_muse

MUSE: A new global energy model – Overview and Application to the Residential Building Sector of the UK

Julia Sachs Imperial College, London

17th of May, Seminar FEEM, Milan

muse

ModUlar energy system Simulation Environment

Developing a unique energy systems simulation tool to analyse the energy system, and the role of technologies within it.

MUSE Building Sector	Agent-Based Method	Case Study
----------------------	--------------------	------------

muse Background

MUSE

• What is an Integrated assessment model (IAM) ?

- •Type of scientific modelling often used by the environmental science and environmental policy analysis.
- •Integrate knowledge from several domains e.g. technoeconomic model and climate model
- •IAMs are methods to analyse all the ways that resources can be transformed (supply) and used to meet the future energy demand.

• Why do we build an IAM?

- Climate change mitigation pathways assessment (i.e. long-term)
- Strategy and business model development against a variety of scenarios (e.g. governments could assess long-term energy and environmental policies)
- R&D prioritisation of value and role of technologies

Imperial College

London

SUSTAINABLE GAS INSTITUTE

_muse "Decision making" in models

MUSE

Most common analysis techniques

- Top-down models
- □ Bottom-up (or engineering) models
- Decomposition of energy trends
- Econometric trends
- □ Sector-specific micro-analyses

Geographical scope

- Single countries/regions (e.g. UKTM, NEMS)
- o Global models (e.g. IEA ETP Times)

Methodology

- Optimisation
- Simulation
- > Hybrid

IPCC (Intergovernmental Panel of Climate Change) 5th Assessment Report

Imperial College

London

SUSTAINABLE GAS INSTITUTE

_muse "Decision making" in models

MUSE

• Typical Energy System Model

•Optimized, rational

- •e.g. minimizing system cost, intertemporal optimization
- Perfect foresight
- •Perfect liberalized market
- •Single investor for each sector
- •No difference between short term (5-10 years) and long term (10+ years) investments

• Real World

Imperfect information

London

- Bounded rationality
- •Uncertainty and hedging

Imperial College

- •Limited access to capital
- •Financing challenges
- •Transaction costs
- •Regulation

Most models provide a too optimistic view of the future energy transition, lack clarity on the input assumptions and flexibility.

SUSTAINABLE

_muse MUSE: Why and how?

MUSE

Why a new model?

- □ An *investor view* of energy system transitions
- □ Imperfect foresight simulate real decision making
- □ The need for *transparency* in methods, assumptions and results
- □ Bringing *engineering reality* to systems-level modelling

How?

- o Simulation not optimisation
- o Agent-based modelling
- o *Flexible sector modules* entirely new approach
- Open-access, clear communication, credibility

Which framework?

- All sectors are modelled in Python
- GitHub Collaborative, agile software development
- > API -
- Tools and methodology for any team to build their own MUSE

_muse MUSE overall structure

MUSE

Covers all the sectors in the energy system

Imperial College

London

- Modular: Each sector is modelled in a way that is appropriate for that sector
- Engineering-led and technology-rich with a bottom-up technoeconomic characterization
- Microeconomic foundations: all sectors agree on price and quantity for each energy commodity
- Partial equilibrium on the energy system (models supply and demand)
- Policy instruments modelled (e.g. carbon price, subsidies)

SUSTAINABLE GAS INSTITUTE

MUSE characterisation

MUSE

•Time horizon from 2010 to 2100 years aggregated into periods

- Each period is disaggregated into time slices (30 maximum)
 - summer, winter, spring/fall
 - weekday, weekend
 - morning, afternoon, evening, night, early peak (weekday), late peak (weekday)
- Global scale with regional disaggregation
 - Countries are clustered in 28 regions
 - Some regions are 1-country regions (i.e. Brazil, Mexico, USA), while others are a collection of many countries

_muse Residential Building Sector Module

MUSE

Building Sector

Challenge:

- The outcome of the investment decision for each person is likely to vary dependent on one's budget, values, and perception of a technology even if an identical decision task is faced.
- A cost optimising framework assumes economically rational, homogeneous actors, is sensitive to cost assumptions of technologies and can suddenly switch fully to alternative technologies

Idea:

- Definition of multiple individual agents to represent population
- Mimic decision making process of people
 - Information gathering
 - Validation of information
 - Decision making
- Macro system characteristics results from simulation of all agents and individual behaviour

_muse

Building Model overview

MUSE

Building Sector

Exogenous Inputs:

- Macroeconomic drivers
- Assumptions on policies
- Operational constraints /cost/efficiency/existing stock/retirement profile by asset type
- Emissions
- Resources

RCBSM

Investment decisions

Determination of fuel consumption

Demand projections for end-uses

Specific Outputs:

- Aggregate economic metric (CAPEX, OPEX, NPV,..)
- Production by asset type
- Emissions by asset type
- Capacity by asset type
- Consumption by asset
 type

MCA

To RCBSM:

- Supply curve primary fuels
- Carbon price

From RCBSM:

- Demand for fuels
- Emissions

_muse Regression of end-use demand

MUSE

Building Sector

- IEA balances for residential and commercial sector
- Definition of energy share of different end uses by fuel type
- Calculation of correlation between past demand and macrodrivers (GDP per capita (*GDP_cap*), GDP pre household)
- Determine parameters a, b, and c for logistic function $Demand = \frac{a}{1 + be^{c * GDP_cap}}$
- Demand projections over time horizon for different end-uses
- Not dependent on efficiency of technologies
- Different trends for regions can be observed

2034

2037 2040 2043

2046 2049

2022 2025 2028 2028 2031

2016 2019

2000

2010 2013

muse

Building Model challenge

MUSE

Building Sector

48 Technologies with different characteristics

- Cooking facility ٠
- Boiler ٠
- District Heating + source of heat •
- Combined heat power (CHP) ٠
- Micro CHP ٠
- Water heater/Stand-alone heaters ٠
- Heat Pumps (Air source, Ground • source)
- Air conditioner ٠
- Appliances ٠
- Light bulbs .

- Coal ٠
- Gas ٠
- Biomass
- Kerosene ٠
- Electricity ٠
- ٠
 - Solar

- Conventional ٠
- Advanced ٠
- Energy saving ٠

Different objectives and decision processes for investments in energy technologies

- Economic criteria •
- Capital cost •
- Equivalent annual cost (EAC) •
- Net present value (NPV) •
- **Operation cost** •

Payback time

- Environmental criteria •
- **Energy consumption** .
- **Emissions** •
- **Emotional criteria** •
- Comfort ٠

Determination of investment decision based on • characteristics

٠

•

- Find all available alternatives •
- Find same type or fuel ٠
- Find popular alternatives • (society, past decisions, peer group, etc.)
- Find mature alternatives ٠

- Economic (capital, • payback, NPV, etc.)
- Environmental impact ٠ (energy consumption, CO2, etc.)
- Comfort •

- Multiple objectives
 - Weighted sum
 - Epsilon-constraint
 - Lexicographic strategy

Determination of investment SUSTAINABLE GAS INSTITUTE Imperial College muse London MUSE **Building Sector** Agent-Based Method Agent-based method (ABM) start Determine how many new technologies and retrofits Calculate future stock of assets & are needed amount decommissioned Get potential new assets Demand forecast for end-uses Future demand Search for potential assets Production simulation to meet demand Calculate decision metric YES are new For each Agent Apply decision rule assets needed? NO Amount of potential new assets No investment needed Commit new assets Outputs Outputs end end

Agent definition

muse

MUSE

Basic Values

Agent Group	Quantity, %	Туре	Budget, MUS\$
modern performers1	0.008	New	3600
modern performers2	0.081	Retrofit	3600
Post-materialists1	0.026	New	2600
Post-materialists2	0.084	Retrofit	2600
ground breaker1	0.011	New	2300
ground breaker2	0.057	Retrofit	2300
pleasure seeker1	0.016	New	4200
pleasure seeker2	0.125	Retrofit	4200
quite peaceful Britain1	0.018	New	4200
quite peaceful Britain2	0.168	Retrofit	4200
Precarious	0.113	Retrofit	1600
Established	0.102	Retrofit	2100
Traditional	0.191	Retrofit	2400

Agent-Based Method

Sinus-Milieus

- Groups population according to their social status and basic values
- Based on market research

Further classification - Link with demographic data and household survey data

- Income distribution based on profession ٠
- Age distribution data within each agent ٠ group
- Amount of households live in new • constructed building
- Household expenditure data (presented • by household representative person)

Definition of 13 agents

MUSE

Agent-Based Method

Case Study

Imperial College

London

SUSTAINABLE GAS INSTITUTE

Aims

- Illustrate functionality of ABM
- Highlight benefits and suitability of ABM for RCBSM
- Comparison of agent-based method to single-objective -> Partially modern agent: EAC
- Determine diffusion of technologies between 2010 – 2050 in the USA

Assumptions

- Changes in cost over time are not considered
- Macrodrivers SSP2 by IIASA
- Capacity addition limits for singleobjective case:
 - 5% growth
- Limited foresight of 5 years

_muse Conclusion and Challenges

MUSE	Building Sector	Agent-Based Method	Case Study

Conclusion:

- Counterfactual to purely cost driven approach
- Increased flexibility in modelling the investment decisions by including homogeneous actors and enables a broader representation of the population
- Limited uptake of technologies by the inclusion of multiple individual decision-makers with distinct objectives, budget, understanding of the technology and decision methods
- Representation of transition phase where different technologies compete over the market share
- Captures several aspects of the human behaviour: information gathering, analysis strategies, decision making
- With increasing market share technologies are assumed to be more mature and more agents consider these options since it appears in their search space

_muse Conclusion and Challenges

Imperial College

SUSTAINABLE GAS INSTITUTE

MUSE

Building Sector

Agent-Based Method

Case Study

Agent Specification

The definition of the agents still requires a lot of investigation and study of empirical data to be able to accurately define representative decision-makers

Current Stock of Technologies

Data is needed to give an accurate representation of the technologies currently available in households on a global scale.

Agent Interaction

Interactions between agents are difficult to be modelled for the simulation. Possible change in agent attributes and decision strategy.

Cultural and Geographic Influence

The cultural difference between countries need to be considered.

The suitability of a technology for a certain country need to be identified.

_muse

MUSE Team

Dr Adam Hawkes Senior Lecturer

Dr Sara Budinis Research Associate

Dr Sara Giarola Research Fellow

Dr Ivan Garcia-Kerdan Research Associate

Dr Daniel Crow Research Associate

Dr Julia Sachs Research Associate

Mr Cheng-Ta Chu PhD Student

Ms Yingjian Guo PhD Student

Mr Jonny Bosch PhD Student

_muse

Sustainable Gas Institute

The Institute:

- Founded in 2014 by ICL and BG Group (now Royal Dutch Shell)
- Collaboration between industry and academia, UK and Brazil (University of Sao Paulo)

Research activities:

- White paper series
- <u>MUSE: ModUlar energy system</u> <u>Simulation Environment</u>

An energy systems module

Julia Sachs j.sachs@imperial.ac.uk