Photovoltaic Power installation in Wallonia: Estimating the rebound effect

Nicolas Boccard & Axel Gautier

Universittat de Girona & Université de Liège

June 2018

First draft, not to be distributed

Introduction

Introduction

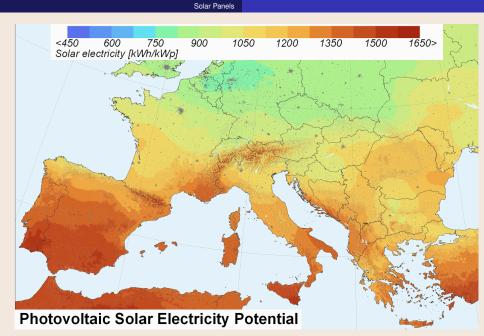
- Ambitious EU RES share objective $\rightarrow 2020 \rightarrow 2030$
- Implementation left to Member States
 - Feed-in-Tariff
 - Tradable Green Certificate
 - Net Metering
 - Capital Subsidies: Grant, Tax Rebate
 - Renewable Portfolio Standard
- Wallonia: generous incentives cover investment cost
- Focus on subsequent consumption behavior
- Is household elec. consumption rising after PV installation ?
- How much of the solar electricity is send back to the network?
- Estimating rebound effect
- Country ability to swap "brown" electricity by "green" one
- Policy choice: citizen driven (decentralized) vs. market (centralized)

Rebound

Efficiency vs. Energy use

- New technologies: LED, isolation, electronics, smartphone
- Greater efficiency: need less electricity per unit of service
- Same total service with less total input
- Lower household energy use
- Key assumption: linear & direct (one-to-one)
- Khazzoom (1980) observes unintended consequences
- Apply today for home production of electricity:
 - appliance becomes economical, triggers acquisition
 - more disposable income to spend on gizmos
 - swap gas for electric heating
 - swap bus/train for electric car
 - leave lights on all night
 - run washing cycle during day instead of night
- Rebound Effect: true savings lesser than potential ones

Rebound

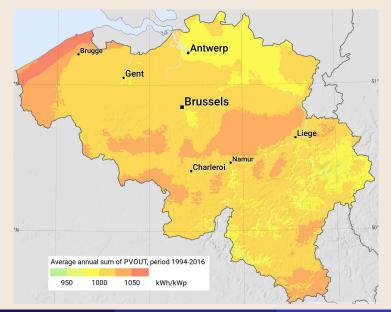

Direct

Income \checkmark efficiency \Rightarrow marginal cost of electricity \searrow for user \Rightarrow / electricity demand Substitution / efficiency \Rightarrow electricity cheaper vs. technologies \Rightarrow switch towards electricity driven technologies Indirect Spillover \searrow electricity cost \Rightarrow / income \Rightarrow / general expenses \Rightarrow / electricity demand Psychology / moral licensing, \setminus responsibility, \setminus consequences \checkmark efficiency \Rightarrow motivation reappraisal \Rightarrow \checkmark electricity Free lunch PV electricity is a "free good" \Rightarrow / consumption Macro \searrow electricity bill \Rightarrow / growth \Rightarrow / electricity use Network \setminus cost new tech. \Rightarrow / adoption \Rightarrow / electricity use Downstream \searrow electricity demand \Rightarrow \searrow market price \Rightarrow \nearrow electricity demand

- Two methods to test for direct rebound effect
- #1: estimate elasticities of energy demand (price or energy efficiency)
- #2: compare energy demand before and after energy improvement
- Challenges: confounding factors, measurement errors
- Control group not appropriate ? prosumers \neq consumers
- Controls: temperature and tariff (electricity price)
- Large sample (+70 000 households) \rightarrow law large numbers

- Large literature on rebounds after energy efficiency improvement
- Few articles on households equipped with PV modules
- Keirstead (2007): UK survey data, self-assessed 5.6% elec. saving
- Wittenberg (2016): DE questionnaire with prosumers vs. consumers no significant prosumer effect prevalence of storage and automatic load shifting
- Deng (2017): AU billing data sample prosumers vs. consumers 20% rebound
- Oberst *et al.* (2018): DE small sample prosumers vs. consumers electricity consumption proxied by heating expenses no significant prosumer effect, no rebound

- Intermittent source: daily and seasonal scales
- Photovoltaic module ideally inclined and south facing
- Potential in Sahara $\approx 3000 \text{ kWh/m}^2/\text{year}$
- Potential in Sicily $\approx 2200 \text{ kWh/m}^2/\text{year}$
- Potential in Wallonia $\approx 1100 \text{ kWh/m}^2/\text{year}$
- Solar panel not perfect: inverter and transformer losses
- Effective output in kWh/year: 75% of local theoretical maximum



N. Boccard & A. Gautier (UdG & ULG)

Photovoltaic Power in Wallonia

Solar Panels

Photovoltaic power potential of Belgium

N. Boccard & A. Gautier (UdG & ULG)

Household PV Electricity production

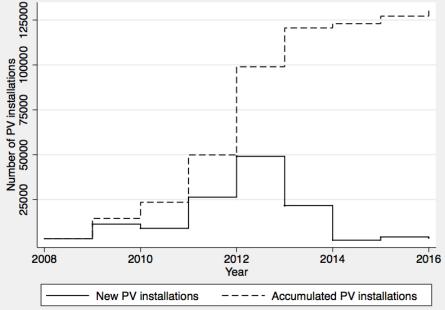
- Solar irradiation map: flat distribution over Wallonia
- Effective PV output (monitored by TSO): 10.3%
- Module: $2m \times 1m@300Wp \Rightarrow 268 \text{ kWh/year}$
- Residential maximum PV size for support:10 kWp
- Up to 33 modules $(6m \times 11m) \Rightarrow 8930 \text{ kWh/year}$
- Household consumption in Wallonia: 1700 kWh/pc/year
- Maximum PV installation may sustain family of 5
- Large household may reduce net imports with PV
- Small household with large house may produce in excess of need
- Or consume more ...

PV in Wallonia

Electricity Distribution Operators in Wallonia

• Study universe: Wallonia (262 municipalities)

- First stage: exclude Liège region (54 municipalities)
- RESA: merger of 7 smaller DSOs, \neq electricity tariffs
- About 100000 households, from 2010 until 2017
- EAN, yearly meter readings, PV installation date and size (kWp)


Photovoltaic support in Wallonia

- Regional government support schemes
- Solwatt 2007-2014: very generous
- Tradable Green Certificates

Program	Application	Grant rate	Grant period
	period	(TGC/MWh)	(years)
Solwatt 1	Jan. 2008 - Nov. 2011	7	15 years
Solwatt 2	Dec. 2011- Mar. 2012	7	10 years
Solwatt 3	Apr. 2012 - Aug. 2012	6	10 years
Solwatt 4	Sep. 2012 - Mar. 2013	5	10 years
Solwatt 5	Apr. 2013 - Feb. 2014	1,5	10 years

- TGC market: RES producers vs. retailers under RPS
- Fixed bounds: floor at 65€/MWh & "no show" fine at 100 €/MWh
- Price fell from 90 to 70 €/MWh between 2007 and 2015

PV in Wallonia

Photovoltaic development in Wallonia

- Boom in 2012: 50 000 households mount rooftop solar panels
- Germany: 82 M people, 1 M residential solar panels
- Density: Wallonia 1 PV per 29 people, Germany = 1/86
- Solwatt: great success at a great cost
- 2013: reduced TGC allocation, 2014 termination
- Qualiwatt 2014-2018: fixed premium per panel
- Guarantees return on investment, same 10 kWp limit
- Both schemes: NET METERING
- Meter runs backwards when PV output > household load
- Values PV electricity at retail rate $\approx 4 \times$ market price
- Limitation: no negative bills if meter difference is negative
- Consequence: excess yearly PV output "given for free" to DSO

Economic Model of Investment

Representative household may invest into PV system

- \tilde{k} PV installation capacity (kWp)
- *ρ* PV module price (€/kWp)
- β capacity factor of typical PV installation (%)
- $k = \beta \tilde{k}$ PV installation output (kWh)
 - η PV subsidy (\in /kWh)
 - *q* electricity consumption (kWh)
- $\hat{q} = q k$ net metered consumption (kWh)
 - *p* retail price of electricity (€/kWh)
 - w, z income & composite good (unit price)
 - \bar{r} roof size capacity for PV installation (kWp)
 - \overline{k} eligibility threshold (kWp)

Consumer Problem

- Standard utility function u(q, z)
- Total revenue: $w + \eta k$, expenses $z + p \max[0, \hat{q}]$
- Consumer's choice problem: $\max_{\hat{k},q,z} u(q,z)$

$$z + p \max[0, \hat{q}] + \rho \tilde{k} \le w + \eta k,$$
$$\tilde{k} \le \min[\bar{r}, \bar{k}]$$

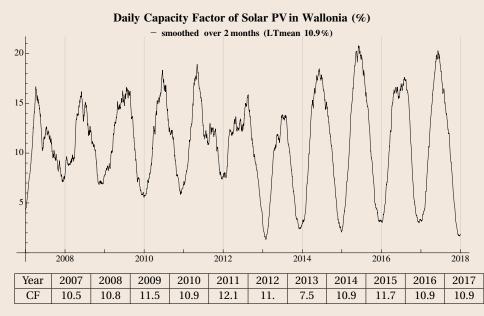
- No PV benchmark: (q_0, z_0) s.t. $\frac{u_q}{u_z} = p$ and $z_0 + q_0 p = w$
- <u>Case 1</u>: $\rho \leq \beta \eta$, subsidy covers investment cost
- Maximum investment: $\tilde{k}_1 = \min[\bar{r}, \bar{k}]$

• Let
$$\tilde{k}^*$$
 solve $\frac{u_q(\beta \tilde{k}^*, w^*)}{u_z(\beta \tilde{k}^*, w^*)} = p$ and $w^* = w + \tilde{k}^*(\beta \eta - \rho)$

Proposition When $\rho \le \beta \eta$, consumers choose the largest possible PV installation $\tilde{k}_1 = \min[\bar{r}, \bar{k}]$ and

- if $\tilde{k}_1 \ge \tilde{k}^*$ then eq. is $q_1 = k_1$ and $z_1 = w + \tilde{k}_1(\beta \eta \rho)$
- if $\tilde{k}_1 \leq \tilde{k}^*$ then eq. is (q_2, z_2) s.t. $\frac{u_q(q_2, z_2)}{u_z(q_2, z_2)} = p, z_2 = z_1 p(q_2 k_1)$
- Property: $q_1 \ge q^* \ge q_2 \ge q_0$ and $z_1 \ge z^* \ge z_2 \ge z_0$
- If $\tilde{k}_1 \leq \tilde{k}^*$: \nearrow consumption due to **income** effect
- If $\tilde{k}_1 > \tilde{k}^*$: added **zero marginal price** effect
- Prosumers consume more than standard (no PV) consumers
- Net Metering \Rightarrow discontinuous electricity price at q = k

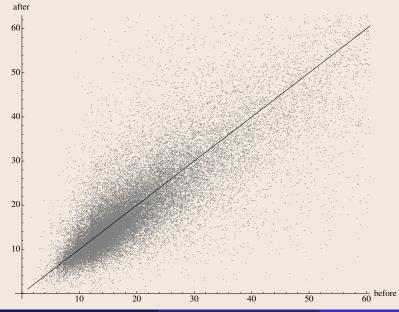
- Case 2 $\beta \eta \le \rho \le \beta(\eta + p)$, net metering \Rightarrow investment profitable
- Investment profitable only if $q \ge k = \beta \tilde{k}$ (no wasted generation)
- Consumer's choice problem: $\max_{\tilde{k},q,z} u(q,z)$


$$z + p\hat{q} + \rho \tilde{k} \le w + \eta k,$$
$$\tilde{k} \le \min\left[\frac{q}{\beta}, \bar{r}, \bar{k}\right]$$

- Solution: $\frac{u_q(q_3,z_3)}{u_z(q_3,z_3)} = p$ and binding investment
- Case 3 $\beta(\eta + p) \le \rho$, solar panels unprofitable
- Solution $\tilde{k} = 0$ and no PV bundle (q_0, z_0)

Reconstructing individual load curves

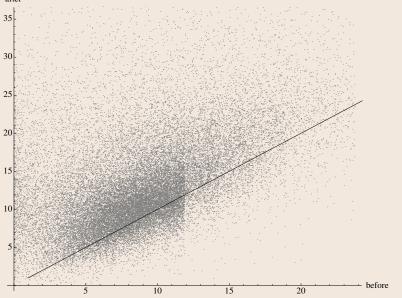
- Billing period [*t*₁, *t*₂] with total consumption *Q*
- Daily equivalent consumption $\frac{Q}{t_2-t_1}$
- Synthetic load curve (SLP) Liège region: temporal index
- Average index over billing period $\bar{s} = \frac{1}{t_2 t_1} \sum_{t_1}^{t_2} s_t$
- Reconstructed household load: $q_t = \frac{s_t}{\bar{s}} \frac{Q}{t_2 t_1}$
- PV installation month τ
- PV monitoring by TSO: capacity factor β_t from 2012 to 2018
- Pre-2012: Liège Airport Weather Station's daily sunshine minutes
- Household \tilde{k} daily solar PV production $k_t = \beta_t \tilde{k}$



Reconstructed Household Load Curve including PV output

- Before vs. After: load over $[\tau 24, \tau]$ and $[\tau, \tau + 24]$ months
- Load change: $\Delta q = \mathbb{E}[q_t | t > \tau] \mathbb{E}[q_t | t \le \tau]$
- Temperature: $\Delta \zeta = \mathbb{E}[\zeta_t | t > \tau] \mathbb{E}[\zeta_t | t \le \tau]$
- "Oversized" indicator $\theta = \mathbb{E}[k-q)|k > q]$ (over $[\tau 24, \tau]$)
- Mean tariff *p* over $[\tau 24, \tau + 24]$
- Meter reading is error prone (e.g., re-initalization)
- Algorithmic recognition not enough
- Exclude top and bottom 2% data points for q_t distribution
- Graphical look at differences in behavior: oversized vs. undersized

Consumption before/after, undersized group



N. Boccard & A. Gautier (UdG & ULG)

Photovoltaic Power in Wallonia

Consumption before/after, oversized group

after

N. Boccard & A. Gautier (UdG & ULG)

Results

• Equation: $\Delta q = \alpha + \beta_1 \Delta \zeta + \beta_2 p + \beta_3 \tilde{k} + \beta_4 \theta + \epsilon$

Variable	Estimate	Standard Error	t-Statistic	P-Value
α	1.3481	0.1697	7.94506	$1.9*10^{-15}$
р	-0.1164	0.01841	-6.32335	$2.5^{*}10^{-10}$
\tilde{k}	-0.0122	0.00538	-2.26794	0.02333
θ	0.9722	0.00712	136.572	$3.4^{*}10^{-3555}$
$\Delta \zeta$	2.1087	0.0676	31.1784	8.2*10 ⁻²¹²

• Run: 63691 observations, $R^2 = 0.25$

- Coefficients significant at the 1% level
- Tariff impact as expected
- Large PV owners have slightly lower consumption increase
- Rebound (θ): for oversized households (low original consumption)
- Every additional kWh generated is consumed (almost)

- Article test rebound effect of solar PV residential installation
- Exhaustive dataset from Wallonia
- Oversizing PV installation due to generous support scheme
- Net metering creates strong "free electricity" illusion
- Households almost entirely consume this free energy
- Beware: net generation in summer, net load in winter
- Additional stress on DSO grid, possible added local pollution
- Few RES electricity reverted to network for Climate Change action
- Extend to Liège région
- Improve econometrics
- Thank you