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1 Introduction

In the last few years, the economic theory literature witnessed a growing
interest on networks, with the purpose to understand how networks emerge,
and to study their stability and efficiency properties.1 Here, networks, also
called cooperation structures, represent situations in which players may co-
operate, or communicate only with a subset of the population. An inter-
esting feature of these situations is that two players having a relationship
may not have a relationship with the same subset of players. Cooperation
structures are usually described with (non-directed) graphs, whose vertices
represent players and edges (or links) represent the relationships players
have between each other.

Among all the contributions on that topic, the work of Aumann and
Myerson [1] has received particular attention. In their seminal paper, Au-
mann and Myerson proposed a model of endogenous cooperation structure,
that was associating in a subtle way both cooperative and non-cooperative
games. That is, the cooperation structure is modeled by means of a co-
operative game, but it is formed in a non-cooperative way. The building
block of Aumann and Myerson’s model, which became common to most of
the so-called link formation games,2 is that a link between two players
is formed only if they both want it. In such games a player’s strategy is
the set of players with whom she wants to form a link, and players’ pay-
offs are given by the Myerson value [15] in the cooperation structure thus
obtained. Since Aumann and Myerson’s game is an extensive form game, a
major drawback of their approach is that the order of play has to bet set
exogenously. Later, Qin [16] reformulated Aumann and Myerson’s game as
a normal-form game. The main results obtained by Qin’ are that (i) the
game admits a potential — in the sense of Monderer and Shapley [14]; and
(ii) if the underlying TU-game is superadditive, then the full cooperation
structure (each player cooperates with all the other players) is stable in the
sense that no player can profitably deviate by severing her links or any part
thereof.

The purpose of this paper is to scrutinize the relationship between the
stability of cooperation structures and the payoff structure of the game of
link formation. Since this latter is built upon a cooperative TU-game, the
properties we look for simply consists of designing the class of cooperative
games that ensure that some specific cooperation structure is stable. Among
all the possible cooperation structures there is one on which several papers
(including this one) have brought specific attention: the full cooperation
structure, which is the structure where all players are linked between each

1See Jackson and van den Nouweland [10] for a recent contribution about such issues
and the references therein.

2See among others Jackson and Wolinsky [12], Dutta and Mutuswami [4], or Jackson
and Watts [11] who used the same principle in their models.
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other. The motivation for studying this structure is twofold. First, in many
situations, the full cooperation structure is the efficient one, and as such,
one would like it to be the stable one, too. But if for some reasons, like when
there are congestion effects, the full cooperation structure is not efficient,
then is seems natural to see if it is stable, and if so, whether or not simple
dynamics do select this structure. The second reason is given by the choice
of the stability concept. In this paper, like Qin [16], we do use as a stability
concept the Nash equilibrium. A network is said to be stable if there is no
player who can be better off by breaking some of his links and/or making
new links. However, a new link between two players, say i and j is made only
if both i and j want to make a link with j and i respectively. If player j’s
strategy is such that she does not want to make a link with i then, whatever
the decision of i, there will not be any link between i and j. It follows that
any network where any player does want to break a link is Nash-stable.3 In
other words, the Nash-stability, which is employed here, is more relevant in
those cases where the only possibility left to the players is to break links,
i.e., the full cooperation structure.

A first result we propose is a complete characterization of the class of
TU-games that admit a stable full cooperation structure. It turns out that
this class is much larger than the class of superadditive games. This is to
be contrasted with other papers (e.g., [16] and [5]) that focused on superad-
ditive environments only. More precisely, we show that the full cooperation
structure is stable if and only if the (Shapley) value of each player is indi-
vidually rational and the TU-game is superadditive for two-player coalitions
only. In particular, this implies that if, for some TU-game (N, v) and two
players i and j, we have v({i, j}) < v({i}) + v({j}), then the full cooper-
ation structure is not stable. This result suggests that “small coalitions”
have a greater role in the stability of the full cooperation structure than
bigger ones.4 Nonetheless, this result also shows that the underlying TU-
game does not need to be superadditive to ensure the stability of the full
cooperation structure. This is, we believe, an interesting property given that
non-superadditive economic environments abound. Such environments are
for instance when there are congestion effects in the production of public
goods. Another case that can generate non-superadditivity is when there
are inefficiencies in decision making in large organization. In large firms or
large organizations, increasing return to scale can be dominated by the cost
of coordination (see Guesnerie and Oddou [6, 7, 8]).

A second set of results presented in this paper concerns the potential(s)
of the link formation game. This approach follows that of Qin, who showed
that this game admits a potential —in the sense of Monderer and Shap-

3For instance, if the TU-game is superadditive all networks are Nash-stable.
4In fact, all coalitions do matter since whether or not the Shapley value of each player

is individually rational depends on the worth of all coalitions.
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ley [14], henceforth MS-potential— if and only if the allocation rule used in
the underlying TU-game is the Myerson value. In this paper, we propose
a formula for the potential, and use it to derive further results about the
stability of cooperation structures. The existence of an MS-potential is quite
appealing,5 since this latter has strong learning properties. That is, best-
response and fictitious play learning processes converge to equilibria of the
game, and these equilibria are those maximizing the MS-potential.6 A sec-
ond result concerning the MS-potential is its equivalence with the potential
of Hart and Mas-Colell [9] —henceforth HM-potential — which, contrary to
that of Monderer and Shapley, is a solution concept for cooperative games.
At first sight, this result is quite surprising, since the two potentials are
apparently two different mathematical objects. Nevertheless, the structure
of the link formation game makes this result quite predictable. First, both
concepts are built upon marginal variation of the payoffs. Second, Hart
and Mas-Colell showed that their potential is closely related to the Shapley
value, which is precisely the allocation rule used to compute players’ payoffs
in the link formation game, and thus the MS-potential. Moreover, it is worth
to point out that a similar result has already been observed by Monderer
and Shapley [14, theorems 6.1 and 6.2], and Ui [17].

The paper is organized as follows. In section 2 we present the framework.
In section 3 we define the game of endogenous formation of cooperation
structure. Our first characterization result is presented in section 4. Section
5 is devoted to the analysis of the potentials of the game. We study an
example in section 6 and conclude in section 7.

2 Definitions

A transferable utility game (or a TU-game) is defined by a couple (N, v)
where N = {1, . . . , n} is the set of players, and v : 2N → R is the charac-
teristic function, with the convention that v(∅) ≡ 0). The number v(S) is
the worth of coalition S ∈ 2N . Given a game (N, v) and a subset of players
S, (S, v) is the sub-game obtained by restricting v to subsets of S only. If
N, R, S, T, . . . are coalitions, then n, r, s, t, . . . denote their respective
size. The space of all TU-games with the set of players N is denoted by ΓN .

We assume that players are able to establish meaningful relationships
with a subset of players, and we call the set of all private relationships a
cooperation structure. A useful way to represent cooperation structures
is by a non-directed graph, whose vertices represent players and whose edges
represent the relationships that players have between each other.

5Not all games admit an MS-potential.
6See Blume [2] and Monderer and Shapley [14, 13] for results on the learning properties

of the potential, and Jackson and Watts [11] for a study of dynamic network formation
with myopic players.
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We define a graph, g, as a set of links between players. We write i:j ∈ g
when i and j are linked in g. Two players i and j are indirectly linked in g
if there exists a sequence i1, . . . , ik in N , with k ≥ 3, such that i = i1, it−1:it
for all t = 2, . . . , k, and ik = j. The sequence i1, . . . , ik is called a path. Two
players are said to be connected if they are (indirectly) linked. A coalition
S is said to be connected if any pair of players i, j ∈ S is connected by a
path involving only players in S. We denote by GRN the set of all graphs,
by gN the complete graph, i.e. the graph in which each player is linked with
all other players,

gN = {i:j | i ∈ N , j ∈ N , i 6= j}, (1)
GRN = {g | g ⊆ gN} , (2)

and g∅ the empty graph, i.e., there is no pair i, j ∈ N such that i:j ∈ g∅.
For any graph g, g\{i:j} denotes the graph in which the link i:j has been

deleted, and g ∪{i:j} is the graph to which the link i:j has been added. We
denote the graph g restricted to the set of vertices S by g(S),

g(S) = {i:j | i, j ∈ S, i:j ∈ g}.

For any subset of players S, there is a unique partition of players that
groups together players connected by g(S). Such a partition is denoted
by S/g. In other words, for any i ∈ S, the element of the partition S/g
containing i also contains all other players that are connected to i by g(S).
A formal definition of this partition is defined as follows,

S/g = {{i ∈ S | i and j are connected in S by g} | j ∈ S}.

3 The game

Qin’s model works as follows. Given a TU-game (N, v), we allow players
to choose who they want to cooperate, or communicate with. Hence, each
player may have private relationships with a subset of the grand coalition
only. More formally, we define a non-cooperative game

G
(N,v)
h =< N, (Σi)i∈N , (hi)i∈N ) >,

where the TU-game (N, v) is called the underlying game of G
(N,v)
h , and

G
(N,v)
h is called a link formation game. As in (N, v), the set of players

is N . The (finite) strategy set of player i is Σi, and h = (hi)i∈N is the payoff
function, h : ×i∈NΣi → RN .

3.1 Strategies

A strategy σi for player i is defined as a n-dimensional vector whose coordi-
nates are either 0 or 1. When σi(j) = 0 player i does not wish to form a link
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with player j, while he would be glad to create such a link when σi(j) = 1.
The ith coordinate of σi is assumed to be equal to zero, σi(i) ≡ 0. In other
words, no player can make a link with herself. A link between players i and
j is formed only if both i and j wish to create it: σi(j) = σj(i) = 1. We
denote the n-tuple of strategies by σ = (σ1, . . . , σn). Each σ ∈ (Σi)i∈N gives
a unique cooperation structure g(σ),

g(σ) = {i:j | σi(j) = σj(i) = 1}.

For each cooperation structure g, players are rewarded using the Myerson
value of the game (N, v) on g, denoted by the n-dimensional vector µ(v, g).

We design by σS the strategy profile such that (i) for all i, j ∈ S, σi(j) =
1 and σj(i) = 1 ; and (ii) for all i ∈ S and j /∈ S, σi(j) = 0 or σj(i) = 0 .
That is, g(σS) is a graph such that all players in S are connected to each
other and players not in S have no links.

3.2 The payoffs

Payoffs in the link formation game defined by Qin are given by the Myerson
value [15], which is an allocation rule for TU-games with graphs. In order
to compute the Myerson value for some game (N, v) and some cooperation
structure g, we first need to define a characteristic function embedded on
graphs,

∀ S ⊆ N, (v/g)(S) =
∑

T∈S/g

v(T ). (3)

The Myerson value is the unique allocation µ rule that satisfies the Com-
ponent Efficiency axiom, ∀S ∈ N/g, g ∈ GRN ,

∑
i∈S µi(v, g) = v(S),

and the Fairness axiom, ∀ g ∈ GRN , i:j ∈ g, µi(v, g) − µi(v, g\i:j) =
µj(v, g)− µj(v, g\i:j) .

Myerson proved that his value is closely related to the Shapley value.
Indeed, we have

∀ (N, v) ∈ ΓN , ∀ g ∈ GRN µ(v, g) = ϕ(v/g) , (4)

where ϕ is the Shapley value. It is straightforward to see that for the full
cooperation structure, v/gN = v, and hence µ(v, gN ) = ϕ(v). Moreover,
if some player i is not connected to anyone in the cooperation structure g,
then µi(v, g) = v({i}). Note that it may happen that for some game (N, v)
and some g, we have µi(v, g) < v({i}).

Thus, the payoff of a player in the game G
(N,v)
µ under the strategy profile

σ is her Myerson value of the corresponding cooperation structure,

hi(σ) ≡ µi(v, g(σ)). (5)
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4 The stability of cooperation structures

Consider now a cooperation structure g such that players i and j are not
linked, i.e., i:j /∈ g. Then, player i desires to link up with player j if and
only if

µi(v, g ∪ {i:j}) ≥ µi(v, g). (6)

Given that the Myerson value satisfies the Fairness axiom, it is readily ver-
ified that if (6) holds true for player i, then it also holds true for player j.7

A cooperation structure g is stable in Qin’s sense if there is a strategy
profiles σ such that g(σ) = g and σ is a Nash equilibria of the game G

(N,v)
µ .

This result was also obtained in a similar framework by Dutta, van den
Nouweland, and Tijs [5].8 We now show that this result can be generalized
to a larger class of games.

Proposition 1 Let (N, v) be a TU-game and µ the Myerson value. Then
the full cooperation structure is stable if and only if µi(v, gN ) ≥ v({i}) for
all i ∈ N , and ∑

T⊆S,T3i

ρT (v(T )− v(T\{i})− v({i})) ≥ 0 (7)

where ρS = (n−1)!(n−s)!
n! .

Proof See the Appendix. �

Proposition 1 says that if the Shapley value of each player in the game
(N, v) is individually rational then gN is stable if and only if the game (N, v)
is “superadditive” for two-player coalitions. Hence, the two conditions —
individual rationality and (7) — fully characterize the class of TU-games
that ensure the stability of the full cooperation structure.

Qin showed that if the underlying TU-game is superadditive, then for any
partition P of N , there is a Nash equilibrium σ game such that N/g(σ) =
P — see [16, remark 2]. We now show that Qin’s result can be extended.9

Proposition 2 Let (N, v) be a superadditive TU-game. For any g ⊆ gN ,
there exist a strategy profile σ such that g = (σ) = g and σ is a Nash
equilibrium of G

(N,v)
µ .

Proof See the Appendix. �

7Reciprocity may not hold if player i wants to link up with several players at a time.
8[5] employed several equilibrium concepts, (undominated Nash equilibrium, coalition-

proof Nash equilibrium and Strong Nash equilibrium) and did not use a specific solution
concept to analyze to equilibria of the game.

9Proposition 2 is actually a corollary of Proposition 1 in [5].
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5 The potential

In his paper, Qin used Monderer and Shapley’s potential [14] to study the
stability of cooperation structures. He showed that a link formation game
with an underlying TU-game admits an MS-potential if and only if the
allocation rule that gives players’ payoffs is the Myerson value. In this
section, we propose a formula for the MS-potential, and show its equivalence
with the potential of Hart and Mas-Colell [9].

Definition 1 A potential in the sense of Monderer and Shapley, or MS-
potential, for G

(N,v)
µ is a function P : Σ → R such that for any i ∈ N ,

σ ∈ Σ, and σ̂i ∈ Σi,

hi(σ̂i, σ−i)− hi(σ) = P (σ̂i, σ−i)− P (σ) (8)

A non-cooperative game γ = (N,Σ, h), with player set N , Strategy space
Σ and payoff functions h = (hi)i∈N is a potential game if it admits an
MS-potential.

Since the MS-potential is defined up to a constant, we can assign a value
for the empty graph, and then recursively deduce its value for all graphs.

Proposition 3 Let σ be any strategy profile, and let g = g(σ).

P (σ) =
∑
S⊆N

(n− s)!(s− 1)!
n!

(v/g)(S) . (9)

Clearly, the formula of the MS-potential is closely related to the Shapley
value of the game. Nonetheless, it is easy to see that the potential in eq. (9)
is also the potential as defined by Hart and Mas-Colell [9]. Their potential,
defined upon cooperative games is defined as follows.

Definition 2 A function PHM : ΓN → R is a potential in the sense of Hart
and Mas-Colell, or HM-potential, if it satisfies the following condition∑

i∈N

DiP (N, v) = v(N) , (10)

where DiP (N, v) = P (N, v)− P (N\{i}, v).

Hart and Mas-Colell [9, eq. (2.5), p. 592] proved that the potential PHM

can be characterized (up to a constant) by the following equality:

PHM (N, v) =
∑
S⊆N

(n− s)!(s− 1)!
n!

v(S) . (11)

We can then show the following result.
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Proposition 4 Let σ be any strategy profile, and g = g(σ).

PHM (N, v/g) = Pv(g) .

Proof Observe that the potential PHM is defined on games with full coop-
eration structures. Hence, to prove the proposition, it suffices to obtain the
potential PHM for any graph g. For any graph g, (N, v/g) = (N, (v/g)/gN ).
Thus,

PHM (N, v/g) =
∑
S⊆N

(n− s)!(s− 1)!
n!

(v/g)(S) . (12)

Clearly, (9) and (12) do coincide, which proves the result. �

A similar result has been already observed by Monderer and Shapley [14,
theorems 6.1 and 6.2], and Ui [17]. Their proofs work in opposite direc-
tions. Monderer and Shapley proved that for any cooperative game we
can construct a non-cooperative game (called participation game) such that
it admits an MS-potential if and only if the allocation rule used in the
original cooperative game (which serves to compute players’ payoffs in the
participation game) is the Shapley value. Conversely, Ui started from a
non-cooperative game, and showed that we can construct an associated co-
operative game with payoffs being given by the Shapley value if and only if
the original game admits an MS-potential. Here, we took a different route,
simply showing that the formula for the HM-potential and the MS-potential
do coincide.

6 An example

As the following example shows, superadditivity of the game (N, v) is not
necessary for the stability of the full cooperation structure.

Consider the following TU game (N, v) with N = {a, b, c, d}, and v
defined by

v(S) =


0 if |S| = 1,

180 if |S| = 2,

168 if |S| = 3,

144 if |S| = 4.

The Myerson value of each player for the full cooperation structure is
µi(v, gN ) = 36, for i = a, b, c, d, which is obviously individually rational.
Moreover, condition (7) is satisfied. Hence, Proposition 1 implies that the
full cooperation structure is stable. Yet, it is obvious that the full coop-
eration structure is Pareto dominated, i.e. there is another cooperation
structure (for instance g′ = {a:b, c:d}) that yields a value of 90 to each
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player, which is strictly higher than the value when the full cooperation
structure is formed.10

It turns out that this example has more to say. Consider the potential of
the game. Since the game is symmetric, all graphs (and thus all the values
of the potential) can be characterized by the number of links, and for the
case when there are two, three or four links on the number of link per player.
In table 1 when a graph has for distribution of links per player the value
3, 2, 2, 1 it means that there is one player with three links, two players with
two links and one player with one link. This yields the following values for
the potential.

] of links link distribution P ] of links link distribution P
0 0,0,0,0 0 3 2,2,2,0 146
1 1,1,0,0 90 3 3,1,1,1 123
2 1,1,1,1 180 4 2,2,2,2 152
2 2,1,1,0 116 4 3,2,2,1 153
3 2,2,1,1 139 5 3,3,2,2 167

6 3,3,3,3 182

Table 1: Values of the potential

This example is quite interesting since it shows that the complete graph
does maximize the potential, although the game is not superadditive (it is
even not monotonic). Yet we can see that the potential is maximum when
the cooperation structure is complete.11

Further scrutiny shows that the complete graph can be obtained by
fictitious play. For, consider the sequence of graphs ḡ = {g1, g2, . . . , g7},
where g1 = g∅ and g7 = gN , with the following distribution of links:

It is easy to see that for any h = 1, . . . 6, the graph gh+1 is obtained
just by adding an additional link to gh. Indeed, it is easy to construct an
initial strategy profile such that each step is obtained from the previous
one by just one deviation.12 Clearly, for all h = 1, . . . 6 P (gh) < P (gh+1).
Hence, according to Monderer and Shapley’s terminology, the sequence ḡ in
an finite improvement path, which reflects a myopic learning process.

10A similar result was obtained by Jackson and Wolinsky [12], who showed that some

games G (N,v)
µ may have a stable cooperation structures that are not efficient, i.e. structures

that do not maximize the worth of coalition(s).
11See Jackson and Wolinsky [12] for a related result showing that stable graphs are not

necessarily those maximizing the total value.
12Recall that to make a link between i and j we must have σi(j) = σj(i) = 1. To see

that the sequence can be obtained by a sequence of 6 best-response deviations, consider
for instance that players a and b make the first link (the unique link in g2). Then, we can
start with the strategy profile σ such that σa(b) = 0 and σb(a) = 1. The deviating player
is a, and doing so her payoff in g2 is strictly higher than her payoff in g1.
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Graph ] of links link distribution Potential
g1 0 0,0,0,0 0
g2 1 1,1,0,0 90
g3 2 2,1,1,0 116
g4 3 2,2,1,1 139
g5 4 2,2,2,2 152
g6 5 3,3,2,2 167
g7 6 3,3,3,3 182

Table 2: Distribution of links

7 Conclusion

We first showed that superadditivity (like monotonicity) are not necessary to
obtained the stability of the full cooperation structure. In fact, the class of
TU-games that admit full cooperation structure turns out to be very large.
One relevent point is that small coalitions seem to have a particular role. It
is often argued that the Nash equilibrium concept is not appropriate for this
game since it admits too many stable cooperation structures. It it worth to
point out that our result still holds if one uses Jackon and Wolinsky’s [12]
pairwise stability concept.13 Our result is even more striking when we look
at the potential of the game. As our example shows, neither monotonicity
nor superadditivity are necessary to obtain the full cooperation as the stable
cooperation structure when considering fictitious play. This amounts to say
that simple best-response dynamics can yield players to build inefficient
cooperation structure.

An other result we obtained is the equivalence of the potential of Mon-
derer and Shapley[14], and that of Hart and Mas-Colell [9]. Since these two
concepts are designed for two different frameworks (non-cooperative games
for the former and cooperative games for the latter), it has been usually
thought that the only common aspect they share was their name. The
model analyzed in this paper allows us to study the two potentials pro-
posed in the literature. To see this, it is important to have in mind how
the link formation game is built. Recall that we start first with a cooper-
ative TU-game. Hence, this game has an HM-potential. The second step
consists of building a non-cooperative game of link formation, which allows
us to study the MS-potential. It is worth pointing out that not all non-
cooperative games admit a potential. However, Qin proved that this game
does admit an MS-potential (if and only if the allocation rule is the Myerson
value). In this paper, we showed that these two potential are identical (for
this game). Though being quite surprising at first sight, this result can be

13When we look only at the full cooperation structure the pairwise stability concept
and the Nash stability used in this paper do coincide.
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expected. Indeed, both concepts are defined upon marginal differences in
terms of payoffs. Hart and Mas-Colell showed that their potential is closely
related to the Shapley value of the TU-game, and the Myerson value, which
defines the payoffs in the link formation game, is known as being the Shapley
value of some specific TU-game.

Appendix

In order to prove proposition 1, we introduce more definitions. For any
cooperation structure g and players i and j such that i:j ∈ g, define the set

S(g, i:j) = {S ⊆ N | S/g = S and S/(g\{i:j}) 6= S}.

In other words, S(g, i:j) is the set of coalitions S such that S is connected in
g(S) but is non-connected in g(S)\{i:j}. When no confusion is possible, we
write S(i:j) instead of S(g, i:j). In other words, S(i:j) represents the set of
coalitions S that are connected thanks to i:j when the graph is restricted to
S.14 Thus, for any S ∈ S(i:j), if i:j is deleted, S/(g\{i:j} = {Si, Sj}), with
Si and Sj being the sets in S/(g\{i:j}) that contain i and j respectively.

Proof of Proposition 1
Observe that there is a unique strategy profile σ∗ such that g(σ∗) = gN .

Hence, σ∗ is a Nash equilibrium if and only if no player breaks one or more
links. Hence, it suffices to compare, for any player i, her payoffs under the
strategy profile σ and under the strategy profile (σ′i, σ

∗
−i), where σ′i(j) = 0

for at least one j ∈ N\{i}.
Clearly, if the value of some player is not individually rational, then that

player has an incentive to break up all her links (or any part thereof), and
then the full cooperation structure is not stable. In other words, individual
rationality is a necessary condition for the full cooperation structure to be
stable. We now show that if the value of each player is individual rational,
then stability is equivalent to condition (7).

We claim that for any graph g, if a player contemplates breaking a link,
yielding g′, the change of her payoff (i.e., her Myerson value) will only depend
on the worth of the coalitions that are connected in g and not connected in
g′. To see this, consider the value of player i for a cooperation structure g
and g\{i:j}:

µi(v, g) =
∑
S3i

ρS ((v/g)(S)− (v/g)(S\i))

µi(v, g\{i:j}) =
∑
S3i

ρS ((v/g(\{i:j}))(S)− (v/g(\{i:j}))(S\i)) ,

Notice that
14In graph terminology, we say that S(g, i:j) is the set of all subgraphs ĝ of g such that

the link i:j is critical in ĝ — see [3].
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(i) g/(S\{i}) = (g\{i:j})/(S\{i}),

(ii) (g\{i:j})/S 6= g/S when i:j connects S in g, i.e., when S ∈ S(i:j),

(iii) (g\{i:j})/S = g/S when i:j does not connects S in g.

Using equation (3) we deduce

(a) (i) ⇒ ∀ S 3 i, (v/g)(S\{i}) = (v/(g\{i:j}))(S\{i}),

(b) (ii) ⇒ when S ∈ S(i:j), (v/g\{i:j})(S) and (v/g)(S) may differ

(c) Let S such that S/g = S. Then (iii) ⇒ (v/g\{i:j})(S) = (v/g)(S)
when S /∈ S(i:j).

If S/g 6= S, then there is one element of S/g that contains i. Let Ŝ
be this element. Clearly, for all T ∈ S/g such that T 6= Ŝ, we have
(v/g\{i:j})(T ) = (v/g)(T ). Hence, when doing (v/g)(S)−(v/g(\{i:j}))(S)
we can restrict to Ŝ, and either we are in case (b) or in the first part
of case (c).

Combining these observations we obtain

µi(g)− µi(g\{i:j}) ≥ 0

⇔
∑

S∈S(i:j)

ρS(v(S)− v(Si)− v(Sj)) ≥ 0, (13)

which proves the claim.
Observe that if g = gN , then S(i:j) = {{i, j}}. In other words, in the

full cooperation structure, if a player i breaks a link with player j, the only
coalition that becomes non-connected is {i, j}.

More generally, suppose that some player i severs her links in gN with
players j ∈ T , where T is some subset of N\{i}. Then we have {S(i:j)}j∈T =
{R ∪ {i} : R ⊆ T\{i}}.15 This implies that i severs her links with players
j ∈ S ⊆ N\{i} if, and only if∑

T⊆S,T3i

ρT (v(T )− v(T\{i})− v({i})) < 0 (14)

As (14) holds for any S ⊆ N\{i}, for any i ∈ N , the result follows. �

Proof of Proposition 2 Consider any superadditive game (N, v) and any
cooperation structure g. Hence, (13) always holds and we can deduce that
no player wishes to break a link. Consider the following strategy profile.
For each player i ∈ N , let σi(j) = 0 if i:j /∈ g and σ∗i (j) = 1 if i:j ∈ g.

15That is, if i breaks her links with all players in T , yielding the network g, then for all
R in {S(i:j)}j∈T we have (v/g)(R) = v(R\{i}) + v({i}).
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Because players do not sever links, if a player i deviates with the strategy
σ̂, it should be the case that for some j we have σ̂i(j) = 1 and σ∗i (j) =
0. But deviations are individuals, which implies that σ∗j (i) = 0. Hence,
g(σ̂i, σ

∗
−i) = g, and player’s i payoff remains unchanged. Thus, i has no

incentives to deviates. �

Lemma 1 Let g be a graph such that there exists a set of players S and a
player i /∈ Ŝ such that for all j ∈ Ŝ, i and j are not connected. Then

µi(v, g,N) = µi(v, g,N\S) . (15)

Proof First, observe that if i is not connected to any player in Ŝ, then it
is also the case for any player that is connected to i.

We prove the lemma when Ŝ contains only one player, say j. When Ŝ
contains more than one player, it suffices to repeat the argument presented
below.

If we withdraw player j from the set of players, we have a new set of
player N ′ of size n′ = n − 1. With this new player set, we have (the right-
hand side of equation (15))

µi(v, g,N ′) =
∑
R3i

(n′ − r)!(r − 1)!
n′!

[(v/g)(R)− (v/g)(R\{i})] . (16)

We now compute the left-hand side of equation (15). Observe that for
any T 3 j, (v/g)(T ) = (v/g)(T\{j}) + (v)({j}).16 Thus, we have for any
i ∈ N\Ŝ

µi(v, g,N) =
∑
R3i
j /∈R

ρ(r) [(v/g)(R)− (v/g)(R\{i})]

−
∑
R3i
j∈R

ρ(r) [(v/g)(R\{j})− (v/g)(R\{i, j})]

=
∑
R3i
j /∈R

(ρ(r) + ρ(r + 1)) [(v/g)(R)− (v/g)(R\{i})] . (17)

Straightforward computation shows that

ρ(r) + ρ(r + 1) =
(n− 1− r)!(r − 1)!

(n− 1)!
=

(n′ − r)!(r − 1)!
n′!

. (18)

Combining combining (17) and (18) we obtain (16). �

16If Ŝ contains more than one player, then this equality becomes: for any T ⊃ Ŝ,
(v/g)(T ) = (v/g)(T\Ŝ) + (v)(Ŝ).
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Lemma 2 Assume that P (∅) ≡ 0. Let S be a nonempty subset of N and
let g = g(σS). Then

P (σS) =
∑
i∈S

−s− 1
s

v({i}) +
∑

T⊆S : t≥2

(s− t)!(t− 1)!
s!

v(T ) . (19)

Proof We prove the lemma by induction on the size of S. Assume first
that S = {i, j}. Consider the empty graph and the graph g = g(σS). Since
players i and j are the only players whose payoff changes between g and the
empty graph, we have P (σS) − P (σ∅) = µi(v, g) − µi(v, ∅). By lemma 1,
we know that µh(v, g,N) = µh(v, g, {i, j}) for h = i, j. Thus, with the
convention that P (∅) ≡ 0, we obtain

P (σS) = µi(v, g)− µi(v, ∅)
= ϕi(v/g)− ϕi(v/∅)

=
1
2
v({i}) +

1
2

[v({i, j})− v({j})]− v({i})

= −1
2
[v({i}) + v({j})] +

1
2
v({i, j})

which completes the proof for the case s = 2.
Let S be any set of players of size three or more, and let g = g(σS). By

the induction hypothesis, the potential for the graph g is given by (19). Let
i /∈ S, and let g′ = g(σS∪{i}). We write S′ for S ∪ {i}. We have

P (σS′
)− P (σS) = µi(v, g′)− µi(v, g) = ϕi(v/g′)− ϕi(v/g).

⇔P (σS′
) = P (σS) + ϕi(v/g′)− ϕi(v/g). (20)

Recall that

ϕi(v, g′) =
∑
T3i

(n− t)!(t− 1)!
n!

[(v/g)(T )− (v/g)(T\{i})] ,

=
∑

T⊆S′ : T3i

(s′ − t)!(t− 1)!
s′!

[v(T )− v(T\{i})] , (A)

ϕi(v, g) = v({i}) , (B)

P (σS) =
∑
j∈S

−s− 1
s

v({i}) +
∑

T⊆S : t≥2

(s− t)!(t− 1)!
s!

v(T ) . (C)

where (A) is obtained using lemma 1. Thus,

P (σS′
) = (A)− (B) + (C) . (21)

First, observe that v({i}) is only present in (A) (for T = {i}) and (B).
Thus, in P (σS′

), the coefficient of v({i}) is given by

(s′ − t)!(t− 1)!
s′!

− 1 =
(s′ − 1)!

s′!
− 1 = −s′ − 1

s
,
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where the first equality comes from the fact that t = 1.
We now compute the coefficient for v({j}), ∀j ∈ S. For each v({j}), it

is given by

−(s′ − t)!(t− 1)!
s′!

− s− 1
s

= −(s′ − 2)!
s′!

− s′ − 2
s′ − 1

= −s′ − 1
s′

.

In order to compute the coefficient for coalitions R ⊆ S, we must take
into account that when a coalition R appears in (A), t = r + 1, whereas in
(C) we have t = r. Hence, the coefficient is given by

− (s′ − t− 1)!t!
s′!

+
(s− t)!(t− 1)!

s!

=− (s′ − t− 1)!t!
s′!

+
(s′ − t− 1)!(t− 1)!

(s′ − 1)!

=− (s′ − t)!(t− 1)!
s′!

.

It remains to compute the coefficient for the coalitions T that include i
and some players in S. It is easy to see that such coalitions only appear in
(A). Thus we have,

P (σS′
) =

∑
j∈S′

−s′ − 1
s′

v({j}) +
∑

T⊆S′ : t≥2

(s′ − t)!(t− 1)!
s′!

v(T ) , (22)

which completes the proof. �

Lemma 3 Assume that P (∅) ≡ 0. Let S be a nonempty subset of N and
let g = g(σS). Then

P (σS) =
∑
i∈N

−n− 1
n

v({i}) +
∑

T⊆N : t≥2

(n− t)!(t− 1)!
n!

(v/g)(T ) . (23)

The difference between this lemma and lemma 2 is in the second sum-
mation. In lemma 2 the summation is done over T ⊆ N and in lemma 3 the
summation is done over T ⊆ N .
Proof We prove the lemma by induction on the size of S. Assume first
that S = {i, j}. From the proof of lemma 2, we know that P (σS) =
−1

2 [v({i}) + v({j})] + 1
2v({i, j}). Using lemma 1 it is straightforward to

see that in this case the following equality holds true∑
h∈S

−s− 1
s

v({h}) +
∑

T⊆S : t≥2

(s− t)!(t− 1)!
s!

v(T )

=
∑
i∈N

−n− 1
n

v({i}) +
∑

S⊆N : s≥2

(n− s)!(s− 1)!
n!

(v/g)(S) .
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Let S be any set of players of size three or more and lower than n (if
S = N then lemmata 2 and 3 are identical). Denote PS(σ) and PN (σ) the
potential when the summation is done over S and N respectively (equations
(19) and (23)).

By the induction hypothesis, PN (σS) = PS(σS). Consider some i /∈ S,
and let S′ = S ∪ {i}, g′ = g(σS′

). We claim that PN (σS′
) = PS′

(σS′
). We

have

PN (σS′
) ≡ PN (σS) + ϕi(v/g′, N)− ϕi(v/g, N)

= PS(σS) + ϕi(v/g′, S′)− ϕi(v/g,′ )

= PS′
(σS′

) ,

The first equality is simply the definition of the potential. The second
and third equalities are respectively obtained using lemma 1,17 and equa-
tion (20). �

Let σ be any strategy profile, and let g = g(σ). Denote by Pv(σ) and
Pv/g(σN ) the potential for the games G

(N,v)
µ and G

(N,v/g)
µ respectively.

Lemma 4 Pv(σ) = Pv/g(σN )

Proof Since the potential is deduced (up to a constant) from the payoffs
of the game, it suffices to show that µ(v, g) = µ(v/g, gN ), for all g ⊆ gN .
Recall that µ(v, g) = ϕ(v/g), and that µ(v, gN ) = ϕ(v). Hence, µ(v/g, gN ) =
ϕ(v/g), which yields the desired equality. �

Proof of proposition 3 From lemmata 4 and 3, it is easy to deduce that

P (σ) =
∑
i∈N

−n− 1
n

v({i}) +
∑

S⊆N : s≥2

(n− s)!(s− 1)!
n!

(v/g)(S) .

Since the potential is defined up to a constant, it suffices to add
∑

i∈N
n−1

n v({i})
to the potential of any graph and the result follows. �

17No player in S′ is linked to a player in N\S′.
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