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1 Introduction

The constitution of each nation establishes who has a right to citizenship, and col-
lectively, constitutions constrain migration among nations. In addition each nation’s
constitution typically defines the right of its citizens to migrate internally between
provinces and cities. Westerners typically have the right to move freely within their
countries, and the European Union has extended this right across national boundaries
as well. However some countries have been reluctant to join the E.U. precisely because
they fear immigration. Immigration policies are also controversial in other countries,
such as Canada and the U.S.

Controversies over immigration lead us to ask what a good immigration policy would
be, when one considers global efficiency, rather than national interests. Much of the
current debate in the economics literature (see Borjas (1994,1995)) takes the partial-
equilibrium perspective of the host country, asking whether externalities on the labor-
market and elsewhere are on net positive. In this paper we take a broader perspective
that accounts for welfare effects in both the host country and countries of origin.
From this broader perspective we have found few arguments, at least from economists,
claiming that the rules we observe are good ones. This is a startling omission, given
that economists implicitly study immigration rules whenever they study local pub-
lic goods economies. Every equilibrium concept for jurisdiction formation, whether
non-cooperative or cooperative, implicitly contains an immigration rule: Free mobility
contains the rule that an individual can migrate to any jurisdiction, whether or not
the members wish to accept him.3 The core concept implictly contains the rule that a
group of individuals can be expelled from a jurisdiction if all the other members wish
to exclude them (they can form a blocking coalition). 4

The purpose of this paper is to introduce three new non-cooperative concepts of equi-
librium that seem to reflect constitutional rules. These equilibrium concepts differ in
the power of current residents to exclude immigrants, but all have the feature that any
resident is free to leave. We compare the following, of which the first is already studied
in the literature:

3See Westhoff (1977), Epple, Filimon and Romer (1984, 1993), Guesnerie and Oddou (1981),
Greenberg and Weber (1986), Konishi (1996), Jehiel and Scotchmer (1993,1997).

4For an early application of the core concept to jurisdiction formation, formulated as clubs, see
Pauly (1967,1970).
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• No exclusion rights (free mobility);

• Admission by majority vote;

• Admission by unanimous consent.

• Admission below a threshold of demand for public services.

Throughout the paper we assume that citizens vote on public goods in each jurisdiction
after it is formed, and share the costs equally. When an individual considers moving
to another jursidiction, or before residents admit an immigrant, they predict the effect
on the public good. The internal rules of voting on public goods and sharing the costs
are designed to reflect democratic ideals and redistributive concerns, but also create
a disagglomerative force: Citizens with low demand for public goods will not want to
share the high cost of public goods in a high-demand jurisdiction, and might therefore
want to migrate to a low-demand jurisdiction or form a new jurisdiction.

The objective of the paper is to analyze how citizens are partitioned into jurisdictions
under the above immigration rules. For each rule, we ask which partition is stable.
A partition is said to be stable whenever either no individual wants to migrate to
another jurisdiction, or such migration would be prohibited by the immigration rule.
For example, when the rule is admission by majority vote, a partition is stable if, when
an individual wants to migrate to jurisdiction A, a majority of members of A oppose
it. When the rule is admission by unanimous consent, a partition is stable if, when
an individual wants to migrate to jurisdiction A, at least one of the previous residents
in A opposes it.5 In the threshold rule, low-demand immigrants have a right of free
mobility, but an immigrant is subject to veto by any resident if his demand for public
services is higher than that of other residents. This latter rule seems close to the ones
observed in North America, where immigrants must show professional qualifications,
or otherwise demonstrate that they will not burden the public coffers.

We show the following relationships among the admissions rules.

First, a partition that is stable under the most permissive immigration rule, i.e. free
mobility, is also stable under any other immigration rule. This is because under the
most permissive rule an individual never considers moving to another jurisdiction.

5This idea differs from the concept of “core” in that coordinated defections are not allowed. We
maintain the noncooperative idea of individual action in all four migration rules

2



Second, the partitions that result from admission by majority vote and from free mo-
bility are respectively unique, and they coincide. Thus the restriction that a majority
of previous residents must approve of an immigrant has no restrictiveness relative to
free mobility. This is a robust result with an intuition that goes beyond the model
presented here. The reasoning is as follows. An (infinitesimal) immigrant changes the
median voter in a way that pleases half the population – the half whose demand for
public services is on the same side of the median as the immigrant’s.6 In addition, the
entire population benefits from sharing the cost of public services with more people.
Thus, at least half the population support the admission of any immigrant, and the
only relevant criterion is the free mobility criterion: No individual wants to migrate,
ignoring the question of whether he would be welcome.

Third, although free mobility and admission by majority vote give the same unique
partition, the more exclusive immigration rules of unanimous consent and admission
below a threshold can lead to many partitions.

The welfare effects of the four admission rules are hard to disentangle. Migration
presumably improves the utility of the migrant, but whether it improves social welfare
is ambiguous. Uncompensated externalities arise in the host jurisdiction because there
are no side payments to account for the external effects of migration on public goods
and taxes. We present a positive and normative theory to compare the four rules.

In Section 2 we present a model with heterogeneous tastes that allows us to address
our question. Although the model is simple, it captures the key feature of interest:
that agents have different preferences for public goods, which, together with equal cost
sharing, creates a disagglomerative force.

Because some immigration rules (in particular the third and fourth) can lead to many
different partitions, it is delicate to compare admission rules from either (i) a welfare
point of view or (ii) a positive point of view. On the welfare side, free mobility and

6Strictly speaking, there is an indeterminacy for those citizens who are very close to (even if on
the same side as) the median voter as to whether the change of median voter is favorable to them.
However, the effect even if negative is negligible relative to the cost sharing effect, therefore leading
to the same conclusion. To see this, observe that a marginal change of the median voter results in a
marginal change in the choice of public good. A marginal change in the amount of public good has
a negligible effect on the median voter’s payoff because by definition of the median voter the original
amount of public good maximizes his payoff (and thus the marginal effect must be zero). In contrast,
the cost sharing effect is of order 1.
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admission by majority vote provide lower average utility than some partitions that are
equilibria under admission by unanimous consent, and the reverse holds for others.
However, among the partitions that can arise with the four fules, the one that maxi-
mizes average utility is only stable under the very strong exclusion rule, admission by
unanimous consent. On the positive side, we investigate whether a given admission
rule (and equilibrium partition) is stable in the sense that citizens would vote against
changing it. This depends on their beliefs about the ensuing equilibrium partition if
the rule is changed. We define two notions of (rule)-stability, and show what rules are
stable. This investigation is in the spirit of recent contributors on constitutional choice
(e.g., Buchanan (1991)), who veer between the normative and positive, recognizing
that individual choices are always preceded by institutional rules.

In Section 3 we characterize free mobility equilibrium, adding to what is known already
in the literature. In Section 4 we introduce the notion of equilibrium with admission
by majority vote and show that it coincides with free mobility equilibrium. In section
5 we characterize equilibrium with admission by unanimous consent and equilibrium
with admission below a threshold. In Section 6 we give positive and normative theories
of exclusion.

2 Model

We assume that individuals have heterogeneous preferences for a public good. The
public good is provided locally, and benefits only the residents of the jurisdiction.
Individuals form jursidictions knowing that afterwards they will vote on the public
services and share the costs equally. We ask which partitions of the population into
jurisdictions are stable under various immigration rules.

Preferences and Costs: We suppose that consumers have different taste parameters
θ ∈ (θo, θ

o), for a public good, and that the taste parameter is distributed uniformly
with measure one on each unit interval. We assume 0 < θo < θo < ∞ unless stated
otherwise. The preferences of a consumer of type θ can be represented θz − t, where
z is the public good he consumes and t is his tax. For simplicity we take the cost of
z as z2. (The precursor to this paper showed how the result extends to more general
cost functions.) The restriction to such a cost function makes preferences single peaked
within jurisdictions, and thus allows us to focus on existence issues in partitioning the
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population, rather than existence issues in the internal governance of jurisdictions.

Jurisdictions: A jurisdiction, say A, is a finite union of intervals in (θo, θ
o). We

adopt the convention that each interval is closed on the left and open on the right,
except the highest interval, which is also closed on the right. A partition of (θo, θ

o) is
a collection of jurisdictions {Ai}k

i=1 such that ∪k
i=1 Ai = (θo, θ

o) and Ai ∩ Aj = ∅ for
all Ai, Aj in the collection. We make no a priori restriction about the total number of
jurisdictions and k may either be finite or infinite. We let P represent the set of all
partitions.

Internal Governance: In order to analyze the partitioning of the population into
jurisdictions, we need to know the public goods and taxes that will ensue in each
jurisdiction after it is formed. Individuals in each jurisdiction, say A, vote on the
level of public goods (or equivalently on expenditures) knowing that costs will be
shared equally. By equal cost sharing we mean that if z is the amount of public
good in jurisdiction A, each individual θ ∈ A pays the same tax t = z2/|A|, where
|A| is the measure of A (or the “number” of individuals in jurisdiction A in more
intuitive terms). The voting outcome for public goods is well defined in each jurisdiction
because consumers’ preferences on expenditures are single peaked. We let z(A) refer
to the public goods chosen by the median voter in a jurisdiction A, namely z(A) ≡
1
2

θM(A)|A|, where θM(A) is the median voter in jurisdiction A. (This follows from the
observation that the most preferred level of public good of individual θ in jurisdiction
A is 1

2
θ|A|.) For a jurisdiction A we let U(·, A) : (θo, θ

o) → IR refer to the utility of

individual θ if he belongs to jurisdiction A, namely U(θ, A) ≡ θz(A) − z(A)2

|A| . For an

arbitrary partition P ∈ P, we define u(·; P ) : (θo, θ
o) → IR+ as follows.

u(θ; P ) = U(θ, Ai) if θ ∈ Ai and Ai ∈ P

We will use

U(θ, A) = θz(A)− z(A)2

| A |
= 1

2 θM(A) |A| [θ − 1
2 θM(A)] (1)
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and, taking θ fixed,

d U(θ,A) = 1
2 |A| [θ − θM(A)] dθM(A) + 1

2 θM(A) [θ − 1
2θ

M(A)] d|A| (2)

If each jurisdiction contains a single interval, say Ai = (θi−1, θi) for each i = 1, ..., k, the
“number” (measure) of members of jurisdiction i is | θi − θi−1 |, and the median voter
in the jurisdiction is θM = θi−1+θi

2
. Thus the public good provided in jurisdiction Ai

is z(θi−1, θi) = 1
4(θ

2
i − θ2

i−1). By continuity, we assume that an individual consumes no
public goods and receives zero utility if he occupies a jurisdiction alone. (In the sequel,
we will make the assumption that there are always exist unoccupied jurisdictions to
which an individual can move.)

The model has been chosen so that the constitutional rules for internal governance lead
to efficient provisions of public goods within interval jurisdictions, and this permits us
to focus on the inefficiency of partitioning. The internal efficiency follows from the form
of the utility function, the uniform distribution of θ, and the fact that jurisdictions are
intervals.

3 Free Mobility Equilibrium

A partition into jurisdictions is a free mobility equilibrium if no “individual” wants
to migrate to another jurisdiction. Residents in a jurisdiction therefore have no right
of exclusion, since an individual can immigrate whether or not the previous residents
wish to accept him. It is also possible to migrate to an unoccupied or “singleton”
jurisdiction, and consume no public good. An individual must be enticed, and not
compelled, to belong to some jurisdiction in society.

Definition 7 A free mobility equilibrium (FME) is a partition P = {Ai}k
i=1 of the

population (θo, θ
o) such that for some b > 0

7In the precursor to this paper, the definition included a stability condition. That condition is
implicit here, since we consider migration by non-infinitesimal intervals of agents.
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1. for every interval B ⊂ (θo, θ
o)\Ai with 0 < |B| < b, U(θ, Ai ∪B) < u(θ; P ) for

some θ ∈ B.

2. u(θ; P ) ≥ 0 for all θ ∈ (θo, θ
o).

We refer to the set of partitions that are free mobility equilibria as P(FME). (With
the preferences described it will be a singleton.)

In the definition, the coalition B represents a migrant “individual”, since the parameter
b can be chosen arbitrarily small. Thus, although we use the continuum for convenience
in using the calculus, we capture the notion that individuals are not really infinitesimal,
and a migrant affects the level of public spending in his new jurisdiction. For a given
partition P of the population, the notion of free mobility is that B wants to move to
Ai if no θ ∈ B reduces his utility by joining Ai. The partition P is a free mobility
equilibrium if no small B wants to move (condition 1.), and if every individual receives
at least as much utility as in a singleton coalition alone, namely zero (condition 2).
Proposition 1 characterizes FME, and equilibrium utilities are graphed in Figure 1.

Proposition 1 (Characterization of free mobility equilibrium)

1. P ∈ P(FME) if and only if P satisfies (a), (b), (c) below.

2. If P ∈ P(FME), the measure of the highest-θ jurisdiction is more than half the
measure of the population.

3. P(FME) contains a unique partition with a finite number of jurisdictions, but the
number becomes unbounded as θo →∞.

(a) Every jurisdiction Ai is an interval, say (θi−1, θi).

(b) For i = 1, . . . , k − 1, U(θi, Ai) = U(θi, Ai+1).

In addition, θi+1

θi
= f( θi

θi−1
), where f is defined by f(λ) = 1+λ+

√
13λ2+6λ−3
2λ
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(c) θi

θi−1
≤ 3 for i = 1, . . . , k

The intuition behind Proposition 1 is as follows. (a) Utility functions have a single
crossing property, namely, if θ

′
and θ

′′
prefer jurisdiction A toB so does any θ ∈

(θ
′
, θ

′′
). From this it follows that jurisdictions must be intervals. (b) Taking the

limit as b goes to zero in the definition of FME imposes that the boundary point θi

must be indifferent between joining jurisdiction Ai or Ai+1 (otherwise locally every
individual would strictly prefer either one or the other jurisdiction contradicting the
premise that locally there are individuals in both Ai and Ai+1). For the functional
forms considered here and for fixed θi−1and θi+1 such that θi+1 ≥ 3θi−1, there are two
values θi that solve U(θi, [θi−1, θi)) = U(θi, [θi, θi+1)). These are depicted in Figure 4
in the Appendix. However, only one of them satisfies the stability requirement that is
implicit in considering migrant sets B of small measure in the definition of FME. Some
manipulations lead to the expression θi+1

θi
= f( θi

θi−1
). (c) follows from the observation

that when the jurisdiction is too large, individual θi−1 of Ai would prefer to move to a
singleton jurisdiction.

The number of jurisdictions in a free mobility equilibrium is endogenous and turns out
to be unique. If the number were too small, some jurisdictions would be “large”, and
the low-θ individuals in those jurisdictions would prefer to be alone. If the number
were too large, (some) individuals would migrate such as to achieve economies of scale
in providing public goods, thus reducing the number of jurisdictions.

We have described free mobility equilibrium as a benchmark against which to compare
equilibria with alternative admission rules. Free mobility equilibrium has been well
studied in slightly different models (see Westhoff (1977), Epple et al. (1984,1993)).

4 Admission by Majority Vote

The idea behind free mobility is that a jurisdiction cannot prevent immigration, and it
cannot expel residents. While the right to expel residents is rare (perhaps unknown) in
constitutions, the right to prevent immigration is common. One might even say that
the right to prevent immigration defines a jurisdiction as a nation.
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The admission rule in the following equilibrium concept is that an immigrant will be
admitted if (i) he wants to come, and (ii) a majority of the jurisdiction votes to accept
him, anticipating the effect this will have on the level of public good and local taxes.

Definition An equilibrium with admission by majority vote (MVE) is a partition
P ≡ {Ai}k

i=1 such that for some b > 0:

1. If there exists an interval B ⊂ (θo, θ
o) with 0 < |B| < b and U(θ, Ai ∪ B) >

u(θ; P ) for all θ ∈ B, then there exists C ⊂ Ai such that |C| ≥ 1
2 |Ai| and

u(θ; P ) > U(θ, Ai ∪ B) for θ ∈ C ⊂ Ai.

2. u(θ; P ) ≥ 0 for all θ ∈ (θo, θ
o).

We refer to these equilibrium partitions as P(MV E) .

Condition 1. says that in equilibrium no agent (small B) that wants to immigrate
would be accepted by a majority of the previous residents. Condition 2. says that
every agent must receive nonnegative utility in equilibrium because he has the option
to emigrate to a singleton jurisdiction and receive zero utility.

Lemma 1 P ∈ P(MV E) if and only if (a), (b) and (c) listed in Proposition 1 are
satisfied.

Proposition 2 P(MV E) = P(FME).

The “if” part of the Lemma means that P(FME) ⊂ P(MV E): If P ∈ P(FME),
then by Proposition 1, (a)-(c) are satisfied, and hence P ∈ P(MV E). The reason for
the inclusion is clear: If no individual (small B) wishes to join another jurisdiction,
then it is irrelevant whether a majority of the jurisdiction would vote to accept him.

The “only if” part of the Lemma, which implies that P(MV E) ⊂ P(FME), is less
immediate. In FME, residents of a jurisdiction have no power to exclude potential
immigrants. In MVE, immigration can be prevented if a majority vote against it.
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Consequently there could conceivably be partitions that are stable in the sense of
MVE that are not stable in the sense of FME, but this turns out not to be true for the
intuitive reason given in the Introduction, which is developed formally in Claim 1.

Proof of Lemma 1: (Only If) We use the following Claim, which says that there
is a majority in any jurisdiction Ai who would vote for the annexation of any small
coalition B.

Claim 1 Let P ≡ {Ai}k
i=1 be a partition such that u(·; P ) ≥ 0. For each Ai in the

partition and each θ 6 ∈Ai, there is a small neighborhood B containing θ and C ⊂ Ai,
|C| ≥ 1

2 |Ai|, such that U(θ, B ∪ Ai) > u(θ; P ) for every θ ∈ C.

Proof: The annexation of any small interval B to Ai will increase |Ai|, and either
dθM(Ai) = 1

2d|Ai| or dθM(Ai) = −1
2d|Ai|. The result follows by equation (2). The

first term is nonnegative either for θ ≥ θM(Ai) or for θ ≤ θM(Ai) (half the members
of Ai in both cases), and the last term is positive by equation (1) for all θ ∈ Ai, using
U(θ, Ai) ≥ 0 for θ ∈ Ai.

8 2

Claim 1 implies that if P ∈ P(MV E) , then u(·; P ) satisfies (4). But the proof of
Proposition 1(1)(Only If) shows that if no coalition wishes to migrate, then (a) and
(b) hold. And since coalitions are intervals by (a), it then follows from equation (4)
and condition 2. of MVE that (c) holds. 2

5 Admission by Unanimous Consent

The Explicit Vote Approach We have shown above that requiring a majority to
approve every immigrant has no effect. We now consider a more extreme admission
rule in which all, rather than only a majority, of the previous residents must vote for
the immigrant. Every previous resident has veto power.

8The proof is written for the case where θM is continuously differentiable. However, it may happen
for some sets Ai that θM be locally discontinuous. For such cases, it can be shown that exactly half
of Ai is happy to welcome B, thus resulting in the same conclusion.
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Definition: An equilibrium with admission by unanimous consent (UCE) is a partition
P ≡ {Ai}k

i=1 of (θo, θ
o) such that for some b > 0

1. There does not exist an interval B ⊂ (θo, θ
o) with b > |B| > 0 and U(θ, B∪Ai)

≥ u(θ; P ) for all θ ∈ B ∪ Ai, with strict inequality for some subset C ⊂ B ∪ Ai

with |C| > 0.

2. u(θ; P ) ≥ 0 for all θ ∈ (θo, θ
o).

We let P(UCE) denote the set of partitions that are equilibria with unanimous consent.

By condition 1., no agent (small B) could be annexed to Ai and make all the agents,
both in Ai and in the annexed subset B, better off. By condition 2., every agent is
better off in equilibrium than in a “singleton” coalition with no public goods.

There is no reason that jurisdictions in P(UCE) must be intervals; however the follow-
ing characterization applies in the case that they are, and Figure 2 shows the utilities
achieved in such a P ∈ P(UCE) with interval jurisdictions.

Proposition 3 (Characterization of UCE with interval jurisdictions)

(1) If P ∈ P(UCE) and each Ai ∈ P is a single interval, say (θi−1, θi), then (a), (b),
and (c) are satisfied.

(2) Consider a partition P such that each Ai ∈ P is a single interval, say (θi−1, θi). If
the partition P satisfies (a), (b) and (d), then P ∈ P(UCE).

(a) θi
θi−1

≤ 3 for i = 1, . . . , k.

(b) U(θi, Ai) ≥ U(θi, Ai+1), i = 1, . . . , k − 1.

(c) For i = 1, . . . , k − 1, if θi

θi−1
< 1 + 2/

√
3 then U(θi, Ai) = U(θi, Ai+1)
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(d) For i = 1, . . . , k − 1, θi

θi−1
> 1 + 2/

√
3.

The above Proposition shows that a partition in P(UCE) need not coincide with the
free mobility equilibrium partition. Thus, the admission rules are not equivalent.9

Specifically, condition (a) expresses the fact that if a jurisdiction is too large, then
the low-θ individuals would prefer to form a jurisdiction on their own, contradicting
condition 2. of UCE. Condition (c) expresses the fact that if the jurisdiction is too
small, then the low-θ members would favor an expansion at the upper boundary because
benefits of sharing the costs of public goods outweigh the disadvantage that the level
will be higher than they prefer. If condition (b) held with inequality, they would admit
members at the upper boundary.

The above Proposition characterizes UCE partitions in which jurisdictions are intervals.
However, UCE might alternatively group individuals inefficiently in a way that does
not minimize the intrajurisdiction variance in taste. Figure 3 shows a UCE partition
with two jurisdictions, each of which is the union of two intervals. It can be checked
that the partition is a UCE. High-θ agents in jurisdiction 1, which is (1, 2) ∪ (4, 6.16),
would be willing to join jurisdiction 2, which is (2, 4) ∪ (6.16, 7), but low-θ agents in
jurisdiction 2 would not agree to accept them. One can see this from equation (2),

which is negative if dU (θ,A2)
dθM (A2)

= 1
2 and dU(θ,A2)

d|A2|) = 1 when θM (Ai)
θ1

> 1+ 1√
3
. Similarly low-θ

agents in jurisdiction 2 would like to join jurisdiction 1, but low-θ agents in jurisdiction
1 would not agree to accept them for the analogous reason.

Admission Below a Threshold The definition of UCE assumes that there is an
explicit vote about the candidate immigrant, and if anyone objects, immigration is
denied. However two problems with such a vote are that it is administratively costly,
and it might be politically unacceptable. We therefore consider an indirect rule with
similar consequences.

9This should be contrasted with Greenberg and Weber (1986), Guesnerie and Oddou (1981), and
Konishi (1996) who obtain that a partition in the core is necessarily a free mobility partition. The
reason for their finding is that they assume the level of public good can be chosen at the time of the
coalition formation as opposed to after the coaltion formation through a voting mechanism as it is the
case in our model. As a result, in their framework if some individual is willing to join another group
he is always welcome, since the level of public good can always be kept constant (and thus only the
positive cost sharing effect arises).
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As can be seen in Figure 2, the main effect of the strong exclusion rule in UCE is
to exclude immigrants who would increase the public services. Low-θ individuals in
jurisdiction 2 would like to join jurisdiction 1, but the low-θ individuals in jurisdiction
1 will veto them because they will increase the demand for public goods. Since the low-
demand residents do not want to subsidize higher public goods than they desire, they
have an incentive to exclude high-demand individuals. Instead of having an explict
vote about each immigrant, we now assume that exclusion takes the administrative
form that in order to be eligible for unapproved immigration in jurisction Ai , the
candidate should have a taste parameter θ (demand for public services) no greater
than the highest demand θ of any resident in the jurisdiction. Only applicants with
higher demand can be vetoed. Of course such a rule can only be implemented if the
taste parameter is correlated with something observable like wealth, profession, or
family structure. In fact such screening variables are commonplace, particularly in
North America.

For an arbitrary partition P ≡ {Ai}k
i=1, let {θi}k

i=1 satisfy for each i, θi = sup{θ ∈ Ai}.

Definition: An equilibrium with free admission below a threshold (TE) is a partition
P ≡ {Ai}k

i=1 of (θo, θ
o) such that for some b > 0:

1. For every10 B ≤ θi, if 0 < |B| < b and B∩Ai = ®, then U(θ, Ai∪B) < u(θ; P )
for some θ ∈ B.

2. For every B > θi with 0 < |B| < b, if U(θ, B ∪ Ai) ≥ u(θ;P ) for all θ ∈ B,
then there exists C ⊂ Ai with |C| > 0 such that U(θ, B ∪Ai) < u(θ; P ), θ ∈ C.

3. u(θ; P ) ≥ 0 for all θ ∈ (θo, θ
o).

Condition 1. says that in equilibrium no individual with θ ≤ θi wants to move to
jurisdiction Ai. Free mobility is permitted below the threshold θi. Condition 2. says
that if an individual with θ > θi wants to move to Ai, the previous members would not
agree unanimously to admit him. (Agreeing to admit such individuals is equivalent to
unanimously deciding to relax the threshold.) Condition 3. is the usual requirement
that an individual does not prefer to form a singleton jurisdiction.

10We use the notation X < z (resp. ≤ z) to mean that for every x ∈ X , x < z (resp. ≤ z).
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The following Lemma is proved in the appendix. We let P(TE) denote the partitions
that are equilibria with free admission below a threshold, and are also robust in the sense
that, if P ∈ P(TE), then any sufficiently small perturbation of the boundaries of P
yields another partition in P(TE). This robustness condition allows us to characterize
all the equilibria. It means that small perturbations of the assignment of individuals to
jurisdictions would not alter their stability with respect to the rule. An interpretation
is that the assignment must be robust to a “tremble” in where indifferent citizens
locate.

Lemma 2 P∈ P(TE) if and only if each Ai ∈ P is a single interval, say (θi−1, θi),
and (a) - (c) hold:

(a) θi
θi−1

≤ 3 for i = 1, . . . , k.

(b) U(θi, Ai) > U(θi, Ai+1), i = 1, . . . , k − 1.

(c) For i = 1, . . . , k − 1, θi
θi−1

> 1 + 2/
√

3.

Proposition 4 P(TE) is a subset of P(UCE) with interval jurisdictions.

The Proposition follows immediately from the Lemma, using Proposition 3. In fact,
P(TE) contains all the partitions in P(UCE) that have interval jurisdictions, except
the one where condition (b) of Proposition 3 is an equality. (This is due to the robust-
ness condition of TE.)

A P ∈ P(TE) is represented in Figure 2. Free mobility below the threshold ensures
that a citizen with demand lower than the threshold of any jurisdiction cannot be
treated worse in equilibrium than if he immigrated to the jurisdiction. It follows from
this (using Lemma 3 in the Appendix) that if some jurisdiction were not an interval,
then there would be two jurisdictions with the same public goods and costs. But then
there would be some individual (small B) with demand above the median in both
jurisdictions. By immigrating to the other jurisdiction, he would raise the median and
make himself better off.
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As a prelude to our welfare comparisons in the next section, we now prove a proposition
relating the number of jurisdictions in TE with the number in FME or MVE.

Proposition 5 (Number of jurisdictions in TE) Given (θo, θ
o), suppose a parti-

tion P ∈ P(TE) has k jurisdictions, and that P FM ∈ P(FME) has kFM jurisdictions.
Then kFM ≥ k − 1.

6 A Positive Theory of Exclusion

We now ask which admission rule will be preferred and/or adopted. We assume that
voting is the political process that determines the admission rule, as well as determining
the provision of public services within jurisdictions.

We will think of the problem as follows. There is a current immigration rule and a cur-
rent partition that is an equilibrium under that rule. We ask whether citizens want to
overturn the current rule and partition in favor of another rule. However the following
problem arises: For the rules UCE and TE, the equilibrium partition is not unique,
and therefore citizens cannot reliably predict how well off they will be if they choose
such a rule. To address this problem, we will distinguish two notions of (rule)-stability
that differ according to the citizens’ beliefs about the ensuing equilibrium partition
under an alternative immigration rule. We say that the current rule and partition are
stable against an alternative rule in a weak sense if there is some equilibrium partition
for that rule that would be rejected by a majority. We say that the current rule and
partition are stable against an alternative rule in a strong sense if every equilibrium
partition for that rule would be rejected by a majority.

Formally, for two partitions P, P ′, let B(P ′, P ) be the set of θ who prefer P ′ to P :

B(P ′, P ) = {θ ∈ (θo, θ
o) | u(θ; P ′) > u(θ; P )}

We define the set of immigration rules IR∗ = {FME, MV E, UCE,TE}.An immigra-
tion rule profile is a pair (P, IR) such that IR ∈ IR∗ and P ∈ P(IR).

15



Definition An immigration rule profile (P, IR) is weakly stable if for all IR
′ ∈ IR∗

there exists P
′ ∈ P(IR

′
) such that |B(P ′, P )| < 1

2(θ
o − θo).

Definition An immigration rule profile (P, IR) is strongly stable if for all IR
′ ∈ IR∗

and all P
′ ∈ P(IR

′
) it holds that |B(P ′, P )| < 1

2(θ
o − θo).

Proposition 6 (UCE is strongly Stable) The only strongly stable immigration rule
profile is (P, UCE) where Ak = (1

3θ
o, θo), Ak ∈ P . This immigration rule profile is

also weakly stable.

Thus it may be hard to destabilize the most exclusionary rule, at least for some equi-
librium partitions. But the next Proposition shows that each of the four admission
rules may be weakly stable for at least one partition. Thus, it may explain why various
forms of admission rules arise. More precisely, each of the four admissions rules appears
to be weakly stable in concert with the free mobility partition, which is an equilibrium
for each of them. The free mobility partition provides smaller average utility than the
“best” stable partition under exclusion by unanimous consent.

Proposition 7 The immigration rule profile (P, IR) , P ∈ P(FME) , is weakly
stable for every immigration rule IR ∈ IR∗.

Proof: This follows directly from the definition, noticing that P ∈ P(IR), all IR ∈
IR∗.11 2

Instead of the positive approach to immigration policy proposed so far, we might
alternatively be interested in the welfare impacts of admission rules. Our measure of
welfare will be the average of all citizens’ utilities. The welfare criterion coincides with
the common objective of every citizen if the rule is chosen from “behind the veil of
ignorance”, i.e before the citizens know the realization of their taste parameter.

11For the ’admission below a threshold’ rule it only belongs to the closure of it because of the
robustness requirement. However, by perturbing the partition in a way that increases the highest
theta group, we obtain the desired property.
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The following Proposition considers the case of a large economy in which the domain
(θo, θ

o) is large. To compare welfare, we calculate the average loss in utility due to the
fact that the population is partitioned, rather than all citizens being in one jurisdiction,
as they “should” be, given that the public goods are pure. We show that the loss is
smaller if this partitioning is done according to a higher growth rate of boundary points
in the partition. This will enable us to compare the welfare of different equilibrium
partitions (hence different admissions rules), since the boundary points under different
rules have different growth rates.

For a large domain, the boundary points {θi} of an FME (or MV E) partition grow at
an almost constant rate, namely, the limit λ∗ deduced in Lemma 8 (Appendix). Thus,
for sufficiently large i, it almost holds that θi+1 = λ∗θi . For the two admission rules
UCE and TE, we consider those partitions which also have constant growth rates (with
every jurisdiction being a single interval). According to conditions (b) of Propositions
3 and 4, the growth rates in those partitions can be larger, and must be no smaller,
than in FME.

The following expression represents the ratio of total utility with growth rate λ to the
total utility with everyone in one jurisdiction. This ratio is less than one, and the
distance from one measures the inefficiency. The ratio is given for a fixed number of
jurisdictions k, assuming for simplicity that θo = 1, and letting θo adjust to accommo-
date the growth rate λ and k. Thus both the numerator and denominator of the ratio
displayed below represent the sum of utilities for citizens with θ in a domain (1, λk),
although the numerator assumes the citizens are in k jurisdictions and the denominator
assumes they are in one jurisdiction. The ratio displayed below uses the facts that the
sum of utilities in an interval (θj−1, θj) is (θ2

j − θ2
j−1)

2/16 and θj = λθj−1. For fixed λ,
as k grows, the limiting ratio measures the limiting welfare loss in a large population
with growth rate λ.

k−1∑

j=1

(
(λ2j+2 − λ2j)2

16

) (
16

(λ2k − 1)2

)
→ (λ2 − 1)

(λ2 + 1)
< 1 (3)

Proposition 8 (TE and a selection from UCE provide higher average utility
than FME and MVE in large economies.) Let P ∈ P(UCE) or P ∈ P(TE)
satisfy (i) every jurisdiction Aj = (θj−1, θj) in P is a single interval, and (ii) θj = λθj−1
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for some λ. Then when the domain (θo, θ
o) is sufficently large, P yields higher welfare

(a higher value of (3)) than P ′ ∈ P(FME) = P(MV E).

Proof: Condition (b) in Propositions 3 and 4 implies that λ is no smaller than λ∗.
The rest follows because (3) increases with λ. 2

7 Conclusion

We have introduced three new equilibrium concepts that seem to reflect the rules of
immigration embodied in constitutions. They differ in the ability of previous residents
to exclude immigrants. Free mobility grants no rights of exclusion, while admission
by majority vote prevents immigration unless a majority agree, and admission by
unanimous consent prevents immigration unless everyone agrees. Admission below a
threshold permits free mobility below the threshold, but requires unanimous consent
above the threshold.

Two principles unify the admissions rules we have considered. First, individuals should
always be allowed to defect to singleton jurisdictions. Second, immigration should
always be permitted when there is unanimous consent in the host jurisdiction. The
four admission rules satisfy these conditions, but impose additional restrictions that
differ.

Of course the best rule to govern migration should depend on how goods are allocated
within jurisdictions. We have assumed that within jurisdictions the public expenditures
are chosen by majority vote and the burden shared equally. One justification for equal
cost-sharing is administrative simplicity. Another reason for equal sharing, and also for
voting on public goods, is equity. When governments have limited ability to transfer
income, redistribution can be accomplished through equal sharing of costs for public
goods which have unequal benefits.

Rules of admission affect different citizens differently. Since we wish to interpret the
rules of admission as mandates of the constitution, we need a theory for how they arise.
We have investigated both a positive theory and a normative theory.
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In the positive theory, citizens can vote to overturn an existing rule of admission, to-
gether with an equilibrium partition. A problem is that there may be many equilibrium
partitions consistent with a new admission rule, in particular, admission by unanimous
consent. For that rule, some of the equilibrium partitions might be quite inefficient,
even though one of them provides the highest possible average utility. To address
this problem, we defined two notions of (rule)-stability which are forward-looking with
respect to the resulting equilibrium partition if the rule is changed. If citizens are
pessimists in the sense that they predict the worst equilibrium partition, then any
admission rule can be stable. If they are optimists in the sense that they all predict
a partition that is very good for a majority of them, then the most exclusionary rule,
admission by unanimous consent, is the only stable one.

To place our investigation in context, we conclude with a few remarks on how juris-
diction formation has been conceptualized in other branches of the literature on local
public goods. If there are no restrictions on either side payments or on free mobility,
then a natural equilibrium concept is the core with no constraints on side payments.
With pure public goods as here (no crowding costs), the core could be large, and all
citizens would be in one jurisdiction (Muench, 1972), and with crowding costs the
core will typically be empty because it will typically be impossible to partition the
consumers into groups of the “optimal” size (Pauly, 1967, 1970, Ellickson 1973). The
latter problem carries over to price-taking equilibria (see Scotchmer (1994) for a sum-
mary or Gilles and Scotchmer (1997) for a recent contribution that includes multiple
private goods).

Whether or not side payments are restricted, concepts of jurisdiction formation differ
in how a jurisdiction will be governed once it is formed. In the concept of equilibrium in
this paper, jurisdictions do not have “managers”. Once citizens are grouped, members
of a jurisdiction vote on public goods and share its costs equally. One can think of these
institutional arrangements as dictated by a constitution. In other equilibrium concepts,
a manager commits to public goods and taxes or prices before the group has formed,
knowing that the public goods and taxes will attract a certain clientele. This occurs in
both the price-taking model and in Nash equilibrium in prices (Scotchmer (1985a,b),
Scotchmer (1986), Wildasin (1988)). Alternatively, jurisdictions may establish their
fiscal policies in an explicit negotiation with each other in order to avoid competition
(Jehiel 1997). In addition there is an enormous literature on fiscal competition that
does not consider either entry of new jurisdictions or migration among them.
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Appendix

Lemma 3 Let the partition P = {Ai}k
i=1 be such for every B ⊂ (θo, θ

o) with 0 < |B|
and B ∩Ai = ∅, U(θ, Ai ∪B) < u(θ;P ) for some θ ∈ B. Then u(·; P ) satisfies the
following, and is therefore continuous, convex, and increasing.

u(θ; P ) = max {U(θ,Ai) | Ai ∈ P} (4)

Proof: Suppose that equation (4) does not hold; that is, for some Ai, Aj and θ ∈ Aj,
u(θ; P ) = U(θ, Aj) < U(θ, Ai). Let ε be small, and in particular, small enough so that
B = (θ − ε, θ + ε) ⊂ Aj. Then u(θ; P ) = U(θ, Aj) < U(θ, Ai ∪ B) for all θ ∈ B, a
contradiction. Hence (4) holds, and therefore u(·; P ) is continuous. Since each U(θ, Ai)
is increasing in θ, it follows that u(·; P ) is increasing, and u(·; P ) is convex because it
is the upper envelope of linear functions. 2

Lemma 4 Suppose that P is a partition with interval jurisdictions, that 3 ≥ θi

θi−1
for

each i, and that U(θi, Ai) = U(θi, Ai+1) and |Ai| = |Ai+1|. Let B = (θi, θi + b), where
b < |Ai|. Then U(θ, Ai ∪B) > U(θ, Ai+1) for all θ ∈ B.

Proof: Let |Ai| = |Ai+1| = a and θb = θi + b. Then θM(Ai) ≡ θM
i = θi − 1

2
a,

θM(Ai+1) ≡ θM
i+1 = θi + 1

2
a, and θM(B ∪ Ai) = θM(Ai) + 1

2
b. Then

U(θb, B ∪Ai)− U(θb, Ai+1) =

= 1
2 b

[
3
4(θi − 1

2a) a − a (θi + 1
2a) + 1

4θi(2θi + a) + 1
8 b ((2θi + a + 3b) + 6b (θi + 1

2b))
]

≥ 1
2 b

[
3
4(θi − 1

2a) a − a (θi + 1
2a) + 1

4θi(2θi + a)
]

The last expression is positive if 4.1 = 1
3
(7 + 2

√
7) > θi

θi−1
> 1

3
(7 − 2

√
7) = .57. But

θi

θi−1
> 1 by definition, and 3 ≥ θi

θi−1
. Therefore the expression is always positive. It
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is similarly easy to show that U(θi, B ∪ Ai)− U(θi, Ai+1) > 0, and it follows that this
relationship holds for all θ ∈ (θi, θi + b). 2

Lemma 5 Suppose that P satisfies (a), (b) and (c) in Proposition 1 and Ai ∈ P .
Then for every B ⊂ (θi, θ

o) such that |B| < |Ai|, there exists θ ∈ B for which U(θ, Ai∪
B) < u(θ; P ).

Proof: First, if a coalition B = (θi, θi + b) would not want to migrate to Ai, then
no other (interval) coalition of size b in (θi, θ

o) would want to migrate to Ai. U(θ, Ai ∪
B) has the same value for all B with same size, since it depends only |Ai ∪ B| and
θM(Ai ∪ B), which are the same for all B with the same size, provided B < |Ai|.
But U(θ, Ai ∪ B) increases linearly with θ. Since u(·; P ) nas nondecreasing slope, if
U(θi + b, Ai ∪ B) −u(θi + b;P ) < 0 then U(θ′ + b, Ai ∪ B′) − u(θ′ + b; P ) < 0 for
B′ = (θ′, θ′ + b) and θi+1 > θ′ > θi.

Let θb = θi + b. We will use the simplified notation θM
i ≡ θM(Ai), θM

B ≡ θM(Ai ∪ B).

We show that U(θb, Ai ∪ B) < U(θb, Ai+1).

U(θb, Ai ∪ B) = 1
2 (b + |Ai|) θM

B (θb − 1
2θ

M
B )

= 1
2 |Ai| θM

B (θi + b− 1
2θ

M
B ) + 1

2 b θM
B (θi + b− 1

2θ
M
B )

= 1
2 |Ai| (θM

i + 1
2b) (θi + b− 1

2θ
M
i − 1

4 b) + 1
2 b θM

B (θi + b− 1
2θ

M
B )

= U(θi, Ai) + 3
8
|Ai| b θM

i + 1
2

b
[

(1
2
|Ai|+ θM

B ) (θi − 1
2
θM
i + 3

4
b)

]

U(θb, Ai+1) = U(θi, Ai+1) + 1
2

b |Ai+1| θM
i+1. Hence, using U(θi, Ai) = U(θi, Ai+1), which

follows from condition (b),

U(θb, B∪Ai)−U(θb, Ai+1) = 1
8 b

[
3 θM

i |Ai| − 4 θM
i+1 |Ai+1| + 4 (θi + 1

2 b) (θi − 1
2θ

M
i + 3

4 b)
]
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We want to show that this expression is negative. Since U(θi, Ai) ≥ 0, it follows
from equation (1) that (θi − 1

2θ
M
i ) ≥ 0. Using in addition that θM

i = θi − 1
2 |Ai|,

θM
i−1 = θi + 1

2
|Ai+1| and (θi − 1

2
θM

i ) = 1
4
(2θi + |Ai|), we have

3 θM
i |Ai| − 4 θM

i+1 |Ai+1| + 4 (θi + 1
2 b) (θi − 1

2θ
M
i + 3

4 b)

≤ 3 θM
i |Ai| − 4 θM

i+1 |Ai+1| + θi (2θi + |Ai|)

= 4 θi(|Ai| − |Ai+1|)− 3
2
|Ai|2 − 2 (|Ai+1|2 − θ2

i ) < 0

Each term is negative, since (using (b)) |Ai| < |Ai+1|, (|Ai+1|2− θ2
i ) = θi+1(θi+1− 2θi)

and θi+1

θi
= f( θi

θi−1
) > 2. 2

Lemma 6 Suppose that P ≡ {Ai}k
i=1 is a partition for which

(i) for each i = 1, . . . , k, Ai is a single interval (θi−1, θi),

(ii) for i = 2, . . . , k, θi
θi−1

> 2.

(iii) equation (4) holds.

Then for every coalition B ⊂ (θo, θi−1) such that |B| < |Ai| there exists θ ∈ B such
that U(θ, Ai ∪B) < u(θ; P ).

Proof: Let b = |B|. Let θM(Ai) = θM
i for each i. Define b̃ such that θM

B ≡
θM(B ∪ Ai) = θM

i − 1
2 b̃. (If B ⊂ (θo, θi−1), then b̃ = |B|.) Let Aj be such that

B ∩ Aj 6= ∅. For some θ ∈ B ∩ Aj we will show that U(θ, B ∪ Ai)− u(θ; P ) < 0. We
have U(θ, B∪Ai)−u(θ; P ) = [U(θ, B∪Ai)−U(θ, Ai)]+ [U(θ, Ai)−u(θ;P )]. The first
term is
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U(θ, B ∪ Ai)− U(θ, Ai) = 1
2

(b + |Ai|) θM
B (θ − 1

2
θM

B )− U(θ, Ai)

= 1
2
|Ai| θM

B (θ − 1
2
θM

B ) + 1
2

b θM
B (θ − 1

2
θM

B ) − U(θ, Ai)

= 1
2 |Ai| (θM

i − 1
2 b̃) (θ − 1

2θ
M
B ) + 1

2 b θM
B (θ − 1

2θ
M
B ) − U(θ, Ai)

= 1
2
|Ai| θM

i (θ − 1
2
θM

B ) − 1
4
|Ai| b̃ (θ − 1

2
θM

B ) + 1
2

b θM
B (θ − 1

2
θM
B ) − U(θ, Ai)

= 1
2
|Ai| θM

i (θ − 1
2
θM

i + 1
4

b̃) + ( 1
2

b θM
B − 1

4
|Ai| b̃ ) (θ − 1

2
θM

B ) − U(θ, Ai)

= U(θ, Ai) + 1
8 |Ai| b̃ θM

i + (1
2 b θM

B − 1
4 |Ai| b̃) (θ − 1

2θ
M
B ) − U(θ, Ai) (5)

We now specialize this expression for the case that B ⊂ (θo, θi−1) and |B| < |Ai| so
that b = b̃. Let θ = inf{θ̃ ∈ B ∪ Ai}, and assume without loss of generality that
θ ∈ Aj ≡ (θj−1, θj), where j < i. Then θ ≤ θi−1 − b. The last expression is

= 1
8

b
[
|Ai| θM

i + ( 2θM
B − |Ai| ) (2θ − θM

B )
]

By equation (4), u(θ; P ) = U(θ, Aj) ≥ U(θ, Ar) for all r = 1, . . . , k, and using θ ≤
θi−1 − b,

U(θ, Ai)− u(θ; P ) = U(θ, Ai)− U(θ, Aj) ≤ U(θ, Ai)− U(θ, Ai−1) =

= [U(θi−1, Ai)− 1
2 z(Ai) (θi−1 − θ)]− [U(θi−1, Ai−1)− 1

2 z(Ai−1) (θi−1 − θ)]

= −(θi−1 − θ) (z(Ai) − z(Ai−1)) ≤ − b (z(Ai) − z(Ai−1))
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Hence 8
b

[U(θ, Ai ∪ B)− u(θ; P )] ≤

≤ |Ai|θM
i + (2θM

i − |Ai| − b) (2θ − θM
i + 1

2 b) − 8 (z(Ai)− z(Ai−1))

By equation (1), U(θ, Ai∪B) < 0 ≤ u(θ; P ) unless θi−1−b ≥ 1
3
θi. The above expression

is increasing in b for 0 < b < θi−1 − 1
3θi, hence it is enough to show that it is negative

at b = θi−1 − 1
3
θi. Using z(Ai) = 1

4
(θ2

i − θ2
i−1) = 1

2
|Ai| θM

i for all i, and θ < θi−1, the
last expression is

≤ 2z(Ai) + 1
2
(2θi−1 − b) (3θi−1 − θi + b)− 8 z(Ai) + 8 z(Ai−1)

= −6 z(Ai) + 8 z(Ai−1) + 2θ2
i−1 − 4

9θ
2
i

≤ −6 θ2
i + 18 θ2

i−1 < 0

where the result follows because ( θi

θi−1
)2 = f( θi−1

θi−2
)2 > 22 = 4. 2

Lemma 7 Suppose that P is a partition with interval jurisdictions, that U(θi−1, Ai−1) =
U(θi−1, Ai), that |Ai| = |Ai−1|, and that θi

θi−1
≤ 3 for all i. Let θb = θi−1 − b and

B = (θb, θi−1). Then U(θ, Ai ∪ B) > U(θ, Ai−1) for all θ ∈ B.

Proof: Let a = |Ai−1| = |Ai|, and notice that θM
i−1 = θM

i − a, θM(Ai ∪ B) ≡ θM
B =

θM
i − 1

2
b. We use equation (5) derived in Lemma 6, namely

U(θb, Ai ∪ B) = U(θb, Ai) + 1
8 a b θM

i + (1
2 b θM

B − 1
4 a b) (θb − 1

2θ
M
B ) (6)

In addition

U(θb, Ai−1) = 1
2

a θM
i−1 (θb − 1

2
θM

i−1) = U(θb, Ai) + 1
2

a2 b
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Thus

U(θb, Ai ∪ B)− U(θb, Ai−1) = 1
8 a b θM

i + (1
2 b θM

B − 1
4 a b) (θb − 1

2θ
M
B )− 1

2 a2 b

Substituting appropriately and ignoring the b2 terms, this is equal to

= 1
2 b (−7

4 a2 + θ2
i−1) = 1

8 b (−7θ2
i−1 − 3θ2

i + 14θiθi−1)

which is positive if θi

θi−1
< 1 + 2√

7
. But if the latter inequality did not hold, then

θi−2+2a
θi−2+a > 1 + 2√

7
, which implies that (1− 2√

7
)a > 2√

7
θi−2. But in addition θi−2+a

θi−2
≤ 3,

which implies that a ≤ 2θi−2. These inequalities contradict each other. 2

In the following Lemma, the notation f j(·) means j compositions of the function f ,
e.g., f2(λ) = f ◦ f(λ) = f(f(λ)).

Lemma 8 The function f defined by Proposition 1(b) has the following properties:

1. θi+1

θi
= f( θi

θi−1
) if and only if U(θi, (θi−1, θi)) = U(θi, (θi−1, θi)) and θi < 1

2
(θi−1 + θi+1).

2. f is decreasing and continuous, and | f ′(λ) | < 1. Starting from any λ, the sequence
{f i(λ)}i = . . . converges to λ∗, and the values in the sequence alternate between values
larger than λ∗ and values smaller than λ∗.

3. The value of λf (λ)f2(λ)....fk(λ) ≡ λΠk
i=2 f i−1(λ) is increasing with λ for all k.

Proof: To verify 1. and 2. is simply a matter of algebraic manipulation. We
prove 3. One can see from the expression for f that λf (λ) increases with λ. In
addition, since f ′(λ) < 0, f ◦ f(λ) increases with λ. It follows that for any even
j, f j(λ) increases with λ. Since λΠk+1

i=2 f i−1(λ) = [λΠk
i=2f

i−1(λ)][fk(λ)], and since
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fk(λ) increases with λ when k is even, it is enough to show that λΠk
i=2f

i−1 in-
creases with λ when k is even. But because k is even, λΠk

i=2f
i−1 can be expressed

as [λf(λ)] [f2(λ)f(f2(λ))] [f 4(λ)f(f4(λ))] , . . . , [fk−2(λ) f(fk−2(λ))]. Each of these
terms is increasing in λ. By putting f(f(λ)) on the lefthand side of f and substituting
f j(λ) for λ on the righthand side, and then cross-multiplying, one can see that since
f j(λ) increases with λ (since j is even), the product [f j(λ)f(f j(λ))] increases with λ.

2

Proof of Proposition 1(1) (Only If): Suppose that P = {Ai}k
i−1 is an FME. We

must show that it satisfies (a), (b) and (c). Using equation (1), (c) holds because
U(θ, Aj) ≥ 0 for all j and all θ ∈ Aj .

We now show (a). Ai is by definition a union of intervals. Let B be an interval that
fills the space between two intervals in Ai. If θ ∈ Aj , then the slope of u(·; P ) at θ is
the slope of U(θ, Aj), which is z(Aj). Lemma 3applies to FME utilities. By convexity
of u(·; P ), if B contains some members of jurisdiction j (that is, Aj ∩ B 6= ∅), then
z(Aj) = z(Ai). If z(Aj) > z(Ai), then the slope of u(·; P ) on the interval Aj ∩ B, is
larger than the slope on both its left and right, and if z(Aj) < z(Ai), it is smaller.
Both contradict convexity. In addition U(θ, Aj) = U(θ, Ai) for all θ ∈ B, hence for all
θ ∈ (θo, θ

o). Otherwise equation (4) would be violated.

There are two cases, θM(Aj) ≥ θM(Ai) and θM(Aj) ≤ θM(Ai). We only need to
argue for one of these cases. Suppose that θM(Aj) ≥ θM(Ai). There exists a small
B ⊂ Aj such that θ > θM(Ai) and U(θ, Ai ∪ B) > u(θ; P ) = U(θ, Aj) = U(θ, Ai) for
θ ∈ B, which contradicts condition 1. of FME. The latter follows from equation (2)
because |Ai| and θM(Ai) are increased in proportions dθM(Ai) = 1

2
d|Ai|, and for θ ∈ B,

θ > θM(Ai). We conclude that each Ai must be an interval.

We now show (b), assuming that each Ai is an interval. We label the boundary points
{θi}k

i=1 such that Ai = (θi−1, θi), i = 1, . . . , k. It follows from continuity of u(·; P ) (due
to equation (4)) that U(θi, Ai) = U(θi, Ai+1) for each i. To show the second part of
the statement we characterize the dividing point θi in an interval (θi−1, θi+1) as the
point where U(θ, (θi, θi+1))− U(θ, (θi−1, θi)) = 0. See Figure 4. One can verify that if
θi+1 < 3θi−1, then there is only one zero for the difference, namely the midpoint, but
otherwise, as shown in Figure 4, there are two zeroes, with the smaller one described
by f . That is, (b) is satisfied if and only if U(θi, (θi−1, θi)) = U(θi, (θi, θi+1)) and
θi < 1

2
(θi−1 + θi+1). Lemma 4 excludes that |Ai| = |Ai+1|, and (b) follows.
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Proof of 1(1) (If) Lemma 5 shows that if (a), (b) and (c) hold, then for every
B ⊂ (θi, θ

o) there exists θ ∈ B such that U(θ, B ∪Ai) < u(θ; P ). Lemma 6 shows the
same thing for small B ⊂ (θo, θi−1), since condition (ii) of Lemma 6 follows from (b).

Proposition 1(2) is proved by Jehiel and Scotchmer (1996). It follows from Figure 1,
which shows that each jurisdiction is more than twice as large as the one below it. This
property aggregates so that the highest-θ jurisdiction is more than half the population.

Proof of Proposition 1(3.) The number of jurisdictions cannot be infinite when θo

is finite because then all but a finite number of λi = θi

θi−1
would be very close to one,

which contradicts the property of f that every second growth rate must be larger than
λ∗ > 1. On the other hand, since θi

θi−1
≤ 3 for every i, the number of jurisdictions must

become unbounded as θo becomes unbounded.

We prove existence using Figure 5. Define θj(λ1) ≡ θoλ1Π
j
i=2 f i−1(λ1), so that θj(λ1) =

θj if θ1 = λ1θo. The key features of Figure 5 are that since f(1) = 3, we have
θk−2(3) = θk−1(1) < θk−1(3) = θk(1) < θk(3), and that each θk(λ1) is monotone.
The initial growth rate λ1 must satisfy 1 < λ1 ≤ 3 by Proposition 1. (If not then
condition 2. of the definition of FME would not be satisfied.) An arbitrary initial
growth rate determines the entire partition according to the functions θj(λ1). For an
arbitrary initial growth rate the last boundary point will typically not coincide with
θo, but Figure 5 shows that there exists an initial growth rate such that θo = θk(λ1)
for some k = kF M , and further, that it is unique.

Proof of Proposition 3(1): We must show that if one of the conditions (a), (b) or
(c) does not hold, the partition is not a UCE.

Suppose first that (a) does not hold. Then condition 2. of UCE is violated, using
equation (1).

Claim 1 Suppose first that for some i, Ai = (θi−1, θi) and θi

θi−1
< 1 + 2√

3
. Then there

exists b > 0 such that if B = (θi−1 − b, θi−1), U(θ, Ai ∪B) > U(θ, Ai) for all θ ∈ Ai.

Proof of Claim: It is enough that dU(θ, Ai) is negative for all θ ∈ Ai when the lower

boundary θi−1 is lowered. Since ∂θM (Ai)
∂θi−1

= 1
2
, and ∂| Ai |

∂θi−1
= −1, dU(θ, Ai) is decreasing
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in θ, and hence it is enough that the derivative is negative for θi−1. This follows from
equation (2). 2

Now suppose that condition (b) does not hold so that U(θi, Ai−1) < U(θi, Ai) for some
i. Then for B as described in the above claim, U(θ, B∪Ai) > u(θ; P ) for all θ ∈ B∪Ai,
contradicting condition 1.

Now suppose that (c) does not hold (but (b) holds), that is, for some i = 1, . . . , k − 1,
θi

θi−1
< 1 + 2√

3
and U(θi, Ai) > U(θi, Ai+1). Then if B = (θi, θi + δ) for some small δ,

U(θ, B∪Ai) ≥ u(θ; P ) for all θ ∈ B∪Ai with strict inequality for at least θ ∈ (θi, θi+δ).
This follows because dθM(Ai)/dθi = 1

2 when d|Ai|/dθi = 1, and when θi
θi−1

< 1 + 2√
3
,

dU(θ, Ai)/dθi > 0 for all θ ∈ Ai. Since the derivative is increasing in θ, it is enough to
show it is positive for θi−1. dU(θi−1, Ai)/dθi = −3θM(Ai)

2 +6θi−1θ
M(Ai)−2θ2

i−1. Since

θM(Ai) ≥ θi−1, there is one root and the derivative is positive if θM (Ai)
θi−1

< (1 + 1√
3
),

which holds if and only if θi

θi−1
< 1 + 2√

3
.

Proof of Proposition 3(2): We must show that if a partition satisfies (a), (b) and
(d), then conditions 1. and 2. of the definition of UCE are satisfied.

First, if (a) holds, then condition 2. is satisfied. The more difficult part is to show
condition 1., assuming that (b) and (d) hold as well.

For given Ai we first consider B ⊂ (θi, θ
o). We must dismiss the possibility that

U(θ, B ∪ Ai) ≥ u(θ; P ) for all θ ∈ B ∪ Ai with strict inequality for some subset
C ⊂ B ∪ Ai with positive measure. We shall assume that |B| ≤ |Ai|. Otherwise it

follows from (d) that θ
θi−1

> 3, so that U(θi−1, B ∪ Ai) < 0 ≤ u(θi−1; P ).

We shall simplify notation by letting b + a = |B| + |Ai|. We let θM
i = θM(Ai), θM

i−1 =
θM(Ai−1), and θM

B = θM(B∪Ai). When B ⊂ (θi, θ
o) and |B| < |Ai|, then θM(B∪Ai) =

θM(Ai) + 1
2
b.

U(θi−1, B ∪Ai) = 1
2 (b + a) θM

B (θi−1 − 1
2θ

M
B )

= 1
2 a θM

B (θi−1 − 1
2θ

M
B ) + 1

2 b θM
B (θi−1 − 1

2θ
M
B )

29



= 1
2

a (θM
i + 1

2
b) (θi−1 − 1

2
θM

B ) + 1
2

b θM
B (θi−1 − 1

2
θM

B )

= U(θi−1, Ai)− 1
4

a b θM
B + 1

8
b

[
(a + 2θM

B ) (3θi−1 − θi − b)
]

Multiplying the last two terms by 8
b
, −2a θM

B + (a + 2θM
B ) (3θi−1 − θi − b)

= − 2a θM
i − a b + (a + 2θM

i ) (3θi−1 − θi) + b (3θi−1 − θi) − b (a + 2θM
B )

= −2a θM
i + 2θi (3θi−1 − θi) − b [4(θi − θi−1) + b]

≤ −2a θM
i + 2θi (3θi−1 − θi)

which is negative if condition (d) holds.

Turning to B ⊂ (θo, θi−1), by Lemma 6, for every B ⊂ (θo, θi−1), there exists θ ∈ B
such that U(θ, B ∪ Ai) < u(θ; P ). 2

Proof of Lemma 4: We first prove that TE jurisidictions must be intervals. Suppose
that {Ai}k

i=1 is a TE and that a particular Ai is not an interval. Then there exists θ
such that for some arbitrarily small ε: (θ − ε, θ) ⊂ Ai , (θ, θ + ε) ⊂ Aj for some j 6= i
and Ai ∩ (θ + ε, θo) 6= ®. Since (θ − ε, θ + ε) <maxAi, there is free mobility between
Ai and Aj, which implies that U(θ, Ai) = U(θ, Aj). Since θ is at a boundary between
Ai and Aj , a small perturbation of {Ai}k

i=1 would perturb Ai, Aj , θ, to A
′
i, A

′
j , θ

′
so

that U(θ
′
, A

′
i) 6= U(θ

′
, A

′
j). By the above argument the perturbed partition {A′

i}k
i=1 is

not a TE, and therefore by condition 4., {Ai}k
i=1 is not a TE.

We now argue that (a) holds. Since TE jurisdictions are intervals, Ai = (θi−1, θi),
i = 1, . . . , k. If θi

θi−1
> 3 for some i, then a low-θ member would migrate to a singleton

jurisdiction (see (1)), in violation of condition 3. Also, reasoning as in Proposition
3(1)(c), if θi

θi−1
< 1 + 2/

√
3 for any i ≤ k − 1 then U(θi, Ai) = U(θi, Ai+1) is not
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robust to a small perturbation of the boundary points. Thus θi

θi−1
≥ 1 + 2/

√
3 for all

i ≤ k − 1, and using condition 4. again, θi

θi−1
> 1 + 2/

√
3 for all i ≤ k − 1. Similarly,

the reasoning behind Proposition 3(1)(b) implies (c), that U(θi, Ai) > U(θi, Ai+1) for
all i = 1, ..., k − 1. The latter, together with θi+1

θi
> 1 + 2/

√
3, implies (b), that

θi+1

θi
> f( θi

θi−1
) as can be seen from Figure 4. Thus, (a), (b) and (c) are necessary if

{Ai}k
i=1 is a TE. The sufficiency of (a), (b) and (c) is shown in a similar fashion as in

Proposition 3. 2

Proof of Proposition 5: We will characterize the maximum number of jurisdictions
in TE. We do this by considering the dual problem, which is to find the smallest possible
θo such that a partition into k interval jurisdictions is an TE. Define the sequence
(λi)i=1,...,k by λi = θi

θi−1
, corresponding to a sequence of boundary points {θi}k

i=1, where

θk = θo and for each j = 1, . . . , k, θj = θoΠ
j
i=1λi.

By (b) in Proposition 4, λi+1 ≥ f(λi) for each i = 1, . . . , k − 1. Referring to Figure 4,
by condition (c), the dividing point θi ∈ (θi−1, θi+1) is either in the interval to the left
of θFM or above the midpoint. If above the midpoint, condition (b) is violated.

To solve the dual problem we characterize the minimum of Πk
i=1 λi subject to λi ≥

f(λi−1), 2 = 1, ..., k − 1 and the definitional constraint λi ≥ 1. Since λi+1 ≥ f (λi) > 1
for i ≥ 1, the constraint λi ≥ 1 can only bind for λ1, and λ1 = 1 is the limiting
case where the first coalition is empty. By induction the solution to the minimization
problem is λ1 = 1 and λi = f(λi−1) for i = 1, . . . , k, as follows. Conditional on
the first (λ1, ..., λk−1), θo = θoΠ

k
i=1 λi is minimized by minimizing λk; i.e., by setting

λk = f (λk−1). Conditional on the first (λ1, ..., λk−2), and accepting that λk = f (λk−1),
θoλ1, ...λk is minimized by minimizing λk−1f(λk−1). By Lemma 8 in the appendix, this
product increases with λk−1, and hence is minimized by choosing λk−1 = f (λk−2). The
result follows by induction.

If θo is given in advance, then for some k we will have that θk−1(1) ≤ θo < θk(1) . (See
Figure 5.) Then k is an upper bound on the number of jurisdictions in P of (θo, θ

o).
For any larger k, say k+1, we have that for all λ1 ≥ 1, θk+1(λ1) > θk(λ1) ≥ θk(1) > θo.
Thus it is impossible to satisfy the necessary condition (a) of Proposition 4 with larger
k.

We now compare the maximum number of jurisdictions in P with the number in P FM ,
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say kFM . Suppose that θk−1(1) ≤ θo < θk(1) for some k. We argued in the above para-
graph that k is an upper bound for the number of jurisdictions in P . By monotonicity
(see Figure 5), there exists λ1 > 1 such that θk−1(λ1) = θo, so that kF M = k − 1. The
result follows. 2Proof

of Proposition 6: We show that there is no other partition that is strictly preferred
by a majority. Let P̂ = P(FME) ∪ P(MV E) ∪P(UCE) ∪P(TE). We show that for
every partition P ′ ∈ P̂ , |B(P ′, P )| < 1

2(θ
o − θo). It is enough to show that for every

θ ≥ 1
2θ

o, there is no P ′ ∈ P̂ such that u(θ, P ′) > u(θ, P ).

Claim 2 Let B be a jursidiction in P ′ ∈ P̂. Let θ = inf B. Then |B| ≤ 2θ.

Proof Fixing θ and B, if |B| > 2θ, it follows from (1) that U(θ, B) ≤ U(θ, (θ, θ + |B|)) <
0. Thus, if |B| > 2θ, then U(θ, B) < 0, so P ′ 6 ∈P̂. 2

Consider θ ≥ 1
2θ

o. Then θ ∈ (1
3θ

o, θo). We will argue that u(θ, P ) ≥ u(θ, P ′) for all P ′ ∈
P̂. If this is not true, there exists a coalition B ∈ P ′ such that U(θ, (1

3θ
o, θo)) < U(θ, B),

and θ ∈ B. Since the only aspects of a jurisdiction that an agent cares about are its
size and median voter, there is an interval jurisdiction, say B̃, such that inf B ≤ inf B̃,
|B| =

∣∣∣B̃
∣∣∣, and θ ∈ B̃, and U(θ, (1

3
θo, θo)) < U(θ, B̃) = U(θ, B). Let B̃ = (y, x) for

some y, x ∈ [θo, θ
o]. By Claim 2, y ≥ 1

3
x, and since, for fixed θ, U(θ, B̃) increases if B̃

is enlarged at its lower boundary (see (2) with dθM = −1
2d|A|), we can assume that

B̃ = (1
3x, x) for some x. Thus U(θ, 1

3(θ
o, θo)) < U(θ, (1

3x, x)). But since U(θ, (1
3x, x))

increases with x for θ > 1
2θ

o ≥ 1
2x, it follows that U(θ, (1

3θ
o, θo) < U(θ, (1

3θ
o, θo)), which

is a contradiction.

But since |{θ ∈ (θo, θ
o) | θ ≥ 1

2θ
o}| ≥ 1

2 , this proves that if there exists a partition
P ∈ P(UCE) such that the highest-θ group is (1

3
θo, θo), such a partition must be

strongly stable.

We must find P ∈ P(UCE) that satisfies Ak = (1
3θ

o, θo), and show that there is no

P ′ ∈ P̂ \ P(UCE) with that property.

We know that for any interval, in particular, (θo,
1
3θ

o), FME exists. Let {Ãi}k−1
i=1 be an

FME for (θo,
1
3
θo). Let the partition {Ai}k

i=1 be defined by Ai = Ãi for i = 1, . . . , k−1,
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and Ak = (1
3
θo, θo). Then the partition {Ai}k

i=1 satisfies conditions (a), (b) and (c) in
Proposition 3, and is therefore in P(UCE).

The robustness requirement, condition 4. of TE, implies that there is no partition in
P(TE) such that θk

θk−1
= 3, hence the partition is not in P(TE).12 The partition is

also not in P(FME) = P(MV E), since θk
θk−1

= 3 > f( θk−1

θk−2
). 2

12TE is eliminated only as an artifact of the robustness requirement. The closure of the partitions
in TE includes a partition such that the highest-θ jurisdiction is (1

3θo, θo). If we include the closure,
TE would be constitutionally stable as well.
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FIGURE 1
Utilities in Free Mobility Equilibrium
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