Raising or razing the reservoirs: Optimizing the US reservoir system under 500 years of streamflow variability (preliminary results)

James Rising

Columbia Water Center, AWASH modeling team:

Laureline Josset, Tara Troy, Michelle Ho, Joohye Lim, Luc Bonnafuos, Maura Allaire, Upmanu Lall

Grantham Research Institute, London School of Economics

Topics

- The need for integrated perspectives on water and the AWASH model
- Paleo-variability of streamflows and archetypes
- Reservoir planning and preliminary results
- What we've learned

Understanding the future of water in the United States

- Uncertain policies, unquantified value
- Increasingly interconnected water supplies
 - Trans-basin diversions
 - Interstate treaties and conflicts
 - National economy and policy drivers
 - Broad-scale climate
- Limited national and local capacity
 - Our goal: systems-level analysis to account for intersectoral connections at regional scales

A broad initiative on America's Water

Grantham Research Institute

and the Environment

on Climate Change

Centre for

Climate Change

Economics and Policy

The Changing Landscape of Risk, Competing Demands and Climate

Should we have reservoirs?

Overdue debate about the future of reservoirs:

Reservoirs across the United States

Circles reflect total storage capacity.

Plenty of competing reasons for reservoirs:

- Navigation (6%)
- Recreation (14%)
- Flood protection (16%)
- Hydropower (17%)
- Irrigation (18%) and water supply (19%)

(% of reservoirs in the US, by primary purpose, from National Inventory of Dams.)

Plenty of competing reasons for reservoirs beyond the scope of this analysis:

- Navigation (6%)
- Recreation (14%)
- Flood protection (16%)
- Hydropower (17%)
- Irrigation (18%) and water supply (19%)

(% of reservoirs in the US, by primary purpose, from National Inventory of Dams.)

Benefits

- Navigation
- Recreation
- Flood protection
- Hydropower
- Irrigation and water supply

Costs

- Public safety
- Impact on the environment
 - Land loss
 - Degrading habitats
- Repair and maintenance costs
 - 3x removal costs (Born et al. 1998)

Grantham Research Institute on Climate Change and the Environment

Centre for Climate Change Economics and Policy

A new model of water, energy, and food resources

Model objectives

Explore interactions between water, food and energy systems from a national perspective

- In response to specific types of climate changes
- In response to economic factors
 - GDP growth rate , Global Energy prices, Global Food demand
 - Investment climate financing, rates, private vs public action
- In response to demographic factors
 - Migration, Age distribution, income
- In response to property rights models water rights /others
- In response to conservation technologies
- In response to energy policy renewables, carbon tax, biofuels
- In response to agricultural policy or diet preferences crop insurance etc

- Treat arbitrary "resources": water, energy, products
 - Models of production, imports and exports, storage

- Treat arbitrary "resources": water, energy, products
 - Models of production, imports and exports, storage
- Multiple networks of resource movement

County Neighbors Network

• Default trade network for manufactured goods and agricultural products.

Water Network

• Network of gauges, canals, reservoirs, and junctions.

antham Rese

he Environment

Electricity Grid

• Transporting electricity from plants to county sinks.

- Treat arbitrary "resources": water, energy, products
 - Models of production, imports and exports, storage
- Multiple networks of resource movement
 - Counties to neighboring counties
 - Other transport networks (water, electricity)
- Modeled at a county-month scale for whole US
- Interested in spatiotemporal optimization
 - Short-term optimization of production distribution
 - Long-term optimization of capacity expansion
 - Multiple objective functions to consider

- Treat arbitrary "resources": water, energy, products
 - Models of production, imports and exports, storage
- Multiple networks of resource movement
 - Counties to neighboring counties
 - Other transport networks (water, electricity)
- Modeled at a county-month scale for whole US
- Interested in spatiotemporal optimization
 - Short-term optimization of production distribution
 - Long-term optimization of capacity expansion
 - Multiple objective functions to consider

Why a new model?

- Very few models with resolution < states, scope > states
 - Hydrological-only: VIC, MODFLOW, IGSM (not MIT's)
 - Agriculture and climate: GEPIC (IIASA)
- Interested in optimization over multiple sectors
 - InVEST (Polasky et al. 2008):
 - Ecosystem service flows, no spatial connectivity
 - CALVIN (Lund et al. 2009) and WRIMS (Cal. Dep. of Water Res.)
 - Hydrology and management
 - MAgPIE (Lotze-Campen et al. 2008):
 - Agriculture and forestry, large grid and 10-year timestep
- Need a sector-detailed WEF model, optimization model at high resolution and over uncertainty!

Flow Gauges, Reservoirs, Cross-border canals

River network

An integrated modeling framework

• Component-based framework (Mimi in Julia)

- Inputs from outside the model:
- Inputs from other components:
- Inputs from optimization:

- Able to validate components individually and swap them out and have multiple variants.
 - Existing Mimi components for climate, biodiversity, disease, conflict, natural disasters, FUND, DICE, and PAGE.
- Linear programming optimization (Gurobi)
 - Automatic construction of LP matrices

Modeling for this analysis

Economics and Policy

and the Environment

Topics

- The need for integrated perspectives on water and the AWASH model
- Paleo-variability of streamflows and archetypes
- Reservoir planning and preliminary results
- What we've learned

Climate change and precipitation

Notable Post-Medieval Megadroughts

Notable 20th Century Droughts

Paleo-reconstruction of streamflows

Translate Living Blended Drought Atlas to gauge streamflows:

Grantham Research Institute on Climate Change and the Environment

Ho, M., et al. (2017), Water Resources Research

Reconstructing 500 years of streamflow

Economics and Policy

and the Environment

Monthly Flows

- Develop Hidden Markov Model of yearly transitions (8 states).
- Adjust climatological gauge flows to match paleo average.
- Add in residuals from historical years matching same HMM state.

Process and modeling

Climate Change

and the Environment

Economics and Policy

Example: Interest in Taylor Swift and Beyoncé across US counties

Centre for Climate Change Economics and Policy

Example: Interest in Taylor Swift and Beyoncé across US counties

Example: Interest in Taylor Swift and Beyoncé across US counties

Archetypes of 60-year chunks

Find archetypes of 60-year patterns: (60x#gauges)-dimensional space.

Grantham Research Institute on Climate Change and the Environment

Centre for Climate Change Economics and Policy

Archetypes of 12-month chunks

12-month average z-scores

Topics

- The need for integrated perspectives on water and the AWASH model
- Paleo-variability of streamflows and archetypes
- Reservoir planning and preliminary results
- What we've learned

Ratio of SW demand (USGS) to average SW supply (local runoff)

Climate Change and the Environment

Economics and Policy

Ratio of SW demand to monthly minimum SW supply

and the Environment Economics and Policy

Ratio of total demand to monthly minimum SW supply

Process and modeling

Economics and Policy

Simplified optimization (1 location)

- **Inputs:** *q_t*: precipitation or inflow (volume / year)
 - d_t : water demand (volume / year)
- Static parameters:
 - e: Evaporation or other losses (portion / year)
 - T: timestep (years)
- Choice variables:
 - *w_t*: withdrawals (volume / year)
 - *x_t*: supersource water (volume / year)
 - k_t: investment in increasing capacity (volume / year)

• State variables:

- Vt: reservoir level (volume)
- *c_t*: reservoir capacity (volume)

Simplified optimization (1 location)

• Reservoir dynamics:

$$v_{t+1} = (1-e)^T v_t + q_t - w_t$$

$$c_{t+1} = c_t + k_t \qquad v_0 = c_0 = 0$$

• Constraints:

- $w_t + x_t \ge d_t$: Must satisfy demand
- $v_t \leq c_t$: Cannot over-fill reservoir
- $w_t \leq v_{t-1} + q_t$: Cannot over-withdrawal reservoir

• Minimize costs:

Under certainty: $\sum_{t} (Ax_t + k_t) e^{-\delta t}$

Under uncertainty:

$$\sum_t (A(\sum_i p_i x_{it}) + k_t) e^{-\delta t}$$

1 location, 2 scenario Problem

Grantham Research Institute Centre for on Climate Change and the Environment

Climate Change Economics and Policy

1 location, 2 scenario Solution

Changes for the full optimization

- Includes groundwater (costly withdrawals).
- Small price on surface water withdrawals and reservoir "captures".
- Maintenance cost based on reservoir capacity.
- Water network dynamics: flow downstream.
- Return flows by usage: 39% (Ag.) to 98% (Energy)
- Gauge-to-county mapping: "canals" to counties
- Reservoirs start at current capacity but 0 volume (in monthly opts, 12 months to of initialization).

Estimating removal costs

	Dependent variable: Log Cost (\$2008M)	
	(1)	(2)
Log height	1.625***	1.366***
	(0.207)	(0.225)
Removal year		0.049***
		(0.016)
Constant	-3.076^{***}	-100.937^{***}
	(0.456)	(32.442)
Observations	37	33
\mathbb{R}^2	0.638	0.655
Adjusted \mathbb{R}^2	0.628	0.632
Residual Std. Error	$1.243 \ (df = 35)$	$1.149 \; (df = 30)$
F Statistic	61.786^{***} (df = 1; 35)	28.514^{***} (df = 2; 30)
Note:	*p<0.1; **p<0.05; ***p<0.01	

Born et al. 1998, Water Power Magazine 2009

Centre for Climate Change Economics and Policy

Removal and construction vs. capacity

Results due to monthly variability

Black circles: Existing capacity of reservoirs;

Red filled circles (highlighted in green): maximum usage of capacity across scenarios.

Observed GW withdrawals

Optimal groundwater without reservoirs

Changes in GW from Reservoirs

Maximum and minimum (negative) 12-month GW difference across scenarios.

Results for 60-year chunks

Topics

- The need for integrated perspectives on water and the AWASH model
- Paleo-variability of streamflows and archetypes
- Reservoir planning and preliminary results
- What we've learned

Overview of results

- Some small river reservoirs help buffer monthly demands, but most don't.
- Costs of maintenance cannot justify reservoirs for long-term droughts, so long as groundwater is available.

What haven't we learned?

- Lots of reasons for reservoirs ignored here.
- Totally ignore water rights.
- Should optimal differ so far from observed?
 - Do we even know true WEF flows?
- Groundwater costs unavailable most areas.

Broad lessons from AWASH

- Opportunities for better supply decisions
 - Conjunctive use, over borders, over years
 - Wide variation, based on margin of decision
- Resolution matters
 - Optimizing county to state >> state to country
 - Buffering water over years saves a little (\$17 mil), but over seasons essential
- Opportunities for better demand decisions
 - Huge difference between observed and optimized
- Opportunities to make a better model
 - AWASH is a work-in-progress
 - Strong design for continued improvements

Analyses to come

ANALYSES TO PUBLISH

- Benefits of conjunctive use (SW + GW) policies
- Potential for better use by coordinating water rights across different borders
- Redistribution of agriculture in Colorado to be more sustainable
 CLIMATE
- Explore current water demand susceptibility to climate variability using paleo-reconstructed streamflow for 500 years of data

WATER POLICIES AND FINANCING

- Shadow price of water
- Impacts of water compacts and policies on water stresses (e.g. farm bill)
- Water rights market: highlight where water rights trading possibilities may potentially lead to reduce vulnerabilities

THE FUTURE OF WATER-ENERGY-FOOD

- Investigate scenarios capturing potential future of US:
 - Population projections, energy prices, GDP, imports and exports
 - Impact of diet changes and food demand? E.g. "Low-carb diets", meat consumption, high cash crops (almonds)
 - Penetration of renewable energies, wind and solar droughts impact on hydropower

Beyond research

Some broad goals

- A tool for policy-makers
 - Infrastructure design and financing
 - Environmental policy (e.g. minimum flows)
 - Demonstrate the potential of national water planning
- A tool to educate
 - Light online version of the model for education purposes
- Looking to expand to WEF modeling in EU and Africa

Challenges

- Plenty of assumptions and approximations
- Lack of data

Thank you!

Check out the model: <u>http://awashmodel.org/</u>

SPATIAL

OPTIMIZING

MULTI-DEMAND

Centre for

Climate Change

Economics and Policy

