ρ− α − 1

¸µ
θ∗(m̄)
θ∗( �m)

¶β1

+

+

·
(u(m̄)− u(m+i))θ

∗(m+i)

ρ− α
¸µ

θ∗(m̄)
θ∗(m+i)

¶β1

or
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L(t;T 2) =

·
β1

β1 − 1
u(m+i)

u( �m)
− 1
¸µ

u( �m)

u(m̄)

¶β1

+ (47)·
β1

β1 − 1
u(m̄)− u(m+i)

u(m+i)

¸µ
u(m+i)

u(m̄)

¶β1

with L(T 2−∆T ;T 2) ≡ FF (T 2−∆T ). As only the Þrst term on the r.h.s of
(47) depends on �m, taking the derivative we get:

∂L(t;T 2)

∂t
≡ ∂L(t;T 2)

∂ �m
= β1

µ
u( �m)

u(m̄)

¶β1−1 u0( �m)
u(m̄)

·
β1

β1 − 1
u(m+i)

u( �m)
− 1− 1

β1 − 1
u(m+i)

u( �m)

¸
= β1

µ
u( �m)

u(m̄)

¶β1−1 u0( �m)
u(m̄)

·
u(m+i)

u( �m)
− 1
¸
≤ 0 for all �m ∈ [m+i, m̄)

A.3 Proof of proposition 1

Proof. To prove the Þrst part of proposition 1 let�s Þrst consider the dif-
ference FF (T 2 − ∆T ) − L(t;T 2). This difference is always positive for all
t ∈ (T 1, T 2 − ∆T ), i.e. for �m ∈ (m+i, m̄), and null in T 2 − ∆T , i.e. at
�m = m+i.

FF (T 2 −∆T )− L(t;T 2) =

=

·
β1

β1 − 1
u(m̄)

u(m+i)
− 1
¸µ

u(m+i)

u(m̄)

¶β1

−

−
·
β1

β1 − 1
u(m+i)

u( �m)
− 1
¸µ

u( �m)

u(m̄)

¶β1

−
·
β1

β1 − 1
u(m̄)− u(m+i)

u(m+i)

¸µ
u(m+i)

u(m̄)

¶β1

=
1

β1 − 1
µ
u(m+i)

u(m̄)

¶β1

−
·
β1

β1 − 1
u(m+i)

u( �m)
− 1
¸µ

u( �m)

u(m̄)

¶β1

By Lemma 3, if t tends to T 1, i.e. �m→ m̄, it follows directly that:

FF (T 2 −∆T )− L(T 1;T 2) =
1

β1 − 1
µ
u(m+i)

u(m̄)

¶β1

− β1
β1 − 1

u(m+i)

u(m̄)
+ 1

= −g(m+i) > 0

44



However, if t tends to T 2 − ∆T, i.e. �m → m+i, by Lemma 5 we get that
FF (T 2 −∆T )− L(t;T 2) tends to zero.
Let�s now consider the difference M(t)− L(t;T 2). Also this difference is

always positive for all t ∈ (T 1, T 2 −∆T ), i.e. for �m ∈ (m+i, m̄), and null in
T 2 −∆T , i.e. at �m = m+i.

M(t)− L(t;T 2) =

=

·
β1

β1 − 1
u(m̄)

u( �m)
− 1
¸µ

u( �m)

u(m̄)

¶β1

−

−
·
β1

β1 − 1
u(m+i)

u( �m)
− 1
¸µ

u( �m)

u(m̄)

¶β1

−
·
β1

β1 − 1
u(m̄)− u(m+i)

u(m+i)

¸µ
u(m+i)

u(m̄)

¶β1

=
β1

β1 − 1
·
u(m̄)

u( �m)
− u(m+i)

u( �m)

¸µ
u( �m)

u(m̄)

¶β1

−
·
β1

β1 − 1
u(m̄)− u(m+i)

u(m+i)

¸µ
u(m+i)

u(m̄)

¶β1

=
β1

β1 − 1
[u(m̄)− u(m+i)]

"
1

u( �m)

µ
u( �m)

u(m̄)

¶β1

− 1

u(m+i)

µ
u(m+i)

u(m̄)

¶β1

#

By Lemma 1 and 3, if t tends to T 1, i.e. �m→ m̄, it follows directly that:

=
β1

β1 − 1
[u(m̄)− u(m+i)]

"
1

u(m̄)
− 1

u(m+i)

µ
u(m+i)

u(m̄)

¶β1−1 u(m+i)

u(m̄)

#

=
β1

β1 − 1
u(m̄)− u(m+i)

u(m̄)

"
1−

µ
u(m+i)

u(m̄)

¶β1−1
#
> 0

On the contrary, if t tends to T 2 −∆T, i.e. �m→ m+i, by Lemma 4 M(t)−
L(t;T 2) tends to zero. Putting together these results we can, Þnally, take
the derivative of �s−i(t) with respect to t :

∂�s−i(t)

∂ �m
≡ ∂�s−i(t)

∂t
=

=
∂L(t;T 2)

∂t
[FF (T 2 −∆T )−M(t)] + ∂M(t)

∂t
[L(t;T 2)− FF (T 2 −∆T )]

[M(t)− L(t;T 2)]2 > 0

The proof of the second part follows directly from Lemmas 4 and 5 and
the deÞnition of T 2. In fact, T 2 → ∞ as m → 0 and recalling that �m goes
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from m̄ to m as t goes from T 1 to T 2 it follows directly that:

lim
T2→∞

FF (T 2−∆T )−L(t;T 2) = 1 and lim
T 2→∞

M(t)−L(t;T 2) = β1
β1 − 1

Finally, the third part derives from the fact that ∂β1

∂σ2 < 0.
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