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Abstract

The paper studies the effect of scale economies on the optimal capac-
ity adjustment of a mutiplant firm. It is shown that with increasing
economies of scale plants are ranked in decreasing order, after which
the optimal choice is to scrap the largest one. On the contrary, if there
are decreasing econormies of scale the optimal policy would be to wait
before abandoning intermediate plants. That is, decreasing economies
of scale amplify the effect of uncertainty on disinvestment and tend to
increase the plant’s life.
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1 Introduction

Recent literature on the real option approach to investment decisions, Pindyck
(1991), Dixit (1992) and the book by Dixit and Pindyck, (1994), emphasizes
the combination of irreversibility and uncertainty as a key determinant of
investment dynamics. In single discrete projects or cases where capacity can
be incrementally augmented, this approach highlights the role played by the
value of the opportunity of waiting for more information. Because of irre-
versibility there is an opportunity cost of investing now rather than waiting.
The firm waits to learn more about the uncertain future to reduce its op-
erative costs. An optimal investment decision requires an expected rate of
return from the project which is much higher than the NPV criterion would
have indicated (i.e. long-run average cost).

Dixit (1993) adds to this result an extra option value of waiting when the
investment involves choosing among mutually esclusive irreversible projects
of different scale. In the output capacity-costs trade-off the firm finds it
preferable to bypass currently feasible projects because in the future a differ-
ent (higher) scale project will turn out to be more profitable. The purpose
of this paper is to show that Dixit’s intuition for investment can be extended
to the case of disinvestment, for a multiplant firm. Specifically, we consider
a firm endowed with n separate plants, each of which produces a different
fixed output capacity flow. When the future output price is uncertain, the
firm may adjust its capacity by closing some plants. However, disinvesting
is costly and irreversible. Choosing which plant to abandon depends on the
relationship between capacity scale and exit costs. If there are increasing
economies of scale (i.e. elasticity of exit costs with respect to output ca-
pacity is lower than one), the plants are ranked in decreasing order and the
optimal choice is to scrap the largest plant first. On the contrary, if there
are decreasing economies of scale it may be optimal to shut down an inter-
mediate plant. Furthermore, the output price triggering such disinvestment
is lower than the trigger price when capacity can be incrementally decreased.
This means that it is optimal to wait longer before committing to an irre-
versible disinvestment decision. Thus, decreasing economies of scale amplify
the effect of uncertainty and tend to increase the plant’s life.

Put together, these theoretical results partly explain the difference in the
relation between firm exit and firm size that has been analysed by recent
works on firms’ selection processes. They challenge the already conventional
wisdom of small business flexibility and their superior ability to survive in



declining industries where large firms tend to fail.!

In the next section of the paper, we set up a simple model of a multiplant
firm. In section 3, we examine the discrete capacity adjustment. In section
4, we extend our model to consider continuous capacity adjustment. Section
5 contains the conclusions.

2 The basic set up

The formal structure of the model presented consists of the following notation
and assumptions.

e Al. The firm has n plants indexed by j, j = 1,2...n. Each plant
produces an output capacity flow X; ranked in increasing order. Total
output is given by X = 37 X;.2

e A2. The flow cost of maintaining capacity is ¢ per unit and there are
no other operating costs. Production is constrained by capacity. Setup
costs preclude addition of new plants or use of previously withdrawn
plants.

e A3. The firm adjusts its capacity by deciding to abandon some plants.
Scrapping is irreversible.

e A4. The firm incurs a lump-sum cost K to abandon plant j. This cost
will be positive if disinvestment costs predominate (e.g. liquidation
payments to workers or costs of restoring the site of a mine etc...,) or
negative if the withdrawn plant has a sufficiently large salvage value.
We consider positive exit costs as a benchmark case.

A.5 Output price p follows a geometric Brownian motion,

dp; = apidt + opdW;  with 0 > 0 and py = p. (1)

!'We refer here to the difference between the striking prediction by which the pattern
of exit in a declining industry depends on firms size ordering: large firms are the first to
reduce capacity (Ghemawat and Nalebuff, 1985, 1990), and the robust empirical result by
which the selection pressure is fairly strong at the bottom of the industry size distribution
of firms (smaller firms) while it appears to fall off considerably as one approaches the top
of the distribution (Davies, Geroski and Vlassopoulos, 1991; Geroski, 1991).

2For sake of simplicity, we assume that the plants, once installed, last forever.



where dW; is the increment of a standard Wiener process satisfying the
conditions E(dW;) = 0, and E(dW}?) = dt. By (1) as E(p; | p) = pe™,
assuming a < 0 means that the expected flow of operating profits is
expected to decrease over time. However, if operating profits decrease
the state variable p; tends to zero, which represents an absorbing state
for it. The price’s possibly negative average rate of growth « is taken
as constant over time.?

e A.6 The firm is risk-neutral and p (> |«a/|) is the constant discount rate.

e A.7 If the output price is zero, exit costs are not sufficiently large to
prevent the firm from scrapping the plant, i.e. cX; > pKj.

3 Discrete capacity adjustment

Defining V,,(p) as the competitive valuation of the firm with n active plants,
by standard methods it is easy to show that it must satisfy the following
Bellman equation (Dixit and Pindyck, 1994, pp. 179-182):

1
30 PVa () +aVi(p) = pValp) + (p — )X =0 (2)

Imposing the condition that the firm’s value must be bounded when the
output price becomes very large, i.e. V,(oc0) = 0, a general solution of (2)

will consist of two parts:

Valp) =Anp—ﬂ+< ? ——) X, )

where A,, is a constant of integration to be determined and —/ is the negative
root of the characteristic equation ®(3) = 3026 + (a— 306°)3— p = 0. From

(). (3%~
by n plants that are active forever, starting from an initial price p (Harrison,
1985, p.44). On the other hand, the term A, p~? indicates the value placed by

the firm on its ability to optimally adjust its capacity in the future. In other

) X indicates the expected discounted value of profit flows given

3An extension, giving a more detailed analysis of pressure that a shrinking demand
may create on the firm’s capacity, may be to consider an inverse demand function of type
p(X;e) = D(X)e with D'(X) < 0, and de;, = agdt + oe,dW;. However, this extension is
algebraically more difficult and adds few new insights.
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words, it is the current value of its options (puts) of abandoning production
by all or some of the plants in the future. Then, A,, should be positive.
Intuition suggests that a firm with n active plants will decide whether to
abandon a plant, when to abandon it and which plant to abandon when de-
mand conditions become sufficiently adverse. In particular, the firm decides
to exercise the option if the price falls to a threshold p far below operating
costs c¢. This threshold will depend on the relationship between the plants’
productive capacity and their relative exit costs. We will find the value of
this critical value in terms of exogenous data. To show this, let us start by
supposing that the firm has decided to abandon the plant i € (1,2,......N).
We indicate with n_; the strategy of the firm with n plants apart from the
i-th (we will later find the plant that looks worst at this time). Then, using
the above arguments, the value of the firm with n_; active plants is given by:

C

Vo (p) = Aw p P + ( P
p—a p

) x -, 0

where (X — X;) = 0, 1, X; = £17 X5, Tn(4), (52 — £) (X — X;) is the
expected discounted value of profit flows with n_; plants active and A,,_,p—?
is the value of its options to abandon more plants in the future.

The firm considers abandoning the ¢-th plant if there is a critical level
of price p; satisfying the following matching value condition (5) and smooth

pasting condition (6) (Dixit and Pindyck, 1994, pp.182-184):

Vn(ﬁi) = ani(pi) - K; (5)

Vo (p) =V, (i) (6)

We may simplify the analysis defining G;(p) = V,.(p) — V,h_.(p) as the

firm’s incremental value of keeping the i-th plant operative (i.e. the marginal

benefit of plant 7). Thus, pointing out the dependence of the coefficients A
on the critical level p;, we get:

_ - D c
Gi(p; pi ZAAiPiPﬁ‘i‘( __>Xz'7 7
i) = My + (2= = (7
where (p_La — %) X; is the discounted value of profit flows coming from plant

i operating forever, while the difference AA;(p;) = [A.(Di) — A, (Di)]p™?



stands for the value of the put option to shut down the i-th plant in the
future if the price falls below the level p;. Making use of (7) the value matching
condition and the smooth pasting condition also simplify:

Gi(pi; pi) = — K, (8)

Gi(pi; i) = 0. (9)
The difference AA;(p;) remains to be determined as a function of the

critical level p; by the above matching value and smooth pasting conditions.
Simple calculation shows that:

Up=B)B v 5,5 _ pgiy+o > 0 (10)

M

and:

B p-a K;
Pi—m P (C_Pz)~ (11)

By A.7, the option to shut down is viable for the firm, i.e the exit price
p; > 0. Moreover, as 0 < —% < 1, the optimal threshold p; under uncertainty
is lower than the Marshallian one with static expectations. The firm keeps
alive the plant longer in the hope of recovering losses.*

As the aim is to choose the plant to scrap maximizing (7), we note that
the choice of p; affects G;(p; ;) in a very particular way. Since p=@ is always
positive, any change in p; either raises or lowers the whole function G;(p; p;),
depending on whether AA;(p;) increases or decreases. This greatly simplifies
the maximization, we should simply choose p; to maximize AA;(p;). There-
fore, by (10), maximizing the put option simply means choosing among the
n plants the one for which the term X, ?(cX; — pK;)'*# is greater.

Figures 1la and 1b illustrate the above results and how they depend on
the underlying relationship between capacity and exit costs for a firm with
four plants. Using Dixit’s (1993) notation, we write:

Gi(p; pi) + K; = Fo(p; pi) — Ex(p), (12)

4With positive exit costs, if & > £ the plant is never abandoned. Comparative statics
X o
J

. . . _ K; o K
are as usual: as c increases p; increases; if 0 — 0, p; — (c—p=£) and, for 0 > 0,if 3£ — 0
7 7

dp;

a5, /%; — 0. See Dixit (1989) for more details on comparative static results.



where now:

Fo(p; i) = AA;i(pi)p °, and  Fy(p) = — ( £
p—a p
The first term on the r.h.s. of (12), Fo(p), is the value placed by the firm
on the option to close plant i. When abandonment is actually carried out,
the firm gains the value of the put option thus exercised, but loses both the
expected present value of future profit flows that it would gain if the plant
remained active as well as the exit cost, that is Fj(p).> The value matching
condition (8) equates the balance of these two effects and (9) determines the
optimal price level for making the decision.
For each plant, the firm is able to valuate F;(p) which is represented by
a negative straight line. So, to maximize the put option, we need only to
calculate the tangencies of Fy(p) witheach of the straight lines F;(p) and
select the one with the highest AA;. p; is also determined by the tangency.
According to the relationship between capacity and exit costs two possible
configurations may emerge:

C

>&—m

e (a) Larger plants have higher than proportionate exit costs.
e (b) Larger plants have less than proportionate exit costs.

In (a) the straight lines intersect in the positive ortant so that their upper
envelope form a decreasing convex function. In this case the tangency may
occur in each of the four plants. In fig.1a this occurs for ¢« = 3. If the price is
above p3, the firm finds it optimal to wait and scraps plant 3 when the price
falls to this level. Obviously, if only plant 1 were active, it would have been
abandoned at a higher threshold price given by the tangency of Fy(p) with
a lower constant A Aand F;(p). However, in the multiplant case, plant 3 is
better placed in the cost-capacity space (K,X) so that the firm finds it
convenient to keep plant 1 active and wait for the price to fall sufficiently
low to withdraw plant 3.

In (b), on the other hand, the straight lines intersect only in the negative
ortant. The plants are ranked in decreasing order starting from the largest
one, i.e. plant 4 in fig. 1b. This would be the first to be scrapped.

< Figures 1a and 1b about here >

When the firm decides to scrap the plant the price is so low that (pra — %) <0.
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4 Continuous capacity adjustment

To get more precise results on the trade-off between exit costs and capac-
ity, we may generalize the maximization of X;?(cX; — pK;)*? allowing the
firm to adjust its size continuously. Suppose that the capacity continuum is
indexed by X < X and the corresponding exit costs are given by the “cost
function” K = C(X). Here we refer to a firm endowed with a perfectly divis-
ible plant, as though it consisted of so many Lego© bricks, of maximum size
X. The firm has to decide which plant in terms of how many bricks to scrap,
taking account of the relationship between exit costs and capacity given by
C.

For an interior optimum the first order condition requires:
eX* = pC(X") + (1 + Hp(C(X") — XC(X)) = 0, (13)
or rearranging:

X*C'(X*) B cX*

CX) 145 01Xy

From (13), a necessary condition for an optimal solution is a cost elasticity

J—ZXC?('X))( > T% > 1.% This elasticity is greater than one when the average costs

ﬂXﬁ are increasing. Thus, larger plants have higher than proportionate exit
costs or there are decreasing economies of scale (case (a) above). When this
condition does not hold, that is if larger plants have lower than proportionate
exit costs or there are increasing (or constant) economies of scale (case (b)
above), the optimum would be a corner solution on the extreme left-hand
side. This corresponds to an optimal policy of waiting to scrap the largest
plant in the spectrum of output capacity, i.e. to scrap the entire firm, X* =

X.7

6Tt goes without saying that if exit costs are negative and no operating costs are present,

condition (13) reduces to: %%l = T-%@ > 1. This is analogous, for exit, to the one

proposed by Dixit(1993). For a firm that can incrementally contract its capacity see also
Dixit and Pindyck (1998).

"It is worthwhile, however, to note that although the presence of decreasing economies
of scale is a necessary condition for (13) to hold, it is not suffcient. By the second-order
condition ¢—pC'(X™*) — (1 +3)pX C"(X*) < 0, after some manipulation, the cost elasticity

must also satisfy XCC()/((f())

need C”(X*) > 0.

<1+ <1—Eﬁ ) <X*§&/;()X*) . Then, for an interior optimum we also



Another way to see the same result is to refer to the interpretation
given by equation (3). As long as the firm’s option value to decrementally
abandon the (dX)th unit of its capacity is given by (10) and dX #(cdX —
pC'(X)dX)HP = (c—pC'(X))HPd X, we are able to recover A by integration.
That is:

0= ["ia= e [ e @) e

If the economies of scale were constant instead of decreasing, the value
of future capacity adjustment would be larger the larger the size of the firm,
i.e. max [A(X)] = A(X). On the contrary, if the economies of scale decrease
sufficiently rapidly the value placed by the firm on its options to reduce
capacity in the future does not concern its entire size, i.e. max[A(X)] =
A(X) where X* < X < X.

Assuming that an interior optimum exists, let us now return to the aspect
that interests us most, the fact that the relation between output scale and
exit costs indicates an extra-option value of waiting. To highlight this option
value we compare our case with the textbook case where capacity can be
incrementally increased/decreased and all units of capital share the same
exit costs (Dixit and Pindyck, 1994 ch.11). Expanding in a Taylor series
the cost function and ignoring terms of order greater than second yields
C(X) = C'(0)X + 3C"(0)X?, with C'(0) > 0 and C”(0) > 0. Substituting
this expression in (11) and (13) we obtain:

PX) = S e p00) - S P eoxe, )

and X* is given by:

(c = pC(0) X" - pC"(0)(X™)* =0. (16)

With C”(0) = 0, the model is equal to the textbook one. C'(0) = £

indicates the exit costs per unit of capital installed and the price triggering
disinvestment becomes independent from the firm’s scale. When the price
falls to Pees = E%%(c — pC"(0)) the firm finds it optimal to disinvest,
condition (16) determines how many units of capital should be abandoned.
However, as all units have the same exit costs the optimal decision is of
binary type comparing the smallest and the largest plants. In particular, as

c— pC'(0) > 0 then X* = X, and the entire firm will be scrapped.

2+ )
2
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When C”(0) > 0 the firm may find it optimal to scrap only a part of
its productive capacity, so that X* = %J%,%% < X. Furthermore, as the
direct value of an incremental unit of capacity 1s constant but the value of
the put option on that unit decreases p(X) also decreases. That is, the price
that triggers such disinvestment is lower than the trigger price under constant

economies of scale:

1+8| B p—«
(c=pC(0)| =5/
240 |18+1 p 240
Thus, decreasing economies of scale hasten the effect of uncertainty and
increase the plants’ life, contrary to the conventional constant economies of

scale textbook case. Finally, a larger o lowers § and then both -2~ and

B+1
%. By (17), this means that greater uncertainty makes it optimal to wait

until a lower threshold price is reached and then, by (16), to disinvest in
a larger plant. To illustrate this effect and to show how it depends on the
instantaneous variance of output price, we presents a numerical solution,
normalizing the operating and exit costs at ¢ = 1 and C"(0) = 10 respectively.
Yet, p = 0.05, p—a = 0.04, and for the standard deviation of the output price
o =0, 0.2, 0.3 (at annual rates). Given this parameter values we obtain:

s, (a7

Pdes =

o=10.0 0.2 0.3
-0 0.000 | 1.3508 | 0.7346
E% 0.000 | 0.5746 | 0.4235
;—I% 0.500 | 0.7016 | 0.6343
Dees 0.500 | 0.2298 | 0.1694
Ddes 0.250 | 0.1612 | 0.1074

Thus the simple NPV rule, which says that the firm should disinvest as
long as the output price falls short of the variable cost corrected for the
marginal abandonment cost, ¢ — pC’(0) = 0.5, is in error. For this set of
parameter values and with constant economies of scale, the price threshold for
disinvestment will fall dramatically to 0.2298 and 0. 1694 with volatility 0.2
and 0.3 respectively. Furthermore, we observe that with decreasing economies
of scale the threshold will decrease even further, i.e. 0.1612 and 0.1074 with
volatility 0.2. and 0.3 respectively.
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5 Conclusions

The policy implications of the model are worth discussing. Firms with dif-
ferent scale economies respond differently in terms of capacity adjustment.
While with increasing economies of scale they respond by abandoning the
largest installed plant as soon as possible, with decreasing economies of scale
they may tend to increase the plants’ life. Moreover, the volatility of the
economic environment is an important impediment to disinvestment. This
means that policies aimed at restructuring an industry facing a shrinking
demand by granting subsidies for scrapping the oldest plants, have smaller
effects on firms with decreasing economies of scale than on firms with increas-
ing economies of scale. On the contrary, policies designed to reduce volatility
have relatively more effect on firms with decreasing economies of scale than
on firms with increasing economies of scale.
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Fig.1a, Put Option Value, Fy(p;p;), and  Fi(p),i=1,2,3,4.

Fig.1b, Put Option Value, Fy(p;p;), and  Fi(p),i=1,2,3,4
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