

28th June 2018

A Spatially-Explicit Inquiry into the Dynamics of Access to Electricity in Sub-Saharan Africa Working Paper

Giacomo Falchetta

FEEM, Catholic University PhD student and ESP program researcher

FEEM Research Seminar

NB This presentation refers to a preliminary version of the working paper

- 1. Background & literature
- 2. Estimation methodology and data
- 3. Estimation results
- 4. Post-estimation analysis
 - $\ensuremath{\circ}$ Access to electricity inequality
 - \circ Urban areas and proximity
 - \circ O&G proximity and RE potential
- 5. Modelling of the impacts of economic development on the electrification process
 - $\circ \, \text{Background}$
 - \circ Models specification
 - \circ Results

6. Conclusions

1. Background & literature

- 2. Estimation methodology and data
- 3. Estimation results
- 4. Post-estimation analysis
 - \odot Access to electricity inequality
 - \circ Urban areas and proximity
 - O&G proximity and RE potential
- 5. Modelling of the impacts of economic development on the electrification process
 - Background
 - Models specification
 - \circ Results
- 6. Conclusions

Background

Electricity access rates:

- World's lowest in most countries of Sub-Saharan Africa
- Average of 71% and 25% in urban and rural areas, respectively.
- People without access: paucity of detailed data
 - Where?
 - How many?
 - Why?
- Empirical strategy
 - Combine new generation satellite **night-time lights** imagery (from NASA's VIIRS satellite) and the CIESIN's GPW gridded **population** dataset
 - \rightarrow high-resolution map of the unlit population for year 2015
- Spatially explicit dataset used for:
 - Better understanding the relative significance of different factors in the economics of access to electricity and the key underlying spatial trends
 - inform policy for the power sector's development in the macro-region

a) Covariates, drivers, and impacts of access

1. Studies on electrification $\leftarrow \rightarrow$ economic development

- e.g. Wolde-Rufael 2014; Apergis and Payne 2011
- Using panel bootstrap causality, dynamic panel, Granger causality...

2. Studies on socio-economic impacts of electrification

 e.g. Khandker et al. 2013; Lipscomb et al. 2013; Salmon and Tanguy 2016; Ahmad et al 2017; Barron and Torero 2017.

3. Studies on the demand-side (drivers of the electrification process)

- Khennas 2012; Inglesi-Lotz and Pouris 2016; Westley 1984; Abosedra et al. 2009; Zachariadis and Pashourtidou 2007; Louw et al. 2008
- 4. Studies on the covariates that statistically explain access levels

Most studies are either country-level or very local (on the field)

Literature

a) Covariates, drivers, and impacts of access

b) Night lights in the social sciences

Inter alia

• Henderson et al. 2012; Chen and Nordhaus (2011)

ightarrow econometric estimation of real income growth

• Shi et al. (2014) \rightarrow modelling GDP and electric power consumption

... many other applications in energy (CO2 emissions, gas flaring...), urban and regional economics and other disciplines

Literature

- a) Covariates, drivers, and impacts of access
- b) Night lights in the social sciences

c) Estimations of the number of people without access

• Doll and Pachauri (2010)

 \rightarrow nighttime lights (old generation DMSP-OLS) to assess electrification between years 1990 and 2000.

• Min et al. (2013)

 \rightarrow combines micro-level data from on-field analysis w/ n.l. data to provide counterfactual: find lights proxy well village electrification but weakly household consumption levels

• Burlig and Preonas (2016)

 \rightarrow regression discontinuity design w/ n.l. data to evaluate the potential impact of RGGVY, an extensive electrification program in India

• Bertheau et al. (2017)

 \rightarrow VIIRS lights data to estimate electricity access and subsequently to perform a simple electrification analysis

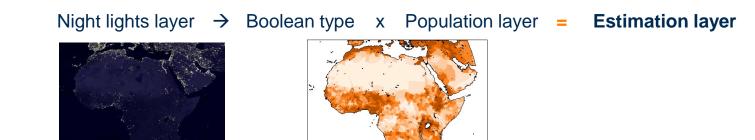
1. Background & literature

2. Estimation methodology and data

- 3. Estimation results
- 4. Post-estimation analysis
 - \odot Access to electricity inequality
 - \odot Urban areas and proximity
 - O&G proximity and RE potential
- 5. Modelling of the impacts of economic development on the electrification process
 - Background
 - Models specification
 - \circ Results
- 6. Conclusions

Estimation methodology

1) Import night lights and population raster files


2) Create condition such that if a light layer pixel value is equal to 0 (denoting a dark area), then its value is set to 1; otherwise, if light is detected in that pixel, it is set it to 0;

3) Multiply Boolean raster by the population raster, so that the newly created raster only includes population counts where the light is absent;

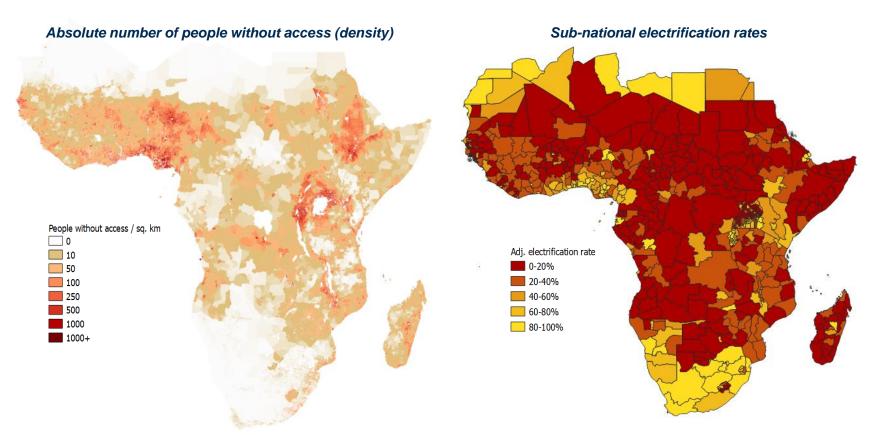
4) **Perform zonal statistics** into Global Administrative Unit Layers (GAUL) geographical units to calculate local electrification rates and absolute number of people without access;

5) **Compare** aggregated results with country-level data from IEA's *World Energy Outlook 2017* to check consistency;

6) Provide descriptive statistics and move to post-estimation analysis.

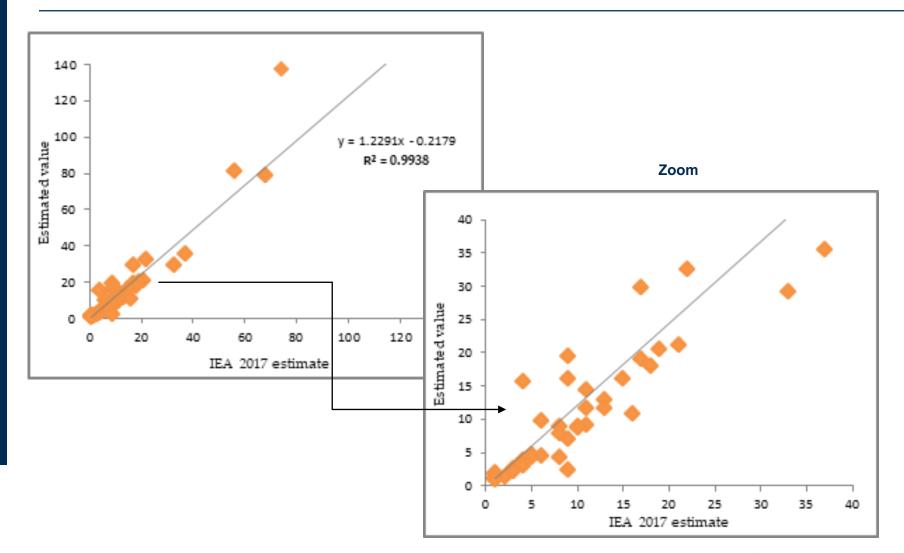
Data	Unit	Source		
VIIRS 2015 night light DNB composite	nW · cm ⁻² · sr ^{−1}	NOAA/NCEI (2017)		
SEDAC gridded population of the world (GPW) v4	People · km ⁻²	CIESIN (2016)		
IEA electrification rates	%	IEA (2017a)		
Global Administrative Unit Layers (GAUL), levels 1-2	Regions boundaries	FAO (2015)		
LANDSCAN World Urban Areas	Metropolitan areas boundaries	Patterson and Kelso (2012)		
Africa - Electricity Transmission Grid	Position; volt (electric potential); length (km)	Arderne (2017)		
Gridded GDP	Thousands of constant 2000 USD	Peduzzi and UNEP/DEWA/GRID-Geneva (2012)		
Travel time to the nearest city of 50,000 or more people	hours	Nelson (2008)		
ASTER Global Digital Elevation Map	meters	METI and NASA (2011)		
CRU TS v4.01 historical precipitations and temperature	mm/year; degrees Celsius	Harris et al. (2014)		
Potential Solar PV output	kWh/kWp	SolarGIS (2017)		
Mean wind speed	m/s	Global Wind Atlas (2017)		
Oil and gas fields	Position	Lujala et al. (2007)		

- 1. Background & literature
- 2. Estimation methodology and data


3. Estimation results

- 4. Post-estimation analysis
 - \odot Access to electricity inequality
 - \circ Urban areas and proximity
 - O&G proximity and RE potential
- 5. Modelling of the impacts of economic development on the electrification process
 - Background
 - Models specification
 - \circ Results
- 6. Conclusions

Estimation results


732.65 million \rightarrow 22% above of 600 million reported as people living without access to electricity by the IEA (2017)

3.

Correlation of estimates with IEA values

3.

Zoom (against electricity transmission and distribution grid)

Analysis enables :

- spatial electrification studies
- least-cost electrification modelling

e.g. in every cell min cost (tech_i, electr_tier) s.t. elrate=1 LCOE_solar=x LCOE_diesel=y

Legend Borders Existing electricity grid Population without access 0 10 50 100 250 500 1000

Why do we overestimate vs. IEA?

a) Peri-urban (slum) populations

→ masking a 25-km radius buffer around largest cities away from the estimate makes the discrepancy almost vanish

Country	IEA (2017a)	Est. with cities	Est. without cities
Nigeria	74	137.60	76.60
Ethiopia	56	81.10	58.49
DR Congo	68	78.80	62.94
Cameroon	9	19.36	12.62
Ivory Coast	9	15.98	13.35
Kenya	17	29.70	16.40
Ghana	4	15.72	12.84
Sudan	22	32.57	30.10
Total SSA	588-600	732.65	598.89

b) Weak proxying of low consumption (e.g. absent streetlights in rural areas) Potential solution (work in progress):

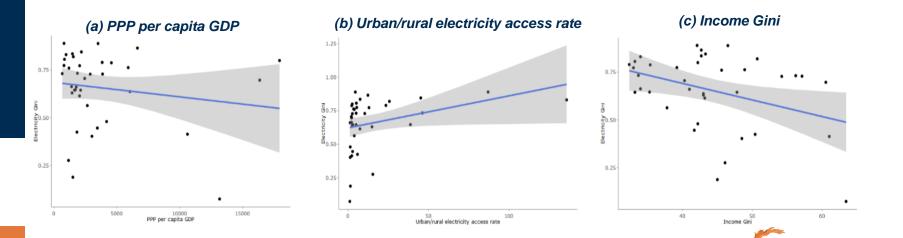
 \rightarrow use **mobile phone coverage +** spatially-explicit big data on **internet services usage** to proxy areas where there is at least some access to **charge a mobile phone**

- 1. Background & literature
- 2. Estimation methodology and data
- 3. Estimation results

4. Post-estimation analysis

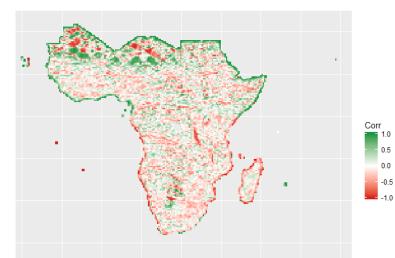
- \circ Access to electricity inequality
- \circ Urban areas and proximity
- \circ O&G proximity and RE potential
- 5. Modelling of the impacts of economic development on the electrification process
 - Background
 - Models specification
 - \circ Results
- 6. Conclusions

Data


Data	Unit	Source
VIIRS 2015 night light DNB composite	nW · cm ⁻² · sr ⁻¹	NOAA/NCEI (2017)
SEDAC gridded population of the world (GPW) v4	People · km ⁻²	CIESIN (2016)
Electrification rates and number of people without access	%, people	Author's elaboration
IEA electrification rates	%	IEA (2017a)
Global Administrative Unit Layers (GAUL), levels 1-2	Regions boundaries	FAO (2015)
LANDSCAN World Urban Areas	Metropolitan areas boundaries	Patterson and Kelso (2012)
Africa - Electricity Transmission Grid	Position; volt (electric potential); length (km)	Arderne (2017)
Gridded GDP	Thousands of constant 2000 USD	Peduzzi and UNEP/DEWA/GRID-Geneva (2012)
Travel time to the nearest city of 50,000 or more people	hours	Nelson (2008)
ASTER Global Digital Elevation Map	meters	METI and NASA (2011)
CRU TS v4.01 historical precipitations and temperature	mm/year; degrees Celsius	Harris et al. (2014)
Potential Solar PV output	kWh/kWp	SolarGIS (2017)
Mean wind speed	m/s	Global Wind Atlas (2017)
Oil and gas fields	Position	Lujala et al. (2007)

Access to electricity inequality - relative correlations

Gini coefficients of electricity access inequality in (a) standard and (b, c) spatial formulations (calcuated in R following Kalogirou 2017)


Country	Gini elect. coefficient	Gini neighb. fract.	Gini non-neighb. fract
Congo	0.89	0.11	0.89
C.Af.Rep	0.89	0.14	0.86
Angola	0.86	0.05	0.94
Chad	0.84	0.03	0.97
Eritrea	0.84	0.19	0.81
South Africa	0.07	0.17	0.83
Malawi	0.28	0.39	0.61
Kenya	0.40	0.13	0.87
Namibia	0.41	0.07	0.93
Rwanda	0.42	0.42	0.58

Fondazione Eni Enrico Mattei

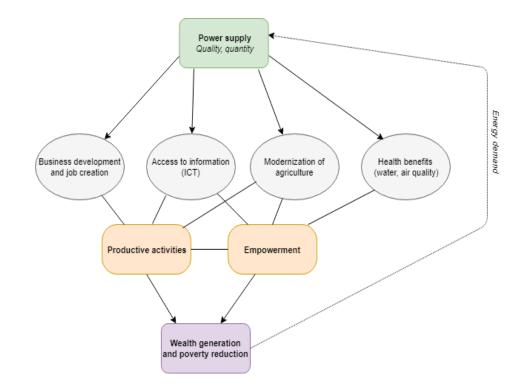
Urban areas and proximity

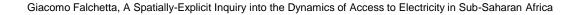
	(1)	(2)	(3)
VARIABLES	Elrate	elrate	elrate
	(all GAUL)	(rural)	(urban/peri- urban)
urbtimemea	-0.0453***	-0.0121***	-0.212***
	(0.00308)	(0.00160)	(0.0141)
urbtimemea^2	0.00122***	0.000284***	0.0158***
	(0.000148)	(5.33e-05)	(0.00190)
Constant	0.338***	0.141***	0.682***
	(0.0115)	(0.00888)	(0.0207)
Observations	4,270	2,950	1,320
R-squared	0.184	0.031	0.363

- Simple fractional probit regressions to assess correlation → evidence of a negative quadratic relationship
- Focal correlation map of el. rate and effective urban distance

O&G proximity and RE potential

VARIABLES	(1) elrate	(2) elrate	(3) elrate	(4) elrate	(5) elrate	(6) elrate
ogfielddis	0.000425*** (3.73e-05)	-0.000147** (7.23e-05)				
pvpotmean			0.0969*** (0.0140)	-0.0177 (0.0233)		
windspmean					0.211*** (0.0226)	-0.0490 (0.0431)
Country fixed effects (F-test of joint sig.)	-	2950.57***	-	3056.06***	-	3188.01***
Constant	-1.794***	-2.101***	-3.008***	-1.910***	-2.434***	-1.989***
	(0.0352)	(0.109)	(0.227)	(0.407)	(0.109)	(0.206)
Observations	2,950	2,950	2,950	2,950	2,950	2,950


- Substantial impact of adding country fixed effects
- O&G distance negatively correlated with rural access
- Solar and wind potential not systematically correlated with access in rural areas
- \rightarrow Countries with higher level of access are those with higher PV potential and wind speed, but this **does not apply at the sub-national scale** for rural provinces


- 1. Background & literature
- 2. Estimation methodology and data
- 3. Estimation results
- 4. Post-estimation analysis
 - Access to electricity inequality
 - \circ Urban areas and proximity
 - O&G proximity and RE potential
- 5. Modelling of the impacts of economic development on the electrification process
 - \circ Background
 - \circ Models specification
 - \circ Results
- 6. Conclusions

How does economic growth drive the electrification process?

Is there an impact of economic development on the process of rural electrification at the *within-country* level, after controlling for other drivers?

> Country fixed effects

To **control** for national economic development level, institutions, electrification policy and efforts...

Omitted variable bias

Many potential variables correlated with GDP that are **omitted** from the specification $Cov(GDP_{ic}, u_{ic}) \neq 0$

Endogeneity (simultaneous causality)

Causality direction between GDP and el. rate highly debated in the literature \rightarrow need to break likely simultaneous causality to **separate** direction of effects

Spatial autocorrelation

Represents a violation of GM4 $Cov(\varepsilon_i, \varepsilon_j) = 0, (i \neq j) \rightarrow$ implies **serial correlaiton over space**, needs to be controlled for, otherwise wrong SEs and inference

Model specifications

 $Y_{ic} = \alpha_0 + GDP_{ic}\beta_1 + X_{N_{ic}}\beta_N + \varepsilon_{ic}$ **1- Fractional probit**

 $Y_{ic} = \alpha_0 + \widehat{GDP}_{ic}\theta_1 + X_{Nic}\beta_N + \varepsilon_{ic}$ **2- 2SLS fractional probit**

 $Y_{ic} = \alpha_0 + WY_{-1\,ic}\zeta_1 + \widehat{GDP_{ic}}\theta_2 + X_{N\,ic}\beta_N + \varepsilon_{ic}$ **3- Spatial autoregressive IV model (SAR-spatial lag model)**

 $Y_{ic} = \alpha_0 + \widehat{GDP}_{ic}\theta_1 + X_{Nic}\beta_N + u_{ic} \text{ with } u_{ic} = Wu_{-1ic}\lambda_1 + \varepsilon_{ic}$ **4- Spatial error model (SEM)**

 $Y_{ic} = \alpha_0 + WY_{-1 \ ic} \ \zeta_1 + \widehat{GDP}_{ic} \theta_2 + X_{N \ ic} \beta_N + u_{ic}$ **5- Spatial autoregressive combined model (SARAR)**

 $Y_{ic} = \alpha_0 + WY_{-1 ic} \zeta_1 + \widehat{GDP_{ic}} \theta_2 + X_{N ic} \beta_N + WX_{-1 ic} \mu_N + u_{ic}$ **5- General nesting spatial model (GNS)**

Preliminary regression results (baseline + 1st stage IV)

VARIABLES	(1) Fractional Probit	(2) 2nd stage frac. Prob. IV	(2*) 1st stage
gdpdensity	0.000986***	0.0105***	
	(0.000365)	(0.00224)	-
popsum	-5.55e-08	-8.41e-08	5.14e-06*
	(1.05e-07)	(7.83e-08)	(3.08e-06)
elevmean	-0.0200***	0.00200	-5.869***
	(0.00761)	(0.00708)	(1.218)
precmeanme	-	-	1.038***
			(0.391)
tempmeanme	-	-	-8.897***
			(1.882)
Country fixed effects	2635.69***	1296.84***	13.89***
(Chi-squared/F-test)			
Constant	-2.016***	-1.837***	261.2***
	(0.122)	(0.180)	(52.34)
Rho	-	-0.815***	-
		(0.155)	
Sigma	-	4.223***	-
		(0.229)	
AMEs	0.0032***	0.1978***	-
(elasticity)	(.0012)	(.0423)	
Observations	2,950	2,950	2,950

Preliminary regression results (spatial models)

VARIABLES	(3) SAR	(4) SEM	(5) SARAR	(6) GNS
gdpdensity	0.000393***	0.000481***	0.000330***	0.000264***
	(0.000122)	(0.000185)	(0.000115)	(7.07e-05)
popsum	-7.51e-09	-7.63e-09	-7.50e-09	-7.99e-09
	(1.38e-08)	(1.40e-08)	(1.38e-08)	(8.63e-09)
elevmean	-0.00149	-0.00111	-0.00143	-0.000474
	(0.00101)	(0.00112)	(0.00104)	(0.000803)
SAR term	1.228**		1.439***	2.198***
	(0.489)		(0.547)	(0.305)
SE term	-	3.444***	1.872***	1.607***
		(0.719)	(0.323)	(0.278)
sp.l.elevmean	-	-	-	-0.0153***
				(0.00359)
sp.lag.popsum	-	-	-	-4.86e-07
				(3.97e-07)
Wald test of spatial terms	6.31***	22.91***	44.78***	164.13***
Country fixed-effects (chi2)	3266.45***	3266.45***	3990.71***	1847.50***
Constant	-0.0169	0.0311**	-0.0164	0.0304
CUISIGIIL	(0.0195)	(0.0135)	(0.0219)	(0.0287)
AMEs (elasticity)	0.0193)	0.009	0.0219)	(0.0287) ≈0
Observations	2,950	2,950	2,950	2,950

Average marginal effects

Model	(1) Fractional Probit	(2) 2SLS IV Probit	(3) SAR	(4) SEM	(5) SARAR	(6) GNS
AMEs						
(dyex)						
inverse-	0.003%	0.198%	0.012%	0.009%	0.02%	-0.002%
distance	0.000,0	0.20070	0.012/0	01000/0	0.02/0	0.002/0
weight						
matrix						
AMEs						
(dyex)						
contiguity			0.018%	0.02%	0.013%	0.012%
weight						
matrix						

- AMEs \rightarrow obtained by calculating marginal effects in elasticity terms (*ey/dx*) at every observed value of each variable X_i and averaging across the resulting effect estimates
- Small but positive and statistically significant **impact of economic development on electrification** (after controlling for geographic and institutional factors)
- Representative rural GUAL-2 region w/ mean GDP density (output/km²) of 1,889 constant 2000 USD (the median value in the dataset). *Ceteris paribus* mean 1% increase in the region's GDP density → expected 0.009-0.02% increase in the electrification rate.

- 1. Background & literature
- 2. Estimation methodology and data
- 3. Estimation results
- 4. Post-estimation analysis
 - \odot Access to electricity inequality
 - \odot Urban areas and proximity
 - O&G proximity and RE potential
- 5. Modelling of the impacts of economic development on the electrification process
 - Background
 - Models specification
 - o Results

6. Conclusions

Scheduled improvements

- New data sources to be added (to post-estimation correlation analysis and regression specifications):
 - Replace wind speed with wind capacity factor (modelled)
 - Try to replace temp/prec with number/intensity of hydrological droughts in the last 50 yrs
 - Distance from electiricity substations (OSM data)
 - Small/mini hydro potential (KTH data)
 - Road network density (CIESIN)
 - Power plants (Energydata.info)
 - Coal plants and coal bearing areas distance (EndCoal's Global Coal Plant Tracker)
 - Pipelines distance
 - Cost of diesel to power genset (Travel-time based GIS computation)
 - Distance from coast (degree of landlock)
 - Terrain ruggedness index (Nunn and Puga 2012)
- **Try different spatial scales** for post-estimation analysis (points vs. level 1 vs. level 2) to cope with *modifiable areal unit problem* (Yang 2005)
- More proximity/distance-to-nearest-hub GIS analysis

- Nighttime lights-based estimate consistent with IEA data (R² = 99.38% country-level).
- **732 million** people living in the dark in Sub-Saharan Africa in 2015 (+22%) over IEA threshold.
- Peri-urban population and population with very low levels of access largely explain the discrepancy.
- Republic of Congo, Central African Republic, Angola, Chad, and Eritrea are identified as the countries with the greatest *within* access inequality, while South Africa, Malawi and Kenya figure among the least inequal.

- Evidence of quadratic negative link between travel time to the closest mid-sized centre (50,000+ inhabitants) and access to electricity
- In GAUL-2 provinces, long-run averages of climate variables (mean temperature and precipitation levels) are predictors of local GDP density.
- When controlling for state fixed effects and other exogenous control variables, rural economic growth has a small but positive impact on electrification
- Ceteris paribus mean 1% increase in the region's GDP density \rightarrow expected 0.009-0.02% increase in the electrification rate.

Thank you very much for your attention!

Questions & suggestions?

