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The project

From the proposal abstract:

“The reduction of greenhouse gas emissions is a vital target for the coming decades.

From a technology perspective, power generation is the largest responsible for CO, emissions,

therefore great mitigation efforts will be required in this area.

From a policy perspective, it is common opinion that the European Union is and will remain

leader in implementing clean policies.

Basing on these considerations, the power sector and the European Union will be the two key
actors of this project.

The main tool adopted in this work will be WITCH, the integrated assessment model developed
at Fondazione Eni Enrico Mattei (FEEM).”
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Project outline

« WP 1 - Power sector modeling improvements (UC Berkeley - interactions/integration with SWITCH)

- Task 1.1 — Training on the SWITCH model (months 1-2)

- Task 1.2 — System integration of Variable Renewable Energies (VRE) (months 3-4)
- Task 1.3 — Electricity storage (months 5-6)

- Task 1.4 — Electrical grid (months 7-8)

- Task 1.5 —=leetrefy-trade-tmenths-89-32F - [nteractions/integration with SWITCH

« WP 2 - Technology prospects: EU policy scenario (FEEM)

- Task 2.1 — Study of the state of the art of renewables, nuclear and CCS in the European
Union (month 13)

- Task 2.2 — Scenario definition (month 14)
- Task 2.3 — Scenario run and analysis (months 15-18)

Today’s presentation

« WP 3 - Technology prospects: global climate policies (FEEM)

- Task 3.1 — Study of the state of the art of current EU and global climate policies (month 19)
- Task 3.2 — Scenario definition (month 20)
- Task 3.3 — Scenario run and analysis (months 21-24)
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Today’s presentation

1. Exploring pathways of solar PV learning-by-doing in Integrated Assessment

Models

2. The techno-economic effects of the delayed deployment of CCS technologies

on climate change mitigation

3. Reactor ageing and phase-out policies: global and European prospects for

nuclear power generation
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WITCH: Introduction

WITCH - World Induced Technical Change Hybrid

» Climate-energy-economic IAM (Integrated Assessment Model) - Socio-economic
impacts of climate change

» Hybrid: aggregated, top-down, inter-temporal optimal-growth model + disaggregated
description of the energy sector
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WITCH: The CES structure

OUTPUT
505 ¢

$ CES = Constant
Elasticity of Substitution

| BACKnel || Ollnel |
ELWIND

Q=TFP- (a-Ke+ (1-a) - L°) (VP)
p=(o-1)/o0

o = Elasticity of Substitution
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Motivation and Scope | — PV global capacity

Gigawatts
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Motivation and Scope Il = PV module price
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Motivation and Scope Ill — Objectives and models

Objectives

« From a policy-relevance perspective, explore different scenarios related to the possible future

cost patterns of the solar PV technology
* From a modeling perspective, assess the responsiveness of models to changes in the cost

data input

Participating models (= Follow-up of the ADVANCE project on system integration modeling)

+ IMAGE
— Recursive dynamic partial equilibrium models
- POLES _
« REMIND
— Intertemporal optimal-growth general equilibrium models
« WITCH

Modeling the European power sector evolution: Ilow-carbon generation oy
11 technologies (renewables, CCS, nuclear), the electric infrastructure and their role
in the EU leadership in climate policy M.ERCURY



Learning-by-Doing and Floor Cost

Investment cost (Learning-by-Doing):

—b

Ki
CC = Ll (E) « CC, = capital cost at time t
« CC, =Initial capital cost
« K, = global cumulative capacity at time t

« K, = global initial capacity

Floor cost: hard bound

K, —b b =a measure of the strength of the learning
CC, = max (FC, CCy (—) ) effect
K, - LR = Learning Rate = cost decrease

deriving from doubling the installed capacity

Floor cost: soft bound (asymptotic) =-1+2°
FC = floor cost

—b

K
CC, = FC + (CC, — FC) - (?t)
1
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Scenario protocol
-

10
11
p
3
4
5

1
1
1
1
16

7

ADVA4-PV-BASE-LR-ref-FC-ref
ADVA4-PV-BASE-LR-ref-FC-0
ADVA4-PV-MIT-LR-ref-FC-ref
ADVA4-PV-MIT-LR-75p-FC-ref
“ ADV4-PV-MIT-LR-50p-FC-ref
ADVA4-PV-MIT-LR-25p-FC-ref
ADVA4-PV-MIT-LR-25m-FC-ref
ADVA4-PV-MIT-LR-50m-FC-ref
ADVA4-PV-MIT-LR-75m-FC-ref
ADVA4-PV-MIT-LR-ref-FC-0
ADVA4-PV-MIT-LR-75p-FC-0
ADVA4-PV-MIT-LR-50p-FC-0
ADVA4-PV-MIT-LR-25p-FC-0
ADVA4-PV-MIT-LR-25m-FC-0
ADVA4-PV-MIT-LR-50m-FC-0
ADVA4-PV-MIT-LR-75m-FC-0

Baseline

Baseline

Mitigation
Mitigation
Mitigation
Mitigation
Mitigation
Mitigation
Mitigation
Mitigation
Mitigation
Mitigation
Mitigation
Mitigation
Mitigation
Mitigation

Ref

Ref

+75%
+50%
+25%
-25%
-50%
-75%
Ref

+75%
+50%
+25%
-25%
-50%
-75%

Ref
Ref
Ref
Ref
Ref
Ref
Ref

o O O O o o o

Mitigation - ctax | cumulative 1000 GtCO, in 2011-2100 in the Ref-Ref scenario = +2°C in 2100
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Modeling assumptions (stocktaking)

Cost calculation Endogenous

Type O.f endogenous One-factor learning curve (LbD)
modeling

Yes, with
Regional differentiation (limited) No, only one global cost
spillover effects

Soft bound (asymptotic)
Linear Linear Concave Exponential

2015 investment cost
1576 1924 1916 1879
[USD2015/kW]

Floor cost [USD2015/kW] 433 619 458 495
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Solar PV investment cost over time - World - All scenarios

IMAGE POLES
2000 - SCENARIO
—— BASE-LR-ref-FC-0
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OUENARIV

Solar PV investment cost - World - Average 2050-2100
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PV share variation wrt reference case (with FC) - World - Av. 2050-2100
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PV share variation wrt reference case (without FC) - World - Av. 2050-2100
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Global PV penetration - All scenarios

1.0
IMAGE POLES
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OUENANRIV

PV + CSP + wind share - World - Av. 2050-2100 BASE.LR.ref.FC.0
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Conclusions

* Inthe long run (2050-2100), global PV penetration spans a range of 10-72%, with a marked
growth with respect to the current 1% in all scenarios and models.

Models tend to show a limited sensitivity to PV penetration in their specific results.
Sensitivity of PV penetration to capital cost reduction is averagely 0.4 across scenarios.

«  Sensitivity to learning rates is not symmetric, being markedly higher for decreasing learning
rates than for increasing learning rates.

«  Models show a sort of “threshold” on which PV penetration tends to progressively collapse
in the most favorable scenarios. This highlights the role of non-capital cost factors,
especially system integration.

«  Sensitivity to PV capital cost even diminishes when all Variable Renewable Energies (VREs,
l.e. wind and solar CSP in addition to PV) are focused. This means that the higher/lower PV
penetration related to its lower/higher capital cost mainly occurs to the detriment/benefit of
wind and CSP.

Modeling the European power sector evolution: Ilow-carbon generation oy
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Introduction

Carbon Capture & Storage (CCS) has widely been recognized as one of the main
technological solutions to decarbonize the energy sector and virtually all research studies
project a considerable role in future mitigation pathways, especially if the target is to stay
below 2°C (= importance of negative emissions)

 Main advantage - (theoretically) zero or negative CO, emissions (- BECCS, i.e. biomass
CCS) without changing the fossil-based generation paradigm (= plant dispatchability)

«  However, large-scale CCS deployment is yet to come
—> globally, 30 MtCO,/yr storage capacity vs. 37 GtCO,/yr emissions

Main obstacles to CCS diffusion:
- safety concerning the stability of storage sites
- public acceptance
- high technology costs
- incomplete or unclear regulatory framework

- absence of business models

Modeling the European power sector evolution: Ilow-carbon generation oy
24 technologies (renewables, CCS, nuclear), the electric infrastructure and their role
in the EU leadership in climate policy M.ERCURY



Objective and scenario design

Objective

» Assess the impacts that a progressively delayed CCS deployment can have both in terms of
re-arrangement of the energy mix (technical dimension) and in terms of policy costs
(economic dimension).

—> Alternatively, how urgent is the installation of CCS plants for the techno-economic
feasibility of more and more stringent climate targets?

Scenario design

» 26 scenarios: BAU + 5 climate targets x 5 “starting years” when CCS deployment is allowed
« BAU > 4°C
* [3.5°C, 3°C, 2.5°C, 2°C, 1.5°C] x [2020 (i20), 2040 (i40), 2060 (i60), 2080 (i80), no CCS (ioff)]

Modeling the European power sector evolution: Ilow-carbon generation oy
25 technologies (renewables, CCS, nuclear), the electric infrastructure and their role
in the EU leadership in climate policy M.ERCURY



Global temperature increase

5 -
Scenario
— Baseline — 2.5C_i60
47 —— 3.5C_j20 — 2.5C_i80
—— 3.5C_i40 — 2.5C_joff
—— 3.5C_i60 — 2C_i20
31 — 3.5C_i80 — 2C_i40
—— 3.5C_joff — 2C_i60
O
° — 3C_i20 —— 2C_i80
51 B I — 3C_i40 — 2C_joff
| — 3C_i60 — 1.5C_i20
== = e ——— —3C_i80 — 1.5C_j40
P
N — 3C_ijoff —— 1.5C_i60
— 2.5C_i20 — 1.5C_i80
—— 2.5C_i40 — 1.5C_ioff
0-
2020 2030 2040 2050 2060 2070 2080 2090 2100
Year
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CCS modeling in WITCH

«  CO, sequestration, transport, and storage are modeled via regional supply cost curves,
which depend on site availability.

*  The unit cost curve C.g has a convex shape:

Cees(t,n) = aces(n) - exp(aces(n) - Mees(t, n)Fees (n))

- 1: time step
- N: region
- Mccs(t,n): cumulated amount of CO, captured over the years

- a, a, B: parameters calibrated on the storage capacities in the different regions
(= global estimated capacity: 1678-11100 GtCO, according to the IPCC)

« The total CCS cost is finally computed by multiplying the unit cost C.¢ by the amount of
fuel burnt in the relevant power plants.
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Electricity generation from CCS plants - World
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CCS shares in the electricity mix in 2100 - World
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Electricity mix in 2100 - World - Absolute generation
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Electricity mix in 2100 - World - Relative shares
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Policy cost 2p5

3.5C 3C 2.5C
0% - 0% - e— — — —— — 0%'-----
-10% - -10% -10% A
-20% - -20% -20%
-30% - -30% -30%
20 40 60 80 ioff 20 40 60 80 ioff 20 40 60 80 ioff
2C 15C
0% - - 0% 1 Policy cost = cumulative
.... discounted GDP loss with
] i respect to BAU in 2015-2100
-10%+ -10%7 (discount rate = 2.5%)
-20%° 2071 P. Cost ioff
-------------- ~ 1.5
-30% - -30% - P. Cost 120
20 40 60 80 ioff 20 40 60 80 ioff

Modeling the European power sector evolution: Ilow-carbon generation oy
32 technologies (renewables, CCS, nuclear), the electric infrastructure and their role
in the EU leadership in climate policy M.ERCURY



CCS shares in the electricity mix in 2100 - Europe
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Electricity mix in 2100 - Europe - Relative shares
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Conclusions

. CCS s likely to play a major role in the decarbonization of the electricity sector at a global level, as
it is installed in all scenarios with a policy target equal to 3°C or less.

« As soon as the investment in CCS is allowed, this option is immediately activated by the
optimization model. Due to expansion constraints, the delayed installation prevents CCS from
reaching the optimal level which would be achieved in the unconstrained scenarios.

«  This implies a progressively lower penetration in the electricity mix as the deployment is delayed:
global CCS penetration achieves around 25-30% in 2100 in all scenarios from 1.5°C to 3°C,
gradually decreasing to zero as the deployment is delayed or not allowed.

. The lower or no CCS generation is mostly compensated by renewables (notably wind and solar),
also with a slight increase in nuclear.

. The overall electricity demand slightly diminishes with the progressively delayed CCS deployment
(more markedly in the 1.5°C scenarios).

. Delaying or removing CCS from the optimal electricity mix has negative effects on the overall
economic performance: the no CCS scenatrio is characterized by a cumulative GDP loss which is
averagely 50% higher than the corresponding unconstrained CCS scenario.

. Europe is characterized by low availability of storage sites and by high renewable potential and
technology maturity - low CCS penetration in all scenarios - little sensitivity to the CCS starting
year.
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Introduction

* Nuclear has widely been recognized as one of the main technological solutions to
decarbonize the energy sector and virtually all research studies project a considerable role
in future mitigation pathways (... same as CCS)).

 Main advantage - zero CO, emissions with a consolidated and dispatchable power
generation technology.

«  Very different prospects in different areas of the world:

- non-OECD countries (especially China, India, Russia) + Republic of Korea:
nuclear characterized by high momentum

- OECD countries:

1) nuclear reactors, mostly built between the 70s and the 80s, are approaching the end of
their operational life

i) political, social, and economic constraints hinder the construction of new plants

—> even in presence of massive investments to extend the operational lifetime (from about
40 to about 60 years) the actual prospects in these countries are controversial
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Figure 10.4 = Status of nuclear power programmes, end-2013
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Number of reactors (operational and under construction) and average age
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Reactors age
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Objective and scenario design

Objective

* Most scenario exercises consider either a full nuclear scenario (no constraints) or a complete,
global nuclear phase-out.

—> The objective is to investigate more calibrated and realistic scenarios.

Scenario design

- BAU

« CTAX

« CTAX global phase-out
« CTAX_OECD_phase-out
« CTAX_OECD_switch-off
- CTAX | cumulative 1000 GtCO, in 2011-2100 - +2°C in 2100

OECD = OECD w/o R. of Korea (i.e. KOSAU)
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Global temperature increase
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Electricity generation from nuclear plants - World
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Electricity generation from nuclear plants - Europe

10.0 1
7.9
Scenario
— BAU
s — CTAX
S 5.0
B — CTAX_global_phase-out
— CTAX_OECD_phase-out
— CTAX_OECD_switch-off
2.51
0.04

2020 2030 2040 2050 2060 2070 2080 2090 2100
Year

Modeling the European power sector evolution: low-carbon generation

L
44 technologies (renewables, CCS, nuclear), the electric infrastructure and their role
in the EU leadership in climate policy M.ERCURY



Electricity share from nuclear plants - World
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Electricity share from nuclear plants - Europe
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Electricity mix over time - World - Absolute generation
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Electricity mix over time - Europe - Absolute generation
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Capacity mix over time - World - Absolute value
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Capacity mix over time - Europe - Absolute value
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Capacity mix over time (short term) - World - Absolute value
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Capacity mix over time (short term) - Europe - Absolute value
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Innovation benefits from nuclear phase-out
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E. De Cian, S. Carrara, M. Tavoni (2014). Innovation benefits from nuclear phase-out: Can they compensate
the costs?, Climatic Change, Vol. 123, N. 3-4, pp. 637-650
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Cumulative policy cost 2015-2100 - CTAX scenario - Discount rate 2p5
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Delta cumulative policy cost 2015-2100 wrt CTAX - Discount rate 2p5
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Conclusions

*  Nuclear power generation is expected to grow both in the baseline and in the policy scenarios
(apart from the global phase-out scenario, naturally), even if to an extent which is in line with
the overall demand growth, so that the nuclear share does not significantly change over time,
both at a global and at a European level (apart from a temporary increase in the first part of the
century at a global level in the CTAX scenario).

Overtime, and especially in the phase-out or switch-off scenarios, the nuclear contribution is
compensated by renewables (wind and solar PV) and, to a lower extent, by CCS (only
marginally in the EU).

The huge increase in the generation from variable renewable energies entails the need for a
massive deployment of storage capacity, especially in the EU (given the low deployment of
dispatchable CCS plants) and especially in the second part of the century (when the generation
other than from variable renewables is marginal).

The policy costs related to the nuclear phase-out are not particularly high (0.4% additional
global GDP loss wrt the unconstrained CTAX scenario), as they are almost compensated by the
lower costs of renewables, deriving from higher investments in the non-nuclear low-carbon
technologies, and by overall energy efficiency improvements (= comparison with CCS [)

Phase-out policies applied to the OECD regions only do not entail any additional policy costs,
while the non-OECD regions marginally benefit from lower uranium prices. The OECD switch-
off scenario results in a doubling of these losses and gains.
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