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ABSTRACT

This paper presents a simple model of optimal sustainable growth in which the
environmental stock enters consumers' preferences and production possibilities
depend upon the use of produced physical capital and the use of a flow of productive
services provided through the exploitation of the environmental stock.  Endogenous
growth is obtained by making the productivity growth of the environmental resources
dependent on past capital accumulation.  Both the effect of the environmental



preservation on the consumers' utility function and the effect of past accumulation on
the productivity of the environmental services are considered as externalities which
are internalized along an optimal growth path.  Optimal growth is sustainable when
the use of the environmental asset for production is equal to the regeneration capacity
of the environment.  We demonstrate that the optimal balanced-growth path, whenever
it exists, is always a saddle point and that the optimal trajectories converging to the
asymptotic growth rate are always locally unique.

RIASSUNTO

Questo articolo presenta un semplice modello di crescita ottima sostenibile nell'ambito
del quale lo stock di risorse ambientali influenza le preferenze dei consumatori mentre
le possibilità produttive dipendono sia dall'impiego del capitale fisico prodotto sia
dall'uso del flusso di servizi produttivi ottenuti attraverso lo sfruttamento dello stock
ambientale. Il processo di crescita endogena viene ottenuto attraverso l'assunzione che
la crescita produttiva delle risorse ambientali dipenda dall'accumulazione passata del
capitale. Entrambi l'effetto della preservazione dell'ambiente sulle preferenze dei
consumatori e l'effetto dell'accumulazione passata sulla produttività dei servizi
ambientali vengono considerati come esternalità che sono internalizzate lungo il
sentiero di crescita ottima. La crescita ottima è sostenibile quando l'uso della risorsa
ambientale nel processo produttivo è uguale alla capacità di rigenerazione
dell'ambiente. Si dimostra che il sentiero di crescita ottima bilanciata, qualora esista,
è sempre un punto di sella e che le traiettorie ottimali che convergono verso il tasso
di crescita asintotico sono sempre localmente uniche.

1.  Introduction.

In a number of models studied by the contemporary literature, economic growth is

obtained by endogenizing the productivity of labor services.  This goal is typically

achieved making the contribution to production due to the use of those factors depend

upon the past accumulation of capital, be this physical, as in Romer (1986) and Barro

(1990), or human, as in Lucas (1988).  The purpose of this paper is to mimic such a

technique to get sustainable growth in a simple model characterized by the presence

of an environmental asset.



We shall consider environment as a stock which is valuable when preserved, but

which provides production services when exploited.  Emission flows constitute a clear

example of these services.  Sustainability, in this context, means that environmental

production services must be equal to the regenerative capacity of the environmental

asset so as to keep the stock of environment constant and therefore preserved at the

level considered optimal from the intertemporal society's welfare point of view.   

The rate of growth of the productivity of the environmental services is assumed to

depend on the past accumulation of the physical capital stock.  This assumption

corresponds to the view that capital accumulation embodies new technologies

requiring a decreasing emission coefficient per unit of output.  

While the effect of the past capital accumulation on the productivity of the

environmental services is a positive externality for each unit of production, and

therefore treated as given at individual level, the stock of preserved environment

provides utility to consumers and can be assimilated to a public good which delivers

a non-marketed benefit.  A rational environmental policy aiming to achieve a socially

optimal sustainable growth path should internalize both external effects.

In the next section we shall introduce the model, whereas in section 3 we shall assess

the issue of the existence and uniqueness of the sustainable balanced-growth path.  In

particular we shall demonstrate that, when the assimilative capacity of environment

depends on the environmental stock, the conditions that must be imposed on

discounting to get sustainable growth are not independent of the stock of environment.

It is therefore possible to establish a trade-off between the sustainable balanced growth

rate and the sustainable environmental stock.  In section 4 we finally discuss the local

stability properties of the balanced-growth path.

2.  A model of optimal sustainable growth.



We consider a continuous-time, infinite horizon economy which is endowed with two

assets: a physical capital stock, K, and an environmental asset, E.  Following Becker

(1982), the stock of environmental resources is defined as the difference between a

maximum tolerable pollution stock ! > 0 and the current pollution stock P:

E = ! - P (2.1)

that is

! = - !. (2.2)

A constant proportion m > 0 of the pollution stock is assumed to be assimilated in

each instant t by the natural factors governing the environment.  The pollution flow

(emissions) Z expresses, in this context, the rate at which the environmental asset is

used as a source of productive services.  It follows that the pollution stock changes

according to the following rule

! = Z - mP. (2.3)

Using (2.3) and (2.1), equation (2.2) can be rewritten as

! = A(E) - Z, (2.4)

where

A(E) = m(! - E). (2.5)



Equation (2.5), in other words, represents the assimilative capacity of the environment

as a decreasing linear function of the environmental stock.

The economy, which is also endowed with a large number of identical competitive

firms, produces a unique consumption good using a standard aggregate Cobb-Douglas

technology defined upon the fraction of the physical capital stock devoted to

production, K , and labor in efficiency units, hL, i. e.1

Y = BK!(hL)  (2.6)1-"

where B > 0 is a scale parameter and h represents the efficiency of the total labor force

L which is normalized and set to be equal to 1.  h acts as an externality for each

individual firm and is assumed to depend on the past accumulation of the total capital

stock used in production according to the following expression:

h = K . (2.7)1

Ex post, therefore, the aggregate production function is linear in K :1

Y = BK . (2.8)1

The production process, however, entails polluting emissions Z according to the

emission function given by

Z = eY (2.9)

where the emission-output coefficient e is supposed to be reduced through the



exploitation of the remaining fraction K of the total physical capital stock according2 

to the function

e = ! . (2.10)2

In view of (2.10), equation (2.9) becomes

Z = ! . (2.11)2

Full factor employment requires, as usual,

K + K = K. (2.12)1  2 

Hence, the whole economy's capital stock is completely utilized either to increase

production, or to reduce the emission coefficient and, therefore, pollution.

Defining u / K /K and using (2.12), we can rewrite (2.11) as2

Z = B(! - 1). (2.13)

Assuming that capital lasts forever, the capital accumulation constraint is given by

! = B(1 - u)K - C (2.14)

where C represents aggregate consumption.

A constant population of identical consumers endowed with an infinite lifetime profile

is assumed to derive satisfaction from both consumption and the environment asset



according to the following intertemporal utility function:

W(C, E) = ! e  !?!?! (CE)  dt (2.15)-*t  1-0

where * > 0 is the standard subjective rate of time preference. 

A benevolent central planner maximizes (2.15) subject to the constraints (2.4) and

(2.14).

The Hamiltonian function associated with this program is

H = !!!!!!! + v[BK(1 - u) - C] + 8[A(E) - B(1/u - 1)]. (2.16)

The first order necessary conditions for an optimum are

C E  = v (2.17)-0 1-0

vK = 8u (2.18)!2

! = * - (1 - u)B (2.19)

! = * + m - ! C E (2.20)1-0 -0

whereas the transversality conditions at infinity are given by

lim  e vK = 0 (2.21)t64
-*t

lim  e 8E = 0. (2.22)t64
-*t



The variables v and 8 designate the shadow prices of the capital and the environmental

stocks, respectively.  Conditions (2.17) and (2.18) are the temporary equilibrium

requirements establishing the equality of the marginal utility of consumption and the

marginal product of the environmental services to their respective prices.  Condition

(2.19) is the standard arbitrage condition which requires the rate of time preference to

be equal to the marginal product of capital plus the capital gains.  Finally, condition

(2.20) is a modified version of the Hotelling rule requiring the rate of return from

preserving the environmental stock to be equal to the rate of time preference.

Equations (2.17)-(2.20) constitute a four dimensional dynamical system which fully

describes the equilibrium paths of the economy.  Following a number of authors

(Alogoskoufis-van der Ploeg (1991), Buiter (1992), and Mulligan-Sala-i-Martin

(1991)), that system can be studied appealing to the introduction of some auxiliary

variables.  If we introduce the notation J / 8/(vK), and x / C/K, the original system

can be reduced by one dimension.  From equation (2.18) one gets

u = J (2.23)1/2

and, substituting the latter expression in (2.13),

Z = B(J  - 1). (2.24)-1/2

Inserting (2.23) in (2.19) yields

! = * - B(1 - J ). (2.25)1/2

Using (2.17), equation (2.21) can be expressed as



! = * + m - ! !. (2.26)

Differentiating (2.17) with respect to time and making use of (2.25) one obtains

! = !?!?! ! + ![B(1 - J ) - *]. (2.27)1/2

Plugging again (2.23) in the accumulation equation (2.14) gives

! = B(1 - J ) - x (2.28)1/2

whereas substitution of (2.24) in (2.4) yields

! = A(E) - B(J  - 1). (2.29)-1/2

Subtracting (2.28) from (2.27) and using (2.29) leads to

! = !?!?! ![A(E) - B(J  - 1)] + !?!?!B(1 - J ) - ! + x.  (2.30)-1/2      1/2

Taking into account that

! = ! - ! - !

and using (2.25), (2.26) and (2.28), one finally obtains

! = m - ! ! + x. (2.31)



A sustainable balanced-growth path requires all the variables defining the dynamical

system (2.29)-(2.31) to be constant in the long-run.  This in turn implies that

consumption, physical capital, and output all grow at the same positive growth rate,

whereas the stock of environmental resources E remains constant. 

3. Existence and uniqueness of the sustainable balanced-growth path.

An (interior) equilibrium sustainable balanced-growth path is a positive triplet (x , E ,*  *

J ) such that ! = ! = ! = 0, for all t, which satisfies, in addition, the transversality*

conditions (2.22) and (2.23).  In view of the definition, it is clear that (x , E , J ),*  *  *

whenever it exists, must be a fixed point of the stationary system given by

E = ! - !(J  - 1) (3.1)-1/2

x = ![* - (1 - 0)B(1 - J )] / x(J) (3.2)1/2

E = !!!?!?!!. (3.3)

Since each variable is defined only for non-negative values along the stationary loci

(3.1)-(3.3), it is necessary to impose some restrictions on the structural parameters to

ensure that (x, E, J) is actually non-negative.  Establishing existence and uniqueness

through the choice of appropriate boundary conditions becomes relatively easy if one

assumes that the state-variable x, i. e. C/K, is always non-negative for all J, where the

domain of J / u  is the open interval (0, 1), as 0 < u < 1 along each stationary locus.1/2

From equation (3.2) one sees that, if 0 $ 1, then x(J) > 0, for all J in (0, 1).  When 0

< 1, however, x(J) is strictly increasing when J is increased from 0 to 1.  As a result,



x(J) $ 0, for all J in (0, 1) if and only if * $ (1 - 0)B.  The following assumption,

therefore, ensures that x(J) $ 0, for all J in (0, 1).

Assumption.  * $ (1 - 0)B, i. e. x(J) is non-negative for all J in the open interval (0,

1).

Consider now equation (3.1). In that case, E $ 0 if and only if 

! $ !(J  - 1) (3.4)-1/2

that is, if and only if

1 > J $ [B/(!m + B)]  / J > 0. (3.5)2
1 

It follows that the domain of E as a function of J is restricted to the open interval (J ,1

1). In view of the above assumption and after imposing the constraint in (3.5) to

guarantee the non-negativity of (x, E, J) along each stationary locus, we can now

address the existence issue without incurring in ambiguities.  Substituting equations

(3.1) and (3.2) in (3.3) yields

J! - !(J  - J) = !?!!!!!! (3.6)1/2

which is an equation in J only.  Finding the zeros of (3.6) is then equivalent to find the

number of stationary solutions of the system (3.1)-(3.3).  Let the left and the

right-hand side of (3.6) be defined as S(J) and '(J) respectively.  To determine the

zeros of (3.6) we consider, first, the function  S(J).  Direct inspection shows that, as



J increases from J to 1, S(J) increases monotonically from 0 to !.  Moreover, it is1 

strictly convex. To study '(J) we must distinguish two cases.

Case 1:  0 $ 1.  In such a case '(J) decreases monotonically from x(J )/[m + x(J )] >1   1

0 to */(0m + *) < 1.  A solution J  in (J , 1) of equation (3.6), whenever it exists, is*
1

then unique.  To ensure existence, and consequently uniqueness, it is sufficient to

choose the appropriate boundary condition.  This reduces, in the present context, to

setting ! > */(m0 + *), as shown in Fig. 1.

Case 2:  0 < 1, with * $ B(1 - 0).  In such a case, '(J) increases monotonically from

x(J )/[m + x(J )] > 0 to */(0m + *) < 1.  In addition, it is strictly concave.  Once again,1   1

there exists a unique J  in (J , 1) that solves (3.6) if and only if ! > */(m0 + *), as*
1

shown in Fig. 2.

Insert Fig. 1 and Fig. 2 here.

The above argument can be now summarized in the following proposition.

Proposition 1.  Assume that * > B(1 - 0).  Then an interior solution (x , E , J ) for the*  *  *

system (3.1)-(3.3) exists and is also unique if and only if ! > */(0m + *). 

In light of the above proposition, it is possible to state that the unique solution (x , E ,*  *

J ) of the stationary system (3.1)-(3.3) truly represents an interior equilibrium*

sustainable balanced-growth path if it also satisfies the transversality conditions (2.22)

and (2.23), the requirement on the boundedness of the objective function (2.6), and the

positive growth condition.  Easy computations show that the integral in (2.6) is

bounded if



* > (1 - 0)B(1 - J ). (3.7)*1/2

The condition in (3.7) also implies the fulfillment of (2.22) and (2.23).  As far as

positive steady-state growth is concerned, one obtains, from equation (2.20),

g = ! = ![B(1 - J ) - *]. (3.8)*1/2

As a result, the long-run equilibrium growth rate is strictly positive if and only if

B(1 - J ) > *. (3.9)*1/2

Combining (3.7) and (3.9) gives

B(1 - J ) > * > (1 - 0)B(1 - J ), (3.10)*1/2         *1/2

where the second inequality is always fulfilled because of the assumption * > B(1 -

0).

4. Local dynamics.

To investigate the local stability properties of the sustainable balanced-growth path,

we shall, as usual, analyze the sign of the eigenvalues associated with the Jacobian of

the three dimensional system (2.29)-(2.30) evaluated at the steady-state (x , E , J ).*  *  *

Since the dynamical system possesses one predetermined variable (E) and two

non-predetermined variables, (J and x), we conclude, in view of the Blanchard-Khan

Theorem, that (x , E , J ) is locally unique if the Jacobian has two characteristic roots*  *  *



with positive real parts and one root with negative real part.

The Jacobian evaluated at the steady-state is given by

! ! ! !!  !!    ! !!!!! !!!!!!      !!!!! !!!!! ! !!!!!-

where F / A(E ) + B.  The trace and the determinant of J are, respectively,*  *

Tr(J) = 2x  > 0 (4.2)*

and

Det(J) = - m x  - mx - ! F J (m + x ) + m J F  !?!?! (4.3)2 *  *2   * *   *   2 ! * *

Direct inspection of (4.3) shows that Det(J) < 0 if 0 $ 1.  When 0 < 1, on the other

hand, to conclude that Det(J) < 0 is equivalent to prove that 

- m x  + m J F  !?!?! < 0 (4.4)2 *  2 ! * *

that is

x  > !?!?! ! J . (4.5)*    *1/2

Plugging in (4.5) the expression of x  yields*

* - (1 - 0)B + ! (1 - 0)BJ  > 0. (4.6)*1/2



Since * - (1 - 0)B > 0 by assumption, one concludes that Det(J) < 0, and, therefore,

that the sustainable balanced-growth path is always locally unique, i. e. there are two

eigenvalues with positive real parts and one eigenvalue with negative real part.  All

this leads to the following result.

Proposition 2.  Suppose that Proposition 1 holds.  Then the sustainable

balanced-growth path is locally saddle-point stable, i. e. given the initial condition E0

> 0, there exists a unique choice of J and x in a neighborhood of (x , E , J ) that0  0 
*  *  *

places the economy on the unique converging path.

5.  Conclusions.

We have presented a simple model to achieve sustainable economic growth. This

means that the model we have analyzed is able to explain both balanced persistent

growth in national product, consumption and capital, and the possibility of a constant

stock of the environmental asset at the steady-state. An intertemporal optimality

concept is required to choose the level at which the environmental stock has to be

maintained. A constant environmental stock, on the other hand, implies a constant

pollution stock and, hence, a constant emission flow within the assimilative capacity

of the environment itself. The only way to generate both economic growth and

constant emissions in the long-run equilibrium consists of a continuously decreasing

emission coefficient per unit of output; this in turn requires the firms to devote an

appropriate share of capital to improve the environmental use of technologies. An

optimal price of the environmental use is needed to obtain this appropriate share of

capital. It is shown, indeed, that, along the optimal sustainable growth path, the

optimal environmental price must grow at the balanced rate of growth. As a result, one



gets a constant ratio of the value of the environment to national output.

We have finally showed that, under the very simple assumption made, the optimal

sustainable growth equilibrium is locally saddle-point stable.
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