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1. Introduction

Human societies evolve, grow and shrink, as the result of exit and entry. We are interested in the

evolution of those societies where entry is regulated by the use of formal voting procedures: new

members are admitted only if they receive enough support from inside, according to well specified

rules.

Clubs and learned societies are examples of human groups that fit our description exactly. Others

may only meet part of the features we require here. For example, parliaments are elected according

to well specified rules, but their size is fixed, while our focus will be on the forces that determine

the growth or the stagnation of groups. In other cases, entry and exit are the result of informal

procedures, whose description as voting rules might be too simplistic even as an approximation.

Our model, thus, only applies to a restricted set of societies.

Election rules are social constructs: they may come from an agreement among different founders,

they may reflect the will of a unique founder or they may be the result of successive amendments,

but they must be set purposely. Once the rules for election to a society are set, participants in

the election are bound to engage in strategic considerations that involve non-myopic behavior. In

particular, voters cannot overlook the fact that newly elected members will become voters in later

elections: this may lead to postpone the election of individually attractive candidates who might

vote in unattractive ways, or to accelerate the election of a poor candidate whose vote is needed.

We are interested in the evolution of groups which results from considerations of this type being

made by rational agents under well specified voting rules. The features we have emphasized should

make it clear that electoral evolution is the result of nonmyopic behavior which is quite typical to

human societies.
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Since this paper is a first attempt at modeling such facts, we allow ourselves some strong sim-

plifying assumptions. The founders and the rules of election of a society are fixed in advance (we

don’t explain why they join to create the society or why they agree on these rules). The candidates

to enter the society are fixed as well (we don’t explain why they don’t try to create other societies,

or any other process by which eligible candidates could change from election to election). We as-

sume that nobody leaves the society once admitted (thus concentrating on entry and not on exit).

We study finite horizon situations where members of the society know at all times when it will be

dissolved and voting takes place at a finite number of periods (when in fact many societies operate

under an uncertain horizon). We assume a specific voting method, whereby each member can vote

for as many candidates as he wishes, and it is enough for a candidate to receive a vote in order

to be admitted (this is the method of ‘voting by quota one’; many others are worth considering).

We postulate that agents’ preferences are defined over streams of members in the society. Under

these assumptions, we provide theorems on the existence and the characteristics of different types

of equilibria of the games generated in such dynamic voting contexts. Although clearly restricted

by our assumptions, these results bear witness to the abundance of possibilities within our model.

In addition to general theorems, we also provide many examples, some of which reflect quite

unexpected phenomena. The simplicity of our model, when it comes to examples, becomes an

asset: whatever counterintuitive results we exhibit are robust, since they happen even in simple

situations. For instance, we shall prove that agents may want to vote for their enemies. This would

not be surprising if they needed the votes of others in order to advance their friends to membership.

But it is quite striking under our extreme assumption of vote by quota one, where each voter alone

can assure his friends’ admission! Also, many of our examples postulate a very simple structure

of preferences: each voter is assumed to classify candidates as enemies or friends, and streams of

elected members are valued as the sum of utilities derived from elected friends — one unit per
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period — plus the sum of disutilities derived from having enemies elected — essentially minus one

per period. Revealing interesting strategic behavior under such simple preferences reinforces our

points.

Our closest reference is “Voting by Committees”, by Barberà, Sonnenschein and Zhou (1991),

where the question of electing members for a society is treated as a one period problem. That paper

characterizes the set of all strategy-proof mechanisms respecting the sovereignty of voters when

their preferences over sets of candidates satisfy one of two alternative restrictions, called additivity

or separability: they are the methods of voting by committees. We shall not describe the general

class, but simply say that they contain an interesting subclass of methods, which in addition to the

preceding properties will also respect anonymity and neutrality; i.e., will treat all voters and all

candidates alike. This subclass consists of the methods based on voting by quota: each agent can

vote for as many candidates as he wishes, and all candidates who get at least q votes are elected,

where q is fixed a priori. Our main interest in the present paper is on phenomena that only arise

when the society’s horizon is greater than one period, and this is why we have chosen to work with

multiperiod models whose one period version takes the form of voting by quota. Since these methods

are strategy-proof in their one shot version, we can be sure that whatever strategic behavior arises

when several periods are considered must have a dynamic source.

As already mentioned, our ambition is to study the evolution of societies who resort to voting

as a means to include or to exclude members. It has both a normative and a positive viewpoint.

Many interesting questions come to mind. Just to mention one topic on the descriptive side, we

would like to understand why some societies maintain their defining features along their history,

while others change so much that their own founders would not recognize them. However, our

ambition must be tempered by the fact that the game theoretic analysis quickly becomes complex
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and presents several alternative routes. Accordingly, the paper contains examples, which point at

the complexities of the analysis, as well as technical results on how to solve for equilibria and what

types of equilibria to look for. It is structured as follows. In Section 2 we present the model, based

on a gallery of assumptions. Section 3 contains examples. These examples show that the simplicity

of the one period model is immediately lost if we have several periods. They also prove that some

counterintuitive phenomena, like strategic voting for enemies, can occur if the number of periods

is not too small. They also indicate that it will be worth analyzing not one but several solution

concepts, because each one of them can provide some insight on the phenomena we try to model.

One example shows that, although we concentrate on pure-strategy equilibria, the use of mixed

strategies, or even correlated strategies, may be most reasonable in some cases. In Section 4 we

analyze subgame-perfect equilibria and ‘quasi-strong equilibria’,5 and we discuss the fact that the

streams of members for a society can be attained in equilibrium, given the rules, through different

distributions of the individual votes. In this section we also look for Pareto-undominated equilibria.

Unfortunately, Pareto undominated equilibrium profiles are often not perfect equilibria. Thus, the

members may wish to adopt less profitable outcomes in order to gain the stability that a perfect

equilibrium yields. Section 5 is devoted to the existence of perfect equilibria in pure strategies: we

provide a sufficient condition under which there will exist such equilibria, and examples showing

that the condition is not necessary. We are able to show that if certain additivity assumptions

are satisfied, every game that is generated by a generic 2-stage voting scheme has a pure-strategy

perfect equilibrium.

5i.e., equilibria that have the additional property that no deviator can benefit if the set of deviators does not

include the set of all voters at the start of a deviation.
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2. The model

We want to analyze the results from imposing some electoral rules on the evolution of societies.

The necessary elements to describe the rules, which we call (finite horizon) voting schemes, are the

following:

(1) A nonempty set of original founders, denoted F 0, who belong to society at the initial stage

and from stage to stage vote to bring in other members and/or to remove members. ‘Society’

may be an organization, a club, a foundation or similar enterprises.

(2) A set of candidates from whom new members can be chosen. This population may vary

from stage to stage.

(3) A set of voters for each stage. Often, all elected members can vote at all stages following

their election for as long as they belong to the society.

(4) A set of rules which specify under what conditions a person is admitted to the society, or is

expelled, or resigns.

(5) A number of stages k during which the society operates. After k stages the society dissolves,

having concluded its tasks, and the play is over.

An important part of the outcome of the voting scheme is the resulting stream of members,

denoted F := {F 1, F 2, . . . , F k}, where F t represents the members at stage t, after the elections,

expulsions and resignations at that stage. Another part may be information concerning who voted

at each stage and for whom. Some of the above may be unknown to some, or all the agents. All of

the information that is available to agent i until stage t constitutes his (t− 1)-stage history.

The decision on how to vote at each stage, that every voter i faces, should take into consideration

the priorities that each agent has over the various streams.6

6One can think of complicated priorities on events that may even be concealed. For example, a voter might not
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As mentioned in the introduction, we make many simplifying assumptions in order to render the

model simple and yet still capture some dynamic aspects of the workings of the voting scheme. In

fact, we suppress many aspects in order not to ‘blur’ the purely dynamic issues. Obviously, other,

more complicated and more realistic models should be studied. As we show, even the present simple

model possesses enough intricacies to render the analysis interesting.

Some simplifying assumptions.

1. fixed population. We assume that the population is finite and fixed and includes the

nonempty set of the original founders F 0. Therefore, we can denote the set of agents by N .

N \F 0 is called the set of the original candidates and is denoted by C0. Similarly, we write

Ct for N \F t. Members of Ct−1 are the candidates from whom the voters F t−1 can choose

at stage t.

2. No firing. We assume that an elected candidate will stay in the society all the time. There

are no provisions to fire him.

3. No resignation. Normalization. Once an agent is admitted to the society, he will stay

there throughout the performance of the society. Staying alone in the society has a zero

utility.7

The no resignation requirement makes sense if staying in the society is highly prestigious.

Nevertheless, even then it is a restriction. For example, it rules out strategies involving

threats to resign, as punishments, if deviations occur.

In this paper we take the position that an agent becomes a player only after he joins the

like an agent j, if he knew that agent p also voted for j, but otherwise he might have loved to have j in the society.

Perhaps he does not even know who elected j. We shall not consider such complications in this paper.
7Sometimes we change the normalization, so that a zero utility corresponds to a situation where the agent stays

in the society together with the original founders F 0. The reader will have no difficulty in deciding to which

normalization we refer in each instance.
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society. We shall rarely compare his utilities while in the society to his utilities before he

joined the society.

4. 1-quota voting. The rule for electing a candidate into the society is simple: every voter

can bring any number of candidates into the society at any stage, simply by casting a vote

for them at the beginning of that stage. This rule is known as voting by quota 1.

5. Streams of members are all that matter. We assume that each agent cares only

about the streams of members in the society and does not care, for example, about who

voted, or who did not vote for each member. This allows us to require that all his actions

are based only on what he knows about the developing streams.

6. Common histories. We assume that at each stage the elected candidates are known to

everyone. Thus, for every agent i the relevant (t− 1)-stage histories are the same;8 namely,

subsequences of the streams terminating at F t−1. These will be denoted ht, t = 1, 2, . . . , k.

Thus, ht := {F 0, F 1, . . . , F t−1}.

We now have all the ingredients to convert the above setup into a game form: The set of players

is N , the pure strategies available to player i are choices of sets that specify at each stage t the

candidates that he votes for at that stage only as a function of the history at that stage. Thus, we

do not allow the strategies to depend on what agent voted for whom, in the past.

With this notation, a pure strategy for agent i, can be expressed as σi := (σ1
i , σ2

i , . . . , σk
i ), where

σt
i(h

t) denotes the set of agents chosen by agent i, given9 the history ht.

8Actually, if ballots are not secret, histories may be more complicated than simply the past stream of members.

They may include information such as who voted for whom, and when. In this paper we shall not employ such
histories.

9Note that we allow a strategy of an agent to depend on the part of the stream that existed before he entered
the coalition. Usually, however, this may not be the case. Note also that there is a redundancy in this notation:

What agent i “votes for” in stages before he was admitted into the society has no effect on the resulting stream of

members. We use this notation for the sake of brevity.
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From this description one can realize that we formally allow a player at each stage to vote even

for agents that were already elected (including himself) and we allow an agent to vote even if he

is not elected. This is done merely for mathematical convenience. Of course such votes will have

no effect on the stream of members. Given a strategy profile σ = (σ1, σ2, . . . , σn), the stream of

members is given by

(2.1) F t = F t(σ) = F t−1∪
(
∪i∈F t−1σt

i(h
t)

)
, (t = 1, 2, . . . , k).

Most of this paper will deal with pure strategies. Since the game is of perfect recall, by Kuhn’s

(1953) theorem (see also Selten 1975), even when we do employ mixed strategies we can restrict

ourselves to behavioral strategies, in which case it is sufficient to consider the probability distribution

on the various histories.

To convert our game form into a game we now introduce priorities and utilities.

7. Known utilities. We assume that the priorities of agent i are given by complete and

transitive binary relations on the set of outcomes and therefore they can be represented by

a utility function ui. Later, when we deal with mixed strategies, we shall assume that these

utilities are, in fact, von Neumann Morgenstern utilities.10

Once an agent is in the society, every stream that is better for him than staying alone is assigned

a positive utility. Every stream that is worse for him is assigned a negative utility (still larger than

the utility of not being in the society).

We now present several possible simplifying assumptions on the utilities, ranging from simple

to more complicated considerations. Some of them will be employed in the examples of the next

section, to illustrate some of the issues. Others will be needed for the proofs.

10This, of course involves more assumptions on the binary priority relations.
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The simplest model in this paper assumes that for every pair of distinct agents i, j, either i likes

j, or i dislikes j. Expressing it differently, we say that either j is a friend of i or he is an enemy

of i, where friendship and enmity merely mean that he wants or does not want the person in the

society. This does not imply that a voter will always vote for his friend. He may be reluctant to do

so if, for example, he thinks that his friend may bring enemies to the society.

We do not assume that the “friendship” relation is either symmetric, or transitive: Agent j can

be a friend of i, yet i is regarded as an enemy by j. Also, a friend of a friend need not be a friend.

‘A friend’ may be interpreted in several ways, such as: ‘the voter enjoys his company’, ‘the voter

thinks he will be useful for the workings of the society’, ‘that his opinion should be heard, because

it is relevant’, etc. Likewise ‘an enemy’ can have opposite interpretations.

We then assume that each agent wishes to spend as much time as possible with friends and as

little time as possible with enemies and that this is all he cares for. If the stages are equally spaced

in time, it then makes sense to denote by 1 the utility of having a friend in the committee for one

stage and by (−1 − ε) — the utility of having an enemy for one stage, where ε is a small positive

number, added to break ties.11

If the voters are not sophisticated and only durations of time spent with ‘friends’ and ‘enemies’

matter, it makes sense to choose additive utilities. We summarize the above formally:

8a. Pure friendship and enmity. The utility for a stream of members, given by (2.1), for

an agent who succeeds in entering the society is given by

(2.2) ui(F) =
∑

{t≥1 : i∈F t}

|F t ∩ fr (i)| − (1 + ε)
∑

{t≥1 : i∈F t}

|F t ∩ en (i)|,

11We decided to require a positive ε in order to express the fact that, other things being equal, the members

would like to have a society with as few conflicts as possible: it is worse to have a friend and an enemy for a certain

period of time than to have neither of them for that period.
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where |S| denotes the cardinality of S, fr (i) denotes the set of friends of i and en (i) denotes

the set of enemies of i. Here, fr (i) ∪ en (i) = N \ {i} for each agent i.

In a more sophisticated model we can still assume that whether or not to vote for a person is

decided on purely personal grounds; namely, only on the merits of the person and not, e.g., on

who is already in the society, but now we let agents also take into consideration how much they

like/dislike each person.

Individual considerations may be quite complicated: a voter may like one person and dislike

another. He may want a person in the society, because he thinks that his views should be heard.

He may want a person in to balance an extreme stand of a founder, etc. Here we make the strong

assumption that whatever these considerations are, they can be summed up by each agent providing

each individual with a time-independent and society-independent “weight function”, so that the sum

of the weights reflects the utility of the voter for one stage.

Naturally the weights still allow us to distinguish between friends and enemies. Friends will be

agents with positive weight and enemies — with negative weights. If the weight is zero, we can call

him neutral for the voter.

We couple the above assumption with the idea that a voter wants to spend as much time as

possible with friends and as little time as possible with enemies. Together, the above brings about

the next simplifying assumption:

8b. Friends and enemies. Additivity within each stage and across stages. Every

agent i has a weight function wi : N → <. His utility ui(F) for a stream of members F

serving in the society is given by:

(2.3) ui(F) =
∑

{t≥1 : i∈F t}

∑

a∈F t

wi(a).
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Thus, wi(a) can be interpreted as the utility that i accumulates from spending one stage in

the society together with a.

How a weight function wi is determined in real life is hard to tell. Presumably it reflects player

i’s opinion on the importance that the agent belongs to the society. As indicated previously, a friend

may carry a high weight and yet not be invited to join.

On a higher level of sophistication we can consider a model in which not only individuals but also

groups matter. Thus, we now assume only that agents have priorities over the various groups that

may compose the society and these priorities need not be sums of weights for individual members.

We still assume additivity across stages. Formally:

8c. Additivity across stages. Each member i of the population has a ‘utility-per-stage’

function vi : {1, 2, . . . , k} ×2N → <, that depends only on t, and on the set of members that

stay with him in the society12 so that his utility for a stream F = {F1, F2, . . . , Fk} is

(2.4) ui(F) =
∑

{t≥1 : i∈F t}

vi(t, F
t).

Again, additivity across stages makes sense if the stages are equally spaced in time. Note that now

we no longer assume ‘time independence’: We allow that the same set of members adds a different

utility per stage to a player if it appears at a different stage. This may be the case, e.g., if some of

the agents are experts, whose services are important only at a late stage in the life of the society.

A next level is the most general one still compatible with our assumptions:

8d. General stream dependence. The utility of an agent who became a member of the

12Assuming that indeed he is already in the society at that stage. We do not discuss the utility of an agent who

is not a member of a society, because, as we shall see subsequently, we prefer not to regard him as a player.
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society is only a function of the stream of members that occurred:13

(2.5) ui(F) = ui(F
0, F 1, . . . , F k).

To complete the descriptions above we make a last assumption:

9. Common knowledge. All utilities as well as all the descriptions above are common knowl-

edge.

Who are the players? We have set up the society protocol and we have converted it into a game.

Clearly, the way we formulated it, the set of players is N . Yet, we can also regard the situation

as a sequence of several games, one starting at each stage, with different players, where the players

at each stage t are the set of voters F t−1 and the other agents are considered extraneous entities.

Indeed, agents do not really become players until they enter the society. The only votes that count

are those of agents who are members by that stage. They create the continuation and it is their

interest that matters.14 Thus, if we want to talk about refinements of equilibria, we sometimes

prefer to make them relative to the set of voters at each stage. Accordingly, we shall employ the

following definition:

Definition 2.1. An equilibrium strategy profile σ is called sequentially-Pareto-undominated, if for

every t ∈ {1, . . . , k} there does not exist another equilibrium strategy profile which coincides with σ

up to stage t−1, whose outcome is weakly preferred by all voters in F t−1 and strongly preferred by at

least one of them. The payoff that such a strategy yields is called a sequentially-Pareto-undominated

outcome.

13We even allow his utility to depend on events that occurred before he entered the society.
14There are two ways of looking at it. On the one hand, the voters at a stage make their own decisions. They

can even dictate to the elected candidates how to vote in the future, threatening not to bring them into the society

if no agreement is reached. On the other hand they also have to take into account that the people who are going to

participate are pursuing their own interests and will not abide by the agreement if they can benefit by violating it.
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The concept of ‘strong equilibrium’ was introduced in Aumann (1959). We shall encounter in the

next section games for which strong equilibria do not exist. Nevertheless, we shall show in Section 4

that it is often possible to achieve ‘quasi-strong equilibria’ as defined below:

Definition 2.2. An equilibrium strategy profile σ is called quasi-strong , if at no stage can any

voter of that stage benefit by a deviation that involves a proper subset of the voters.

This concept is in a sense weaker than Aumann’s, because it does not allow for deviations

involving all the voters. In another sense it is stronger, because it tells us that no voter can gain

even if others lose.
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3. Some interesting simple examples

A universal equilibrium profile. One equilibrium profile always exists in pure strategies:15

If there is more than one founder, each founder votes at stage 1 for every candidate — friends

and enemies and (off the equilibrium path) every voter votes always for every candidate. This is

certainly an equilibrium point, as nobody can change the outcome.

If there is only one founder he chooses that stream that maximizes his utility given that as soon as

there are at least two voters, each will vote for every candidate. For example, under pure friendship

and enmity (Assumption 8a),16 he will vote for all his friends in the first stage, if he has more

friends than enemies (and every candidate will be brought in at the second stage) and if the number

of friends does not exceed the number of enemies he will vote for nobody until the last stage,

whereupon he will bring all his friends.

A transitive friendship relation. Here we assume additivity within each stage and across stages

(Assumption 8b). If friendship is transitive, then the following is an equilibrium profile: Each

founder votes for all his friends at the first stage and (off the equilibrium path) each voter votes for

all his friends. Indeed, under this strategy, a founder need not be afraid that any of his candidates

will bring anybody later and no voter can gain by deviation, neither by voting for fewer friends nor

by bringing in enemies.

This equilibrium profile is perfect (see Selten (1975)), because the strategy for each player re-

mains a best reply against any possible trembles of the others. Surprisingly, it is not necessarily a

sequentially-Pareto-undominated equilibrium profile (See Example 3.2 below).

15This was first observed by Hans Reijnierse (private communication).
16Assuming that ε is small enough.
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The case k = 1. This case is quite clear under additivity within a stage (Assumption 8b): Having

each founder voting for his friends is certainly an equilibrium profile. It is perfect and Pareto-

undominated, but it is not necessarily strong. For example, under pure friendship and enmity

(Assumption 8a), if there are several founders, each having one and a different friend then the set

of all founders can all benefit by all voting for nobody. This example, which can easily be extended

to any number of stages, demonstrates that one cannot always obtain a strong equilibrium profile.

We remark that under friends and enemies and additivity within each stage (Assumption 8b),

every voting profile that produces the set of all friends of all the original founders as an outcome

and in which each founder votes at least for his friends, constitutes also an equilibrium profile.

These profiles produce the same outcome, so they are all Pareto-undominated but they need not be

perfect: voting for one’s friends only is a best reply against any tremble.

Complications can occur if additivity does not prevail, as the following example shows:17

Example 3.1. F 0 = {1, 2}, k = 1, C0 = {a, b},

u1(∅) = 2, u1(a) = 3, u1(b) = 1, u1(ab) = 0,

u2(∅) = 3, u2(a) = 0, u2(b) = 2, u2(ab) = 1.

Here, ui(S) stands for the utility of Founder i for S ∪ {1, 2}. A similar convention will be used

throughout.

Possible scenario: Founder 1 likes to stay alone. He thinks it is a good idea to bring a to the

society and it is a bad idea to bring b. It is a disaster to bring both, because the two will fight all

17Here, and in the sequel, we sometimes omit curly brackets and commas. We write, for example, u1(ab) instead

of u1({a, b}).
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the time. Founder 2 does not like a’s views. He somewhat prefers b, but would above all like to

stay alone. Bringing both is a ‘compromise’ between the previous two undesirable events.

The pure-strategy equilibrium points are (b, b), (a, ab) and (ab, ab). None of them is perfect

— they are all eliminated by weak domination. The only perfect equilibrium is mixed, in which

Founder 1 votes for ∅ and a with equal probabilities and Founder 2 votes for ∅ and b with equal

probabilities.

This example demonstrates that sometimes one has to resort to mixed strategies if one wants a

perfect equilibrium profile. We shall return to this issue in Section 5.

The case k = 2. This case carries other types of complications as is manifested by the following

two examples. These complications appear already under pure friendship and enmity (Assumption

8a). This assumption will prevail for the rest of this section.

Example 3.2. N = {a, b, c, d, e, f}; F 0 = {a, b}; fr (a) = {c}; fr (b) = {d}, fr (c) = fr (d) = fr (e) =

fr (f) = ∅. k = 2. (It does not matter who the candidates e and f have as friends.)

Since friendship here is vacuously transitive, the following is a perfect equilibrium profile: a

votes for c at both stages and b votes for d at both stages, regardless of the histories. Nevertheless,

there is another equilibrium profile that is preferred by both players: players a and b bring their

friends only in the second stage and if anyone deviates in the first stage, both a and b invite all

the remaining candidates in the second stage. In this strategy each founder ties the hands of the

other founder: “If you do not abide, we shall punish you by bringing in all the enemies.” This is

even a subgame-perfect equilibrium and sequentially-Pareto-undominated,18 but it is not perfect:

18Another variant, in which the deviator is punished only by the other person, in case of deviation, is not subgame-

perfect but is more convincing: why should the deviator agree, and abide by punishing himself? This is another
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Whatever the action of the other person, voting only for one’s friend in the last stage is never worse

and in some cases better than the prescribed action.

We see already in this simple example the dilemma: Which equilibrium to recommend? A perfect

equilibrium which yields small but ‘safe’ profits or an equilibrium which maximizes profits, but uses

threats whose credibility is questionable?

Example 3.3. N = {1, 2, 3, a, b, c, d, e, f, g, p, q, r, s}; k = 2; F 0 = {1, 2, 3}; fr (1) = {g}; fr (2) =

{e, f}; fr (3) = {a, b, c, d}; fr (a) = {p, q}; fr (b) = {q, r}; fr (c) = {p, r}; fr (d) = {p, q, r}; fr (e) =

{s, p}; fr (f) = {s, q}; fr (g) = {s, p, q}; fr (p) = fr (q) = fr (r) = fr (s) = ∅.

We reach a conclusion by the following heuristic arguments: At first one thinks that 1 should

not invite g at stage 1, because inviting him would bring about three enemies of 1 in the second

stage. Similarly, 2 should apparently not invite any of his friends, because that would bring him

more enemies in the last stage. Player 3, however, should invite all his four friends (not less!) in

the first stage, because that will bring him only three enemies in the next stage, with a net profit

of 1− 3ε, compared to not inviting any friend in the first stage.

Realizing that p, q are going to be in the society in the last stage anyhow, player 2 should not

hesitate to vote for his friends in the first stage: He gets two friends at that stage but suffers from

only one additional enemy next stage.

Realizing that also s will be present in the last stage anyhow, it now follows that 1 can only gain

by bringing his friend in stage 1.

manifestation of the known dilemma: Why should one trust a promise of a person, who already proved that he does
not keep his promises, because he deviated in the first stage. Note that formally the strategies in this variant are not

functions of the stream only. They also depend on knowing who deviated in the first stage. Of course, this knowledge

can be deduced if one remembers for whom he himself voted and what was the outcome of the first stage.
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Thus, the following is an equilibrium profile: Every voter brings all his friends as soon as he is

allowed to vote.

The utilities (not including utilities for time spent with the original founders and ignoring mul-

tiples of ε) are: u1 = −14, u2 = −10, u3 = −2, ug = −10, ue = uf = ua = ub = uc = −12, ud =

−10, up = uq = ur = us = −10.

It can be checked that this is indeed an equilibrium profile and, moreover, it is perfect.19

This is not a sequentially-Pareto-undominated equilibrium. Like in the previous example, there

is a sequentially-Pareto-undominated, subgame-perfect but not perfect equilibrium that will be

strictly preferred by all original founders, and in fact, by everyone who will find himself eventually

in the society; namely, to invite nobody in the first stage, invite one’s friends in the second stage

and punish deviations by each voter inviting everyone in the second stage.

To sum up: We exhibited here a “safe” equilibrium outcome that does not yield much to the

founders and another “not so safe” that brings about higher utilities to the founders, and moreover

brings about a society with much fewer frictions in it. Which one (if any) should be chosen has

to be decided by the members. Do they trust their co-founders to honor the “agreement” in the

second case? Do they believe that the “punishment” will be carried out in case of a breach? The

answer to such questions, we feel, is beyond the scope of the theory.

When many common enemies exist. We have seen in the previous example how a punishment

can force an equilibrium. In fact, if there are enough common enemies, then any agreement between

the current founders, at any stage other than the last, can be enforced by a strategy that stipulates

19Any “tremble” can be observed only in the last stage when it is still to one’s advantage to bring all his friends.

The considerations of this example will be employed in Section 5 to produce classes of 2-stage voting schemes for

which pure-strategy perfect profiles always exist.
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that out of the agreement all voters will vote for all common enemies as soon as they recognize that

they are off the equilibrium path. This is even subgame-perfect.

The question then becomes: Which agreements are the players likely to sign? Realizing that

almost all agreements can be made binding as explained above, this case should be handled with

the tools of cooperative game theory and this is outside the scope of the present paper.

We keep the above in mind but we wish to make the following two observations: (1) In real

life one can usually extend the set of candidates so as to include as many common enemies as

one ‘wishes’. (2) Nevertheless, a threat to bring these common enemies is often not credible as a

general procedure. It often would be considered unthinkable, because it would undermine the very

foundations upon which the society rests. Thus, although such threats may be feasible, often they

are not viable, which brings us again to the recognition that a model does not usually capture all

the intricacies of a real situation.

The helpful enemy. We have seen how voting for an enemy may be beneficial off the equilibrium

path. The following example will show that voting for an enemy may be beneficial also along the

equilibrium path.

Example 3.4. N = {a, b1, b2, . . . , b5, c1, c2, . . . , c5, d, e}; F 0 = {a}; fr (a) = {b1, . . . , b5}; fr (bi) =

{ci}, i = 1, . . . , 5; fr (ci) = {d}, i = 1, . . . , 5; fr (d) = {e}; fr (e) = ∅; k = 4.

The founder would like to bring all his friends, but if he simply does so at the first stage then

each bi will bring ci in the next stage. This is because the bi’s will not fear20 that ci will bring d

before the last stage, knowing that if ci does so, d will bring e. To prevent this from happening,

20We are using the fact that, because ε is positive (Assumption 8a), a voter will prefer to postpone a vote for a

friend if this friend will bring an enemy at the next stage. He will gain an ε by postponing one stage.
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the founder can vote for e in the first stage. A complete strategy profile is this:

σt
e = ∅, (t ∈ {2, 3, 4}), ∀F t−1;

σt
d = {e}, (t ∈ {2, 3, 4}), ∀F t−1;

σ4
ci

= {d}, i ∈ {1, . . . , 5};

σt
ci

=

{{d}, if e ∈ F t−1,

∅, otherwise,
(i ∈ {1, . . . , 5}), (t ∈ {2, 3});

σ4
bi

= {ci}, (i ∈ {1, . . . , 5});

σ3
bi

=

{{ci}, if d ∈ F 2,

∅, otherwise,
(i ∈ {1, . . . , 5});

σ2
bi

=





{ci}, if d ∈ F 1,

{ci}, if e /∈ F 1,

∅, otherwise,

(i ∈ {1, . . . , 5});

σt
a = ∅, (t ∈ {2, 3, 4});

σ1
a = {b1, . . . , b5, e}.

One can verify that this is indeed an equilibrium profile.

Example 3.5. The game of chicken. In this example, F 0 = {1, 2}, C0 = {x1, x2, y1, y2}, k = 3.

Founder 1 likes only x1, who likes only y1. Founder 2 likes only x2, who likes only y2. Agents y1

and y2 like only each other.

Skipping formalities, each founder can essentially either choose his friend in the first stage, or

refrain from doing so. (He strictly loses by voting for an enemy at this stage.) Unfortunately, if

player 1 votes for his friend at the first stage, player 2 will lose if he too votes for his own friend.

The reason is that in this case it is clear that both y1 and y2 will be present in stage 3, so there will

be no reason for both x1 and x2 to refrain21 from voting for their friends in stage 2. These friends

21If, say y2 were not present at stage 3, x1 would not have invited y1 at stage 2, as ε is positive and x1 knows

that y1 will bring y2 (an enemy of x1) at the last stage.
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are enemies of the founders. Putting together the relevant information and ignoring ε, we get the

following payoff as functions of the choices in the first stage:

∅ x2

∅
0 −3

0 1

x1
1 −4

−3 −4

This is the famous game ‘chicken’. It has two pure-strategy equilibrium points: (x1, ∅) and

(∅, x2), yielding payoffs (1,−3) and (−3, 1), respectively. In addition, the players can each use a

mixed strategy (1/2,1/2) that yields a more sensible payoff (−1.5,−1.5). All these are undominated

and therefore perfect (see Kohlberg and Mertens (1986), Appendix D).

Even more sensible for the players is to employ a correlated strategy under which a mechanism

chooses one of (∅, ∅), (∅, x2), (x1, ∅) with equal probabilities, informing founder 1 what row was

chosen and informing founder 2 what column was chosen. The founders then choose whatever

row/column they were told, thereby reaching an equilibrium expected payoff equal to (−2/3,−2/3).

This example comes to show that mixed and correlated strategies should not be ignored.
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4. Common voting and partial common voting

At the beginning of this section we study common voting profiles; namely, profiles under which, at

each stage, all voters vote for the same set of candidates. We show that every equilibrium outcome

that can be reached by a pure-strategy profile can also be reached by a common-voting profile that

generates the same stream of members. These profiles have the additional advantage that they are

quasi-strong equilibria (Definition 2.2). A quasi-strong equilibrium gives each voter the assurance

that, without his participation, no subgroup of the other players will agree to deviate, because none

of them will gain, and some may even lose.

We then proceed to characterize and, at least theoretically, construct all the equilibrium streams,

and therefore all equilibrium outcomes that can be achieved by pure strategies. We also indicate

where to look when we want to get all the sequentially-Pareto-undominated equilibrium streams,

as well as all the subgame-perfect streams.

In the last part of this section we provide interesting procedures that produce equilibrium profiles

that only ‘partially’ employ common voting, or even some in which the voters vote for distinct sets.

A key role in reaching some of these results is expressed in the following:

Remark 4.1. Quota one implies that whoever the voters bring in can also be brought by one voter.

Consequently, if a set S of candidates is chosen in an equilibrium profile of a 1-stage game, this set

has the property that, if elected, no voter would have preferred that more members were added to

it.

All strategies in this section are pure and we shall rarely repeat this fact. To avoid trivialities

we assume henceforth that C0 6= ∅.



ELECTORAL EVOLUTION — THE QUOTA ONE CASE 23

Proposition 4.2. Let σ be a pure-strategy equilibrium profile for a 1-stage game Γ. The strategy

profile σ̄, generated from σ by common voting, is a quasi-strong equilibrium profile for Γ.

Proof. If |F 0| = 1, then σ̄ = σ, it is an equilibrium point and vacuously a quasi-strong one. Let

|F 0| > 1. The set S of players that was elected under σ̄ is the same set that was elected under σ;

therefore, it yields the same payments. Any deviation from σ̄, made by a nonempty proper subset

of the founders, can only yield a set that contains S, because the remaining founders still vote for

S. Therefore, if such a deviation from σ̄ resulted with some members gaining, then, in σ each of

them could have forced the same better payment, by alone adding the same additional candidates,

contrary to the fact that σ is an equilibrium profile for Γ.

One should be careful when one tries to generalize Proposition 4.2 to multi-stage games: At

future stages ‘new’ players may enter the game and one is inclined to take into account possible

agreements involving them, as a condition to be elected. Consider the following:

Example 4.3. Let F 0 = {1, 2}, C0 = {a, b}. Under pure friendship and enmity (Assumption 8a),

agents 1 and 2 like agent a. Agent a likes agent b. For all other pairs (i, j), j is an enemy of i.

k = 2. Assume also that agent a prefers to be in the society to not being there, no matter who else

is with him.

The following strategy profile is subgame-perfect:

σ1
1 = ∅, σ2

1 = {a}, σ1
2 = ∅, σ2

2 = {a}, σ2
a = {b},

where these actions are taken on and off the equilibrium path.

This profile is already in common voting for the original founders, who vote the same way

throughout the play, on and off the equilibrium path. Nevertheless, this profile is not immune to
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deviation involving a proper subset of the founders: Agents 1 and a can deviate by 1 voting for a

already in the first stage and a promising to vote for ∅ at the second stage. By this deviation agent

1 gains and agent a also gains, because he becomes elected.22

The point is that the strategy profile above is not in common voting with agents that may later

be admitted to the society!

Indeed, augmenting the above example and requesting that both 1 and 2 vote also for b at the

second stage, if a is elected in the first stage, then no profitable deviation can take place by a proper

subset of the founders. For example, it will do no good that a will refrain from voting b, because

founder 2 will still vote for b.

With this understanding we can generalize Proposition 4.2 as follows:

Theorem 4.4. Let Γ be a game representing a voting scheme obeying general stream dependence

(Assumption 8d). Let σ be a Nash equilibrium of Γ. Let σ̄ be the profile derived from σ by common

voting at each stage, on and off the equilibrium path.23 Then, σ̄ is a quasi-strong equilibrium of Γ,

giving the same stream as σ. If σ is a subgame perfect profile then σ̄ is also subgame-perfect.

Proof. Since actions in σ may depend only on the history of membership (and not on who voted

for whom), common voting preserves the set of candidates voted into the society at every stage,

both on and off the equilibrium path. Therefore, the outcome stream F := {F 0, F 1, . . . , F k} of σ

coincides with that of σ̄.

The profile σ̄ is also an equilibrium point. Indeed, if a deviation of an agent i from σ̄ profits him,

then he could profit the same way by deviating alone from σ, voting at each stage for those members

22One can question how safe is this agreement between 1 and a. Obviously, a will desire not to honor the
agreement. This, however, is irrelevant to the claim that 1 and a can both gain if they follow this agreement.

23The requirement of common voting refers only to the profile σ. Of course, if a player, or several players, decide

to deviate, they need not adhere to the common voting stipulation.
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who were elected due to σ̄−i together with those elected by him in his deviation. A contradiction.

By the same token, σ̄ is subgame perfect, if σ was subgame perfect.

Suppose that σ̄ is not quasi strong. Then, there exists a profile τ that coincides with σ̄ up to a

certain stage t? and deviates from that stage, where the deviation is done by a proper subset of F t?−1,

together with agents who are admitted later to the society. Let G := (F 0, F 1, . . . , F t?−1, Gt?

, . . . , Gk)

be the stream of members that result from τ . Suppose that a member i of F t?−1, who is not nec-

essarily a deviator, prefers G to F . We claim that he alone could generate G, if all other agents

obey σ̄. Indeed, consider an arbitrary subgame starting at an arbitrary stage t, t ≥ t?, on, or off

the equilibrium path of σ̄. Let Ht be the set of members elected at this stage due to σ̄, then it is

contained in the set of members elected at this stage due to τ , because there are members of F t?−1

who still vote as in σ̄. This very same set can be voted into the society by agent i alone. It follows

that i can benefit by a deviation from σ̄, contrary to the fact that σ̄ is an equilibrium profile.

We have shown that all pure-strategy equilibrium outcomes can be generated by common voting.

The natural question that now comes to mind is how to characterize all streams that constitute

such outcomes. Proposition 4.5, Theorem 4.6 and Corollary 4.7 provide an answer.

Proposition 4.5. Assume that there are at least two founders in a 1-stage game Γ. A set S of

candidates chosen can result from a pure-strategy equilibrium profile iff S has the property that no

founder would prefer to add members to S.24

Proof. The ‘only if’ part is explained in Remark 4.1. Conversely, suppose S has this property and

is voted, say, by common voting. Then no player can benefit by deviating alone: He cannot delete

members from S and he does not want to add members to S.

24Such an S always exists, for example S = C0.
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Thus, for a multi-person set of founders, to generate all equilibrium outcomes for a 1-stage game

one has to examine all subsets S of C0 and select those that have the property that no founder

would like to augment them. This task is manageable by a computer if |N | is reasonably small and

k = 1. It becomes less so when the number of stages increases.

To extend Proposition 4.5 to a k-stage game, for k > 1, we employ a process that we call

collation, explained subsequently.

Consider a tree game Γ, representing a k-stage voting scheme. Consider an arbitrary subgame

starting at the last stage. This is a tree form for a 1-stage voting scheme, connected to the root

of Γ by a unique path. Its endpoints represent the payoff vectors that would be obtained if the

players proceeded along this path and continued along the subgame. Thus, if we fix an action25 for

each voter of the subgame (and remember it), we can delete the subgame and connect the resulting

payoff vector to the new endpoint, at the root of the subgame. Fixing actions at each last-stage

subgame allows us to delete them, thus converting the tree to a (k−1)-stage game. By this collation

we can obtain backward induction results, by considering only 1-stage games, even though Γ is not

a perfect-information game. Note that strategies constructed in this way usually do not depend

only on the streams. To force a strategy that depends only on the stream, we have to require that

actions taken at paths that correspond to the same stream are the same actions. Since this paper

allows only stream-dependent strategies, we assume in this paper that this requirement is imposed

during collation.

Note that two 1-stage games, belonging to the same stage, may have the same set of voters and

yet differ in the resulting payoff vectors. This can happen because the streams leading to these

voters differ. However, if the voting scheme obeys additivity across stages (Assumption 8c), two

25This action can also be a mixed strategies at each stage, which together form a behavioral strategy. We shall

use mixed strategy collation in Section 5.
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such 1-stage games are strategically equivalent — their payoff vectors differ by a constant, which is

the difference between the payoff vectors accumulated until these stage games were reached. This

results in a great saving when attempting to construct equilibrium strategies which are markovian;

namely, depend at each stage only on the set of voters and on the number of stages left, and not

on the paths reaching these 1-stage games.

To sum up: collation is a protocol, during which one assigns fixed moves26 to all last stage games

and then truncates these games, assigning the appropriate payoff vectors to the new endpoints.

This is continued until the root is assigned a payoff vector. If one takes care to use the same moves

at vertices corresponding to the same stream, up to that stage, then the resulting strategy profile

will be only a function of the stream.

Theorem 4.6. Let Γ be a game representing a k-stage voting scheme obeying general stream de-

pendence (Assumption 8d). If, during collation, we always choose an equilibrium profile for each

1-stage game, the resulting profile is a subgame-perfect equilibrium profile for Γ. Conversely, every

subgame-perfect equilibrium profile can result in this fashion. If the 1-stage profiles are quasi-strong,

then the resulting profile is quasi-strong (Definition 2.2).

Proof. A. Suppose that during collation, we always choose an equilibrium profile for a one-stage

game. Let σ be the resulting profile for Γ. Let (σ−i, τi) be an arbitrary profile resulting from a

deviation by player i. We show that this deviation does not yield this player any benefit. Indeed,

switching to σi at all last-stage subgames does not decrease his payoff, because σi is a best reply

to σ−i at all stage k games. After the switches, collate on the last-stage games, and continue in

the same fashion. Performing this procedure k times, we observe that player i’s payment never

decreases. Finally, we arrive at his original payment due to σi.

26Pure, or mixed.
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B. Suppose that at each one-stage game the chosen profile was a quasi-strong equilibrium. Sup-

pose now that a deviation τ occurred, subject to the restriction that at the start of every subgame,

there was at least one voter who adhered to σ for that stage. Let i be an arbitrary agent, who

was a member of the society when the deviation started, and we show that he cannot benefit from

τ . Indeed, consider all k-stage subgames, and instruct all the players to revert to σ. This will not

harm agent i, because the profiles restricted to the last stage were quasi-strong. Collate on this

stage and continue in the same fashion k − 1 times. One winds up with player i not harmed, and

getting the payment as in σ. Thus, τ does not benefit agent i.

C. Let σ be a subgame-perfect profile. Its restriction to any last-stage subgame is an equilibrium

profile. Collate on all the subgames of this stage and look at the games of stage k − 1. Again,

σ restricted to this subgame (after collation) is an equilibrium, because σ was subgame perfect.

Continuing in this fashion, we see that σ was indeed obtained by the process of collation.

Corollary 4.7. The following collation protocols yield all possible pure-strategy subgame-perfect

equilibrium streams:

Starting with the last stage and continuing backwards, as long as there are at least two voters,

select a set of candidates that has the property that, if elected, no agent prefers to add candidates

to this stage. If there is one voter, select for him a move that maximizes his payment. Having done

that for a stage, perform collation and continue in the same fashion until all stages are exhausted.

Proof. Proposition 4.5 and Theorem 4.6.

Interestingly, subgame perfect outcomes do not yield strict refinements to Nash equilibrium

outcomes, as the following theorem shows.
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Theorem 4.8. Let σ be a Nash equilibrium profile for a voting game Γ. There exists a subgame

perfect equilibrium profile σ̂ yielding the same stream of members.

Proof. Denote by τ the universal equilibrium profile for Γ as defined at the beginning of Section 3.

Note that τ is a subgame perfect profile. Let σ̂ be equal to σ along the equilibrium path of σ, and

equal to τ otherwise. Both σ and σ̂ have the same equilibrium path. Off the equilibrium path, σ̂ is

subgame perfect, due to τ . If an agent has a profitable deviation from σ̂ starting on the equilibrium

path, he could have achieved it alone against σ−i by switching to τi after the starting point of the

deviation.

Consider again a one-stage multi-founder game. It may well happen that several sets S have the

property that no founder would have preferred to add more candidates, given that they were elected.

If such a set S1 is contained in another such a set S2, then the payment to each of the founders under

S2 is not greater than the payment under S1, since otherwise a founder who would have preferred to

vote for S2, rather than for S1 could have forced this outcome. Consequently, all sequentially-Pareto-

undominated equilibrium outcomes in a one stage game can be found through the common-voting

procedure described in Proposition 4.5 but choosing only sets S that are minimal under inclusion.

Similarly, we can obtain all subgame perfect sequentially-Pareto-undominated equilibrium payoffs

in a multi-stage game by performing the construction of Theorem 4.6, but restricting ourselves at

each stage to sets S that are minimal under inclusion. (Of course some equilibria reached by this

construction may not be sequentially-Pareto-undominated.)

If we were only interested in equilibrium outcomes we could stop here. But we are also interested

in other equilibrium profiles that lead to such outcomes, in particular those obtained by pure

strategies. We shall close this section by producing a wider class of equilibrium profiles. These
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extend the common-voting class in that they involve only partial common voting, or even no common

voting at all. These profiles will play an important role in Section 5, when we deal with perfect

equilibria. In view of Theorem 4.6, it is sufficient to consider 1-stage voting games.

Proposition 4.9. Let Γ be a 1-stage voting game having at least two founders. Let S be a set

of candidates from C0, having the property that, if elected, no original founder will prefer to add

players to S. For each founder i, choose a set Pi, contained in S, that is a best response to27

S \ Pi. Let C = S \ ∪j∈F 0Pj . Finally, let Vi = Pi ∪ C. Under these conditions, {Vi : i ∈ F 0} is an

equilibrium profile for Γ.

The proof requires two lemmas:

Lemma 4.10. Let Pi be a best response of founder i against S \ Pi, where S is an arbitrary given

set of candidates from C0 containing Pi. If Q ⊆ S \ Pi, then Pi ∪Q is also a best response of i to

S \ Pi

Proof. Q is covered anyhow by S \ Pi, so it makes no difference whether i includes Q in his vote,

or not.

Lemma 4.11. Let Pi be a best response of founder i against S \Pi, where S is an arbitrary set of

candidates containing Pi. If R ⊆ Pi then Pi \R is a best response of i to (S \ Pi) ∪R.

Proof. Voting Pi \ R against (S \ Pi) ∪ R, would yield player i the utility gained from S being

elected. If voting for another set, Q, would yield him a higher utility, then voting Q ∪R would be

a better response to S \ Pi than voting Pi, because (Q ∪R) ∪ (S \ Pi) = Q ∪ (R ∪ (S \ Pi)).

27Such a set always exists; for example ∅.
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Proof of Proposition 4.9. Pi is a best response of i against S \Pi; therefore, Vi is a best response

of i against S \Pi = (S \Pi)∩ (∪j∈F0\{i}Vj) (Lemma 4.10). By Lemma 4.11, (C ∪Pi) \ ∪j∈F \{i}Pj

is a best response of i against ∪j∈F 0\{i}Vj. Invoking Lemma 4.10 once more, we find that Vi is a

best response of i against ∪j∈F0\{i}Vj.
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5. Perfect equilibria in pure strategies

Common-voting equilibria are usually not perfect. A voter may be tempted to deviate, figuring

that the others will continue to vote in the same way with high probability, in order to extract

some profit in case of ‘trembles’. In this section we provide a sufficient condition for the existence

of perfect equilibria in pure strategies and show how one can construct them (Proposition 5.2 and

Theorem 5.12). We then show by examples that this condition is not necessary, as there are other

cases in which pure-strategy perfect equilibria exist. Nevertheless, we show that for 2-stage games

with additive preferences across stages and within a stage (Assumption 8b), pure-strategy perfect

equilibria always exist (Theorem 5.7). Whether this result can be extended to games with more

stages is still an open problem.

We are able to prove the main theorems of this section under the assumption that the voting

scheme is generic; in the sense that different streams yield different utilities for each player.

Example 5.6 shows that this assumption is necessary for the results.

Definition:. For a set S ⊆ C0 we say that i supports x with respect to S if S Âi S \ {x}. Here, Âi

means: ‘Preferred by i’.

The following lemma is easily proved by induction.

Lemma 5.1. For all n ≥ 1, for all 0 < ε < 1, it is true that 1− (1− ε)n ≤ nε.

Proposition 5.2. Let Γ be a generic 1-stage multi-founder voting game. If S is a set of candidates,

Vi is the set of candidates supported by founder i in S, and the strategy profile {Vi}i∈F 0 is a Nash

equilibrium with S = ∪i∈F 0Vi, then {Vi}i∈F0 is a perfect equilibrium of Γ.
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Proof. Denote c = |C0|, f = |F 0|. Denote by d the minimum payoff difference for any two sets of

candidates and any founder. Similarly, denote by M the maximal payoff difference for any two sets

of candidates and any founder; i.e.,

(5.1) d = min
i∈F 0

T1,T2⊆C0

|ui(T1)− ui(T2)|, M = max
i∈F 0

T1,T2⊆C0

|ui(T1)− ui(T2)|.

The voting scheme is generic, and c ≥ 1, therefore d > 0 and M > 0.

Assume fixed positive ε1 and ε2. Assume initially that they are each less than
1

4c
and that

ε2 ≤ ε1. Additional conditions will be provided later.

Define the following completely mixed strategy for each founder i:

(1) For each x ∈ Vi, vote for Vi \ {x} with probability ε1.

(2) For any other set of candidates, except Vi, vote for this set with probability
ε2

2c
.

(3) Vote for Vi with the residual probability. This probability is greater than 1 − cε1 − ε2 as

|Vi| ≤ c, and from the restrictions already imposed on the epsilons it is greater than 1
2
.

As ε1 and ε2 tend to zero, this completely mixed strategy tends to Vi for every founder i.

Let i be an arbitrary fixed founder. The proof will conclude if we show that Vi is his best reply

against the others using these strategies, provided the epsilons are small enough.

Consider two possible types of deviation by agent i. The first is a deviation that makes a difference

when all others vote for the candidates they support, and the second is a deviation that makes no

difference when all others vote for the candidates they support.

The first type of deviation causes a loss of at least d whenever all others vote Vj , and a gain of at

most M in other cases. The loss occurs with a probability of at least
1

2f−1
(as this number is less

than the probability of every other founder j voting Vj) and the gain can occur with a probability
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of at most

(5.2) 1− (1− cε1 − ε2)
f−1 ≤ (f − 1)(cε1 + ε2) ≤ cf(ε1 + ε2),

as at least one founder j 6= i must vote for a set different from Vj . The first inequality is implied

by Lemma 5.1.

A sufficient condition for the expected loss from such a deviation to exceed the expected gain is

therefore

(5.3)
d

2f−1
≥ Mcf(ε1 + ε2),

and this always holds if ε1 <
d

Mcf2f
as ε2 ≤ ε1.

We now investigate the other type of deviation, and find restrictions on the epsilons to ensure

that it too will not be profitable.

Consider a deviation by agent i to (Vi \R)∪A, where R∪A ⊆ V−i, R ⊆ Vi and A∩Vi = ∅. Thus,

player i removes members of R from his bid and adds members of A, and each of these candidates

is supported by at least one other founder. Denote Q = A ∪R 6= ∅ and V ′
i = (Vi \R) ∪A.

There are three cases of bids of the other founders we now consider. The first, where V ′
i gives a

sure loss of at least d relative to Vi, the second, where a gain of up to M is possible, and the third,

where the payoff to i from Vi and V ′
i is the same.

The first case is when the others vote for V−i \ {x} for some x ∈ Q. Regardless of whether i

supports x and does not vote for him (x ∈ R), or whether i does not support x and does vote for

him (x ∈ A), the deviation to V ′
i gives a loss of at least d compared to voting Vi. For each x ∈ Q

denote the probability of this subcase by η1(x).
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The second case (possibility of gain) is when the vote of the others does not contain x for some

x ∈ Q, but it is not V−i \ {x}. Denote the probability of these subcases by η2(x) for each x ∈ Q.

Note that the |Q| such possibilities are not mutually exclusive. Note also that these two cases cover

all situations where any member of Q is missing from V−i.

Any other set voted for by the others (such a set must contain Q) gives the same payoff to i from

both Vi and V ′
i .

A sufficient condition for V ′
i not to be a profitable deviation is that the expected loss is greater

than the expected gain. A sufficient condition for this is

(5.4) d
∑

x∈Q

η1(x) > M
∑

x∈Q

η2(x).

Let m(x) be the number of supporters of x with respect to S, not including agent i. For all

x ∈ Q it is true that m(x) ≥ 1.

The following bounds hold, as we explain:

(5.5) η1(x) ≥ ε
m(x)
1 (1− cε1 − ε2)

f−m(x)−1 ≥ ε
m(x)
1

2f−m(x)−1
≥ ε

m(x)
1

2f
.

The first inequality holds, as the event η1(x) includes the event that each supporter of x votes

Vj \ {x} and all others vote Vj. The second inequality is implied by 1 − cε1 − ε2 > 1
2 .

(5.6)

η2(x) ≤ 1− (1− ε2)
f−1 + ε

m(x)
1 (1− (1− cε1 − ε2)

f−m(x)−1)

≤ (f − 1)ε2 + ε
m(x)
1 (f −m(x)− 1)(cε1 + ε2).

The first inequality holds, as for this case to occur, at least one of the events [at least one founder

j votes for neither Vj nor Vj \ {y} for any candidate y] which has probability no greater than

1− (1− ε2)
f−1, or [all the supporters j of x vote for Vj \ {x} and at least one of the other founders
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j′ votes for a set different from Vj′ ] must occur. The second inequality holds from two applications

of Lemma 5.1.

If we now assume that ε2 ≤
ε
m(x)+1
1

f − 1
then (5.6) implies

(5.7) η2(x) ≤ ε
m(x)+1
1 + ε

m(x)
1 (f − 1)(c + 1)ε1 ≤ 2cfε

m(x)+1
1 .

Inequalities (5.5) and (5.7) together imply

(5.8) η2(x) ≤ η1(x)
2cfε

m(x)+1
1 2f

ε
m(x)
1

= η1(x)2f+1cfε1.

Now, using inequality (5.8), inequality (5.4) is implied by

(5.9) d
∑

x∈Q

η1(x) > M2f+1cfε1

∑

x∈Q

η1(x).

This is equivalent (since
∑

x∈Q η1(x) > 0), to

(5.10) ε1 <
d

Mcf2f+1
.

Taking all the restrictions together, and using the fact that m(x) ≤ f − 1, for all x ∈ Q, we have

that

(5.11) ε1 <
d

Mcf2f+1
, ε2 ≤

εf
1

f − 1
,

imply that Vi is a best response to the mixed strategies of the others.

Since we can take a sequence of epsilons that tend to zero while keeping all the restrictions, the

proof is complete, as we have a sequence of completely mixed strategy equilibrium profiles tending

to {Vi}i∈F 0 .
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Guessing a set of candidates S, for a single game Γ, that generates {Vi}i∈F0 that covers S, and

furthermore, constitutes an equilibrium profile, might be a difficult task. Searching for all such

S’s makes it even more difficult. Even then, as we shall see (Example 5.5), we may not construct

all pure-strategy perfect-equilibrium profiles. Sometimes, we are not interested in a specific voting

game, but rather in a large class of games, and we wish to prove that every game in this class has

a pure-strategy perfect-equilibrium profile. We may even want to characterize such a profile. In

such cases, the following two corollaries might be useful. In fact, one of them will be employed

subsequently.

Corollary 5.3. Let Γ be a generic one-stage voting game. If there exists a set of votes P = {Pi}i∈F 0

where Pi ⊆ C0, satisfying

(1) P is an equilibrium profile for Γ,

(2) Pi ∩ Pj = ∅, whenever i 6= j,

then Γ has a pure-strategy perfect-equilibrium profile.

Terminology:Profile P, satisfying (1) and (2) above will henceforth be called a generalized-

partition equilibrium profile.

Proof. Denote by S the union ∪i∈F 0Pi. Let Vi := {x ∈ S : x is supported by i with respect to S}.

It follows that Vi ⊇ Pi because P is an equilibrium profile. For the same reason, {Vi}i∈F 0 is an

equilibrium profile. Therefore, {Vi}i∈F 0 satisfies the conditions of Theorem 5.2 and constitutes a

pure-strategy perfect-equilibrium profile.

This corollary is a special case of the following:

Corollary 5.4. Let Γ be a generic one-stage voting game. Consider an arbitrary equilibrium profile
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{Pi ∪ C}i∈F 0 , employing partial common voting as in Proposition 4.9. If Pi ∩ Pj = ∅, whenever

i 6= j, and every agent in C is supported by every voter, with respect to S = C ∪ (∪j∈F 0Pj) then Γ

has a pure-strategy perfect-equilibrium profile.

The proof is similar to the previous one and will be omitted.

Proposition 5.2 raises the question whether the conditions are also necessary for the existence of

pure-strategy perfect equilibrium. We answer the question negatively, by the following example:

Example 5.5. The population consists of:

F 0 = {1, 2}, C0 = {a, b}.

There is only one period; k = 1. The utilities of the founders are:

u1(∅) = 2, u1({a}) = 3, u1({b}) = 4, u1({a, b}) = 1,

u2(∅) = 4, u2({a}) = 2, u2({b}) = 1, u2({a, b}) = 3.

The payoff matrix is given by28

∅ a b ab

∅
2 3 4 1

4 2 1 3

a 3 3 1 1
2 2 3 3

b 4 1 4 1
1 3 1 3

ab 1 1 1 1
3 3 3 3

In this example the pure equilibrium profiles are ({a}, {a, b}), ({b}, {a, b}) and ({a, b}, {a, b}).

None of them satisfies the conditions of Proposition 5.2. Nevertheless, ({a}, {a, b}) and ({b}, {a, b})

28For simplicity we omit the curly brackets that denote sets.
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are perfect equilibrium profiles.29 This shows that Proposition 5.2 does not yield necessary con-

ditions. On the other hand, Example 3.1 shows that voting schemes exist that do not have any

pure-strategy perfect equilibrium. Providing a necessary and sufficient condition for the existence

of pure-strategy perfect equilibrium in a 1-stage game remains an open question.

The next example will show that the requirement that the game is generic is needed for Propo-

sition 5.2 to hold.

Example 5.6. The population is:

F 0 = {1, 2}, C0 = {a, b}.

There is only one period; k = 1. The utilities of the founders are:

u1(∅) = 2; u1({a}) = 1; u1({b}) = 3; u1({a, b}) = 1.

u2(∅) = 0; u2({a}) = 1; u2({b}) = 1; u2({a, b}) = 1.

The game is not generic, as for example u1(a) = u1({a, b}). For S = {a}, founder 1 supports the

empty set and founder 2 supports {a}. This voting profile is a Nash equilibrium. However, it is not

a perfect equilibrium, as founder 1’s strategy of ∅ is weakly dominated by voting {b}. This shows

that requiring genericity is needed in Proposition 5.2. Note that (b, b) is a perfect Nash equilibrium

which does support the conditions of Proposition 5.2.

An interesting application of Corollary 5.3 is the following:

Theorem 5.7. Let Γ be a game representing a 2-stage generic voting scheme, whose utilities obey

additivity across stages and additivity within each stage (Assumption 8b). Under these conditions,

Γ has a perfect equilibrium in pure strategies.

29Note that ({a}, {a, b}) can be eliminated by successive weak domination.



40 S. BARBERA, M. MASCHLER, J. SHALEV

Proof. Any perfect equilibrium profile for Γ must specify for each subgame of the second stage

a profile under which each voter votes precisely for the set of his friends (who are not already in

the society). This is a perfect equilibrium of the subgame (Section 2, case k = 1) and unique, by

genericity. With this understanding, we can construct a 1-stage game Γ1 by collation. The proof

will be concluded if we show that Γ1 has a pure-strategy perfect equilibrium, as the combination

of this strategy with the continuation is a perfect strategy30 for Γ. To achieve that, it is sufficient,

by Corollary 5.3, to exhibit a generalized-partition equilibrium profile for Γ1. This we are about

to do by a construction under which voters add candidates to the society piecewise: There will be

a variable set of candidates, called a current set, that grows, or stays put, as the voters add to it

during the construction, until it eventually becomes the outcome for Stage 1, as well as an outcome

of Γ1. We introduce the following terminology: Let A be a current set of candidates. We say that

a, possibly empty, set of candidates taken from C0 \A, is optimal for voter i w.r.t. A, and denoted

Xi(A), if it is the best set of candidates that i could add to A, so as to increase his utility from the

two stages. Note that Xi(A) cannot contain enemies of i, since such candidates are enemies, and

can only contribute more enemies at Stage 2. (The friends of i will be brought in anyhow by i at

Stage 2.) In symbols, Xi(A) is characterized by

(5.12)

wi(A ∪Xi(A)) + wi(eni (F 0 ∪A ∪ fr (F 0 ∪A ∪Xi(A)))) ≥

wi(A ∪B) + wi(eni (F 0 ∪A ∪ fr (F 0 ∪A ∪B))), all B ⊆ fri (C0 \ A).

(In this calculation friends of i at the second stage are omitted from both sides of each inequality.)

Here, wi(T ) :=
∑

t∈T wi(t), fri (S) := {j : j ∈ fr (i) ∩ S}, eni (S) := {j : j ∈ en (i) ∩ S} and

fr (B) := {` : ` ∈ fr (j) for some j in B}. Sums over the empty set are considered equal to zero. By

genericity, the set Xi(A) is unique.

30A proof for any game representing a k-stage voting scheme is given in Theorem 5.12.
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The construction:

Starting with a current set A = ∅, a referee approaches the voters repeatedly, one by one, and

suggests to them to add candidates to the current set. Each approached voter i adds Xi(A) and

the set A ∪Xi(A) becomes a new ‘current set’ A. The referee continues to approach the voters,

perhaps approaching a voter several times, taking care not to ignore voters whose optimal addition

is not empty. This assures that after a finite number of approaches, there comes a situation when

all optimal sets w.r.t. the current A are empty for all voters. At this the construction ends. This

determines a pure-strategy profile {Pj}j∈F 0 , where Pj is the set consisting of all the members that

voter j added along the construction.

It follows from the construction, that {Pj}j∈F 0 is a generalized partition of S := ∪j∈F 0Pj . It

remains to show that it is an equilibrium profile for Γ1. To this end we require a lemma, which

unfortunately is not true if k > 2:

Lemma 5.8. Assume the conditions and notations of Theorem 5.7. Let A and B be two sets of

candidates, A ⊆ B. Let C be a set of friends of a voter i satisfying C ∩B = ∅. If A ∪ C Âi A then

B ∪ C Âi B.

Proof. From the data it follows that the total weight of i from C exceeds the absolute value of the

total weight of the new enemies that C brings at Stage 2.31 When C is added to B he brings the

same number of friends, namely |C|, and no new enemies. Perhaps even less — the previous ones

that happen to be in B \ A.

(Continuation of the proof of Theorem 5.7). If (Pj)j∈F 0 is not an equilibrium profile, then a

voter i can benefit from a deviation. A deviation means that he deletes a set T of candidates from

31Namely, wi(C) + wi(eni(fr (C \ fr (F0 ∪A)))) > 0.
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his vote Pi and adds a set Q of candidates not in S.32 At least one of these sets is not empty. The set

T , if not empty, is a union of nonempty sets T1, T2, . . . Tr , which are, respectively, subsets of his votes

P 1
i , P 2

i , . . . , P r
i taken when i was approached at times that we enumerate chronologically 1, 2 . . . , r.

Denote by S1, S2, . . . , Sr the current sets at these times after his addition. Consider a hypothetical

sequence when all founders vote as in the construction except that agent i votes P 1
i \ T1 at time 1,

P 2
i \ (T1 ∪T2) at time 2, . . . , P r

i \T at time r and at the first time he also adds the candidates of Q.

The end of this sequence is the deviation, which, as we assumed, benefited player i. We now modify

this sequence in such a way that player i will continue to benefit and at least as much. To this end,

add T1 to the hypothetical vote of voter i at all times, starting from time 1. This will benefit him

at time 1. Indeed, he would benefit if the current set were S1 \ T1 because Xi(S1 \ P 1
i )= S1 is the

unique optimal response and so, by Lemma 5.8, he would benefit by adding T1 to (S1 \ T1) ∪ Q.

For the same reason i would benefit by adding T1 at every part of the hypothetical sequence, since

S1 \T1 ⊆ Q∪ (St \ (T1∪T2 · · ·∪Tt)) and T1∩ (Q∪ (St \ (T1∪T2 · · ·∪Tt)) = ∅, t ∈ {1, 2, . . . , r}. After

adding T1 we are in an improved deviation that starts at time 2. We make a similar modification

and continue for r times. Eventually, we arrive at an improved deviation at which only Q is added.

But this is impossible, since the original construction ended when no voter could beneficially add

members outside the current set. The contradiction shows that we are indeed at equilibrium.

The construction in the above proof is not specific about the order in which the referee approaches

the voters. We are going to show that although different orders yield different equilibrium profiles,

the outcome S remains the same. Therefore, the perfect equilibrium profile that is generated as

described in Proposition 5.2 is the same, regardless of the order of approach.

Lemma 5.9. If A ⊆ B ⊆ C0, then A ∪Xi(A) ⊆ B ∪Xi(B) for every agent i in F 0.

32It is irrelevant if he also votes for agents in S \ Pi, so we assume that he does not.
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Proof. Assume negatively, that for some i in F 0, D := (A∪Xi(A))\(B∪Xi(B)) 6= ∅. By optimality

of Xi(A) and genericity of Γ, it follows from (5.12), replacing B by Xi(A) \ D, and noting that

D ∩A = ∅, that

(5.13)
wi(D) + wi(en i(F

0 ∪A ∪ fr (F 0 ∪A ∪Xi(A))))−wi(en i(F
0 ∪A ∪ fr (F 0 ∪A ∪ (Xi(A) \D)))) =

wi(D) + wi(en i(fr (D) \ fr (F 0 ∪A ∪ (Xi(A) \D)))) > 0.

Using (5.12) once more, replacing A,Xi(A), B by B,Xi(B), Xi(B) ∪D, respectively, we obtain:

(5.14) wi(D) + wi(en i(fr (D) \ fr (F 0 ∪B ∪Xi(B)))) < 0.

However, (A∪Xi(A)) \D ⊆ B ∪Xi(B), and enemies of i carry negative utilities; therefore, the left

side of (5.14) is not smaller than the left side of (5.13) — a contradiction.

Corollary 5.10. Changing the order of the referee’s approaches leads to the same final set S,

although the actual votes of the players may be different.

Proof. Let ∅ = T 0, T 1, . . . , T r = T be the sequence of ‘current sets’ generated by a different order

of approaches. We shall show that T m ⊆ S for every m and therefore T ⊆ S. Reversing the roles

of S and T one gets S ⊆ T and this concludes the proof. Proceed by induction: Certainly T 0 ⊆ S.

Suppose Tm−1 ⊆ S and T m 6⊆ S. Then, some i in F 0 has Xi(T
m−1) 6⊆ S. Thus, a candidate a

exists in Xi(T
m−1), a /∈ S. From Lemma 5.5, a ∈ Xi(T

m−1) ⊆ Xi(S), which contradicts the fact

that the construction terminates when Xi(S) = ∅ for all i.

One may now ask whether a perfect equilibrium profile is always unique under the conditions of

Theorem 5.7. The following example settles this question negatively.

Example 5.11. The set of founders is F 0 = {1, 2}. The set of candidates is C0 = {a, b, c}.

k = 2 and we assume pure friendship and enmity (Assumption 8a). fr (1) = {a}, fr (2) = {b},
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fr (a) = fr (b) = {c}. The construction in Theorem 5.7 leads to S = ∅. However, it can be checked

that 1 and 2 voting for their friends at all stages and a and b vote for their friend at Stage 2 is also

a perfect equilibrium profile.

We conclude this section by extending Proposition 5.2 to several-stage voting schemes.

Theorem 5.12. Let Γ be a game representing a k-stage generic voting scheme, obeying general

stream dependence (Assumption 8d). If, during collation, we always manage to choose a pure-

strategy perfect-equilibrium profile at each one-stage game,33 the resulting strategy is perfect for Γ.

Conversely, every pure-strategy perfect profile for Γ can be obtained by collation in this fashion.

Proof. The game Γ is a game of perfect recall, therefore, by Kuhn’s (1953) theorem (see also

Selten (1975)), we can work only with behavioral strategies.

We regard Γ as given in extensive form. Denote by Γt,r the 1-stage tree that corresponds to the

r-th tree34 of stage t. Denote by Γ̂t,r the subgame of Γ that starts with Γt,r.

Collation with respect to a strategy τ converts the 1-stage tree Γt,r to a 1-stage game Γt,r(τ),

where, even if τ happens to be defined on all of Γ, we mean here its restriction to the subgame Γ̂t,r

excluding the first stage of this subgame. Γt,r(τ) is a 1-stage game, so, if its voters employ a strategy

profile35 (ρ)1, we denote by ht,r(τ)(ρ)1 the payoff vector that results.

Note that

(5.15) ht,r(τ)(ρ)1 = ĥt,r((ρ)1(τ)),

33Proposition 5.2 and Corollaries 5.3 and 5.4 might be useful here.
34Counted, e.g., from left to right.
35The superscript 1 comes merely to remind us that ρ is a 1-stage profile, or a restriction to a 1-stage profile, if ρ

happens to be defined in a larger game.
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where the right side is the payoff vector that results when the agents play Γ̂t,r, using ρ at the first

stage and then continue with τ . Note that for (t, r) = (1, 1), h1,1(τ)(ρ)1 is the expected payoff in Γ

if (ρ)1, followed by τ , is played.

A. Assume that σ is constructed backwards, by collation, such that at each 1-stage game, a

pure-strategy perfect profile is chosen. We require that identical 1-stage moves are chosen at Γt,r’s

with identical histories; i.e., identical streams of members until stage t (see Assumptions 5 and 6).36

Then, for each (t, r), there exists a test sequence (σm
t,r)

∞
m=1 of completely mixed 1-stage strategy

profiles converging to the restriction σt,r of σ to Γt,r, such that for every agent i,

(5.16) ht,r;i(σ)(σm
t,r;−i, σt,r;i)

1 ≥ ht,r;i(σ)(σm
t,r;−i, σ

′
i)

1,

whenever σ′i is a pure 1-stage move different from σt,r;i. Again, to ensure that eventually strategies

depend only on histories, identical σm
t,r should be chosen at Γt,r’s that result from the same stream

up to stage t. This is always possible, because of the way σ was constructed.

Let us examine the payments at endpoints of Γt,r(τ), where τ is an arbitrary pure strategy that

depends only on histories. Since Γ is assumed to be generic, payments to an agent i at two endpoints

of Γt,r(τ) are different unless, and only unless, one of the following cases occurs:

i. Agent i is not a voter in Γt,r. Observe that in this case, whatever agent i “does” against

whatever the other agents are doing in this game, or in a different continuation, is always a

best reply.

or

ii. The two endpoints result from the same 1-stage “stream” in Γt,r. In this case τ , and

any pure, or mixed (behavioral) strategy, that depends only on histories, specify the same

36At the expense of somewhat more technicality, a similar theorem can be proved even if the strategies are more

complicated than those used in this paper.
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continuation following these points. Indeed, to every path that follows one endpoint, there

corresponds a path following the other endpoint that specifies the same stream of members.

It follows that if Γt,r(σ) has the same payment to agent i at two endpoints then Γt,r(σ
m
−i, σi)

has the same payments to agent i, for every m ∈ {1, 2 . . . }, where σm denotes the aggregate of the

σm
t,r’s.

Now, as m gets larger, the payoff vectors at the endpoints of Γt,r(σ
m
−i, σi) approach those of

Γt,r(σ−i, σi), and are equal whenever the latter are equal. Therefore, if (σt,r;i)
1 is a best response

to (σt,r;−i)
1 in Γt,r(σ−i, σi), then it remains a best response in Γt,r(σ

m
−i, σi), if m is large enough.

Thus,

(5.17) ht,r;i(σ
m
−i, σi)(σ

m
t,r;−i, σt,r;i)

1 ≥ ht,r;i(σ
m
−i, σi)(σ

m
t,r;−i, σ

′
i)

1,

for all strategies σ′i.

Now, (σm)∞m=1 is a sequence of completely mixed (behavioral) strategies. Our proof will con-

clude, if we prove that for every agent i and every large enough m, σi is a best reply to σm
−i.

Indeed, let σ′i be an arbitrary pure strategy for agent i in Γ. By (5.15), it yields agent i the payoff

h1,1;i(σ
m
−i, σ

′
i)(σ

m
1,1;−i, σ

′
1,1;i)

1 against σm
−i

Working backwards, we instruct agent i to switch to σt,r;i at each stage. By (5.17), this will

not decrease his payment at each 1-stage game, that sequentially becomes Γt,r(σ
m
−i, σi). The final

payoff to agent i eventually becomes h1,1;i(σ
m
−i, σi)(σ

m
1,1;−i, σ1,1;i)

1. We have proved that

(5.18) h1,1;i(σ
m
−i, σi)(σ

m
1,1;−i, σ1,1;i)

1 ≥ h1,1;i(σ
m
−i, σ

′
i)(σ

m
1,1;−i, σ

′
1,1;i)

1.

So, by (5.15), σi is indeed a best reply in Γ, to σm
−i, whenever m is large enough, and σ is a

pure-strategy perfect profile in Γ.
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B. Conversely, suppose that σ is a pure-strategy perfect profile for Γ, then there exists a sequence

(σm)∞m=1, of completely mixed behavioral strategies, converging to σ, such that for each agent i and

for each m, σi is a best reply to σm
−i. This is true also in every subgame Γ̂t,r. Invoking (5.15), we

find that

(5.19) ht,r;i(σ
m
−i, σi)(σ

m
t,r;−i, σt,r;i)

1 ≥ ht,r;i(σ
m
−i, σ

′
i)(σ

m
t,r;−i, σ

′
t,r;i)

1,

for every pure-strategy σ′i of agent i, where, σm
t,r is the restriction of σm to the tree Γt,r. In particular,

this is true if σ′i differs from σi only at Γt,r. Thus,

(5.20) ht,r;i(σ
m
−i, σi)(σ

m
t,r;−i, σt,r;i)

1 ≥ ht,r;i(σ
m
−i, σi)(σ

m
t,r;−i, σ

′
t,r;i)

1,

for every pure-strategy 1-stage deviation σ′t,r;i.

Now, the voting scheme is generic, so the payments corresponding to distinct endpoints of Γt,r(σ)

are different for any agent i, who is a voter, whenever these endpoints represent different 1-stage

streams. As explained in the previous part, those endpoints that represent the same 1-stage stream

have the same payoff vectors both in Γt,r(σ) and in the games Γt,r(σ
m
−i, σi), m = 1, 2, . . . , because

all strategies depend only on streams. Thus, there exists a d, such that for all m ≥ d, the relative

order among the payments to each voter at Γt,r(σ) and at Γt,r(σ
m
−i, σi), are identical. We conclude

that σt,r;i is a best reply against σm
t,r;−i in both games. In particular,

(5.21) ht,r;i(σ)(σm
t,r;−i, σt,r;i)

1 ≥ ht,r;i(σ)(σm
t,r;−i, σ

′
i)

1,

for every 1-stage deviation σ′i of agent i. This means that the restriction of (σm)∞m=d to Γt,r(σ), is

an appropriate test sequence and σt,r is therefore prefect for the 1-stage game Γt,r(σ), obtained by

collation with respect to σ.
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