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Abstract

We study auction design when parties cannot commit themselves to the
mechanism. The seller may change the rules of the game and the buyers
choose their outside option at all stages. We assume that the seller has a
leading role in equilibrium selection at any stage of the game. Stationary
equilibria are characterized in the language of vonNeumann-Morgenstern
stable sets. This simplifies the analysis remarkably. In the one buyer case,
we obtain the Coase conjecture: the buyer obtains all the surplus and
efficiency is reached. However, in the multiple buyer case the seller can
achieve more: she is able to commit to the English auction. Typically
the converse also holds, the English auction is the only stable auction
mechanism.
Keywords: Auction theory, Commitment, Stable sets.
JEL: C72, D44, D78.

1 Introduction

The optimal auctions literature starts by asking how does seller’s revenue max-
imizing mechanism look like.1 Cremer and McLean (1988) and McAfee and
Reny (1991) provide a largely definitive solution to the problem: they intro-
duce a mechanism which, in almost all scenarios, extracts all the buyers’ surlus.
From the viewpoint of the mechanism design theory, this is a negative result.
Even if the Cremer-McLean mechanism solves the optimal auctions question,
it is only rarely, if ever, used in practice. Why is it that we commonly see
mechanisms such as the English auction used instead? This paper provides an
answer to the question by appealing to commitment problems.

Full commitment is (one of) key assumptions of the optimal auctions liter-
ature. Ability to commit to the auction rules implies that (i) the seller cannot

∗I thank Hamid Sabourian, Rafael Repullo, Klaus Kultti, Hannu Salonen, and Juuso
Välimäki for useful discussions.

†Yrjö Jahnsson Foundation, Ludviginkatu 3-5, FIN-00130 Helsinki. E-mail:
hannu.vartiainen@yjs.fi.

1Vickrey (1961), Myerson (1981), and Riley and Samuelson (1981) are seminal contribu-
tions in the optimal auctions literature. For general survey, see e.g. Klemperer (1999).
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change rules of the game in the middle of the play (unilaterally or jointly with
buyers), (ii) buyers cannot leave the game once they participate it. Under full
commitment one needs not to worry about the dynamics of a bargaining process.
However, one can easily imagine why commitment is hard to reach. It may be
difficult to prevent seller from ”schill bidding”, and thereby forming artificial
competition, or it may be difficult to prevent the seller changing the terms of
trade once the auction has been finalized.2 It should be particularly difficult to
prevent renegotiation under inefficient occurrences. In fact, it is safe to argue
that no trading scenario is not subject to potential commitment problems.

We analyse auction design under the hypothesis that parties do not have
any commitment power: the seller is allowed to change rules of the auction
mechanism at any stage of the game without any cost, and the buyers cannot
ever be forced to participate (the value of their outside option is fixed). Thus,
we take the opposite view to the commitment issue than the standard optimal
auctions literature.

Allowing the seller to reformulate the auction game means that focusing on
direct incentive compatible individually rational mechanisms no longer suffices.
This is true even if a mechanism only reveals a recommendated allocation,
given buyers’ messages to the mechanism. Namely a particular recommendation
together with the commonly known structure of the mechanism allows players
to make inferences about other players’ types. Therefore, the seller typically
is tempted to change the rules of the mechanism once a recommendation is
revealed. Forward looking buyers of course anticipate this and adjust their play
accordingly at the communication stage. Thus, the incentive compatibility of
the mechanism breaks down. It can easily be shown that (generically) there is
no incentive compatible mechanism whose rules the seller does not want change.
Thus, full commitment is critical to the optimal auctions theory.

To analyze auction design without commitment, we focus on an extensive
form bargaining game which imposes as little restrictions as possible on the
strategic alternatives available to the seller. The grand game: (i) the seller
declares an extensive form game, to be played by the buyers, (ii) at any stage
of the declared game, the seller can propose an allocation or declare a new
game which is to be played thereafter by the buyers (there is no limitations on
the number of reformulations), (iii) at any stage of the game, the buyers can
choose their status quo payoff rather than participate the game. If the buyers
agree on a proposed allocation then this allocation is implemented. There is no
discounting (as there is no cost of changing the rules), but if the game continues
forever, all parties get their status quo payoff (zero).

It is clear at the outset that the game has many potential (perfect Bayesian)
equilibria. Which to focus? Like in the standard optimal auctions analysis, we
allow the seller to choose the equilibrium. However, she controls the equilibrium
selection at any stage of the game. This implies that any equilibrium selection
rule must be dynamically consistent with respect to seller’s own choices. This

2Examples of this are the recent umts-auctions in Europe. In many countries the govern-
ments have been trying to change the effective prices of the licences afterwards, depending on
the developments of the market situation.
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is a very forceful restriction.
We will focus on stationary (or Markovian) equilibria of the grand game.

As noted by Chatterjee and Sabourian (1999), stationarity can be justified
by appealing complexity considerations.3 Two nested notions of stationarity
are introduced: weak form of stationarity implies that mechanism selection is
independent of the history of the game, it only depends on the current beliefs.
Strong form of stationarity implies weak stationarity and a property that only
differences in terms of expected payoff should affect choices.

Weak stationarity together with the appropriate incentive and participa-
tion constraits allows us to characterizate the equilibria in the language of
vonNeumann-Morgenenstern stable sets. This approach simplifies the equilib-
rium identification problem remarkably. Demonstrating the usefulness of this
approach in complex game theoretic environments is one of the contributions
of the paper.4 5

1.1 Stable set

Stable set consists of two ingredients. First, by the standard revelation argu-
ment we note that any equilibrium of the grand game must be implementable
by a direct (veto-)incentive compatible6 mechanism, augmented by an infor-
mation revealing device. Equilibrium selection problem then reduces to one of
identifying direct mechanisms that can be implemened given their informational
properties. This observation simplifies the problem considerably but does not
affect the set of equilibrium outcome functions.

Second, we argue that the equilibrium can be conveniently analyzed in its
reduced form by using stables sets. The graph of mechanisms satisfying veto-
incentive compatibility restrictions is called the set of agreeable mechanisms.
Over this set we define a dominance relation which we call upsetting relation:
an agreeable mechanism is upset by another agreeable mechanism if (i) the latter
is defined with respect to prior that is derived by updating on a recommendation
of the former mechanism, and if (ii) the latter is mechanism at least as profitable
to the seller than the recommendation of the former mechanism. Then, based on

3For a closely related argument, see e.g. Anderlini-Sabourian (1999) or Chatterjee-
Sabourian (2000). For introduction, see Osborne-Rubinstein (1995).

4Greenberg (1990) generalizes this approach, and argues that abstract stable sets can be
viewed as a fundamental approach from which many game theoretic solution concepts can
be derived from. Recently, several contributors have applied stable sets to noncooperative
problems. Kahn and Mookherjee (1992, 1995) use stable sets to characterize coalition-proof
equilibria, and to refine equilibria in a class of adverse selection problems. Asheim (1991,
1992) and Tadelis (1996) apply stable sets to refine subgame perfect equilibria in repeated
games. Our exposition is most closely connected to Blume and Sobel (1997), who use stable
sets to construct a criterion to refine equilibria in a class of cheap-talk games.

5 In the mechanism design scenario, Forges (1993, 1994) addresses a closely related question
of posterior efficiency. This property requires that once a recommendation of the mechanism
has been generated by the mechanism, there should not be a mutually profitable deviation
to another mechanism, given the updated posterior beliefs. However, Forges’ solution is
unapplicable here: in the auction scenario the set of posteriorly optimal mechanisms would
typically be empty.

6Veto-incentive compatibility = incentive compatibility + individual rationality after all
histories (e.g. Forges, 1998).
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the upsetting relation we partition the set of agreeable mechanisms into stable
and unstable ones. Two stability criteria are imposed on a partition: any stable
agreeable mechanism can only be upset by an unstable agreeable mechanism,
and any unstable agreeable mechanism must be upset by a stable one. We
argue that a set of stable mechanisms, the stable set, contains the graph of
stationary equibria of the mechanism reformulation game. As described below,
the converse is typically true also.

1.2 Results and Connections to the Literature

Much of the discussion on bargaining and commitment has circulated around
the famous Coase conjecture saying that as the commitment ability of the seller
becomes weak, all the surplus goes to the buyer. Gul, Sonnenschein and Wilson
(1986) and Fudenberg, Levine and Tirole (1985) confirm this conjecture in the
one buyer situation under the ”Gap” case. In the ”No Gap” case a stationarity
assumption is needed to obtain the same result.7 Analogously, McAfee and
Vincent (1997) study in the auction design context seller’s ability to commit to
a minimum reservation price. In the limit, as the time period becomes short
and a seller’s commitment power vanisges, a version of the Coase conjecture
holds true: trade takes place instantaneously with a price equivalent to static
mechanism without a reservation price. However, McAfee-Vincent only address
the problem of committing to a reservation price, the mechanism itself is fixed
(second-price or first-price). Instead, we allow the seller to reformulate also the
mechanism.

It is worth scetching our results, and relate them to the discussion on Coase
conjecture. In the single buyer situation, we show that in the Gap case the
unique stable set is single valued and the stable mechanism allocates the object
to the buyer with the price equal to the minimum of buyer’s positive probability
valuations. In the No Gap case this is true for any strongly stationary stable
mechanisms. Thus the results parallel to those by Gul et.al. and Levine et.al.
on the Coase conjecture. Of course, we allow the seller to use arbitrary trading
mechanisms, not just simple one sided offers.

In the many-buyer case, we show that a versdion of the English auction8

is always strongly stable.9 The reason is that the English auction effectively
reveals two things: (i) the buyer with the highest valuation (the winner), and
(ii) the valuations of all but the winner. The seller then faces a similar situation
as in the one-buyer case in that now there remains only one relevant bargaining
partner whose valuation is unknown. Again, in the absence of commitment the

7For other studies on bilateral contracting, renegotiation and commitment, see Freixas,
Guesnerie and Tirole (1985), Hart and Tirole (1988), and Laffont and Tirole (1990). For
studies on the No Gap case in the durable good monopoly scenario, see Ausubel and Deneckere
(1989a,b)

8 In the English (ascending, progressing, open, oral) auction successively higher prices are
called until only one bidder remains. He claims the object with the price equal to the last
call.

9Even if the Second Price auction is payoff equivalent with the English auction, the latter
is informationally less demanding in the following sense: it does not require winner to reveal
his type to the seller.
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seller is forced to sell the good to the winner with the price equal to the lowest
possible winner’s valuation. As this outcome is equivalent with the original
recommendation, she can safely commit to implementing it when designing the
mechanism.

Ther result that the English auction is always stronlgy stable is used to
prove that a strongly stable set of mechanism always exists, and it contains
efficient only efficient mechanisms. Efficiency follows from the fact that it is
always profitable to reject potentially inefficient recommendation by employing
the English auction instead. Finally, and remarkably, if valuations are drawn
from a finite set, then the strongly stable the English auction is only stable
mechanism under any belief. Discretization can be interpreted as a consequence
of the existence of a smallest monetary unit.

It is noteworthy that (in discrete case) the seller cannot commit to any other
mechanism that the English auction, even if this auction is typically suboptimal
among all auction mechanisms. Hence, this result may partly explain why the
English auction is, according to casual empiricism, so commonly used. In more
general terms, the Coase conjecture can be rephrased as follows: in the absence
of commitment (a version of) the English auction is the only feasible trading
procedure. Note that this statement applies also to the one buyer case.

This brings us back to the optimal auctions literature. One unattractive fea-
ture of the approach is that optimal auctions are typically difficult to describe
in natural economic terms. For this reason, many studies have focused only
on mechanisms having natural economic interpretation. Milgrom and Weber
(1982) study a class of such mechanisms, and identify rather mild conditions
under which the English auction is the optimal within this class.10 This result
has been viewed as one major explanation for the popularity of the English
auction.11 In the broader context, however, it is unclear why the seller would
disregard more profitable mechanisms. One could imagine evolutionary or com-
petitive forces that would eventually lead one towards more profitable mecha-
nism if such were available. Thus, what is needed is a more general story of
why a seller should select the English auction among all possible mechanisms.
Our theory can be considered as such theory.

The paper is organized as follows: Section 2 defines the set-up, and Subsec-
tion 2.2 explores the game and our introduces our solution. Subsection 3.1 deals
with the one buyer problem, and Subsection 3.2 the many-buyer case. Section
4 discusses about the robustness of the model. In the Appendix, we formalize
the notion complexity and derive our stationarity restrictions as a consequence
of complexity considerations.
10 Including the English, the second-price, the Dutch, and the first-price auctions. However,

Matthews (1987) and Maskin and Riley (1984) show that risk-aversion would make either the
Dutch or the first-price auction more profitable than the other auction forms.
11Lopomo (1998) shows that the English auction is optimal in a class of ”simple” mecha-

nisms.
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2 Framework

There is a single seller, selling a single indivisible object, and a set N =
{1, ..., n}, n < ∞, of buyers with typical elements i, j, potentially willing to
buy the object. Normalize seller’s reservation value, which is public informa-
tion, to 0. Buyer i’s reservation valuation is represented by random variable θi
which is i’s private information.and distributed on a bounded set Θi ⊆ R+. The
set of possible valuation profiles is Θ = ×i∈NΘi with an element θ = (θi)i∈N ,.
Write Θ−i = ×j 6=iΘi with an element θ−i = (θj)j 6=i. For profile θ, denote the
k−order statistics by θ(k), and the vector of all other valuations than the θ(k)
order statistic by θ−(k). Let p be a probability measure on Θ with support
S(p),12 and Y the set of all (Lebesgue) measurable sets in Rn. Let ∆Θ be the
set of all probability measures p on Θ. Denote the least upper and greatest
lower bounds of i’s support by θ(pi) = supS(pi) and θ(pi) = inf S(pi).

2.1 Direct Mechanisms

Denote by ai the probability that the object is allocated to buyer i = 1, ...n or
to the seller i = 0. The set of possible random object allocations is then an n-
dimensional unit simplex ∆n. Scalar ti ∈ R represents the pure monetary trans-
fer from buyer i to the seller.13 Use the vector notation a = (a0, a1, ..., an) ∈ ∆n
and t = (t1, ..., tn) ∈ Rn. A standard auction mechanism specifies an outcome
for all valuation profiles θ = (θ1, ..., θn) ∈ Θ. We define a (Lebesgue) measur-
able function r, augmented direct auction mechanism, which specifies for each
valuation profile in the support of p a physical outcome and signal in Y (hence
the attribute ”augmented”)

r (· : p) : S(p)→ ∆n ×Rn ×Y. (1)

An output of r, a recommendation, is written compactly r = (a, t, Y ). Denote
the family of all r functions by R. Given p, the set of recommendations that
mechanism r generates with positive probability is r(S(p) : p) or, compactly,
r(S : p).

The role of signal Y is to allow revelation of finer information than is con-
tained in (a, t) -part of the recommendation. W.l.o.g. we focus on mecha-
nisms that satisfy Y = r−1(a, t, Y : p) ⊆ S(p), for all (a, t, Y ) ∈ r(Θ). Thus
r−1(a, t,Y : p) generates a partition on the set of types generating allocation
(a, t). The aim is to simulate not only the outcome function but also the poste-
rior belief formation of any (non-direct) auction mechanism. E.g. first and
second price auctions are fully revealing14 and hence the augmented direct
mechanisms simulating (equilibria of) these auctions satisfy Y = {θ} for all
generated recommendations (a, t, Y ). With the English auction Y = {θi ∈
S(pi) : θi ≥ θ(2)} × {θ−i}, where i has the highest valuation, θ(2) is the second
order statistic and θ−i the vector types of all buyers but i. The auction re-
12Support of p is a smallest closed set Y such that p(Y ) = 1.
13Because of risk neutrality, this is without loss of generality.
14There is one-to-one mapping from types to equilibrium bids.
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veals all but the winner’s exact valuation, and the greatest lower bound of his
possible valuations (the second highest bid).

A constant mechanism does not change beliefs with probability one:15 it
sends the same recommendation, say r = (a, t, S(p)), for all θ ∈ S(p). In such
case we write r(· : p) = 1r(p). If more than one recommendation is sent with
positive probability, then posteriors necessarily change some times, and some
information is revealed.

Given p, a posterior belief is unique up to variations in countably many
measure zero events. In restrict beliefs in measure zero events, we assume
that the conditional measure p (· : Y ) satisfies S(p (· : Y )) = Y, for any state
Y ⊆ S(p). The restriction binds only when Y is a probability zero event.16 Also
denote conditional measures p(θ : Y ) for Y = Θ−i × {θi} or Y = Θi × {θ−i}
by p−i (θ−i : θi) and pi (θi : θ−i) , respectively, for any θ ∈ S(p). Now p−i (· : θi)
is the interim belief of i given θi, and pi (· : θ−i) is the belief concerning i0s
type were all other buyers’ types publicly known. In the case of independent
valuations, pi (· : θ−i) = pi.

Given prior p,mechanism r, and recommendation r, the conditional measure
has the form p(θ : r−1 (r)) for all θ ∈ Θ. Support S(p ¡· : r−1 (r : p)¢) is uniquely
determined by our assumption. To simplify notation, write p (r, r) instead
of p

¡· : r−1 (r : p)¢ when referring to posterior generated from p according to
mechanism r and recommendation r. Note that ∆Θ is closed under updating
operation: p ∈ ∆Θ implies p(r, r) ∈ ∆Θ. Further, denote p (r, r) (r0, r0) the
posterior measure generated from p (r, r) according to r0 and r0, and so forth
for any chain of mechanisms and recommendations.

We analyze the situation where players have no ability to commit to the
continuation of a mechanism as planned. This means that the buyers can, if they
wish, choose their outside option rather than to complete the trading game as
planned. We now describe the constraint that is imposed by the this restriction
(the other restriction is due the assumption that the seller can redesign the
mechanism).

We assume private valuations and risk neutrality.17 Denote buyer i’s payoff,
given realized recommendation r = (a, t, Y ) and his type θi by ui(r, θi). This ex
post payoff of buyer i is of the form

ui(r, θi) = θiai − ti
Then, given buyer i’s privately known valuation and publicly known trading
mechanism r, i’s payoff is a random variable ui(r(·, θ0i), θi) on Θ−i whose ex-
15Note that any mechanism is defined over the whole domain Θ whereas the definition of

a constant mechanism only requires that a constant mechanism, say π , should be constant
over S(p) (less a null set), given p. When referring to constant mechanisms we assume that
ri = (0, 0) for all i and all θ ∈ Θ \ S(p). That is, in all zero probability events π implements
the no-trade -allocation. Of course, this restriction neither affects the expected payoffs of any
player nor incetives of the buyers (this is easy to check).
16This condition is clearly met by any version of conditional measure whenever p(Y ) > 0

(use Bayes’ rule).
17These assumptions can be weakened significantly. See the remarks in the final section.
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pected value at the interim stage is18

Ep−i [ui(r
¡
θ−i, θ0i : p

¢
, θi)] =

Z
Θ−i

u(r
¡
θ−i, θ0i : p

¢
, θi)p−i (θ−i : θi) dθ−i.

In particular, given private values,

Ep−i [ui(1r (θ : p) , θ)] = ui(r, θ).

The trading mechanism must be (interim) incentive compatible (IC):

Ep−i [ui(r (θ : p) , θi)] ≥ Ep−i [ui(r
¡
θ−i, θ0i : p

¢
, θi)], for all θi, θ0i ∈ S(pi), for all i ∈ N.

Since participation to the mechanism is voluntary, and buyers lack any com-
mitment power, a feasible mechanism must satisfy individual rationality con-
straint at any point of the game (assume the value of the outside option is zero
for all buyers), including the ex post stage. Note that any ex post individually
rational mechanism exhibits individual rationality also at the interim and ex
ante stages. More formally, given prior p and an allocation r, ex post individual
rationality (EXP-IR) requires that

ui(r, θi) ≥ 0, for all θi ∈ S(pi), for all i ∈ N.
Hence, at the (truthful) equilibrium path, EXP-IR requires that any generated
recommendation must be at least as profitable than the outside option in any
state for any player. Although EXP-IR is implied by veto right at the ex post
stage, but not vice versa, it is useful to introduce the concept for expositional
reasons.

One cannot use the combination of interim IC and EXP-IR to obtain a
characterization of a mechanism which, on the one hand, can be played with
truthful strategies and, on the other, is individually rational at all information
sets: IC and EXP-IR are not measured at the same information set, and hence
they need not be independent.19 Namely, if a player is entitled to use his
veto power at any information set, then he should be able do that also outside
the equilibrium path and, consequently, interim IC may be violated even if
mechanism at hand meets EXP-IR constraint in the truthful path. To cope
with the problem, define the following constraint.20

Definition 1 Given p ∈ ∆Θ, mechanism r satisfies VETO-IC iff

Ep−i [ui(r (θ : p) , θi)] ≥ Ep−i [max{ui(r
¡
θ−i, θ0i : p

¢
, θi), 0}], for all i ∈ N, for all θi, θ0i ∈ S(pi).

18We use the notation Epf(θ) =
R
θ∈Θ f(θ)p(dθ) for any measurable real-valued random

variable f on Θ and, similarly, the interim expectation Ep−if(θ) =
R
θ∈Θ f(θ−i, θi)p−i(dθ−i :

θi).
19 In the literature, one typically imposes interim IR constraint on mechanism. Relative to

EXP-IR, interim individual rationality is easier to analyze but hardly more natural (however,
EXP-IR excludes important and quite realistic features of mechanisms, such as entry fees
or transaction costs). Exceptions from this practice include Forges (1993, 1998) and Gresik
(1991, 1996).
20VETO-IC is defined by Forges (1998), and is closely related to IC* of Matthews and

Postlewaite (1989).
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Thus, VETO-IC requires that truthful reporting forms a Bayes-Nash equi-
librium in the mechanism even if untruthful strategies may be followed by the
use of the veto option. To interpret VETO-IC, consider a mechanism which,
after being played by the buyers and after a recommendation is generated, is
subject to vetoing by some of the buyers. If this mechanism is playable in
truthful strategies such that no player ever uses his veto right, then it satis-
fies VETO-IC. The interpretation is that the players can refuse unprofitable
transactions and fully anticipate this possibility when they report their type.

Remark 1 Let mechanism r satisfy VETO-IC. Then r satisfies IC and EXP-
IR (a.s.).

Proof. It is obvious that any r satisfying VETO-IC also satisfies IC. To
verify the EXP-IR part, take i and choose θi = θ0i. Then

Ep−i [ui(r (θ : p) , θi)−max{ui(r (θ : p) , θi), 0}] = Ep−i [min{ui(r (θ : p) , θi), 0}] ≥ 0.

Thus, if ui(r, θi) < 0 then Ep−i [I(r (θ : p) = r)] = 0 and, consequently, if
θ ∈ S(p) then r 6= r(θ).21

By a version of the ”revelation principle” (Myerson 1982), outcomes of a
(pure strategy) equilibrium of any mechanism (without random elements) with
veto right can be simulated by a truthful equilibrium of a direct mechanism
satisfying VETO-IC. Denote the set of trading mechanisms, given p, satisfying
VETO-IC by

R(p) = {r (· : p)∈ R : r (· : p) satisfies VETO-IC} .

Thus, if buyers lack any commitment ability, we can, without loss of generality,
confine our attention to the class R(p) of mechanisms.Mechanisms outside this
set are not playable in truthful strategies, or subject to nonparticipation at the
some stage of the game. It should be emphasized, however, that our results
below are not dependent on the difference between VETO-IC and EXP-IR +
IC. All the arguments remain valid also with the latter restriction. VETO-IC
assumption is adopted because it is the right way to model situations where
participants do not have commitment ability.

Let us next focus on the seller’s problem. Given recommendation r(θ : p) =
(a, t, Y ), seller’s payoff is the sum of transfers specified by t :

v(r(θ : p)) =
X
i∈N

ti.

Given p and r, seller’s expected payoff is then

v(r, p) = Ep[v(r(θ : p))] =
Z
Θ
v(r(θ : p))p(θ)dθ (2)

By definition, if r(θ : p) 6= r0(θ : p) implies θ /∈ S(p), then v(r, p) = v(r0, p).
21Where I(·) is an indicator function.
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2.2 The Grand Game

In the standard optimal auctions literature, the seller maximizes (2) subject to
(interim) IC and IR. There the seller is enpowered to choose the mechanism
and the equilibrium generated by the mechanism. The mechanism-equilibrium
pair solving the optimizing problem can be interpreted as a full commitment
benchmark. If, instead, the seller changes the rules after buyers have submitted
their announcements, then rational buyers would take the rule change into
account in their decisions, and the incentive compatibility of the mechanism
would break down. In this section, we construct a mechasnims design game
which allows the seller can change the rules of the mechanism infinitely many
times.

Consider the following grand game.22

• Stage 0: Nature chooses distribution p0 ∈ ∆Θ. Buyers’ types are drawn
according to p0. Seller designs a finitely long game ending in an outcome
recommendation. The game is played by the buyers, and ends in recom-
mendation r0.

• Stage t = 1, ...,: Seller either (a) proposes recommendation rt−1, or (b)
publicly designs a finitely long game which ends in a recommendation.

(a) If all buyers accept proposal rt−1, then it is implemented. Otherwise
the game moves to stage t+ 1 with rt = rt−1.

(b) The game is played by the buyers, and ends in recommendation rt.

• If the game does not end with finite time, then status quo outcome (payoff
0 for all players) is implemented. There is no discounting.

For simplicity, assume there are no random elements in games and players
only use pure strategies. It is clear that the grand game may support many
perfect Bayesian equilibria (PBE). We maintain the hypothesis that the buyers
are passive in the following sense: at any point of the game the seller chooses
her most desirable PBE of the continuation game given that she is enpowered
to do this in the continuation game. Thus PBE must be dynamically consistent.
Note that PBE is defined for any prior p0 ∈ ∆Θ.

Let us focus on PBEa that for each p ends in finite time with probability
one. Then, by the revelation principle, there is no loss of generality in focusing
on PBE strategies having the property that (i) the game ends in stage 1, (ii) the
seller designs a VETO-IC mechanism r (· : p0), (iii) r (· : p0) is played truthfully
by the buyers, and (iv) any recommendation r of r (· : p0) is obediently imple-
mented. Moreover, any belief consistent with the PBE beliefs at a terminal node
can be generated by appropriately defining the Y element of the mechanism.
The crucial restriction on feasible mechanism is dynamical consistency: which
mechanisms in R(p0) can the seller commit to?
22Details of the game are not crucial. They can be altered as long as the seller is allowed

redesign the rules before the outcome is excuted, and the buyers have access to their outside
option any time.
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As in Chatterjee-Sabourian (1999), to narrow further the set of feasible
equilibria we appeal to complexity considerations. In the Appendix we argue
explicitly that due to (lexicographic) aversion towards more complex strategies,
the seller will not condition her actions to the past occurrences when choosing
her strategy. Therefore, given that the seller chooses the PBE at each stage,
we obtain that any mechanism selection PBE must be stationary in the sense
that seller’s choice of a mechanism is dependent only on current beliefs p.

Thus stationary PBE can be defined by a function PBE : ∆Θ → R. When
identifying function PBE, the central question if of dynamic consistency. In
PBE the seller can commit not to change the rules given posterior beliefs gen-
erated by the mechanism, whereas outside of PBE the seller cannot commit
not to change the rules. More formally, dynamically consistent stationary PBE
satisfies the following:

• If r (· : p) = PBE(p) then there is no r ∈ r(S : p) such that r0 (· : p(r, r)) 6=
1r(p(r, r)), for r0 (· : p(r, r)) = PBE(p(r, r)).

• If r (· : p) 6= PBE(p) then there is r ∈ r(S : p) such that r0 (· : p(r, r)) 6=
1r(p(r, r)), for r0 (· : p(r, r)) = PBE(p(r, r)).

Let r = PBE(p). By the definition of PBE, the seller obediently implements
any outcome r ∈ r(S : p) given that mechanism r0 = PBE(p(r,r)) becomes
available. This implies that, in fact, r0 (· : p(r, r)) = 1r(p(r, r)). Conversely,
if r 6= PBE(p) then the seller does not obediently implement some outcome
r ∈ r(S(p)) implying r0 (· : p(r, r)) 6= 1r(p(r, r)) for r0 = PBE(p(r, r)).

2.3 Stable set

It is convenient to characterize stationary PBE of the grand game directly in
the language of stable sets. 23 In order to define a stable set we construct a
set of agreeable mechanisms, and establish an upsetting relation over this set.
For fixed p ∈ ∆Θ, set R(p) is referred as the set of agreeable mechanisms. If
commitment by the seller would not be a problem, then any r ∈ R(p0) could
be implemented. The set of all agreeable mechanisms is the graph of R

A =
©
R(p) : p ∈ ∆Θ

ª
.

Formally, the upsetting relation is defined as follows.24

Definition 2 Mechanism r (· : p) ∈ A is upset by mechanism r0 (· : p(r, r)) ∈
A if v(r0 (· : p(r, r))) ≥ v(r) for some r ∈ r(S : p), r0 (· : p(r, r)) 6= 1r (p(r, r)) .
23VonNeumann and Morgenstern (1944) introduced the idea of stable sets. Greenberg

(1990) later used the idea to develop a unifying Theory of Social Situations. For applications
of the stable set approach, see e.g. Kahn and Mookherjee (1993, 1995). Blume and Sobel
(1997) employed stable sets in a closely related manner to characterize communication in a
cheap-talk game.
24Assumption (??) is very convenient here since now we can restrict our attention to agee-

ments generated by measures in ∆Θ rather than general measures which would complicate
the analysis without changing the main conclusions (see the Remarks -section).

11



Alternatively, mechanism r0 (· : p(r, r)) does not upset r (· : p) if v(r0 (· : p(r, r))) ≥
v(r) implies r0 (· : p(r, r)) = 1r(p(r, r)). Note that the upsetting relation is not
complete nor transitive. However, the relation is antisymmetric, two agreeable
mechanism cannot upset one another.

To describe which agreeable mechanisms are feasible stationary PBE we
appeal to vonNeumann-Morgenstern’s notions of external and internal stability.
These together define a stable set.

Definition 3 G is a stable set of A relative to upsetting relation if and only
if

1. (Internal stability) r (· : p) ∈ G implies there is no r0 (· : p(r, r)) ∈G such
that r0 (· : p(r, r)) upsets r (· : p) ,

2. (External stability) r (· : p) /∈ G implies there is r0 (· : p(r, r)) ∈ G such
that r0 (· : p(r, r)) upsets r (· : p) .

In the sequel, our aim is to characterize a stable set relative upsetting rela-
tion.

Remark 2 Let G be a stable set, and let r(· : p) ∈ A. Then r (· : p) ∈ G if
and only if 1r(p(r, r)) ∈G for all r ∈ r(S : p).

Proof. ”If”: Suppose that 1r(p(r, r)) ∈ G for all r ∈ r(S : p), but r (· : p) ∈
A \G. By external stability there is r ∈ r(S : p) such that r0 (· : p(r, r)) ∈ G
upsets r (· : p) . But then r0 (· : p(r, r)) also upsets 1r(p(r, r)), violating internal
stability.

”Only if”: Suppose that r (· : p) ∈ G, but 1r(p(r, r)) /∈ G for some r ∈ r(S :
p). Then, as r (· : p) ∈ A we have that 1r(p(r, r)) ∈ A. By external stability
there is r0 (· : p(r, r)) ∈ G which upsets 1r(p(r, r)). But then r0 (· : p(r, r)) also
upsets r (· : p) , violating internal stability.

Thus, by construction, any recommendation of a stable auction must be
itself a stable constant mechanism, given the updated beliefs. We now argue
that for any stationary PBE we can conctruct a stable that contains it.

Theorem 1 The graph of a stationary PBE is contained by a stable set.

Proof. Let function PBE : ∆Θ → R reflect stationary PBE choices of the
seller. We construct a stable set which contains PBE(∆Θ). Let

G = {r (· : p)∈ A : r0 does not upset r (· : p) , for r0 = PBE(p(r, r)), r ∈ r(S : p)}.

Let r (· : p) = PBE(p) for any p. Then r0 (· : p(r, r)) = 1r (p(r, r)) for r0 =
PBE(p(r, r)), r ∈ r(S : p). Thus, r (· : p) ∈ G.

Internal stability: Conversely, if r0 (· : p(r, r)) upsets 1r(p(r, r)) for some
r ∈ r(S : p), r (· : p) ∈G, then r0 (· : p(r, r)) 6= PBE(p(r,r)). Thus there is r0 ∈
r0(S : p(r, r)) such that r0 (· : p(r, r)(r0, r0)) = PBE(p(r,r)(r0, r0)) 6= 1r0(p(r, r)(r0, r0))
and v(r0, p(r, r)(r0, r0)) ≥ v(1r0 , p(r, r)(r0, r0)). But then r0 (· : p(r, r)) 6∈G.
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External stability: By contruction, r0 (· : p) ∈ A \G implies there is r (· : p(r0, r0)) ∈
G such that r (· : p(r0, r0)) upsets r0 (· : p) ,for r0 ∈ r0(S : p).

As a consequence, whenever the graph drawn by stable set is singleton, we
have a unique PBE of the grand game. At this point, it is too early to state
the converse result that any stable set contains a graph of a stationary PBE.
However, this indeed shows up to be case. The result is proven in the Subsection
3.2

It follows from Remark 2 that 1r (p) ,1r0 (· : p) ∈ G implies r = r0. Thus the
notion of stable set contains some degree of ”Markov” flavor in that it does not
matter which stable mechanism generates a posterior, stable recommendation
depends only on posterier. However, we sometimes want to strengthen this
property of the solution.

Remark 3 Let G be a stable set. If 1r (p) ,1r0 (· : p(r,r0)) ∈ G for r ∈ r(S : p),
then v(1r0 , p(r,r0)) ≥v(1r, p).

Note that, by Remark ??), if two constant stable mechanisms meet EXP-
IR under two belief systems, then necessarily seller’s payoff is the same under
both recommendations. The next condition contains the idea that given such
symmetric situation, where the seller is indifferent, she should make the same
choice in both cases. Thus any situation seller’s choices should depend only on
her feasible payoffs, not what has happened before or the details of the beliefs.
Thus the condition strengthens the Markovian flavor of the solution.

Definition 4 (Strong Stationarity) Stable set G is strongly stationary if
1r(: p),1r0(p(r,r

0)) ∈ G and 1r(p) 6= 1r0(p(r,r0)) implies v(1r0 , p(r,r0)) >v(1r, p).

3 The Results

Lemma 1 Let G be a stable set. Then r (· : p) ∈ G only if

v(r) = sup {v(s) : 1s ∈ R(p(r, r))} , for all r ∈ r(S : p). (3)

Proof. Suppose that r (· : p) ∈ G. Suppose that (3) does not hold. Then
there is r = (a, t) ∈ r(S : p), and a constant mechanism 1s s.t.

v(s) > v(r) and 0 ≤ ui(s, θi), for all θ ≥ θ(pi(r, r)), for all i ∈ N.

Thus, 1s (p(r, r)) upsets 1r (p(r, r)) . By Remark 2, 1r (p(r, r)) ∈ G. Thus, by
internal stability, 1s (p(r, r)) /∈ G. By external stability there is r0 (· : p(r, r)) ∈
G which upsets 1s (p(r, r)) . But then r0 (· : p(r, r0)) also upsets 1r (p(r, r)) ,
violating internal stability. Thus, (3) must hold.

The logic of Lemma 1 is straightforward. Recall that a mechanism is con-
stant if it chooses the same recommendation in (almost) all possible states; a
constant mechanism does not change beliefs with probaility one. If a constant
mechanism is upset by some other constant mechanism, then the former must
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necessary not belong to G, otherwise the latter would either be upset by an
agreeable mechanism in G, or it would itself be an element of G. In both cases
it follows that the original constant mechanism does not belong to G.

Corollary 1 LetG be stable set. Then r (· : p) ∈ G only if v(r) = mini∈N θ(pi(r, r))
for all r ∈ r(S : p).

Of course, the condition is plausible mainly in situations where any form
of commitment is absent. When the seller is indifferent between two recom-
mendations she cannot make her decision contingent on the previous agreeable
mechanism.

Finally, we can simplify the exposition by observing that typically one only
needs to focus on mechanisms that are deterministic almost everywhere. The
following corollary is a straightforward consequence of Corollary 1.

Corollary 2 LetG be a stable set. Then 1r(p) ∈G only if r = (bi(1, θ(pi)))i∈N
where b ≡ argmax©Pn

i=1 b
0
iθ(pi) : b

0 ∈ ∆n−1ª .
Thus, if θ(pi) > θ(pj) for j 6= i, then ri = (1, θ(pi)) and rj = (0, 0).

3.1 The n = 1 case

First we focus on the special one buyer case (to ease the notation, drop the
subscript i). First we discuss about the ”Gap” case, and then the ”No Gap”
case.25

First we show that the notion of stable sets meeting the stationarity property
is not overly strong: there exists a partition which meets the requirement. To do
that, define a following simple mechanism. For any θ ∈ S(p), r∗(θ : p) = (a, t, Y )
satisfies (a, t) = (1, θ(p)). Thus r∗ is efficient and the buyer pays a price equal
to maximal price that he can always accept. Assume that r∗ reveals as little
information as possible: given outcome (a, t), signal Y satisfies Y = (r∗)−1(a, t :
p). By abusing notation, we write from now on simply r = (a, t).

Construct set:
G∗ =

©
r∗(· : p) : p ∈ ∆Θ

ª
.

Theorem 2 Set G∗ is stable and strongly stationary.

Proof. Internal stability: Observe that {(1, θ(p))} = r∗(S : p) and p =
p(r∗, (1, θ(p))). Thus v(1r, p(r∗, r)) = v(r∗, p(r∗, r)) for r = (1, θ(p)).

External stability: Suppose that that there is no r ∈ r(S : p) such that
r∗ (· : p(r, r)) upsets 1r (p(r, r)). Then a = 1 and t ≥ θ(p(r, r)) for all r =
(a, t) ∈ r(S : p). On the other hand, by EXP-IR, we have t ≤ θ(p(r, r)). Thus
r = (1, θ(p(r, r))) for all r ∈ r(S : p). In particular, r(θ(p) : p) = (1, θ(p)). Since
any θ ≥ θ(p) can report θ(p), it follows by IC that a = 1 and t ≤ θ(p) for all
r = (a, t) ∈ r(S : p). But this implies that r = r∗, and thus r (· : p) ∈ G∗. By
Lemma 1, external stability is established. Finally, it is obvious that G∗ meets
the strong stationarity property.
25See e.g. Fudenberg et.al. (1985), Gul et.al. (1986), Ausubel and Deneckere (1989a,b).
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In the previous theorem we used the following argument: whenever r =
(1, θ(p)) ∈ r(S : p), there cannot be any other r0 = (a0, t0) such that a0 = 1 and
t0 > θ(p) in r(S(p)), otherwise θ generating r0 would rather imitate type θ(p)
and IC would be violated.26 Intuitively, the seller cannot commit to any price
above the minimum possible valuation by the buyer since in case of a rejection
she is always (weakly) tempted to sell the object with the minimum price. But
this implies that the buyer is not willing to reveal any information to obtain
the object since he is eventually going to get the object with the lowest possible
price.

In literature on ”durable good monopolies” (e.g. Fudenberg et.al. 1985,
Gul et.al. 1986), the ”Gap Case” θ(p) > 0 is well studied. The result is that
as the time difference between successive offers approaches zero, seller’s ability
to gain any surplus above θ(p). As both players anticipate that the seller is
willing to sell the object at any price above her valuation, both parties benefit
from speeding up the trade. The Coase conjecture the holds true: efficiency is
reached and the buyer obtains most of the surplus. We now verify that this
holds by using stable sets. Note that our set-up is more general in that we allow
any trading mechanisms, not just simple price offers.

Lemma 2 Suppose that G is a stable set. Take p such that θ(p) > 0. Then
r (· : p) ∈ G if and only if r = r∗.

Proof. ”Only If”: Suppose that r (· : p) ∈ G for θ(p) > 0, and r 6= r∗. By
Corollary 2, a = 1, t = θ(p(r, r)) for all r = (a, t) ∈ r(S : p). In particular,
r(θ(p) : p) = (1, θ(p)). Since any θ ≥ θ(p) can report θ(p), it follows by IC that
a = 1 and t ≤ θ(p) for all (a, t) ∈ r(S : p). Thus, in fact, r = r∗.

”If”: Suppose that r (· : p) /∈ G, for θ(p) > 0. But since r 6= r∗ implies
r (· : p) /∈ G by the ”only if” part, r∗(p) cannot be upset by a mechanism in G.

An obvious corollary of the previous result is that if all possible buyer’s
valuations are strictly higher than the seller’s valuation, then the Gap Case is
always valid and, hence, the Coase conjecture always holds. Thus, for a given
probability measure there is a unique stable mechanism and, consequently, there
is a unique stable set.27

Theorem 3 (Gap Case) Let Θ ⊂ R++. Then G∗ is the unique strongly sta-
tionary stable set.

Thus, would it be known that buyer’s valuation is strictly higher than the
seller’s valuation, it follows that the seller cannot extract any surplus from the
trade. The result is of interest since there may well be an optimal price for
the object that the seller would wish to impose, while taking into account that
some of the buyer’s types would not be willing to pay the increased price. This
phenomenon results from the fact that any ”no-trade” situation would induce
26Typically the arguement is used when we apply the phrase ”by IC, it follows that ...”.
27Recall that Θ is closed by assumption.

15



the seller to propose another offer where some or all of the originally refused
buyers would be willing to execute trade. In particular, an offer having a form
of a constant mechanism would be profitable from the perspective of the seller
and, by Lemma 1, the corresponding agreeable mechanism would be good.

However, in the No Gap case one obtains an completely reversed result: the
amount of stable sets is very large (if Θ is infinite, then there are infinitely
many stable sets).

Theorem 4 (No Gap Case) Let 0 ∈ Θ. Then any price in Θ can be sustained
by a stable mechanism.

Proof. First, choose λ ∈ Θ. Construct a transfer function

tλ(p) = inf {θ : θ ∈ S(p), θ ≥ λ} ,

and a mechanism

rλ(θ : p) = (aλ(θ), tλ(θ)) =

½
(1, tλ(p)), if θ ≥ λ,
(0, 0), if θ < λ.

Now, construct set Gλ as follows

Gλ =

½
r (· : p) : r

λ (· : p) if θ(p) = 0 and θ(p) ≥ λ,

r∗ (· : p) if θ(p) > 0 or θ(p) < λ

¾
.

We show that Gλ is a stable set. Clearly Gλ is internally consistent, thus it
suffices to check it is externally consistent. Suppose there is no r0 (· : p(r, r)) ∈
Gλ which upsets r (· : p) /∈ Gλ, for any r ∈ r(S : p). There are two cases: (i)
Case θ(p) > 0 or θ(p) < λ. For any r ∈ r(S : p), 1r(p(r, r)) is not upset by
r∗ (· : p(r, r)) since necessarily θ(p(r, r)) > 0 or θ(p(r, r)) < λ. Thus it must
be that r = (1, θ(p(r, r))). By IC it then follows that θ(p(r, r)) = θ(p) for all
r ∈ r(S : p). But then r (· : p) = r∗ (· : p) ∈ Gλ, a contradiction. (ii) Case θ(p) =
0 and θ(p) ≥ λ. By EXP-IR it follows that r(θ(p) : p) = ra = (a, 0), a ∈ [0, 1].
Since 1ra(p(r, ra)) is not upset by rλ (· : p(r, ra)) it follows that θ(p(r, ra)) ≤ λ.
But then, since 1ra(p(r, ra)) is not upset by r∗ (· : p(r, ra)) , it follows that a = 1.
This implies, by IC, that r = (1, 0) for all r ∈ r(S : p). Thus r = rp. But then,
since θ(p) > λ, r (· : p) is upset by rλ (· : p) ∈ Gλ. Thus, r (· : p) /∈ Gλ. Hence,
Gλ is stable. Finally, because λ can have any value on Θ, the theorem is proven.

The claim proven by constructing a partition whose good agreeable mech-
anisms have the property that first, for any p such that θ(p) = 0 and θ(p) ≥ λ
for some number λ > 0, the corresponding stable mechanism rλ is a take-it-
or-leave-it offer for price λ : any valuation above or equal to λ accepts the
offer and any valuation below λ rejects it. Second, if θ(p) > 0 or θ(p) < λ,
then apply mechanism r∗. To see why this partition is consistent, take the first
situation. Suppose there is a good agrement r (· : p) such that r is not the
take-it-or-leave-it mechanism with price λ. Since r (· : p) is not upset by a good
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agreeable mechanism, it is necessarily true that there is a no-trade recommen-
dation r generating posterior p(r, r) such that θ(p(r, r)) = 0 and p(r, r) ≥ λ.
Otherwise mechanism r∗(p(r, r)) would upset 1r(p(r, r)). On the other hand,
since rλ(p(r, r)) does not upset 1r(p(r, r)), it must be that p(r, r) < λ. Also,
since r∗(p(r, r0)) does not upset 1r0(p(r, r0)) for any other recommendation r0

of r, it follows from VETO-IC that, in fact, r = rλ. Thus, the partition is
externally stable. Internal stability is easy to verify. Finally, since λ was chosen
arbitrarily, the claim is proven.

The Theorem essentially says that in the No Gap case the seller can charge
any price within a stable set. This result is analogous to Ausubel-Deneckere
(1989) which proves that almost any outcome can be supported as a sequential
equilibrium in the No Gap case. Their argument is based on reputational
strategies: the seller can commit to any pricing behavior since deviating from
such path would only trigger a subgame whose equilibrium gives the seller zero
profit. However, such strategies do not satisfy the stationarity or a Markovian
restriction imposed by Gul. et al.. We next establish an analogous result:
agreeable mechanism formation in Theorem 2 contains ”reputational” features
that do not meet our stationarity restriction.

To identify agreeable mechanisms meeting the stationarity restriction, define
function α : Θ→ [0, 1] such that

α(θ) = arg max
a∈[0,1]

aθ, for all θ ∈ S(p),

determining whether the object is allocated to the seller or the buyer. Note that
α is efficient. Moreover, only in the case θ(p) = 0 can it be that 0 < α(0) < 1.
Thus, α’s differ only by how the allocate the object in the case of a tie. Given
p and α, construct mechanism rα

rα(θ) = (a(θ), t(θ)) = α(θ) (1, θ(p)) for all θ ∈ Θ.
Note that rα ∈ R(p), for any α, and that rα = r∗ if θ(p) > 0.

Theorem 5 Let G be stable and strongly stationary. Then r (· : p) ∈ G only
if r = rα for some α, for any p ∈ ∆Θ.

Proof. We show that r (· : p) ∈ G implies r = rα for some α. Suppose not.
To obtain a contradiction, we proceed in number of steps.

Step 1: We claim that θ(p) = 0. Suppose θ(p) > 0. But then, by Lemma 2,
r = r∗, a contradiction

Step 2: We claim that θ(p) > 0 implies there is r = (a, t) ∈ r(S : p) such
that θ(p(r, r)) > θ(p(r, r)) = 0. Suppose not. Take any θ > 0 and 1r = r(θ : p)
for r = (a, t). By assumption θ(p(r, r)) > 0. By Corollary 2, r = (1, θ(p(r, r))),
θ ≥ θ(p(r, r)). Since this is true for any θ > 0, there is r0 such that r0 = (1, 0).
By IC it follows that r0 = (a0, t0) ∈ r(S : p) implies a0 = 1 and t0 ≤ 0. However,
by Corollary 2, t0 = θ(p(r, r0)) ≥ 0. But then r0 = r and p(r, r) = p(r, r0) = p.
Thus θ(p) = θ(p(r, r)) > θ(p(r, r)) = 0, a contradiction.

Step 3: By Steps 1 and 2 there is r ∈ r(S : p) and λ such that θ(p(r, r)) ≥
λ > θ(p(r, r)) = 0. Define rλ as in Theorem 4. Now rλ(p(r, r)) upsets
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1r(p(r, r)). Thus, by internal stability, rλ(p(r, r)) /∈ G implying, by Remark
2, that 1rλ(p(r, r)(r

λ, rλ)) /∈ G for some rλ ∈ {(0, 0), (1, tλ(p(r, r))}. If rλ =
(1, tλ(p(r, r)), then 1rλ(p(r, r)(r

λ, rλ)) = r∗(· : p(r, r)(rλ, rλ)). Thus, by The-
orem 2, 1rλ(p(r, r)(r

λ, rλ)) ∈ G, a contradiction. Therefore, rλ = (0, 0) and
θ(p(r, r)(rλ, rλ)) = θ(p(r, r)) = 0. By external stability, there is r0

¡· : p(r, r)(rλ, rλ)¢ ∈
G which upsets 1rλ(p(r, r)(r

λ, rλ)).
Step 4: DefineR0 = {1r0 : r0 ∈ r0(S : p(r, r)(rλ, rλ)), θ(p(r, r)(rλ, rλ)(r0, r0)) =

0}. Since G meets strong stationarity, it follows that 1r0 = 1r = 1rλ for
all r0 ∈ R0, thus R0 = {1rλ}. Moreover, since r0 6= 1rλ , it must be that
θ(p(r, r)(rλ, rλ)) > θ(p(r, r)(rλ, rλ)(r0, rλ)) ≡ κ. Construct rκ as in Theorem 4.
Then rλ ∈ rκ(p(r, r)). Note that p(r, r)(rλ, rλ)(r0, rλ) = p(r, r)(rκ, rλ). Thus,
1rλ(p(r, r)(r

κ, rλ)) ∈ G and, by applying Theorem 2 to the recommendations
r(θ) in cases θ > θ(p(r, r)(rλ, rλ)(r0, rλ)), it follows that rκ(p(r, r)) ∈ G. How-
ever, v(rκ, p(r, r)) ≥ v(r) = 0 and rκ(p(r, r)) 6= 1r. Thus rκ(p(r, r)) upsets
r (· : p) ∈ G. But this violates internal consistency.

Roughly, the proof proceeds as follows: for any good agreeable mechanism
r (· : p) of a stable set with nondegenerate p it must necessarily be true that
either r = r∗, or there is λ > 0 and a no-trade recommendation r ∈ r(S : p)
such that rλ(p(r, r)) upsets 1r(p(r, r)). The first property follows from Lemma
2, and the latter from VETO-IC. Thus, if r 6= r∗, then there is a good agreeable
mechanism r0

¡· : p(r, r)(rλ, rλ)¢ which upsets 1rλ(p(r, r)(rλ, rλ)), for some rλ ∈
rλ(p(r, r)). Next we identify a recommendation r0 of mechanism r0 such that
θ(p(r, r)(rλ, rλ)(r0, r0)) = 0 < θ(p(r, r)(rλ, rλ)(r0, r0)) ≡ κ, and construct a take-
it-or-leave-it mechanism rκ for price κ < λ. Now, if the partition meets the
stationarity restriction, then agreeable mechanism rκ(· : p(r, r)) must be good.
But rκ(· : p(r, r)) also upsets r (· : p) violating internal consistency. Thus, if
r (· : p) is a good agreeable mechanism of a stable set meeting the stationarity
restriction, then necessarily r = r∗.

Even though the results in the one-buyer case should not be too surprising,
more interesting is that the analysis can be extended to the many-buyer case
without complications. It is not clear how one should extend a purely non-
cooperative framework of durable good monopoly situation to the many-buyer
case.

3.2 The n ≥ 2 Case
We now turn to the many-buyer case. For simplicity, assume from now on
that Θ ⊂ Rn++.28 We construct mechanism rα which is a version of the English
auction. To do that, we develop some concepts. Recall that pi(θi : θ−i) is
determined for all θ ∈ S(p). For short, write pi(θ−i) for pi(· : θ−i) and p−i(θi) for
p−i(· : θi). Denote by θ(k) the kth order statistics of θ = (θ1, ..., θn). Let θ−(1) =
(θ(k))k>1. Denote by p(1) the distribution of θ(1) given p, and by p(1)(· : θ−(1)) =
p(1)(θ−(1)) the conditional measure of θi given that θi = θ(1) and θ−(1) are
known. Then also θ(p(1)(·)) is uniquely determined with

θ(p(1)(θ−(1))) = inf S(p(1)
¡· : θ−(1)¢), for all θ ∈ S(p).

28Assuming otherwise would not change the insight.
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Thus, θ(p(1)(θ−(1))) identifies the least upper bound of winner’s29 possible val-
uation above the second highest valuation, given the knowledge of nonwinners’
valuations. Of course, θ(p(1)(θ−(1))) ≥ θ(2) with equality under symmetrically
independent types. As another example, let n = 2 and suppose θ1 = cθ2 for
c > 1 for all (θ1, θ2) ∈ S(p). Then θ(p(1)(θ(2))) = cθ2.

For given p ∈ ∆Θ, let function α : Θ→ ∆n−1 satisfy

α(θ) = arg max
α∈∆n−1

X
αiθi, for all θ ∈ Θ.

Thus α not only selects a winner in each state but also it specifies a tie-breaking
rule for situations when there are more than one highest valuation. Only under
tie can it be that 0 < αi(θ) < 1 for some i.

Construct mechanism rα as follows. For any θ ∈ Θ, rα(θ : p) = (a, t, Y )
satisfies,

(ai, ti) = αi(θ)
¡
1, θ(p(1)(θ−(1))

¢
, for all i ∈ N.

Thus rα is efficient and the winner pays a transfer equal to his smallest possible
valuation above the second highest valuation.30 For any θ ∈ S(p(rα, r)), we have

(ai, ti) =


(1, θ(p(1)(θ−(1))), if θi > maxj 6=i θj ,
(a, aθi), if θi = maxj 6=i θj ,
(0, 0), if θi < maxj 6=i θj .

Thus, recommendation reveals the winner and the price he pays. The price is
less or equal to winner’s valuation and at more than equal to any nonwinner’s
valuation. Given publicly revealed r, posterior belief p(rα, r) then satisfies

θ(pi(r
α, r)) ≥ θ(pj(r

α, r)) if ai = 1,

θ(pi(r
α, r)) = θ(pi(r

α, r)) ≥ θ(pj(r
α, r)) if ai ∈ (0, 1).

Only in the case of a tie we may have ai ∈ (0, 1), revealing that i’s valuation is ti.
Assume that rα does not reveal finer information that is needed to implement
(a, t): signal Y satisfies Y = (rα)−1(a, t : p). Abusing notation, we continue
writing simply r = (a, t).

Note the familiar structure of the mechanism: winner’s announcement does
not affect his transfer to the seller as long as he wins. The transfer is determined
by other buyers’ announcements. In the case of independent pi’s, rα coincides
with the English or the Second Price auctions in terms of payoffs and allocations.
As VETO-IC is more restrictive than IC and interim IR, it may not be obvious
that the mechanism meets it. To remove any doubts, the next Lemma argues
this is the case.31 For the proof, see Appendix A.1.

Lemma 3 rα ∈ R(p), for all p ∈ ∆Θ.

29Buyer with the highest valuation.
30Note that rα’s differ only by tie-beaking rule. This does not affect the incentive properties

of our mechanisms.
31See Riley (1988) for a closely related arguemtn.
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Note that any mechanisms that is subject to ex post vetoing and whose
price is not contingent to winner’s exact valuation. Therefore, overreporting is
not dominated since a buyer is entitled to veto if the price is less than his valua-
tion whenever he wins. Thus, a nuisance strategy where a buyer chooses a very
high report and then vetoes when EXP-IR is violated is a best response. Nev-
ertheless, also the truthful strategy is a (weakly) dominant strategy. Problems
with this multiplicity of equilibria can be avoided by modifying the VETO-IC
constraint, e.g. by imposing a fee for vetoing at off-the-equilibrium path.32

However, what really really matters in the present paper is the EXP-IR at the
equilibrium path.

First we show there exists a strongly stationary stable set that contains rα.
Construct set Gα as follows:

Gα =
©
r (· : p) : r (· : p) is not upset by rα (· : p(r, r)) , r ∈ r(S : p), p ∈ ∆Θ

ª
.

Theorem 6 Gα is a strongly stationary stable set.

Proof. First, note that 1r(p(rα, r)) = rα (· : p(rα, r)) for all r ∈ rα(S : p).
Thus rα (· : p) is not upset by rα (· : p(rα, r)) and, consequently, rα (· : p) ∈ Gα

for all p ∈ ∆Θ.

Internal stability: Suppose that 1r (p(r, r)) is upset by r0 (· : p(r, r)) , r ∈
r(S : p), r (· : p) ∈ Gα. It suffices to show that then r0 (· : p(r, r)) is upset by
some rα (· : p(r, r)(r0, r0)) , r0 ∈ r0(S : p(r, r)). Per absurdum, suppose not.

By contruction, 1r(p(r, r)) is not upset by rα (· : p(r, r)) for r = (a, t) ∈
r(S : p). Then, in fact, 1r(p(r, r)) = rα (· : p(r, r)). Similarly, by supposi-
tion 1r0(p(r, r)(r0, r0)) is not upset by rα (· : p(r, r)(r0, r0)) , and it must be that
1r0(p(r, r)(r

0, r0)) = rα (· : p(r, r)(r0, r0)) . There are two cases to consider:
(i) There is winner i such that ai ∈ (0, 1). Then θ(pi(r, r)) = θ(pi(r, r)). But

then r0 (· : p(r, r)) = rα (· : p(r, r)) = 1r (p(r, r)) , and r0 (· : p(r, r)) does not
upset 1r (p(r, r)).

(ii) There is winner i such that ai = 1. Then θ(pi(r
α, r)) ≥ θ(pj(r

α, r))
for j 6= i. Since 1r0(p(r, r)(r0, r0)) = rα (· : p(r, r)(r0, r0)) we have a0i = 1, for
all r0 = (a0, t0) ∈ r0(S : p(r, r)). Consequently, by IC, t0 = θ(pi(r, r)) for
all r0 = (a0, t0). But then r0 (· : p(r, r)) = rα (· : p(r, r)) = 1r (p(r, r)) , and
r0 (· : p(r, r)) does not upset 1r (p(r, r)).

External stability: Take r (· : p) /∈ Gα. Since r (· : p) 6= Gα, it follows
that r (· : p) is upset by some rα (· : p(r, r)) , r = (a, t) ∈ r(S : p). Since
rα (· : p(r, r)) ∈ Gα, by the first part of the proof, external stability is met.

Finally, by construction rα (· : p(r, r)) = 1r (p(r, r)) for all r ∈ r(S : p) such
that r (· : p) ∈ Gα. Thus the partition meets the strong stationarity property.

Thus, rα mechanisms have the nice property that they are robust against
commitment problems. The intuition behind the argument is exactly the same
32Under such construction one should be able to punish any player who vetoes given rec-

ommendation of the mechanism once one has taken the EXP-IR into account when designing
the mechanism. Also, one could require EXP-IR to be satisfied only at the equilibrium path.
This would be perhaps the most straightforward application of the EXP-IR constraint.
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as in the one buyer case. The seller can commit to a mechanism which always
delivers the good to the winner with a price separating the highest possible
valuation of the other buyers from the winner valuation. The reason for this
is by now familiar: she cannot commit to raising the price any further since in
the case of a rejection in the continuation game she is always (weakly) tempted
to sell the object to the winner with the minimum price. This is due the fact in
any other reasonable scenario she would need to sell the object with a (weakly)
lower price to some other buyer having at most as high valuation as the winner.
Thus, if mechanism r∗ is stable in the one buyer case, then also rα should be
stable in the multiple buyer case.

Furthermore, it is interesting that rα mechanisms are the only ones that are
robust against commitment problems in our sense. To prove this, we first show
that for all priors there is always exists one α such that rα (· : p) ∈ G for stable
set G which is strongly stationary.

Theorem 7 Let G be a strongly stationary stable set. Then rα (· : p) ∈ G, for
all p ∈ ∆Θ.

Proof. To obtain a contradiction, suppose that there is p ∈ ∆Θ such that
rα (· : p) /∈ G. By Remark 2 there is rα ∈ rα(S : p) such that 1rα (p(rα, rα)) /∈
G. By external stability, there is r (· : p(rα, rα)) ∈ Gwhich upsets 1rα (p(rα, rα)) .
Thus it suffices to show that existence of r (· : p(rα, rα)) violates strong station-
arity.

To proceed, we use the same argument as in the n = 1 case. We need
to replace the seller (with valuation 0) to the buyers j 6= i with valuation
θj ≤ θ(p(1)(θ−(1))). In the n = 1 case the seller is indifferent between selling or
not (= selling it to himself with price 0) the object with price 0 whereas here
the seller is indifferent between selling the object to i with price θ(p(1)(θ−(1)))
or selling it to some j 6= iwith the same price. We proceed in number of steps
(analogous to those in Theorem 5). For simplicity, write pα = p(rα, rα).

Step 1: We claim that θ(pαi ) = θ(pαj ) for some j 6= i. Suppose θ(pαi ) > θ(pαj )
for all j 6= i. Since r (· : pα) ∈ G, it follows that 1r (p) ∈ G for all r ∈ r(S :
pα). Since θ(pαi (r, r)) ≥ θ(pαi ) > θ(pαj ) ≥ θ(pαj (r, r)) for all r ∈ r(S : pα) we
have, by Corollary 2, that ri = (1, θ(pαi (r, r))). But then, by IC it follows that
θ(pαi (r, r)) = θ(pαi ) for all r ∈ r(S : pα). Thus 1r(pα) = 1rα(pα) = rα (· : pα), a
contradiction.

Step 2: We claim that θ(pαi ) > θ(pαi ) implies there is r = (a, t) ∈ r(S : pα)
such that θ(pαi (r, r)) > θ(pαi (r, r)) = θ(pαi ). Suppose not. Then θ(pαi (r, r)) >
θ(pαi ) for all r = (a, t) ∈ r(S : pα). By Corollary 2, ri = (1, θ(pαi (r, r))) for all
such r. Again, by IC r (· : pα) = 1rα(pα) = rα (· : pα) , a contradiction.

Now, construct mechanism rλ as follows: for any p and λ ∈ R construct
function

tλk(p) = inf {θk : θk ∈ S(pk), θk ≥ λ} ,
and define the mechanism, for k ∈ N, by supposing that λ > θ(pj) for all j 6= i
for some i ∈ N

rλk(θ) = (a
λ
k(θ), t

λ
k(θ)) =

½
(1, tλk(p)), if θk ≥ λ, θ ∈ S(p),
(0, 0), otherwise.

(4)
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Step 3: By Step 1 and 2, there is r ∈ r(S : pα) and λ such that θ(pαi (r, r)) ≥
λ > θ(pαi (r, r)) = θ(pαi ) = θ(pαj ). Now r

λ(pα(r, r)) upsets r(pα(r, r)). Thus, by
internal stability, rλ(pα(r, r)) /∈ G implying, by Remark 2, that 1rλ(pα(r, r)(rλ, rλ)) /∈
G for some rλ such that rλi ∈ {(0, 0), (1, tλi (pα(r, r))}. If rλi = (1, tλi (p

α(r, r)),
then 1rλ(θ(pi(r, r)(r

λ, rλ)) > θ(pαj (r, r)(r
λ, rλ)) for j 6= i. Thus, by Corol-

lary 2, 1rλ(θ(p
α
i (r, r)(r

λ, rλ))) ∈ G, a contradiction. Therefore, rλi = (0, 0)
and θ(pαi (r, r)(r

λ, rλ)) = θ(pαi (r, r)) = θ(pαj ). By external stability, there is
r0
¡· : pα(r, r)(rλ, rλ)¢ ∈G which upsets 1rλ(p

α(r, r)(rλ, rλ)).
Step 4: Define

R0 = {1r0 : r0 ∈ r0(S : pα(r, r)(rλ, rλ)), θ(pi(r, r)) = θ(pi(r, r)(r
λ, rλ)(r0, r0))}.

Since G is strongly stationary it follows that 1r0 = 1r = 1rλ for all 1r0 ∈ R0,
thus R0 = {1rλ}. Moreover, since r0 6= 1rλ , it must be that θ(pi(r, r)(rλ, rλ)) >
θ(pi(r, r)(r

λ, rλ)(r0, rλ)) ≡ κ.Construct rκ as in (4). Note that pα(r, r)(rλ, rλ)(r0, rλ) =
pα(r, r0)(rκ, rλ). Thus, 1rλ(pα(r, r)(rκ, rλ)) ∈ G and, by applying Corollary 2
to the recommendations submitted in cases θi > θ(pi(r, r)(r

λ, rλ)(r0, rλ)), it
follows that rκ(pα(r, r)) ∈ G. However, v(rκ, p(r, r)) ≥ v(r) = θ(pi(r, r)) and
rκ(· : pα(r, r)) 6= 1r(p

α(r, r)). Thus rκ(· : pα(r, r)) upsets r (· : pα) ∈ G. But
this violates internal consistency.

Any recommendation generated by rα reveals the buyer with the highest
valuation and the greatest lower bound of his possible valuations which is higher
than the least upper bound of any other buyer’s valuation. Therefore, the
above theorem is analogous to Theorem 2 in that all that needs to be shown
is that if there is a good agreeable mechanism which upsets rα (· : p) , then the
stationarity restriction is necessarily violated. One can think the situation as
the one where seller’s valuation is upgraded to match the least upper bound of
nonwinners’ valuations. In such case, by Lemma 2 we can safely disregard all
the other buyers but the winner. But then the problem of the seller is identical
with the one buyer case, and one can use the same argument as in Theorem 2
to show that 1r (p) is the only agreeable mechanism satisfying the stationarity
restriction, for any r ∈ rα(S : p)..

The following Corollary follows immediately from the previous therem. It
highlights the ”Coasian” flavor of the solution in the multiple buyer case.

Corollary 3 Let G be strongly stationary stable set. Then r (· : p) ∈ G only if
(i) r is efficient, and (ii) v(r(θ : p)) ≥ θ(S(p(1)(θ−(1)))) ≥ θ(2) for all θ ∈ Θ.

To see why (r, r) ∈ G implies r is efficient, note that otherwise there
would be agreeable mechanism (rα, p(r, r)) which would upset any inefficient
(r, p(r, r)) such that r ∈ r(S : p). Since (rα, p) is good for some α, an inefficient
agreeable mechanism could never satisfy external stability. For the same reason,
since buyer can always safely use mechanism rα, it must be true that her payoff
in each state is at least as high as the second highest valuation. The above
result strengthens the Coase conjecture in that commitment inability leads to
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the efficient allocation of the object. To my knowledge, this result is new in
a multi-buyer incomplete information environment.33 Therefore, the analysis
provides stronger motivation for the Coase conjecture than has been proposed
in the literature.

Furthermore, given (i) and (ii) of the previous corollary, it follows immedi-
ately from the Revenue Equivalence Theorem that in the independent values
case the English auction is (essentially) the only feasible auction mechanism.
However, we can say more. The next theorem says that if the type space finite
(or an infinite set is approximated by a discretizated), then the English auction
is the only feasible mechanism for all priors. (Alternatively, we could assume
the existence of a smallest monetary unit.).

Theorem 8 LetG be a strongly stationary stable set and Θ finite. Then r (· : p) ∈
G if and only if r(θ : p) = rα(θ : p) for all p.

Proof. We know that rα (· : p) ∈ G, for all p. Now we show the converse:
given p, if r (· : p) ∈G then r (· : p) = rα (· : p) . Take r (· : p) = (a(·), t(·)) ∈ G.
Write θi = θ(pi) and denote Y−i(θi, p) = {θ−i ∈ S(p−i(θi)) : θi = maxj∈N θj} .
By Corollary 3 and EXP-IR we have, for θ−i ∈ Y−i(θi, p), that

ai(θ−i, θi) > 0 and θi ≥ ti(θ−i, θi) ≥ θ(p(1)(θ−(1))). (5)

By the efficiency of r, it suffices to show that ti(θ−i, θi) = θ(p(1)(θ−(1))), for all
θi ∈ Y−i(θi, p).

By (5),

Ep
£
u
¡
r
¡
θ−i, θ0i : p

¢
, θi
¢¤

=
X

θ−i∈Θ−i

£
ai(θ−i, θ0i)θi − ti(θ−i, θ0i)

¤
p−i (θ−i : θi)

=
X

θ−i∈Y−i(θ0i,p)

£
θi − ti(θ−i, θ0i)

¤
p−i (θ−i : θi) .

Let θ+i = min{θ0i ∈ S(pi) : θ
0
i > θi}. Note that Y−i(θi, p) ∩ S(p−i(θ+)) ⊆

Y−i(θ+i , p). By construction, θ(p(1)(θ−(1))) = θ+i for all θ−i ∈ Y−i(θ+i , p) \
[Y−i(θi, p) ∩ S(p−i(θ+))] and, by (5), for these θ−i,

ti(θ−i, θ+i ) = θ+i . (6)

By IC, we have X
θ−i∈Y−i(θ+i ,p)

£
θ+i − ti(θ−i, θ+i )

¤
p−i

¡
θ−i : θ+i

¢
≥

X
θ−i∈Y−i(θ+i ,p)

£
θ+i − ti(θ−i, θi)

¤
p−i

¡
θ−i : θ+i

¢
33Milgom (1987) analyzes a deterministic auction situation, where all the players know

each others’ valuations. He shows that any core outcome in such scenario leads to the effcient
allocation of resources. Of course, his analysis does not imply that efficiency is reached also
in the incomplete information framework.
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or X
θ−i∈Y−i(θ+i ,p)\Y−i(θi,p)

£
θ+i − ti(θ−i, θ+i )

¤
p−i

¡
θ−i : θ+i

¢
≥

X
θ−i∈Y−i(θ+i ,p)\Y−i(θi,p)

£
θ+i − ti(θ−i, θi)

¤
p−i

¡
θ−i : θ+i

¢
+

X
θ−i∈Y−i(θi,p)

£
ti(θ−i, θ+i )− ti(θ−i, θi)

¤
p−i

¡
θ−i : θ+i

¢
.

By (5), θ+i > θi ≥ ti(θ−i, θi). By this and (6) we have (note that θ−i has positive
probability only in S(p−i(θ+)))X

θ−i∈Y−i(θi,p)∩S(p−i(θ+))

£
ti(θ−i, θ+i )− ti(θ−i, θi)

¤
p−i

¡
θ−i : θ+i

¢ ≤ 0. (7)

Now, suppose that θi satisfies

ti(θ−i, θi) = θ(p(1)(θ−(1))), for all θ−i ∈ Y−i(θi, p). (8)

That is, the ith component of r agrees with rα at θi. As Y−i(θi, p)∩S(p−i(θ+)) ⊆
Y−i(θ+i , p), we have by (5),

θ(p(1)(θ−(1))) ≤ ti(θ−i, θ+i ), for all θ−i ∈ Y−i(θi, p) ∩ S(p−i(θ+)). (9)

Thus, by (7), the weak inequality in (9) must hold as equality for all θ−i ∈
Y−i(θ+i , p). Therefore, (8) implies

ti(θ−i, θ+i ) = θ(p(1)(θ−(1))), for all θ−i ∈ Y−i(θi, p) ∩ S(p−i(θ+)).

This together with (6) implies

ti(θ−i, θ+i ) = θ(p(1)(θ−(1))), for all θ−i ∈ Y−i(θ+i , p).

Finally, order the elements of S(pi) by θ0i < ... < θKi for some finite K.
The initial step θ0i = θi obviously satisfies property (8). Replace θi = θki and
θ+i = θk+1 for k = 0, ...,K − 1. By the argument above, use induction to get

ti(θ−i, θki ) = θ(p(1)(θ−(1))), for all θ−i ∈ Y−i(θki , p) for all k = 0, ...,K − 1,

which was to be shown.

To get the intuition, le Θi = {1, 2} for all i, and suppose p has full support,
S(p) = {1, 2}n. If θi = 1, then i cannot ever gain any surplus. only be winner
if θj = 1 for all j 6= 1 and then
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3.3 Summary and Interpretation

In the light of stable sets, the main problem for the seller is to construct a
mechanism which is not destabilized by any good agreeable mechanism. In
the standard case, the simplest way to do this is, first, to elicit information
regarding who has the highest valuation for the object, say i, and, second,
elicit information of the exact valuation of the other buyers’. Call mechanism
that performs this task by rα. When this information is public the seller can
commit to selling the object to the player i since anything else would require
her to make an incredible threat of selling the object to some other buyer with
a lower price. By the same argument as in the one buyer case, such agreeable
mechanism would be upset by a good agreeable mechanism within any stable set
meeting the stationarity property. Knowing this, i would not reveal information
regarding his valuation since he can always buy the object with the price of his
lowest possible valuation. Hence, agreeable mechanism employing rα is indeed
good. Moreover, unless an agreeable mechanism is robust against upsetting
by an agreeable mechanism employing rα, then the agreeable mechanism is
bad. This restriction in turn implies that any good agreeable mechanism is
efficient. In the case of independent absolutely continuous valuations, this result
is very forceful, and by the Revenue Equivalence Theorem together with the
observation that in each state the price is at least the second highest valuation,
it follows that any stable mechanism must be generically equivalent with rα.

What is the interpretation of mechanism rα which was used as a workhorse
in the previous analysis? Interestingly, the informational properties of mech-
anism rα cannot be associated to any other standard auction form than the
English auction: the English auction reveals the magnitude of the second high-
est valuation and the player with the highest valuation. For example, in the
Dutch or in the First Price auctions bidding strategies in the efficient equilib-
rium are strictly increasing in buyers’ types.34 Such strategies necessarily reveal
too much information to have desirable stability properties. The Second Price
(Vickrey) auction requires that there is an impartial mediator which converts
buyers’ bids to recommendations and, in particular, does not reveal players’
announcements to the seller. In the absence of such mediation, the Second
Price auction is not applicable. Thus, the English auction is the only standard
auction form which has required informational properties and, conversely, any
stable auction mechanism must have informational and allocational properties
which closely resemble those of the English auction (the only variation can
only concern the extent that valuations below the second highest valuation are
revealed).

4 Robustness of the Model

Risk aversion. If buyers are risk averse things become more complex in the
standard auction design scenario.35 For example, revenue equivalence breaks
34 In the Dutch or first price sealed bid auctions, there typically exist also inefficient equi-

libria. Obviously, they cannot be associated with bπ
35For analysis, see e.g. Maskin-Riley (1984) or Matthews (1987).
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down and the English auction is not the optimal auction form even in the
symmetric case. However, or results are fairly insensitive to risk aversion. To
see why, observe that Lemma 1, which was fundamental for the analysis, holds
true whenever utility for money is strictly increasing. Also, as the take-it-or-
leave-it offers and the English auction meet the VETO-IC with any such utility
specification, our arguments should be extendable to cover this case as well. It
is also interesting that some inconvenient structures of optimal auctions under
risk aversion (elaborated entry fee and penalty systems) cannot be entertained
by any stable mechanism.

Other motivations for stationarity The stationarity restriction is rather
demanding: the seller cannot even weakly commit to the imposed mechanism.
In a more complete model with repeated interaction this assumption may not
be natural. Are there ways recover the results even without the stationarity
restriction? There are several slight modifications of the model that allow us
to do that. An obvious restriction is to assume that Θ ⊂ Rn++ is a discrete
set where ties never materialize. In such case the Gap Case is always valid,
and stationarity restriction never needed. Another option is to modify seller’s
payoff function. By letting the seller be slightly concerned about the general
welfare, redefine the seller’s utility as follows: v(r, θ,λ) = v(r)+λ(u1(r, θ1)+...+
un(r, θn)), for any small λ > 0. Defining the upsetting relation with respect to
this utility specification would imply that (i) the no-trade agreeable mechanism,
(ii) the agreeable mechanism which sells the object to the second highest bidder
is always upset by a constant agreeable mechanism. Therefore, such agreeable
mechanisms cannot ever be good. Consequently, the stationarity restriction is
not needed.

5 Concluding Remarks

In this study, we have focused on auction mechanisms under the hypothesis that
no player can commit to the completion of a mechanism. Buyers’ inability to
make commitments manifests itself as an assumption that they can choose their
outside option at any stage of the mechanism. Seller’s commitment inability in
turn gives her the option to reformulate the rules of the auction mechanism at
any stage of the mechanism. The first problem is taken care of by appropriately
reformulating the incentive and participation constraints. To cope with the
latter problem, we have developed a solution concept.

Our solution concept is based on the notion of stable sets, introduced by von-
Neumann and Morgenstern (1944) and further developed by Greenberg (1990).
Our main findings strengthens the famous Coase conjecture: given the inability
to make binding commitments, any acceptable, or stable, mechanism must be
efficient. Intuitively, the reason for this is that with any inefficient mechanism
the seller cannot commit not to exploit further trading opportunities. There-
fore, inefficient mechanism are subject to renegotiation at the ex post stage.
However, any efficient mechanism which sells the object to a buyer with the
highest valuation by price at least as high as the second highest valuation can-
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not be credibly instabilized since any profitable deviation from such mechanism
at the ex post stage would entail that the object is allocated inefficiently under
some states. By the previous argument, such mechanism cannot be stable and
therefore the deviation is not credible.

By this argument, it follows also that in the independent valuations case the
only stable auction mechanism is a version of the English auction. In particular,
no other commonly used auction mechanism have similar stability properties.
Thus, our result can be viewed as an explanation of why the English auction is
one of the most commonly used auction forms.

Hence, the stable set apparatus seems to be very fruitful tool in analyzing
commitment problems in mechanism design scenario. Even though the ap-
proach is motivated by noncooperative reasoning, it abstracts us from involved
analysis of perfect Bayesian equilibria of any dynamic noncooperative model
where the seller cannot make binding commitments. Also, our approach is ad-
vantageous relative standard noncooperative approach in that it allows one to
focus on the general class of feasible auction mechanisms. Therefore we do not
need to specify a priori the actual form of the bidding game that is used.36

It is not obvious why a particular bidding game would be more natural than
another.

36Which would be necessary if one would merely replicate the approach of the durable good
monopoly literature to this multi-buyer situation.
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A Appendix

A.1 Machine

Consider a scenario where the seller in her mind uses a machine (or automaton)
to implement a strategy. A machine for the seller consists of the following
components:

Definition 5 A machine is a 6-tuple (Q,R,Θ, r, ρ, c) where

• Q is a set of states containing qp for each p ∈ ∆Θ,

• R is a set of functions from Θ to ∆n ×Rn,
• r : Q→ R such that r (· : q) ∈ R(p (· : q)),
• ρ : R×Θ→ ∆n ×Rn such that ρ(r, θ) = r(θ : q),
• c : Q×R× (∆n ×Rn)→ (∆n ×Rn) ∪Q such that c(q, r(q), ρ(r(q), θ)) ∈
{ρ(r, θ)} ∪Q.

Since the game is indexed by the prior distribution, the initial state qp needs
to be indexed by p. Function r determines the chosen mechanisms, given state
Q. Function r then gives the recommendation of the mechanism, given the
true state in Θ and the chosen mechanism, function c finally decides either to
implement the recommendation, in which case the machine halts, or to preceed
to another state. Note that r ◦ r ◦ c : Q×Θ→ (∆n ×Rn) ∪Q.

It is clear that with Q unrestricted, any strategy of the seller can be im-
plemented by a machine. Thus by focusing on machines we do not artificially
restrict seller’s strategic options. Nevertheless, the machine-framework endows
us with tools to discuss about complexity issues in more detail. Think of the
seller choosing the machine before the prior probability distribution is deter-
mined. We assume that (i) the seller can replace the machine at any stage of
the game if a replacement is (strictly) profitable, (ii) if two machines are equally
profitable, she prefers the less complex machine.

In the literature on complexity of games played by automata, the following
naïve but simple and intuitive approach is often adopted: the number of states
is used as a measure of complexity. The set of states of the machine defines a
partition on the set of histories of the game, and complexity is then measured
by the size of the partition.

Of course, in the current set-up this counting-states approach is problematic
since we need to allow infinitely many of states. Thus, to compare the sizes of
the state sets, we need to use other arguments. To proceed to this direction,
identify the set of indexed states QP ⊆ Q where QP = {Qp : p ∈ ∆}. Any
machine necassarily contains states QP . When evaluating when a the size of
a set is bigger that anopther set, we confine our attention to set QP . Assume
that players wish to avoid needlessly many states in their machine. If there are
two machines such that in the first one the set of states consists only of those
in QP , and the other some extra states as well, then the implementation of first
one requires less complex reasoning.
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We say that machine t = (Q,R,Θ, r, r, c) is minimal if QP = Q. However,
we can identify a condition which captures situations where one of minimal
machines is more complex than another. Let Q̄ be a partition of QP such that
R ∈ Q̄ iff qp = qp

0
for all qp, qp

0 ∈ R. Thus if QP consists of distinguished
elements, then the partition Q̄ consists of singleton sets. We say that partition
Q̄ is at least as coarse as Q̄0 if R ⊆ R0 for all R0 ∈ Q̄0, for some R ∈ Q̄. When
the set inclusion is strict in some case, then Q̄ is coarser than Q̄0..Moreover, t
is equally coarse with t0 = (Q0,R,Θ, r0, r0, c0) if Q̄ is as coarse as Q̄0, and t is
coarser than t0 if Q̄ coarser than Q̄0.

Definition 6 1. Machine t is more complex than machine t0 if t is minimal
and at least as coarse as t0,

2. Machine t is weakly more complex than machine t0 if t is minimal and
coarser than t0

Now, consider the game situation: first the seller chooses a machine to
implement a strategy. As she cannot commit not to replace the machine at any
later stage, the corresponding strategy must be Perfect Bayesian Equilibrium of
the game. Thus, we focus on strategies that form an equilibrium and have the
property that there is no other strategy whose machine is less complex while
generates the same payoff.

Definition 7 Strategy of the seller is said to be stationary if it can be imple-
mented by a minimal machine.

A truthtelling PBE strategy r is defined for each history by the following
properties,

1. the game ends in the first stage,

2. the conditional ditribution p (· : q) is derived via Bayes rule.

Definition 8 A PBE strategy is (strongly) robust against complexity consider-
ations if there exist no other PBE strategy which is (i) equally profitable and
(ii) can be implemented by a (weakly) less complex machine.

The following simple consequence follows from the this complexity argu-
ment.

Proposition 1 A PBE strategy is robust against complexity considerations
only if it is stationary.

Proof. Suppose that t, which implements PBE strategy r, is robust against
complexity considerations, but r is not stationary. By the revelation principle,
any PBE strategy terminates at the end of the first stage. Thus only states in
QP are reached with positive probability. Replace any state q ∈ Q \ QP with
state qp iff p (· : q) = p. Clearly, this operation reduces the complexity of the
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machine without affecting the payoffs. Thus r is not robust against complexity
considerations.

Thus, any nonstationary strategy uses a nonminimal machine, and any such
machine can be replaced by a less complex machine which implements an equally
profitable strategy (however, such strategy need not be a PBE).

By applying the stronger complexity criterion we obtain the following strenght-
ening of our criterion.

Proposition 2 A PBE strategy is strongly robust against complexity consider-
ations if it is strongly stationary.

Proof. Suppose that t, which implements PBE strategy r, is robust against
complexity considerations, but r is not strongly stationary: there are r (· : p) , (r0 (· : p0) ∈
G such that r, r0 ∈ R(p) and v(r (· : p))=v(r0,p) but r 6= r0. Necessarily qp 6= qp0 .
Replace state qp

0
with state qp. This operation weakly reduces the complexity

of the machine without affecting the payoffs. Thus r is not strongly robust
against complexity considerations.

This far, we have argued that different kinds of complexity considerations
imply different degrees of stationarity from PBE strategies. As a consequence,
if one wants to implement a mechanism without commitment ability in a PBE
which is robust against complexity considerations, then one arrves to stable
mechanisms. However, this leaves open the question whether the converse is
also true, i.e. whether stable mechanisms are robust against complexity consid-
erations. Luckily, it is easy to verify that stable mechanisms are robust against
strong complexity considerations (and, hence, against complexity considera-
tions).

A.2 Proof of Lemma 3

We want to show that, for all i ∈ N,for all θi, θ0i ∈ Θi,
Ep−iui(r

α(θ), θi)−Ep−i max{ui(rα(θ−i, θ0i), θi), 0} ≥ 0. (10)

Recall that mechanism does not depend on the valuations if the winner, as long
as it is publicly known who the winner is: r(θ) = α(θ)(1, p(1)(θ)) is constant for
all θi ≥ θ(2) in S(p(1) (· : θ−(1))).

Suppose that θ0i < θi. Then θi < θ(2) implies θ
0
i < θ(2) and ui(rα(θ), θi) =

ui(r
α(θ), θi) = 0. However, if θ0i < θ(2) ≤ θi, then ui(rα(θ), θi) = αi(θ)(θi −

p(1)(θ)) ≥ 0 = ui(rα(θ−i, θ0i), θi). Then (10) yields

Ep−i

h
αi(θ)(θi − p(1)(θ)) : θ0i < θ(2) ≤ θi

i
−Ep−i

£
0 : θ0i < θ(2) ≤ θi

¤
= Ep−i

h
αi(θ)(θi − p(1)(θ)) : θ0i < θ(2) ≤ θi

i
− 0 ≥ 0.

Thus, underreporting does not pay: i would only loose the object exactly in
the cases where he would gain by having it without changing the price in those
cases when he obtains the object.
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Suppose that θ0i > θi. Then θi ≥ θ(2) implies θ0i ≥ θ(2). Thus in those
cases rα(θ) = rα(θ0i, θ−i). However, if θ

0
i ≥ θ(2) > θi, then ui(rα(θ), θi) =

αi(θ−(1))(θi − p(1)(θ−(1))) = 0. On the other hand, since p(1)(θ0i, θ−i) ≥ θ(2), we

have αi(θ0i, θ−i)(θi − p(1)(θ0i, θ−i)) ≤ 0. Thus, (10) yields

Ep−i
£
0 : θ0i ≥ θ(2) > θi

¤−Ep−i hmax{αi(θ0i, θ−i)(θi − p(1)(θ0i, θ−i)), 0} : θ0i ≥ θ(2) > θi

i
= 0− 0 = 0

Consequently, relative to truthful reporting, overreporting would induce recom-
mendations that would suggest i to receive the object in cases where he would
need to pay more than his own valuation. This induces he to employ the veto
right resulting the 0 payoff. Thus overreporting cannot be profitable. Hence rα

satisfies VETO-IC given any prior information structure p ∈ ∆Θ.
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