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Université de Toulouse, and Institut Universitaire de France.

November 17, 1998

1We are grateful to Claude Henry, Jean-Pierre Florens and Jean-Jacques Laffont
for their helpful comments.



Abstract

We discuss the selection of the socially optimal discount rate for public in-
vestment projects that entail costs and benefits in the very long run. More
specifically, we examine in an expected utility framework how the uncertainty
on the growth rate of the GNP per head affects this rate. Under various con-
ditions on preferences, as positive prudence, decreasing relative risk aversion
or decreasing absolute risk aversion, we prove that (1) the fact that growth is
uncertain reduces the optimal discount rate, and that (2) this discount rate
should be smaller the longer the time horizon is. We characterize the asymp-
totic value of the discount rate. We also examine the case of Kreps-Porteus
social welfare functions.
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1 Introduction

Much of life is made of investments. Costly actions are taken today in the
prospect of future benefits. In the presence of efficient financial markets,
the investment decision process is based on the classical concept of the Net
Present Value (NPV). If the investment is risk free, one discounts future ben-
efits by using the interest rate of the risk free asset with the corresponding
duration. One then compares this discounted benefit to the short term cost.
The argument sustaining this decision rule is based on the notion of opportu-
nity costs. Instead of doing the planned investment, one could invest in the
financial markets. As a consequence, the return of the planned investment
should yield at least the risk free rate. For standard investment projects,
this rule is equivalent to having a positive NPV. If financial markets are fric-
tionless and if agents are paternalistic towards future generations, the use of
the observed risk free rate to discount public investment projects leads to a
socially efficient level of investment.

The analysis is less easy to perform when benefits and costs of the set of
current potential actions are expected to last in the long run. The carbon
dioxide that one emits today will not be recycled for a couple of centuries,
yielding long term costs like global warming. Some nuclear wastes like Plu-
tonium have half-life in the tens of thousands years. Obviously, financial
markets are not very helpful to provide a guideline for investing in technolo-
gies that prevent this kind of long-lasting risks to occur. There simply does
not exist any financial instrument with such large durations. For the sake of
comparison, U.S. Treasury Bonds have time horizons that do not exceed 30
years. We are thus forced to use a model to value the distant future. The
aim of this valuation model is to provide a socially optimal discount rate for
such long durations.

The selection of the discount rate for long term investments is both crucial
and controversial. It is crucial because of the exponential nature of discount-
ing. It is controversial for the same reason, since even the smallest positive
discount rate leads ultimately to a disenfranchising of future generations.1

So, the question often raised is why the discount rate is not zero. Why does
the mere displacement in time change one’s values? The name of Böhm-

1See for example Heal (1997) for a discussion of this phenomenon, and for possible
alternatives to the NPV criterion.
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Bawerk is intimately related to these questions. The first reason offered by
Böhm-Bawerk is purely psychological. Namely, agents may have a pure pref-
erence for the present. We do not think that the pure time preference is a
good argument when several generations of agents are involved. In short,
we do not see how the impatience to consume by one generation does justify
transferring more consumption from generations that follow it.

The second reason to discount the future is related to a wealth effect. We
expect that future generations will be better off than we are. After all, in the
western world at least, we experienced an uninterrupted growth during the
two last centuries. Each generation enjoyed a larger level of consumption than
the previous one. Given decreasing marginal utility, an investment which
gives one unit of the consumption good in the future in exchange for one unit
of the consumption good in the present should not be acceptable. Thus, there
must exist a relationship between the socially optimal discount factor and
the growth rate of the economy. In the case of a time separable logarithmic
utility function with no pure time preference, the socially optimal discount
rate equals the growth rate per capita of the economy. The growth rate of
GNP per capita in the western world has been roughly 2% per year since the
beginning of the industrial revolution. Only investment projects that have
an internal rate of return (IRR) not smaller than the growth rate should be
implemented. For projects with a positive IRR that is less than the growth
rate, implementing them would indeed increase the overall consumption. But
they should be rejected because the increase in utility tomorrow does not
compensate the reduction in utility today, given the difference in marginal
utilities originating from the wealth effect.

A problem arises with the wealth effect if the growth rate is not known
with certainty. Estimating the growth rate for the coming year is already
a difficult task. No doubt, any estimation of growth for the next cen-
tury/millennium is subject to potentially enormous errors. The history of
the western world before the industrial revolution is full of important eco-
nomic slumps, as the one due to the invasion of the roman empire, or the one
due to the Black Death during the middle ages. The recent debate on the
notion of a sustainable growth is an illustration of the degree of uncertainty
we face to think about the future of Society. Some will argue that the effects
of the improvements in information technology have yet to be realized, and
the world faces a period of more rapid growth. On the contrary, those who
emphasize the effects of natural resource scarcity will see lower growth rates
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in the future. Some even suggest a negative growth of the GNP per head in
the future, due to the deterioration of the environment, population growth
and decreasing returns to scale. They claim that the wealth effect goes the
other direction, so that everything should be made to improve the future.
This uncertainty at least casts some doubt on the relevance of the wealth
effect to justify the use of a large discount rate.

In this paper, we provide an analysis of the effect of the uncertainty on
growth on the socially optimal discount factor. Instrumental to this analysis
is the concept of prudence that has been formalized by Kimball (1990). An
agent is prudent if his willingness to save increases in the face of an increase in
his future income risk. Technically, an agent is prudent if the third derivative
of his utility function is positive. As shown in this paper, prudence justifies
taking a discount rate that is less than the one that would have been obtained
by assuming a certain growth. The magnitude of the effect depends upon the
degree of prudence and the degree of uncertainty on growth. This analysis is
provided in section 2. Some numerical simulations are performed in section
3.

In section 4, we examine the relationship between the time horizon and
the socially optimal discount rate. Namely, do longer time horizons justify
selecting a smaller discount rate? An intuitive argument would rely on the
increased risk of longer horizons due to the accumulation of period to period
growth risks. The longer the horizon is, the larger is the uncertainty on
future wealth, the smaller should the discount rate be. We show in this
paper that this intuition is correct only if relative risk aversion is decreasing.
To prove this result, we use some properties of log-supermodular functions.
This section is related to the literature on the term structure of interest rate.
A reinterpretation of our work is that, if the growth rate of consumption is
stationary over time, the yield curve is increasing or decreasing depending
upon whether relative risk aversion is increasing or decreasing.

Section 4 is also related to a recent paper by Martin Weitzman (1998)2

who also proves that the discount rate should be decreasing with time hori-
zon. Weitzman’s conclusion is obtained in a much different framework, with
risk neutral agents together with a simple early revelation of future uncertain
productivity of capital. His conclusion relies on the fact that the NPV is a
convex function of the discount rate, whereas our result relies on more com-

2See also Gollier (1998) for a discussion and extensions of Weitzman (1998).
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plex assumptions on preferences. The two approaches are complementary.
Because the standard framework of intertemporal expected utility does

not distinguish between risk aversion and the resistance to intertemporal
substitution, we explore the case of a Kreps-Porteus social welfare function
in section 5.

2 The socially optimal discount rate

In this section, we consider a model with one period and two dates, t = 0, 1.
Seen from date t = 0, date t = 1 is far distant, so there is no credible
way to compensate some costs borne at t = 1 by promising to increase the
availability of goods at that date. There is a social planner who maximizes
a weighted sum W of the expected utility of the generations living at dates
0 and 1:

W = u(c) + βEv(c̃1). (1)

Functions u and v are the twice-continuous increasing and concave von
Neumann-Morgenstern utility functions of the representative agent living re-
spectively at dates 0 and 1. They consume respectively c and c̃1 = c(1 + g̃),
where g̃ is the per capita growth rate of consumption. The support of g̃ is
in ] − 1, +∞[. The distribution of the growth rate is taken as exogenous in
our model.3 Weight β is also exogenous, as it describes the planner’s ethical
attitude towards future generations.

Suppose that the planner is considering the possibility to make an invest-
ment today that would benefit to the future generation. Suppose that the
return of the investment be r, i.e. each dollar invested at t = 0 generates
1 + r dollars at t = 1 with certainty.4 This project can be to reduce the

3This is of course a questionable assumption. Growth is the consequence of capital
accumulation and innovation. The first is obviously endogenous, whereas recent develop-
ments in growth theory tend to suggest that innovation is also partly endogenous. How-
ever, we may question the validity of growth theory to predict with enough precision
the relationship that exists between current macro variables and far-distant generations’
consumption.

4In many instances, the future benefits are to reduce risks borne by future generations.
When the benefits are uncertain, but independent of the growth rate of the economy,
the same model can be used with 1 + r denoting the certainty equivalent benefit at date
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pollution of the air, or the preservation of animal species.5 Should Society
invest in this project? At the margin, the answer is yes if

−u′(c) + (1 + r)βEv′(c̃1) ≥ 0,

or, equivalently, if

−1 +
1 + r

1 + δ
≥ 0, (2)

with

δ =
u′(c)

βEv′(c(1 + g̃))
− 1. (3)

Notice that δ would be the equilibrium risk-free rate in this exchange econ-
omy. The left-hand side of condition (2) can be interpreted as the net present
value of the project, with discount rate δ. Thus, the project should be im-
plemented, at least at the margin, if and only if its NPV with discount rate
δ be positive. The socially optimal δ depends upon social values (β), to-
gether with the attitude towards risk and the elasticity of substitution, as is
apparent in equation (3).

We want to evaluate the effect of the uncertain growth on the socially
optimal discount rate. To do this, we compare δ to δc, the socially optimal
discount rate in an economy which faces a sure growth rate equaling Eg̃:

δc =
u′(c)

βv′(c(1 + Eg̃))
− 1. (4)

Obviously, we obtain that

δ ≤ δc ⇐⇒ Ev′(c(1 + g̃)) ≥ v′(c(1 + Eg̃)). (5)

1. Notice that the presence of the background uncertainty on the future wealth level
affects this certainty equivalent. Under risk vulnerability (see Gollier and Pratt (1996)),
a condition on preferences that is satisfied by most familiar utility functions, the presence
of an uncertain future wealth increases the certainty equivalent benefit of a risk-reducing
investment. This provides another argument to select a smaller discount rate.

5There is a scientific uncertainty about the benefit of these strategies that will hopefully
be reduced over time. Also, many of such actions have irreversible effects. Gollier, Jullien
and Treich (1997) examine the effects of the scientific uncertainty and irreversibilities on
the optimal timing of the prevention effort.
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The latter condition holds for any c and for any distribution of g̃ if and only
if v′ is convex. The convexity of marginal utility is a well-known condition
since Leland (1968) and Drèze and Modigliani (1972). It is a necessary and
sufficient condition for an increase in future risk to increase (precautionary)
savings. Kimball (1990) coined the term “prudent” to characterize individu-
als who behave in this way.

Proposition 1 The uncertainty affecting the growth rate of the economy
should induce Society to select a smaller (resp. greater) discount rate if agents
living in the future are prudent (resp. imprudent).

One way to quantify the effect of the uncertain growth on the socially
efficient growth rate is to define the ”precautionary equivalent”6 growth rate,
the certain growth rate that yields the same socially efficient discount rate.
The precautionary equivalent growth rate ρ is defined as

Ev′(c(1 + g̃)) = v′(c(1 + ρ)). (6)

As suggested by Kimball (1990), the certainty equivalent growth rate ρ can
be approximated by

ρ ∼= Eg̃ −
1

2
σ2

g̃ ψ (c), (7)

where ψ (c) is the coefficient of relative prudence, i.e.

ψ (c) = −cv′′′(c)

v′′(c)
.

Condition (7) indicates that the effect of the uncertainty on growth on the
efficient discount rate is the same as a sure reduction of the growth rate by
the product of half its variance by relative prudence.

Another consequence of this analysis is that the wealth effect may well
go in the opposite direction if the uncertainty on the growth rate is large
enough with respect to its expectation. As indicated by approximation (7),

6This should not be confounded with the certainty equivalent growth rate, the certain
growth rate that generates the same expected utility of the representative agent in the
future.
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an economy with a positive expected growth can be better off doing as if the
growth rate be zero or negative, but certain, when deciding which discount
rate to use. The more prudent people are7, the smaller is the precautionary
equivalent growth rate, and the smaller is the optimal discount rate.

The objective of this paper is to provide a guideline for the selection of
the discount rate when probabilistic scenarios on the future growth rate are
provided. In order to isolate the wealth effect from other effects like the
ethical and demographic ones, we will hereafter make two simplifications:
first, we will assume that the attitude toward risk of the future generation
is the same as the current generation, i.e. v ≡ u. Second, we will take the
ethical position to treat the two generations equally, i.e. β = 1. Under these
conditions, we get

δ =
v′(c)

v′(c(1 + ρ))
− 1. (8)

When v is logarithmic, we obtain δ = ρ. But, in general, the optimal discount
rate will differ from the precautionary equivalent growth rate. If ρ is small,
we can use a first-order Taylor approximation for the denominator of (8) that
yields

δ ∼= φ(c)ρ, (9)

where φ is the degree of relative concavity of v, i.e.

φ(c) =
−cv′′(c)

v′(c)
. (10)

The role of φ is to measure the resistance to intertemporal substitution of
consumption. Approximation (9) suggests that the optimal discount factor
is approximately the product of two numbers, the resistance to intertemporal
substitution and the precautionary equivalent growth rate. This was already
observed in the case of certainty, as in Nordhaus (1994), who examines a
continuous-time model with isoelastic utility functions. It implies in particu-
lar that, for small ρ > 0 at least, the optimal discount rate is larger or smaller

7The concept of ”more prudence” has a precise meaning. An agent with utility v1 is
more prudent than an agent with utility v2 if v′1 is obtained by a convex transformation
of v′2.
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than the precautionary equivalent growth rate depending upon whether rel-
ative risk aversion is larger or smaller than unity. In the following, we show
that this is true in general.8

Proposition 2 The socially optimal discount rate satisfies the following prop-
erties:

1. δ ≥ ρ when (φ− 1)ρ ≥ 0;

2. δ ≤ ρ when (φ− 1)ρ ≤ 0.

To sum up, two different characteristics of the utility function affect the
level of the optimal discount rate. The first question is to determine the
effect of uncertainty. Which certain growth rate should we consider as equiv-
alent to the uncertain growth rate we face? We showed that the degree of
relative prudence determines the impact of the riskiness of growth on the
precautionary equivalent growth rate. The more prudent we are, the smaller
should the equivalent certain growth rate be. Prudence is measured by the
degree of convexity of v′. The second question is to determine by how much
we should substitute consumption today by consumption tomorrow in the
face of this precautionary equivalent growth rate. This depends upon the
degree of resistance to intertemporal substitution. This is measured by the
degree of concavity of v. The more resistant to intertemporal substitution we
are, the larger should the discount rate be, for a given certainty equivalent
growth rate.

8The proof of Proposition 2 is let to the reader. This result is in fact a corollary of
the following Proposition: Consider two economies j = 1, 2 with the same precautionary
equivalent growth rate, but with respectively utility functions v1 and v2, v2 being more
concave than v1 in the sense of Arrow-Pratt. Let δj denote the socially optimal discount
rate in economy j. We have:

• δ2 ≥ δ1 if ρ > 0;

• δ2 ≤ δ1 if ρ < 0.

Since δ = ρ for the logarithmic function which exhibits a relative risk aversion φ equaling
1, this result directly yields Proposition 2.
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3 Numerical simulations

The first step consists in replacing a random growth rate by its precaution-
ary equivalent. The second step is to translate the precautionary equiva-
lent growth rate into an optimal discount rate through the standard Böhm-
Bawerk argument of the wealth effect. We provide in Table 1 some simple
numerical simulations for the precautionary effect and the substitution effect.
We consider the case of power utility functions

v′(z) = (z − k)−γ, z ≥ k, (11)

for some γ ≥ 0 and k ≥ 0, which is some minimum subsistence level. For
those functions, prudence is positive, and

φ(c) =
γc

c− k
, and ψ (c) =

(γ + 1)c

c− k
.

Relative risk aversion and relative prudence are decreasing from plus infinity
at c = k to respectively γ and γ+1 as c tends to infinity. Normalizing current
consumption to unity, we consider a minimum subsistence level at 50% of
the current level of subsistence, i.e. k = 0.5. There is a great uncertainty on
which relevant values to consider for γ. To explain the observed demand for
insurance, Drèze (1981) suggests to take φ between 2 and 4. But in order to
explain the large equity premium observed on financial markets, Mehra and
Prescott (1985) need to assume φ between 20 and 40.9 Since φ(1) = 2γ, and
we tried γ taking values 0.5, 1, 2 and 6. To help the reader to appreciate the
degree of realism of these values, let us consider a power-utility individual
with k = 0.5 and a wealth normalized to unity,with the risk of gaining or
losing 10% of it with equal probability. For γ = 0.5, the individual would
not be ready to pay more than 0.50% of her wealth to escape the risk. On
the contrary, the individual with γ = 6 would be ready to pay as much as
5.20% of her wealth to escape the risk.

We now turn to the description of the potential scenarios on the growth
rate per capita. Maddison (1991) estimates the GNP per capita in western
countries to be 1034 (1985 US dollars) in 1820, and 14413 in 1989. This
makes a growth rate of 1.6% per year. In the following, we consider a period
of twenty years. We provide some historical data for Australia, France and

9See Kocherlakota (1996) for a recent survey on the equity premium puzzle.
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1870-90 1890-10 1910-30 1930-50 1950-70 1970-90
Australia 25.4% 16.8% -14.2% 50.1% 62.3% 38.2%

France 23.6% 23.1% 49.3% 16.3% 121.4% 54.0%
United States 40.0% 45.7% 24.2% 51.8% 48.3% 42.0%
Table 1: Historical growth rates per capita (Source: Maddison (1991)).

the United States over the period 1870-1990 in Table 1. For France, the
average growth per capita over a period of twenty years is 48%, i.e. 1.97%
per year, and the standard deviation is 36%.

Three scenarios are considered. All these scenarios assume that the ex-
pected GNP per capita increases by 48% in expectation. In the first scenario,
the growth rate is 48% with certainty, so only the effect of the resistance to
intertemporal substitution emerges. In the two other set of scenarios, we
introduce some uncertainty on the growth rate. In the first probabilistic sce-
nario, we assume that g̃ takes values 0% or 75% with respectively probability
.36 and .64. In the other probabilistic scenario, the uncertainty is increased
in the sense of third-order dominance. These two probabilistic scenarios are
compatible with the two first moments of the historical data for France over
the period 1870-1990.

As an illustration, when γ = 2 and with the second scenario, the precau-
tionary equivalent growth rate is 1.06%, almost half of the expected growth
rate. But if we consider the third scenario, the certainty equivalent growth
rate goes down to 0.77%. Under the same scenario, but with γ = 6, the
optimal discount rate becomes even negative, although the GNP per capita
is expected to increase by almost 2% per year over the period!

We see that the precautionary equivalent growth rate is decreasing in
the degree of risk and in γ, since relative prudence is increasing in γ. The
optimal discount rate is decreasing in the degree of uncertainty. The effect of
a change in γ on δ is ambiguous, as an increase in γ also raises the resistance
to intertemporal substitution. As is well-known, an important deficiency of
expected utility is the inability to disentangle the willingness of the planner to
smooth consumption across states and his willingness to smooth consumption
across time. In section 5, we explore the case of a Kreps-Porteus social welfare
function.
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Scenario on growth rates
48% for sure 0% with probability .36 −10% with probability .28

(1.97% per year) 75% with probability .64 70.56% with probability .72

γ = 0.5 ρ = 1.97% ρ = 1.53% ρ = 1.42%
δ = 1.70% δ = 1.35% δ = 1.27%

γ = 1 ρ = 1.97% ρ = 1.36% ρ = 1.20%
δ = 3.42% δ = 2.45% δ = 2.19%

γ = 2 ρ = 1.97% ρ = 1.06% ρ = 0.77%
δ = 6.96% δ = 3.93% δ = 2.93%

γ = 6 ρ = 1.97% ρ = 0.44% ρ = −0.03%
δ = 22.26% δ = 5.20% δ = −0.35%

Table 2: The precautionary equivalent growth rate per year (ρ)
and the optimal discount rate per year (δ), with k = 0.5.

4 Compound growth rates

When considering environmental risks, we are not only interested in discount-
ing benefits and costs occurring in 20 years from now, but also for much longer
time horizons. Obviously, the uncertainty prevailing on the GNP per head
prevailing t periods from now is an increasing function of t.10 In this section,
we address the question of how this increased uncertainty affects the optimal
discount rate per period. In fact, we address the question of whether the
yield curve should be decreasing or increasing.

Empirical evidence suggests that the discount rate used by individuals to
value the future is a decreasing function of the time horizon. Lowenstein and
Thaler (1989) for example obtained discount rates ranging around 15% for
the short run (less than 5 years), and then dropping to a level as low as 2%
for the long run (100 years). Can this be due to the increase of uncertainty
about one’s future wealth?

In accordance with this empirical evidence, our intuition is that the in-
teraction between intertemporal growth risks is an aggravating factor. A
longer time horizon should induce a smaller discount rate per period. There

10As indicated by Samuelson (1963), compounding risks borne at different points in
time, even if they are independent, is not a good way to diversify these risks.
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is a growing literature on how one should behave in the presence of multiple
independent risks. Pratt and Zeckhauser (1987) examine whether one should
reject the combination of two independent lotteries that are individually un-
desirable. Gollier and Pratt (1996) show how the presence of a zero-mean
risk to wealth affects the attitude towards another independent risk. To solve
these questions, one needs to check conditions on the third and fourth deriva-
tives of the utility function. Here, our problem is similar, since we examine
how two independent growth risks interact with each other.

Let us consider a two-period model with three dates t = 0, 1, 2. The
growth rate from t = 0 to t = 1 is g̃1, whereas the growth rate from t = 1 to
t = 2 is g̃2. We assume that random variables g̃1 and g̃2 are independently
and identically distributed. They are distributed as g̃. Therefore, the socially
optimal rate δ1 to discount costs and benefits occurring at date t = 1 is as
in section 2:

1 + δ1 =
v′(c)

Ev′(c(1 + g̃))
. (12)

The growth rate over the two periods is (1+ g̃1)(1+ g̃2)−1. The socially op-
timal discount rate per period δ2 for projects yielding cash flows two periods
later should be such that

(1 + δ2)
2 =

v′(c)

Ev′(c(1 + g̃1)(1 + g̃2))
. (13)

δ2 is the long term discount rate, whereas δ1 is the short term one. Usually,
δ2 is not equal to δ1, except for the isoelastic utility function. Indeed, we
obtain in this case

(1 + δ1)
2 = [E(1 + g̃)−φ]−2

=
[
E(1 + g̃1)

−φE(1 + g̃2)
−φ

]−1

=
[
E((1 + g̃1)(1 + g̃2))

−φ
]−1

= (1 + δ2)
2.

(14)

In this case, the increased risk on future GNP per head is not an argu-
ment to select a smaller discount rate for a longer horizon. The intuition is
straightforward. Since v′(c)/Ev′(c(1 + g̃2)) is independent of c for isoelastic
functions, the discount rate that will be used next period is known in advance
and is equal to δ1. By a standard arbitrage argument, it implies that δ2 must
equal δ1 in that case.
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More generally, using conditions (13) and (15), δ2 is less than δ1 if and
only if

v′(c)Ev′(c(1 + g̃1)(1 + g̃2)) ≥ Ev′(c(1 + g̃1))Ev′(c(1 + g̃2)). (15)

Let function h from R2
+ to R be defined as h(x1, x2) = v′(cx1x2). Suppose

that this function be log supermodular.11 This means that

h(min(x1, x
′
1), min(x2, x

′
2)) h(max(x1, x

′
1), max(x2, x

′
2)) ≥ h(x1, x2) h(x′1, x

′
2)

(16)
for all (x1, x2) and (x′1, x

′
2) in R2

+. Taking x1 = x′2 = 1, the log supermodu-
larity of h implies that

h(1, 1) h(x′1, x2) ≥ h(1, x2) h(x′1, 1) (17)

for all x′1 and x2 that are both larger than 1. This inequality is equivalent to

v′(c)v′(c(1 + g1)(1 + g2)) ≥ v′(c(1 + g1))v
′(c(1 + g2)) (18)

for all g1 = x′1 − 1 and g2 = x2 − 1 that are both positive. Suppose now
that the growth rate g̃t per period is positive almost surely. Then, the log
supermodularity of h is sufficient to guarantee that condition (18) holds al-
most everywhere. Taking the expectation of this inequality directly yields
inequality (15), which implies in turn that δ2 is less than δ1.

If the utility function is three time differentiable, the log supermodularity
of h also means that the cross derivative of log h is positive. It is easily seen
that this is equivalent to require that relative risk aversion is decreasing
(DRRA). Notice that all inequalities from (15) to (18) are reversed if relative
risk aversion is increasing.

Proposition 3 Suppose that the growth rate of consumption is nonnegative
almost surely. The long term discount rate is smaller (resp. larger) than the
short term one if relative risk aversion is decreasing (resp. increasing).

Decreasing relative risk aversion is compatible with the well-documented
observation that the relative share of wealth invested in risky assets is an in-
creasing function of wealth. Kessler and Wolf (1991) for example show that

11For an analysis of the usefulness of this concept in the economics of uncertainty, see
Athey (1998).
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the portfolios of U.S. households with low wealth contains a disproportion-
ately large share of risk free assets. Measuring by wealth, over 80% of the
lowest quintile’s portfolio was in liquid assets, whereas the highest quintile
held less than 15% in such assets. Guiso, Jappelli and Terlizzese (1996), us-
ing cross-section of Italian households, observed portfolio compositions which
are also compatible with decreasing relative risk aversion.

Thus one should select a smaller rate to discount far distant benefits
than the rate to discount benefits realized in the near future. Growth risks
are mutually aggravating. To illustrate, let us consider again the scenario
in which the growth rate of the GNP per capita is either 0% or 75% with
respectively probability 0.36 and 0.63 in each period of 20 years. We also
consider the family of DRRA power utility functions (11). Let us consider
more specifically the case γ = 1. Current consumption is normalized to unity.

We computed the socially optimal discount rate for horizons up to 45
periods, using different values of the parameter k. The results are drawn in
Figure 1. As a benchmark, consider the case k = 0.5 for which relative risk
aversion equals 2 at current consumption and goes to 1 as consumption goes
to infinity. The discount rate per year that should be used to value benefits
arising at the end of the first period is 2.45%. For benefits arising in 10
periods (200 years) from today, it is reduced to less than 2%.

An important requirement of the above Proposition is that the growth
rate of consumption per capita is nonnegative almost surely. Because inequal-
ity (18) also holds when g1 and g2 are both negative under DRRA, DRRA
is also sufficient for the yield curve to be decreasing when g̃t is nonpositive
almost surely. A difficulty arises when g̃t alternate in sign, since inequality
(18) is reversed when g1 < 0 < g2. When there is a risk of recession in
an economy with a positive expected growth, it is not true anymore that
DRRA is sufficient for the yield curve to be decreasing. Let us illustrate
this point by the following example, using One-Switch utility functions in-
troduced by Bell (1988). Take v′(z) = a+z−b with a > 0 and b > 0. It yields

−zv′′(z)/v′(z) = b
[
az−b + 1

]−1
, which is decreasing in z. In addition, take

a = b = 1 and g̃t ∼ (−50%, 1/3;+100%, 2/3). In such a situation, straight-
forward computations generate δ1 = δ2 = 0: the yield curve is flat in spite of
DRRA! This result does not contradict the above Proposition, since g̃t is not
positive with probability 1. Thus, extending the analysis to economies with
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Figure 1: The discount rate as a function of time horizon.

a risk of a recession requires restricting the set of DRRA utility functions
to guarantee that the socially optimal discount rate be decreasing with time
horizon.

The case of One-Switch utility functions is interesting also because there
is a simple proof for the property that the yield curve is not increasing: when
v′(z) = a + z−b, condition (15) is rewritten as

(a+ c)(a+ cE(1+ g̃1)
−γE(1+ g̃2)

−γ) ≥ (a+ cE(1+ g̃1)
−γ)(a+ cE(1+ g̃1)

−γ),
(19)

This can be rewritten as

1 +
[
E(1 + g̃)−γ

]2 ≥ 2E(1 + g̃)−γ, (20)

or

[
1−E(1 + g̃)−γ

]2 ≥ 0. (21)

This is always true, which implies that the yield curve is nonincreasing for
the set of One-Switch utility functions. This means that restricting the set of
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DRRA functions to One-Switch functions is sufficient to guarantee that the
yield curve be nonincreasing, even with a risk of recession.12 Notice that the
numerical example above has been built on the basis that E(1 + g̃)−γ = 1,
which implies that the three above conditions are actually equalities. This
is the limit case where the yield curve is flat. It would be decreasing for any
random variable with E(1 + g̃)−γ 6= 1.

Up to now, we have not been able to fully characterize the set of utility
functions generating a nonincreasing yield curve, whatever the distribution
of g̃t. We know that DRRA is necessary. In the next Proposition, we provide
another necessary condition.

Proposition 4 Define function H as H(x, y) = v′(c)v′(cxy) − v′(cx)v′(cy).
Suppose that v exhibits DRRA. A necessary condition for the yield curve to
be nonincreasing independent of the distribution of g̃t is written as

[H(x, y)]
2 ≤ H(x, x)H(y, y) (22)

for all (x, y) such that x < 1 < y. If we limit the analysis to binary distribu-
tions for g̃t makes condition (22) necessary and sufficient.

Proof: See the Appendix.

The reader can check that, symmetrically, increasing relative risk aversion
together with condition [H(x, y)]2 ≥ H(x, x)H(y, y) for all x < 1 < y are
necessary for the yield curve to be nondecreasing. It can also easily be
checked that condition (22) is satisfied as an equality for One-Switch utility
functions. Finally, observe that a sufficient condition for (22) is that H itself
be log supermodular. This condition should not be confounded with DRRA,
which means that h(x, y) = v′(cxy) be log supermodular.

4.1 The asymptotic value of the discount rate

It is interesting to determine the asymptotic value of the per-period discount
rate when time horizon recedes to infinity. The rate δt to discount the net

12Another example of this is for exponential utility functions, a particular case of func-
tions with increasing relative risk aversion. It is easily shown that the yield curve is
increasing for that subset of functions, even with a risk of recession.
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benefit at date t is implicitly defined by the following equation:

(1 + δt)
t =

v′(c)

Ev′(c
∏t

i=1(1 + g̃i))
(23)

where g̃i is the growth rate per head between date i − 1 and i. Suppose
first that, at each period i, there is a positive probability that a recession
(gi < 0) occurs. Suppose moreover that there exists a positive k such that
limz−→k v′(z) = +∞. In that case, the denominator in the right-hand side of
equation (23) tends to infinity for large t. This is possible only if δt is negative.
We conclude that the risk of repeated recessions over long periods eventually
induces the selection of a nonpositive rate to discount far-distant futures. The
low probability of such events is overweighted by the large marginal utility
of wealth in these bad states.

We now turn to the more interesting case where there is no risk of reces-
sion in long periods (Pr [g̃ ≤ 0] = 0). Remember that φ(z) = −zv′′(z)/v′(z)
denote the relative risk aversion function, with φ∞ = limz→∞ φ(z). The fol-
lowing Proposition shows that convergence of the socially efficient discount
rate as the horizon becomes distant occurs if φ∞ exists.

Proposition 5 Suppose that g̃, g̃1, g̃2, ... are i.i.d. variables whose support is
in R+. Suppose also that φ∞ = limz→∞−zv′′(z)/v′(z) exists. It implies that
the socially efficient discount rate δt defined by equation (23) tends to δ∞ for
very far-distant futures, with

δ∞ =
[
E(1 + g̃)−φ∞

]−1 − 1. (24)

Proposition 6 Suppose that g̃1, g̃2, ... are i.i.d. variables whose support is
in R+. Suppose also that φ∞ = limz→∞−zv′′(z)/v′(z) exists. It implies that
the socially efficient discount rate δt defined by equation (23) tends to δ∞ for
very far-distant futures, with

δ∞ =
[
E(1 + g̃)−φ∞

]−1 − 1. (25)

Proof: See the Appendix.

The Proposition states that the discount rate for far-distant futures tends
to the short-term interest rate in an economy with agents having a constant
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relative risk aversion equaling φ∞. For example, it implies that all curves
in Figure 1 tend to a discount rate of 1.62%, independent of the value of k.
This result is related to turnpike Theorems in finance. Huberman and Ross
(1983) for example showed that the optimal portfolio strategy converges to
the one of the CRRA agent with φ(z) = φ∞ as the horizon becomes distant.

5 Kreps-Porteus preferences

In this section we explore a generalized version of the social welfare function
(1), but we limit the analysis to the one-period version of the model. As
shown in section 2, an important problem related to this formulation is its
inability to distinguish between the aversion to risk and the resistance to
intertemporal substitution. Kreps and Porteus (1978) and Selden (1979)
proposed two equivalent preference functionals that allow for disentangling
these two concepts. The simplest way of presenting this family of preference
functionals is to first define the certainty equivalent consumption m at date
t = 1 as is standard under expected utility:

v(m) = Ev(c̃1). (26)

Then the social planner evaluates the intertemporal welfare as

u(c) + U(m). (27)

In words, the planner first computes the certainty equivalent consumption
of the future generation by using its attitude toward risk characterized by
the concavity of v. Then the planner aggregates consumptions of the two
generations in a nonlinear way. The concavity of u and U characterizes the
planner’s resistance to intertemporal substitution of consumption. The in-
tertemporal expected utility model is obtained by taking U ≡ v. Another
particular case is when u and U are linear. In that case, the social wel-
fare function is a weighted sum of the certainty equivalent consumption, i.e.
certainty equivalent consumptions are perfect substitutes.

Which investment projects should be realized under this framework? As
in section 2, take a marginal project which costs 1 at date t = 0 and which
brings a sure benefit 1 + r at date t = 1. This sure benefit increases the
certainty equivalent consumption at date t = 1 by
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∆m =
Ev′(c̃1)

v′(m)
(1 + r).

The social welfare function (27) is increased by the investment if

−u′(c) + U ′(m)∆m ≥ 0.

This is equivalent to condition (2) with

δ =
u′(c)

U ′(m)

v′(m)

Ev′(c(1 + g̃))
− 1. (28)

Thus, the socially optimal discount rate δ takes now a more complex form.
The myopic planner who would not take into account of the uncertainty of
growth would rather use δc, with

δc :=
u′(c)

U ′(c(1 + Eg̃))
− 1, (29)

since the certainty equivalent of the sure consumption c(1+Eg̃) is just c(1+
Eg̃).

The socially optimal discount rate δ is smaller than δc if and only if

u′(c)

U ′(m)

v′(m)

Ev′(c(1 + g̃))
≤ u′(c)

U ′(c(1 + Eg̃))
. (30)

Under Kreps-Porteus preferences, the uncertainty on growth has two effects
on the socially optimal discount rate:

• By risk aversion (concavity of v), the uncertain growth has a negative
impact on the certainty equivalent consumption of the future genera-
tion: m ≤ c(1 + Eg̃). It implies that U ′(m) ≥ U ′(c(1 + Eg̃)). This has
the unambiguous effect to reduce δ below δc: more sacrifices should
be made today. This is the standard Böhm-Bawerk’s wealth effect.
This effect is increasing in the risk aversion of the future generation,
and in the resistance to intertemporal substitution as measured by
−mU ′′(m)/U ′(m). In particular, this effect is zero if U is linear.
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• The uncertainty on growth also affects the sensitivity of the certainty
equivalent to a sure increase in consumption, expressed as Ev′(c̃1)/v

′(m).
Under certainty, this sensitivity equals 1. As observed for example by
Kimball and Weil (1992) and Gollier and Kimball (1994), a necessary
and sufficient condition for this sensitivity to be larger than 1 under
uncertainty is decreasing absolute risk aversion. Indeed, decreasing ab-
solute risk aversion is the condition for a sure increase in consumption
to decrease the aversion to risk, thereby increasing certainty equiva-
lents. Notice that δ is inversely related to this sensitivity. We conclude
that this sensitivity effect goes the same direction as the wealth effect
presented above if and only if absolute risk aversion is decreasing. Ob-
serve that decreasing absolute risk aversion is stronger than prudence.

Proposition 7 Under Kreps-Porteus preferences, the uncertainty affecting
the growth rate of the economy should induce Society to select a smaller dis-
count rate if agents living in the future are decreasingly absolute risk-averse.
Moreover, this condition is necessary if U is linear.

Decreasing absolute risk aversion is necessary for decreasing relative risk
aversion, and is sufficient for prudence. It is a standard assumption in the
economics of uncertainty.

If we compare this Proposition with Proposition 1, we see that we end up
here with a stronger condition to guarantee that growth uncertainty affects
the discount rate negatively. This is not a surprise, since Kreps-Porteus pref-
erences are more general than expected utility. This is the weakest sufficient
condition one can get without restricting U . Indeed, when U is linear, only
the sensitivity effect holds.

6 Conclusion

When public investment projects entail costs and benefits in the very long
run, a question arises about the selection of the relevant discount rate to use
for the cost-benefit analysis. Indeed, financial markets do not provide any
guideline in this case. The main argument for using a positive discount rate
is the fact that the GNP per head is expected to grow over time. Therefore,
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projects whose costs today are as large as benefits in the future are clearly
not desirable, since we do not see why current generations should sacrifice
part of their consumption today for the benefit of future generations who
will already be better off.

But growth is an uncertain phenomenon. The recognition of this fact
should induce Society to take this argument with caution/prudence. By how
much has been the question we tried to answer in this paper. We showed
that the answer mainly depends upon the degree of relative prudence and
upon the degree of resistance to intertemporal substitution. For commonly
accepted levels of these indexes, the effect of uncertainty on the socially
optimal discount rate may be very large. In particular, the potential of even
a small slump in the economic growth could justify the selection of a zero
discount rate, despite of a positive growth in expectation. Another important
message is that the discount rate to be used for long-lasting investments
should be a decreasing function of their duration. This is due to the negative
effect of accumulating the per period growth risk in the long run.

The french Commissariat au Plan recommends to use a constant 8% per
year as the discount rate for all public investments, and most developed
countries use a rate between 5% and 8%. From our simulations, we feel
that this range of rates is too large with respect that what would be socially
efficient, given our current expectation on growth, and the uncertainty that
prevails on it. We recommend using the risk free rate that is observable on
financial markets for short time horizons. A discount rate not larger than
5% should be used in the medium run (between 50 and 100 years), whereas a
decreasing rate down to around 1.5% would be relevant for flows of benefits
and costs occurring in the very long run (more than 200 years).
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Appendix: Proof of Proposition 4

We normalize c to unity. Let 1 + g̃ be distributed as (x, p; y, 1 − p).
Condition (15) is rewritten as

v′(1)
[
p2v′(x2) + 2p(1− p)v′(xy) + (1− p)2v′(y2)

]
≥ [pv′(x) + (1 − p)v′(y)]

2
,

(31)
or, equivalently,

K(x, y, p) ≡ p2H(x, x) + 2p(1− p)H(x, y) + (1 − p)2H(y, y) ≥ 0. (32)

Remember that DRRA means that (x−1)(y−1)H(x, y) ≥ 0. In particular,
it means that H(x, x) and H(y, y) are nonnegative. When x and y are both
larger than unity, we also have that H(x, y) is nonnegative, yielding K(x, y, p)
≥ 0. This is another proof of Proposition 3 for binary distributions of g̃ ≥ 0.
Again, the difficulty is when x < 1 < y, implying H(x, y) < 0. This is the
case that we examine now.

Observe that K is quadratic with ∂2K/∂p2 = H(x, x) − 2H(x, y) +
H(y, y) ≥ 0. It is minimum at

p∗ =
H(y, y)−H(x, y)

H(x, x)− 2H(x, y) + H(y, y)
(33)

which is between 0 and 1. The minimum value of K(x, y, p) for p ∈ [0, 1] is

K(x, y, p∗) =
H(x, x)H(y, y)− [H(x, y)]2

H(x, x)− 2H(x, y) + H(y, y)
. (34)

It will be nonnegative for all x < 1 < y if and only if condition (22) is
satisfied.¥

Appendix: Proof of Proposition 5

25



By definition of function φ, we have

v′(z) = K exp

[
−

∫ z

0

φ(s)

s
ds

]
. (35)

It implies that

v′(cex)

v′(c)
= exp

[
−

∫ cex

c

φ(s)

s
ds

]
= exp

[
−

∫ x

0

φ(ceu)du.

]
(36)

Take any scalar ε > 0. Define

q−(x) =

∫ x

0

[φ(ceu)− φ∞ − ε] du (37)

and

q+(x) =

∫ x

0

[φ(ceu)− φ∞ + ε] du. (38)

Function q−(x) tends to minus infinity when x tends to infinity. It implies
that q− has a maximum in R+ that is denoted M. It implies in turn that the JCR, don’t

we need func-
tion
$\phi$ to be
bounded?

right-hand side of condition (36) is bounded below by exp [−(φ∞ + ε)x−M ] .
Similarly, q+ has a minimum m in R+, implying that the right-hand side of
condition (36) is bounded above by exp [−(φ∞ − ε)x−m] . To sum up, we
know that for any ε > 0, there exists two scalars A = e−M and B = e−m

such that, for any x ∈ R+,

A exp [−(φ∞ + ε)x] ≤ v′(cex)

v′(c)
≤ B exp [−(φ∞ − ε)x] . (39)

Observe now that condition (23) can be rewritten as

(1 + δt)
−t = E

v′(cex̃t)

v′(c)
(40)

where x̃t =
∑t

i=1 h̃i and h̃i = log(1+ g̃i), whose support is in R+. Combining
conditions (39) and (40) yields

A
[
E exp

[
−(φ∞ + ε)h̃

]]t

≤ (1 + δt)
−t ≤ B

[
E exp

[
−(φ∞ − ε)h̃

]]t

, (41)
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or, equivalently,

−
1

t
log B − log

[
E exp

[
−(φ∞ − ε)h̃

]]
≤ log(1 + δt) (42)

≤ −
1

t
log A− log

[
E exp

[
−(φ∞ + ε)h̃

]]
. (43)

Taking the limit when t tends to infinity yields

− log
[
E exp

[
−(φ∞ − ε)h̃

]]
≤ lim

t→∞
log(1+δt) ≤ − log

[
E exp

[
−(φ∞ + ε)h̃

]]

(44)
Since this condition holds for any ε > 0, it implies that

lim
t→∞

log(1 + δt) = − log
[
E exp

[
−φ∞h̃

]]
, (45)

or, equivalently,

lim
t→∞

(1 + δt) = E
[
(1 + g̃)−φ∞

]−1
. (46)

This concludes the proof.¥
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