Strategic Implications of Counter-Geoengineering: Escalation, Cooperation, or Nonuse?

Daniel Heyen Grantham Research Institute London School of Economics

joint with Joshua Horton (Harvard Kennedy School) Juan Moreno-Cruz (Georgia Tech)

March 8th, 2018 FEEM Milan







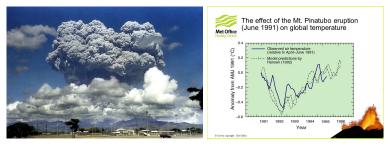






THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

## Geoengineering



(a) Mount Pinatubo 1991

#### (b) Temperature response (global)

# Geoengineering



# Geoengineering

- Geoengineering: Deliberate large scale intervention in climate system to counteract global warming
- Solar Geoengineering: fast global cooling, low costs
- Concern: unilateral deployment to detriment of others (NAS 2015)
- 'Free driver' externality (Weitzman 2015)
- Counter-Geoengineering (CG) might counteract excessive cooling (Parker et al. 2017)
- Does CG change the global-thermostat game?
- Can CG tilt the game in favor of cooperation? (nuclear deterrence)

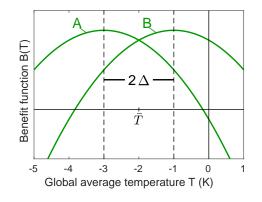
## This paper

- Two heterogeneous (blocs of) countries
- Public good game with quadratic costs and benefits
- **Cooperation**: Moratorium Treaty and Deployment Treaty
- Comparison game outcomes without CG vs. with CG
- Findings
  - Non-cooperative equilibria worse ('free driver'  $\rightarrow$  'arms race')
  - Increased cooperation incentives
  - Ambiguous welfare effects: Key parameter benefit-cost ratio and preference asymmetry

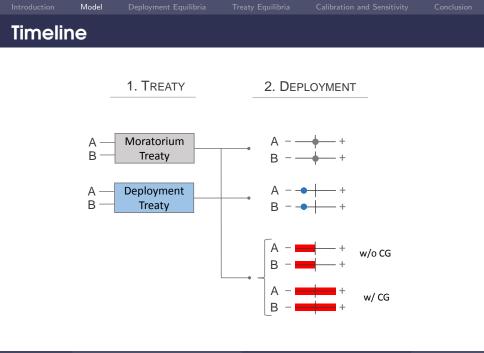
Treaty Equilibria

## **Benefits and costs**

Model



- Benefits  $B_i(T) = -b/2(T T_i)^2 + const$
- Global average temperature with intervention:  $T = g_A + g_B$
- without CG:  $g_i \leq 0$  ; with CG:  $g_i \in \mathbb{R}$
- Costs  $C(g_i) = c/2 g_i^2$
- Global-thermostat game



Introduction

Deployment Equilibria

Treaty Equilib

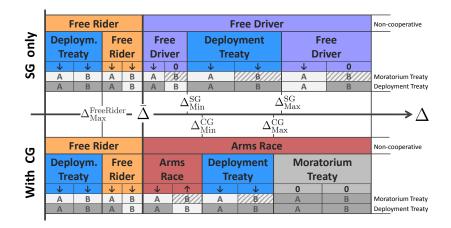
Calibration and Sensitiv

Conclusion

## Deployment stage: Nash equilibria



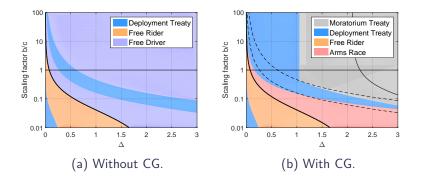
### Treaty equilibria



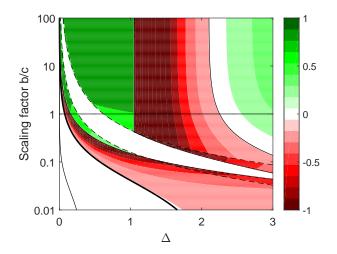
Treaty Equilibr

### Calibration and sensitivity analysis

- $\bar{T} = -2.1K$  (Shaviv 2005)
- $b = 179.5 \text{ bn } \$/K^2$  (Burke et al. 2015)
- $c = 13.4 \text{ bn } \$/K^2 \text{ (NAS 2015)}$



#### Welfare effect

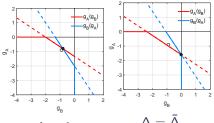


#### Conclusion

- Counter-Geoengineering may change the global-thermostat game
- Non-cooperation unattractive: 'arms race'
- This often **strengthens cooperation** incentives
- Ambiguous welfare effects: Key parameter benefit-cost ratio and preference asymmetry
- Findings emphasize importance of cooperation design / governance
- Limitations
  - Climate = Temperature
  - Two countries

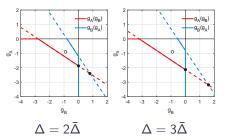
#### **Supplementary Slides**

## **Best response functions**

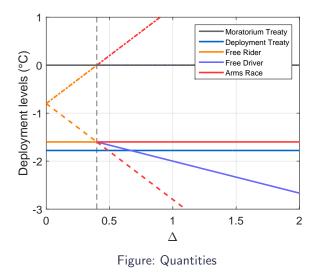








## **Deployment levels**



### The general case with *n* countries?

- Non-cooperative equilibria straightforward (and interesting)
- Cooperation: We determine the *stable* coalitions, equilibrium selection not the focus. Stability defined relative to non-cooperative outcomes
- Open membership game
- Deployment Treaty: For simplicity at most one SG coalition, no CG coalition. Stable if externally and internally stable
- Moratorium Treaty stable if *all* prefer it to non-cooperative case

## Equilibria n = 7, free driver

| Contributing                                                                                | 7 | 1      | 1 |
|---------------------------------------------------------------------------------------------|---|--------|---|
| SG only                                                                                     |   |        |   |
| Moratorium<br>Free Driver<br>Rest                                                           |   |        |   |
| Full Cooperation<br>Free Driver<br>Rest                                                     |   |        |   |
| Free Driver + 5<br>Free Driver + 4<br>Free Driver + 3<br>Free Driver + 2<br>Free Driver + 1 |   | $\sim$ |   |
| with CG                                                                                     |   |        |   |
| Moratorium<br>Free Driver<br>Rest                                                           |   |        |   |
| Full Cooperation<br>Free Driver<br>Rest                                                     |   |        |   |
| Free Driver + 5<br>Free Driver + 4<br>Free Driver + 3<br>Free Driver + 2<br>Free Driver + 1 |   |        |   |

#### Equilibria n = 7, free driver, Payoffs

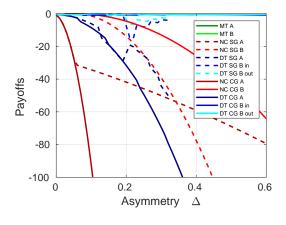


Figure: Quantities

#### Equilibria n = 7, free driver, Payoffs

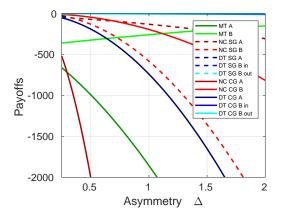


Figure: Quantities

#### The generalized free driver framework

#### Heyen, D. / Millner, A. / Tavoni, A. (work in progress)

### Quadratic specification

 Quadratic costs and benefits (generalizing Barrett 1994 and McGinty 2007)

$$C_i(q_i) = rac{c_i}{2}q_i^2$$
,  $B_i(Q) = -rac{b_i}{2}(Q-\alpha_i)^2$ 

• Equilibrium of free rider degree r = m, i.e. d = n - m

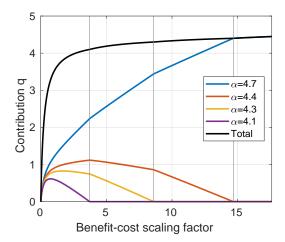
$$q_k^{*(m)} = \begin{cases} \theta_k \alpha_k - \frac{\Theta_m}{1 + \Theta_m} \theta_k \bar{\alpha}^{(m)} \ge 0 & k = 1, \dots, m \\ 0 & k = m + 1, \dots, n \end{cases}$$

#### Here,

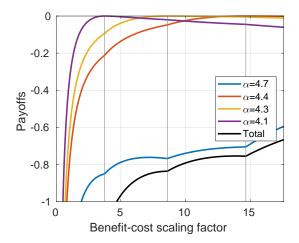
•  $\theta_i = b_i/c_i$  is benefit-cost parameter,  $\Theta_m = \sum_{i=1}^m \theta_i$ •  $\bar{\alpha}^{(m)} = (\sum_{i=1}^m \theta_i \alpha_i) / \Theta_m$  weighted average

 Proposition. Fix α<sub>1</sub> ≥ ... ≥ α<sub>n</sub>.
(i) For a given θ = (θ<sub>i</sub>)<sub>i</sub>, there is a unique equilibrium
(ii) For any d = 0, ..., n − 1 and given θ, there is a ϑ such that ϑθ gives rise to equilibrium of free driver degree d

## Equilibria: Contribution levels



## Equilibria: Payoffs



#### Heterogeneous climate impacts

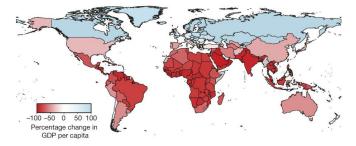


Figure: Burke et al. (2015, Nature)