

Market design for energy storage systems

Miguel Vazquez IEFE & Florence School of Regulation Matteo Di Castelnuovo IEFE & MaGER Director

Outline

- Framing the problem
- Regulation of storage as commodity services
- Regulation of storage as network services
- Summary of regulatory alternatives
- Final remarks

EUI 3

Electricity systems need more flexibility services

....but different storage technologies can provide different flexibility services

The view of the energy industry: European Association for Storage of Energy (EASE)

The view of the institutions: European Commission

The future role and challenges of Energy Storage, DG ENER WP (2013)

Storage applications	Centralised	Decentralised	End-use
Balancing demand & supply	 Seasonal/weekly fluctuations Geographical imbalances Variability of wind & solar 	 Daily/hourly fluctuations Peak shaving Integrate with heat/cold storage 	- Daily/hourly fluctuations - Integrate with heat/cold storage
Grid management	 Voltage & frequency regulation Participate in balancing markets 	 Voltage & frequency regulation Defer grid reinforcement Substitute existing ancillary services 	- Aggregate to provide grid services
Energy efficiency	- Time shifting: off-peak to peak	 Demand side management Integrate with districtheating & CHP 	 Increase value of PV& micro wind Facilitate behaviour change

The view of the academia (1): Palizban & Kauhaniemi, Journal of ES, February 2016

The view of the academia (2): Imperial College London – Grantham Institute

• 1= pumped storage; 2=CAES; 3= pumped heat; 4=flywheels/supercapacitors; 5=hydrogen; 6=lithium-ion batteries; 7=lead-acid batteries; 8=redox flux batteries.

The view of think tanks: Rocky Mountain Institute

• Focus on batteries and market segmentation, i.e. TSO, utilities and customers

Two kinds of regulatory challenges: Market design and network regulation

- ESS offer different types of services
 - Buy and sell energy in different periods
 - Avoid the need to transport energy from one point to another
- They are substitutes for different types of services
 - ESS can sell services in "competitive" wholesale markets
 - ESS can avoid the use of "regulated" networks
- Thus ESS involve two kinds of regulatory challenges:
 - The design of the wholesale market.
 - The regulation of energy networks.

Regulation of storage as commodity services

Definitions

- Energy storage may provide multiple services so we need to understand the economic properties of those services
 - Energy services Commodity trading between two market players
 - Balancing services Trading of services to deal with imbalances, also trading among market players
 - Ancillary services Trading between SOs and market players in order to guarantee system integrity
- From that standpoint, we may look at storage as a flexibility service. Thus, relevant questions to be tackled
 - Who decides on the offer of flexibility?
 - Who pays, who benefits from flexibility?

The traditional logic

- We identify changes brought by storage in the traditional power market design
- When designing power markets, one faces two basic choices
 - Choice #1: Trading system Centralized vs bilateral
 - Choice #2: Congestion management Rules to deal with constraints

Choice #1 – Trading system

Centralized Trading

- Generators participate in an auction, offer to sell power (bid in to auction every half hour)
- Auctioneer accepts lowest bids
- In each half hour, plants with accepted bids generate
- Can adapt this mechanism to deal with: demand-side participation; technical constraints on plant operation (eg maximum "ramp-up"); transmission constraints
- Largely a continuation of preliberalization "dispatch algorithms" used by monopoly

Bilateral trading

- Generators sign contracts with retailers and large consumers to supply power
- Transmission constraints dealt with by system operator and/or "physical transmission rights"
- Analogous to other commodity markets (e.g. gas with virtual hubs)

Choice #2 – Congestion management

How to prevent someone from trying to send additional power to other zones?

Centralized Trading

- No problem, the auctioneer decides which plants run, makes sure not to order too much generation from the zone
- Can choose to pay everyone the same price, or to have different prices for generation at different locations

Bilateral trading

- a) require exporters to hold rights to use the cross-border wires ("physical transmission rights"), make sure not to create too many rights; or
- b) system operator buys some power back off exporters, "sends it back to the other zone" ("counter-trading")
- Under the first option, can have different prices in different zones

Trend to switch from centralized to bilateral trading in the 2000s

- Trading
 - Chose bilateral because of concerns about "gaming", and belief that wholesale power trading would evolve to look like other forms of commodity trading
 - Accept risk of less efficient dispatch (auctioneer can identify overall most efficient way to meet demand)
- Transmission constraints
 - Chose uniform geographic prices to promote liquidity, and in some cases for political reasons
 - Accept that generators in low cost areas may in some sense get "over-rewarded"
 - Physical transmission rights for cross-border trading rather than a centralized system that would require sharing/ giving up control of borders

The effect of intermittent renewable generation

- The combination of
 - Increased penetration of intermittent renewable generation
 - Lack of storage capabilities
- ...Implied increased concern with efficiency
 - Especially, bilateral trading and uniform pricing lead to inefficient use of transmission system
- Shift towards more centralized system (market coupling) and more locational pricing (more price zones)
- [Concerns about investment are a separate problem]

Lessons from history

- Centralized trading is a solution for the lack of flexibility in the system in the presence of intermittency
- What would be the market design with more flexibility coming from storage?
 - In a situation where markets do not need to be so "instantaneous"
 - Hence closer to other commodities (e.g. gas)

Regulation of storage as network services

Basic elements of network regulation

Basic elements of network regulation

Problem #1 – Commodity/capacity split (The popular problem)

Technical characteristics...

- Very high portion of the cost is investment cost
- Lumpy investment + economies of scale, which cause capacity to be in excess very frequently
- (Non-convex)

...Make usage tariffs conflictive

- If the tariff is set to the average cost of transmission
 - charges pay for the investments made...
 - ... but the excess capacity may be underutilized
- If the tariff is set to the marginal cost of transmission (much lower)
 - Ok for using optimally the existing capacity
 - but not enough money will be collected and therefore no line would be constructed

Solutions well identified for transmission

- If possible, long-term contracts
- If not, non-linear pricing (optimal pricing) Aligns usage incentives with cost recovery (but it does deal with investment incentives)
- The traditional solution: two-part tariffs
 - High fixed cost, charged on capacity
 - Low variable cost, charged on actual use

Not so ok for distribution

- For retail markets, variable charges are in general much larger than variable costs
 - The assumption is that retail demand will change almost nothing upon changes in the access fee
 - A kind of Ramsey pricing: those who consume more will pay a larger share of grid costs
- But the first assumption is being challenged by distributed resources
 - Distributed systems are being rewarded as if they could save network costs, but they do not
 - In fact, quite often they are rewarded as if they could save also regulated subsidies
- Is this a problem?
 - Solutions identified and easy to design
 - Changes on their way
 - Conflicts in the transition

Problem #2 (different charges for different uses)

Consider an instance: **Expanding the distribution network by a wire alternative or installing a battery and thus deferring the wire-based solution**?

Extreme solution #1

"There is no room for optimization since the influence of network costs on decisions is negligible" (the second best idea). In this case, where to build batteries is decided by network users without signals. As before, tariffs :

- Ramsey pricing
- Postage stamp

Extreme solution #2

"Grid optimization needs to be enforced". In this case, all decisions are the responsibility of TSOs/DSOs. Thus,

 Batteries are installed directly by DSOs/TSOs

Shortcomings #1

Deciding whether the DSO should expand the distribution network (by means of a wire alternative) or a market players should install storage to defer wire alternatives is extremely difficult.

Shortcomings #2

There are elements that grid operators completely ignore. Without signals from network users it is difficult to know the needs for flexibility of the system Alternatives to provide signals that allow competition of storage

- Use of an alternative strategy: "Define economic signals and let players decide" (Complex tariff design)
- Lack of economic signals is certainly in effect in the EU
- Introduction of at least locational signals
- Ideally, also flexibility signals

Problem #3 (different charges for different uses)

- Grid tariffs are hop-on-hop-off tariffs
 - Today's costs are paid by today's users
 - The assumption is that users will be stable (or growing) in time ("They have nowhere else to go")
- But this assumption is being challenged by the increasing potential to leave the market
 - Dismantling or mothballing of CCGT...
 - ... And self-consumption (solar, biomass), where storage plays a major role

Potential alternative designs

- Ideally, connecting to the grid should imply a commitment to pay for all of the network costs caused
- Example: Typical scheme for a private regasification facility
 - Access fee, charged on contracted capacity, committed for ~10 years
 - If stable demand of transmission, then reselling in the secondary market would be feasible with no loss
 - If reducing demand of transmission, then players should not leave without paying the network costs incurred for them
 - Complex when multiple facilities are in place
- At least three factors should be considered during the process of calculating the access fee for each market participant
 - Location in the grid
 - Use of the system (flexibility)
 - Time to enter the market (or to increase consumption)

Summary of regulatory alternatives

	Revised mechanism	Solution to what	Services competing		
		problem	with storage		
Market design					
Storage as	Including storage as	Storage cannot	Energy sources		
standard product	player in all	compete with other			
	auctions (energy	energy sources			
	auctions and	(including demand			
	ancillary services	response)			
	auctions)				
Reduce need for	Implement power	Standardization is	Energy sources		
standardization	markets based on	difficult when			
	bilateral trading,	services and			
	with reduced need	technologies are			
	for auctions and	rapidly changing			
	hence for standard				
	products				

	Revised mechanism	Solution to what	Services competing with			
		problem	storage			
Network regulation						
Capacity/commodity	Network variable	Many distributed	Energy sources			
split	charges reflect variable	sources are being				
	costs	rewarded as if they				
		could save network				
		costs, hence creating an				
		extra cost for other				
		sources as energy				
		storage				
Locational signals	Tariffs reflect the costs	Without economic	Wire network			
	to the network	signals, market players	expansions			
	associated with	cannot decide the cost of				
	installation of equipment	storage when compared				
	at different locations	to wire network				
		expansions				
Grid defection	Grid connection	Grid defection leads to	Wire network			
	represent commitment,	higher tariffs, which	expansions			
	so access fees are	leads to more incentives				
	calculated according to	to defect				
	capacity reservation					

Regarding energy services

- US models are based on centralized trading (auctions)
 - That requires standard products, including those to trade storage
 - The challenge is to be able to innovate quickly enough...
 - ...or rely on regulated businesses (as utilities) to build storage
- EU systems may rely more on bilateral trading
 - The need for standardization is lower
 - Market payers may adapt more quickly to innovation

Regarding network services

- US models rely heavily on utilities (especially distribution) in charge of batteries installation No signals to markets (it might be viewed as the "extreme solution #2" of problem #1)
 - Challenges are related to the difficulty of planning without all the required information
- Germany relied heavily on incentives to consumers to install batteries (it might be viewed as the "extreme solution #1" of problem #1)
 - Suboptimization of grid expansion is the main challenge

Miguel.Vazquez.Martinez@gmail.com

