Intergenerational equity under catastrophic climate change

Aurélie Méjean

with Antonin Pottier, Stéphane Zuber and Marc Fleurbaey

FEEM-IEFE joint seminar Milan, 16 November 2017

- Since Cline (1992) and Nordhaus (1994), climate change has been modelled as an issue of intertemporal consumption trade-off:
 - the costs of climate change mitigation lower consumption today, but increase consumption in the future as some damages are avoided
 - this assumes that climate change occurs at a slow pace and has reversible impacts
- However, possibility of tipping points:
 - ► abrupt and irreversible changes (Lenton et al. 2008), (Scheffer et al., 2001), e.g. shutoff of the Atlantic thermohaline circulation
 - possibly bringing catastrophic outcomes
 - including indirect impacts, e.g. increased migration and conflicts (Reuveny, 2007), (Hsiang et al., 2013)

- In the economics literature, catastrophic outcomes are modelled as a reduction of society's level of consumption or welfare:
 - irreversible decline to zero (Cropper, 1976), (Clarke and Reed, 1994) or partially reversible decline (Tsur and Zemel, 1996)
- ► A drop of social welfare to zero can be interpreted as human extinction
 - The trade-off is then between present consumption and the existence of future generations (Weitzman, 2009)
- This trade-off has been little studied, with the exception of Bommier et al. (2015) and Martin and Pindyck (2017)
- It raises the issue of evaluating policies with varying population size (Broome, 2012), largely ignored in the literature
- This paper aims at filling this gap by examining the issue of population ethics, i.e. the collective attitudes towards population size in the context of climate change

- This paper aims at studying climate policy when facing an endogenous extinction risk
- We explicitly model ethical views and study how the most preferred climate policy depends on: inequality aversion and population ethics.
- We include an endogenous risk of extinction due to climate change in an integrated assessment model
- We depart from the standard optimization framework: instead we consider various climate policies that are ordered according to their performance in terms of welfare
- We find that introducing even a very small endogenous risk pushes for stringent climate policy in most cases
- We highlight a non-monotonic role of inequality aversion, while a preference for larger populations calls for stringent climate policy

Analytical framework and results

The numerical model

Numerical results

- a sequence of non-overlapping generations indexed by t
- exogenous population size (conditional on existence): n_t
- total population up to generation t:

$$N_t = \sum_{ au=0}^t n_ au$$

a policy (or scenario) will result in each period in aggregate and per capita consumption levels (conditional on existence):

$$C_t = n_t \cdot c_t$$

Analytical framework

Definition 1 (Variable population utilitarian social welfare functions) For a finite horizon T, a social welfare function is a variable population utilitarian social welfare function if there exist real numbers $\beta \in [0, 1]$, $\bar{c} \in \mathbb{R}_{++}$ and $\eta \in \mathbb{R}_+$ such that:

$$U(c) = N_{T}^{\beta-1} \left\{ \sum_{\tau=0}^{T} n_{\tau} \left[\frac{c_{\tau}^{1-\eta}}{1-\eta} - \frac{\bar{c}^{1-\eta}}{1-\eta} \right] \right\}$$
(1)

- c_{τ} consumption per capita at date τ
- N_t total population up to date t
- $n_{ au}$ size of generation au
- \overline{c} threshold level of consumption per capita
- η inequality aversion parameter
- β population ethics parameter

Variable population utilitarian social welfare function

$$U(c) = N_T^{\beta-1} \left\{ \sum_{\tau=0}^T n_\tau \left[\frac{c_\tau^{1-\eta}}{1-\eta} - \frac{\bar{c}^{1-\eta}}{1-\eta} \right] \right\}$$

▶ η is the inequality aversion. High η means:

- we are willing to sacrifice more to equalize consumption across individuals
- \blacktriangleright β determines the value of larger populations
 - total utilitarianism ($\beta = 1$) vs. average utilitarianism ($\beta = 0$)
 - values of β between 0 and 1 span cases between total and average views ("number-dampened utilitarianism") (Ng, 1989; Boucekkine et al., 2014).
- \overline{c} is the consumption threshold parameter
 - when β = 1, the criterion favors adding individuals to the population only if their consumption is above c̄: critical-level utilitarianism (Blackorby et al., 2005)
 - when

 $\beta \neq \mathbf{1},$ the critical level is endogenous but depends on \overline{c}

Expected variable population utilitarian social welfare function

- With a risk of extinction, aggregate welfare W depends on both the streams of consumption per capita c and hazard rate p
- W is the expected value of a variable population utilitarian SWF
- $P_t = p_t \prod_{\tau=0}^{t-1} (1 p_{\tau})$ is the probability that there exists exactly t generations

$$W(c,p) = \mathbb{E}\left[U(c)\right] = \sum_{T=0}^{\infty} P_T\left(N_T^{\beta-1}\left\{\sum_{\tau=0}^T n_\tau \left[\frac{c_\tau^{1-\eta}}{1-\eta} - \frac{\bar{c}^{1-\eta}}{1-\eta}\right]\right\}\right)$$
(2)

- W welfare
- pt hazard rate
- P_t planning horizon probability
- $c_{ au}$ consumption per capita at date au
- N_t total population up to date t
- $n_{ au}$ size of generation au
- \overline{c} threshold level of consumption per capita
- η inequality aversion parameter
- β population ethics parameter

Expected variable population utilitarian social welfare functions

$$W(c,p) = \mathbb{E}\left[U(c)\right] = \sum_{\tau=0}^{\infty} P_{\tau}\left(N_{\tau}^{\beta-1}\left\{\sum_{\tau=0}^{T}n_{\tau}\left[\frac{c_{\tau}^{1-\eta}}{1-\eta} - \frac{\bar{c}^{1-\eta}}{1-\eta}\right]\right\}\right)$$
$$= \sum_{\tau=0}^{\infty}\left(\underbrace{\sum_{t=\tau}^{\infty}P_{t}N_{t}^{\beta-1}}_{\theta_{\tau}}\right)n_{\tau}\left[\frac{c_{\tau}^{1-\eta}}{1-\eta} - \frac{\bar{c}^{1-\eta}}{1-\eta}\right].$$
(3)

- \blacktriangleright $heta_{ au}$ is like a discount factor on the wellbeing of generation au
- it arises from the uncertainty about the planning horizon
- there is no 'pure' discounting of the utility of future generations: generation are treated generations in a fair (i.e. symmetric) way, cf. (Ramsey, 1928) and (Stern, 2007)
- instead, discounting depends on the risk of extinction and on attitudes towards population size (through β)

- Consider a marginal policy that:
 - reduces consumption in period 0 by a small amount dc₀
 - ▶ increases future consumption (*dc*_t: reduction of climate damages)
 - reduces the hazard rate $(-dp_t)$
- The total welfare gain is:

$$dW = -dc_0 \frac{\partial W}{\partial c_0} + \sum_{\tau=1}^{\infty} dc_{\tau} \frac{\partial W}{\partial c_{\tau}} - \sum_{\tau=1}^{\infty} dp_{\tau} \frac{\partial W}{\partial p_{\tau}}$$
$$= dc_0 \frac{\partial W}{\partial c_0} \left(-1 + \sum_{\tau=1}^{\infty} \frac{1}{(1+\rho_{\tau})^{\tau}} \left(\frac{dc_{\tau}}{dc_0} + \xi_{\tau} \frac{dp_{\tau}}{dc_0} \right) \right)$$
(4)

with $\rho_{\mathcal{T}}$ the social discount rate, $\xi_{\mathcal{T}}$ the social value of catastrophic risk reduction

This disentangles the impacts on consumption and on the risk profile

Social discount rate

Definition 2: Social discount rate

The social discount rate from generation 0 to generation t is:

$$\rho_{t} = \left(\frac{\frac{\partial W}{\partial C_{0}}}{\frac{\partial W}{\partial C_{t}}}\right)^{\frac{1}{t}} - 1 = \left(\frac{c_{t}}{c_{0}}\right)^{\frac{\eta}{t}} \left(\frac{\sum_{T=0}^{\infty} P_{T} N_{T}^{\beta-1}}{\sum_{T=t}^{\infty} P_{T} N_{T}^{\beta-1}}\right)^{\frac{1}{t}} - 1.$$
(5)

- ► increasing η (when c_t ≥ c₀) increases the discounting of future benefits and may thus reduce the value of the policy
- increasing β decreases the social discount rate, because future generations become more valuable as they increase total population size (see proof in paper)
- ► let us define δ_t , the endogenous time preference rate, such that: $(1 + \delta_t)^t = \frac{\theta_0}{\theta_t}$ with $\theta_t = \sum_{T=t}^{\infty} P_T N_T^{\beta-1}$
- we obtain the Ramsey formula in discrete time:

$$1+\rho_t=(1+\delta_t)(1+g_t)^\eta$$

hence introducing a risk of extinction is equivalent to introducing an endogenous pure time preference rate

Social value of catastrophic risk reduction

Definition 3: Social value of catastrophic risk reduction

The social value of catastrophic risk reduction in period t is:

$$\xi_t = -\frac{\frac{\partial W}{\partial p_t}}{\frac{\partial W}{\partial C_t}} = -\frac{\sum_{T=0}^{\infty} \frac{\partial P_T}{\partial p_t} \left(N_T^{\beta} A W_T(C) \right)}{(c_t)^{-\eta} \sum_{T=t}^{\infty} P_T N_T^{\beta-1}}$$
(6)

- as policy may affect the probability of catastrophic events, we need a tool to attribute a monetary value to risk reduction
- \blacktriangleright ξ_t describes how much a generation wants to pay to avoid extinction before the next period
- the concept was first introduced in Bommier et al. (2015), relates to 'the value of statistical civilization' (Weitzman, 2009)
- resembles the value of a statistical life (VSL) as it measures a risk-consumption trade-off.
- ξ_t has more to do with the willingness to add people to a population than extending the life of existing individuals.

Social value of catastrophic risk reduction

AW_T(C) is the average welfare when there are exactly T generations, with U(C) = N^β_T ⋅ AW_T(C):

$$AW_{T}(C) = \left\{ \sum_{\tau=0}^{T} \frac{n_{\tau}}{N_{T}} \left[\frac{\left(c_{\tau}\right)^{1-\eta}}{1-\eta} - \frac{\bar{c}^{1-\eta}}{1-\eta} \right] \right\}$$
(7)

We then have:

$$\xi_{t} = \frac{\sum_{T=t}^{\infty} P_{T}^{|t} \left(N_{T}^{\beta} A W_{T}(C) \right) - N_{t}^{\beta} A W_{t}(C)}{(1 - p_{t})(c_{t})^{-\eta} \sum_{T=t}^{\infty} P_{T}^{|t} N_{T}^{\beta - 1}}$$
(8)

- numerator: expected gain from living longer than for just t generations (conditional on the t first generations existing)
- denominator: chance of survival at t; marginal social value of consumption at t; another conditional expectation
- overall effects of η and β on ξ_t is unclear

$$dW = dc_0 \frac{\partial W}{\partial c_0} \left(-1 + \sum_{\tau=1}^{\infty} \frac{1}{(1+\rho_{\tau})^{\tau}} \left(\frac{dc_{\tau}}{dc_0} + \xi_{\tau} \frac{dp_{\tau}}{dc_0} \right) \right)$$
(9)

with ρ_T the social discount rate, ξ_T the social value of catastrophic risk reduction

- the effect of ethical parameters on ξ_T is unclear
- hence the effect of ethical parameters on dW is unclear
- the formula only holds for marginal policies, which are not those we are interested in

Non-marginal policies: decomposing welfare change

- Consider two policies i and j:
 - policy j leads to lower emissions than policy i
 - $p_{i,t} \ge p_{j,t}$: less mitigation in *i* leads to a higher hazard rate
 - no damages: c_i and c_j are increasing consumption streams

• The preferred policy depends on the sign of $\Delta W = W(c_j, p_j) - W(c_i, p_i)$

$$\Delta W = (W(c_j, p_j) - W(c_j, p_i)) - (W(c_i, p_i) - W(c_j, p_i))$$
$$= \Delta_p W - \Delta_c W$$
(10)

- $\Delta_p W$ is the part explained by the variation of hazard rate
- $\Delta_c W$ is the part explained by the variation of *consumption*
- We show that without climate damages, both terms are positive, increasing with β , decreasing with η (cf. below)

Non-marginal policies: evolution of $\Delta_c W$ with η and β

We note:

$$\mathcal{AW}_T(c) = \sum_{ au=0}^T rac{n_ au}{N_T} \left[rac{c_ au^{1-\eta}}{1-\eta} - rac{ar c^{1-\eta}}{1-\eta}
ight]$$

$$\Delta_{c} W = W(c_{i}, p_{i}) - W(c_{j}, p_{i})$$
$$= \sum_{t} N_{t}^{\beta} P_{t} \left(AW_{t}^{i}(c) - AW_{t}^{j}(c) \right)$$
(11)

• we show that when $c_{\tau}^i \ge c_{\tau}^j$, $\frac{(c_{\tau}^i)^{1-\eta}}{1-\eta} - \frac{(c_{\tau}^j)^{1-\eta}}{1-\eta}$ is decreasing in η , hence:

- Δ_cW decreases in η, i.e. a large η lowers the welfare gained due to higher consumption streams
- $\Delta_c W$ increases in β

Non-marginal policies: evolution of $\Delta_{p}W$ with η and β

$$AW_T(c) = \sum_{\tau=0}^T \frac{n_\tau}{N_T} (u(c) - u(\bar{c}))$$

$$\Delta_{p}W = W(c_{j}, p_{j}) - W(c_{j}, p_{i})$$
$$= \sum_{t=0}^{\infty} N_{t}^{\beta} \cdot (P_{t}^{j} - P_{t}^{i}) \cdot AW_{t}(c^{j})$$
(12)

- $\Delta_p W$ decreases with η : a large η reduces the value of postponing extinction (cf. proof in paper), intuition:
 - ▶ as η increases, the concavity of u increases, bringing u(c) closer to $u(\overline{c})$
 - \blacktriangleright the welfare gain of increasing c above \overline{c} is thus lower at high η
 - therefore, the added welfare due to a larger population (i.e. the welfare gained due to a lower risk profile) is lower
- $\Delta_p W$ increases with β

$$\Delta W = \Delta_p W - \Delta_c W$$

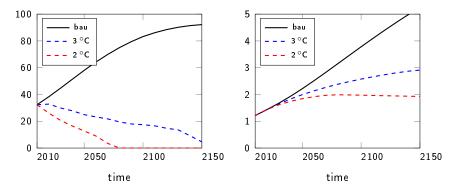
- The preferred policy depends on the relative effect of η and β on the welfare lost due to a lower consumption stream and the welfare gained due to a lower hazard rate
- $\Delta_{\rho}W$ and $\Delta_{c}W$ are both positive, decreasing with η , increasing with β
- a large η reduces both the welfare lost due to a lower consumption stream, and the welfare gained due to a lower hazard rate (i.e. the value of postponing extinction)
- a large β increases both the welfare lost due to a lower consumption stream, and the welfare gained as the size of the cumulative population increases due to a lower hazard rate
- \blacktriangleright hence we cannot predict the sign or evolution of ΔW with eta and η
- this calls for a numerical analysis

- The Response model (Dumas et al., 2012) details
 - Ramsey-like growth model with capital accumulation
 - Simple climate model, describing the evolution of global temperature and radiative forcing
- The recursive version (python)
 - abatement and saving rate are imposed, s = 25.8% following (Golosov et al., 2014) and (Dennig et al., 2015)
 - climate policies are ordered according to welfare

- Risk of extinction: hazard rate function of temperature increase
- Obviously, we cannot calibrate the global catastrophic risk on data
- We assume that the catastrophe is irreversible and is akin to truncating the planning horizon, following Cropper (1976)

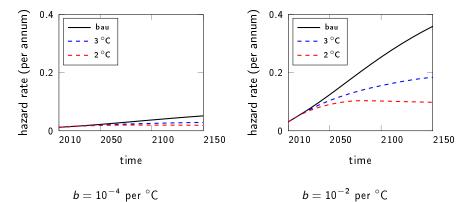
$$p(T) = \begin{cases} p_0, & \text{if } T \leq T_0 \\ p_0 + b \cdot (T - T_0), & \text{if } T_0 \leq T \leq T_0 + \frac{1 - p_0}{b} \\ 1, & \text{if } T \geq T_0 + \frac{1 - p_0}{b}; \end{cases}$$
(13)

- *p* hazard rate (per annum)
- *p*₀ minimum hazard rate (set at 1e-3 per annum)
- T temperature increase compared to pre-industrial levels (°C)
- T_0 temperature increase above which the hazard rate starts rising (set at 1 °C)
- b marginal hazard rate (per °C above T_0)


Contributions

- ΔW can either be explained by a difference in c, p, or both
- c and p streams vary simultaneously: we cannot easily identify the cause of variation
- solution: change one stream at a time
- signs of $\Delta W \cdot \Delta_c W$ and $\Delta W \cdot \Delta_p W$:
 - ▶ if + : variation attributed to the associated variable
 - ▶ if : that variable counteracts

product of w	elfare differences	diagnostic					
$\Delta W \cdot \Delta_c W$	$\Delta W \cdot \Delta_p W$						
+ + -	+ - +	Δc_t and Δp_t cause ΔW Δc_t causes ΔW , Δp_t counteracts Δp_t causes ΔW , Δc_t counteracts					


emissions (GtCO₂ per year)

temperature increase (°C)

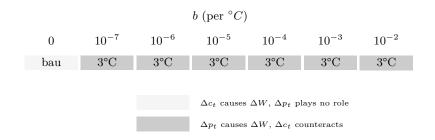
Parameters

parameter	description	value
η	inequality aversion parameter	between 0.5 and 5.0
β	population parameter	between 0 and 1
Ь	marginal hazard rate	between 0 and 10^{-2} per $^{\circ}$ C
C	threshold parameters	2.7 USD per day per capita

- ▶ $p_0 = 10^{-3}$ per annum: with a purely exogenous risk of extinction, the probability of survival after a hundred years is 90%
- assuming constant T at 2 °C (i.e. 1 °C above the threshold), the probability of survival after a hundred years would be:

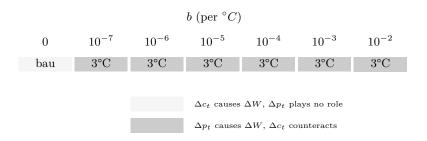
• 89% for
$$b=10^{-4}$$
 per °C

• 82% for
$$b=10^{-3}$$
 per °C

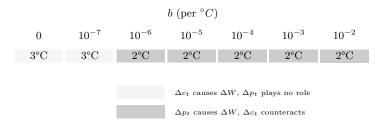

• 30% for
$$b = 10^{-2}$$
 per °C

intertemporal consumption trade-off

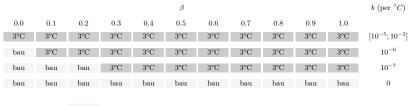
- as future generations are assumed to be richer, a high η gives preference to present consumption. This could lead to favour no abatement in order to preserve the consumption of the present, poorer generation.
- trade-off between consumption today and the existence of future generations
 - climate policy can delay extinction due to climate change, short-term abatement can be favoured, translating into lower consumption of the present generation, as abatement is costly.
- the risk of extinction discounts future welfare
 - this has an impact on the intertemporal consumption trade-off as the contribution of the welfare of future generations can become negligible with a high hazard rate.


- 1. The role of the risk of extinction
- 2. The role of population ethics
- 3. The role of inequality aversion
- 4. The role of damages

1. The role of the risk of extinction $(eta=1,\,\eta=2)$


- bau is preferred for a purely exogenous hazard rate (equivalent to pure time discounting): the social objective can be improved by maximising early consumption, when extinction has not occured yet
- ▶ when $b \neq 0$, the 3 °C policy is preferred: climate action may avoid extinction
- ▶ not shown here: very high marginal hazard rate (b ≥ 0.5 per °C) favours the bau (doomed situation)

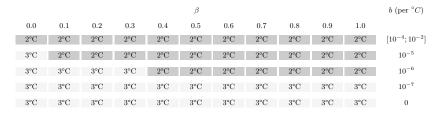
1. The role of the risk of extinction $(eta=1,\,\eta=2)$


- 3 °C is preferred due to the variation in hazard rate, while consumption counteracts
- bau is preferred due to the variation in consumption, while the hazard rate counteracts or plays no role
 - without climate damages, emissions reductions reduce both the hazard rate and consumption

1. The role of the risk of extinction $(eta=1,\,\eta=2)$

• even a very small endogenous risk of extinction ($b \ge 10^{-6}$) leads to adopt a more ambitious climate policy (the 2 °C scenario)

2. The role of population ethics $(\eta = 2)$

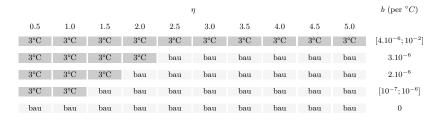


 Δc_t causes ΔW , Δp_t counteracts (or plays no role)

 Δp_t causes ΔW , Δc_t counteracts (or plays no role)

- a large weight on population size favours the 3 °C scenario: intuitive result, as cumulative population is larger if climate change is delayed
- β plays no role for $b \ge 10^{-5}$

2. The role of population ethics $(\eta = 2)$

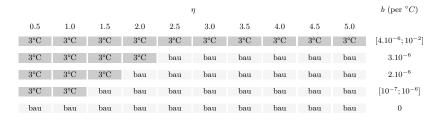


 Δc_t causes ΔW , Δp_t counteracts (or plays no role)

 Δp_t causes ΔW , Δc_t counteracts (or plays no role)

similar results when comparing 3 °C and 2 °C

3. The role of inequality aversion $(\beta = 0)$



 Δc_t causes ΔW , Δp_t counteracts (or plays no role)

 Δp_t causes ΔW , Δc_t counteracts (or plays no role)

 \blacktriangleright a low η favours the most ambitious policy (standard result)

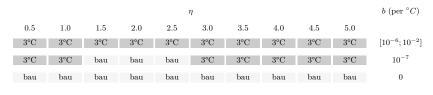
3. The role of inequality aversion $(\beta = 0)$

 Δc_t causes ΔW , Δp_t counteracts (or plays no role)

 Δp_t causes ΔW , Δc_t counteracts (or plays no role)

▶ for $b \ge 4.10^{-6}$ per °C, η plays no role (3 °C is always preferred).

3. The role of inequality aversion $(\beta = 0)$

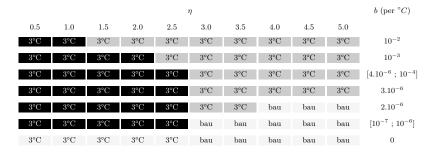

η								$b~({\rm per}~^\circ C)$		
0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	
3°C	3°C	$[4.10^{-6};10^{-2}]$								
3°C	3°C	3°C	3°C	bau	bau	bau	bau	bau	bau	3.10^{-6}
3°C	3°C	3°C	bau	bau	bau	bau	bau	bau	bau	2.10^{-6}
3°C	3°C	bau	bau	$[10^{-7}; 10^{-6}]$						
bau	bau	0								

 Δc_t causes ΔW , Δp_t counteracts (or plays no role)

 Δp_t causes ΔW , Δc_t counteracts (or plays no role)

- \blacktriangleright as b decreases, the minimum η that justifies the least ambitious policy is reduced
- richer generations are added, which enhances inequalities between generations
- similar results when comparing 3 °C and 2 °C

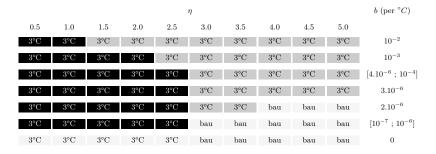
3. The role of inequality aversion (eta=0.1)



 Δc_t causes ΔW , Δp_t counteracts (or plays no role)

- \blacktriangleright increasing η still favours the least ambitious climate policy for low values of $\eta~(\leq 1.5)$
- however, the effect is reversed for higher values of $\eta \ (\geq 2.5)$
- as shown in the analytical results: increasing η reduces both the welfare lost due to a lower consumption stream, and the welfare gained due to a lower hazard rate (i.e. the value of postponing extinction)

4. The role of damages $(\beta = 0)$


 Δc_t causes ΔW , Δp_t counteracts (or plays no role)

 Δp_t causes ΔW , Δc_t counteracts (or plays no role)

 Δc_t and Δp_t cause ΔW

- with climate damages, the 3 °C policy is preferred due to both risk and consumption for low η (< 2.5)
 - without climate damages, the 3 °C policy was preferred due to the difference in hazard rate alone, while consumption counteracted

4. The role of damages $(\beta = 0)$

 Δc_t causes ΔW , Δp_t counteracts (or plays no role)

 Δp_t causes $\Delta W, \, \Delta c_t$ counteracts (or plays no role)

 Δc_t and Δp_t cause ΔW

For a given η (e.g. η = 2.5) and increasing b (e.g. 10⁻⁴ to 10⁻³): consumption no longer causes ΔW, as a higher b discounts the impact of damages on future consumption, i.e. the benefits in terms of long term consumption of the 3 °C scenario have less weight in total welfare as future generations are less likely to exist

4. The role of damages $(\beta = 0)$

η								$b \text{ (per }^{\circ}C)$		
0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	
3°C	3°C	3°C	3°C	3°C	3°C	3°C	3°C	3°C	3°C	10^{-2}
$3^{\circ}C$	3°C	3°C	3°C	3°C	3°C	3°C	3°C	3°C	3°C	10^{-3}
$3^{\circ}C$	3°C	3°C	3°C	3°C	3°C	3°C	3°C	3°C	3°C	$[4.10^{-6}; 10^{-4}]$
$3^{\circ}C$	3°C	3°C	3°C	3°C	3°C	3°C	3°C	3°C	3°C	3.10^{-6}
3°C	3°C	3°C	3°C	3°C	3°C	3°C	bau	bau	bau	2.10^{-6}
3°C	3°C	3°C	$3^{\circ}C$	3°C	bau	bau	bau	bau	bau	$[10^{-7}; 10^{-6}]$
3°C	3°C	3°C	3°C	3°C	bau	bau	bau	bau	bau	0

 Δc_t and Δp_t cause ΔW

η								$b \text{ (per }^{\circ}C)$		
0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	
3°C	3°C	10^{-2}								
3°C	3°C	10^{-3}								
3°C	3°C	$[4.10^{-6}\ ;\ 10^{-4}]$								
3°C	3°C	3°C	3°C	bau	bau	bau	bau	bau	bau	3.10^{-6}
3°C	3°C	3°C	bau	bau	bau	bau	bau	bau	bau	2.10^{-6}
3°C	3°C	bau	bau	$[10^{-7}; 10^{-6}]$						
bau	bau	0								

▶ adding climate damages mostly keeps the preferred policy unchanged (no change at all for $b \ge 4.10^{-6}$ per °C)

- Discounting depends on the hazard rate and on the attitudes towards population size (parameter β)
- We show that we cannot predict the impact of changes in η and β on the preferred policy (case without damages)
 - increasing η reduces the welfare lost due to a lower consumption stream, it also reduces the value of postponing extinction (i.e the welfare gained as the size of the cumulative population increases due to a lower hazard rate)
 - increasing β increases the welfare lost due to a lower consumption stream, it also increases the value of postponing extinction

Conclusion: numerical results

- ► Even a very small endogenous risk of extinction (b ≥ 10⁻⁶) leads to adopt a more ambitious climate policy (the 2 °C scenario), almost irrespective of the value of the ethical parameters
- A large population ethics parameter (β) always favours the most ambitious policy
 - \blacktriangleright a large β gives as a large weight to the welfare of future generations
- Inequality aversion (η) has a non-monotonic impact on the preferred policy
- \blacktriangleright A small η always favours the most ambitious policy
 - consistent with intuition, as future generation are assumed to be richer
- \blacktriangleright However, we find cases where increasing η favours the most ambitious policy
 - this is due to the relative effect of inequality aversion on the risk and consumption components of the welfare difference
- Accounting for climate damages (in addition to the risk of extinction) leaves the order of policies unchanged (except for very low values of b)

- This paper is part of a broader project on the effects of climate change on population
- ▶ We would like to consider less extreme population impacts:
 - Endogenous risk may constantly reduce population size by some factor
 - Endogenous risk may affect life expectancy and mortality risk rather than population size
- We would like to consider population impacts that may be different in different parts of the world. This would raise new equity/fairness issues.
- We have explored a specific class of social welfare functions. We plan to explore other possibilities to disentangle inequality aversion and risk aversion

Thank you!

Bibliography

Bommier, A., Lanz, B., and Zuber, S. 2015. Models-as-usual for unusual risks? On the value of catastrophic climate change. Journal of Environmental Economics and Management 74:1–22.

Broome, J. 2012. Climate matters: ethics in a warming world. Amnesty International global ethics series. W.W. Norton, New York, 1st edition.

Clarke, H. R. and Reed, W. J. 1994. Consumption/pollution tradeoffs in an environment vulnerable to pollution-related catastrophic collapse. Journal of Economic Dynamics and Control 18:991–1010.

Cline, W. R. 1992. The economics of Global Warming. Institute for International Economics, Washington.

Cropper, M. 1976. Regulating activities with catastrophic environmental effects. Journal of Environmental Economics and Management 3:1–15.

Dennig, F., Budolfson, M. B., Fleurbaey, M., Siebert, A., and Socolow, R. H. 2015. Inequality, climate impacts on the future poor, and carbon prices. Proceedings of the National Academy of Sciences 112:15827–15832.

Dumas P., Espagne E., Perrissin-Fabert B., Pottier A., 2012. Comprehensive Description of the integrated assessment model RESPONSE Working Paper CIRED

Bibliography

Fleurbaey, M., Zuber, S., 2014. Discounting, beyond Utilitarianism (Economics Discussion Papers No. 2014-40). Kiel Institute for the World Economy.

Golosov, M., Hassler, J., Krusell, P., and Tsyvinski, A. 2014. Optimal Taxes on Fossil Fuel in General Equilibrium. Econometrica 82:41–88.

Hsiang, S. M., Burke, M., and Miguel, E. 2013. Quantifying the Influence of Climate on Human Conflict. Science 341:1235367–1235367.

Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J. 2008. Tipping elements in the Earth's climate system. Proceedings of the National Academy of Sciences 105:1786–1793.

Martin, I. and Pindyck, R. 2017. Averting Catastrophes that Kill. Technical Report w23346, National Bureau of Economic Research, Cambridge, MA. DOI: 10.3386/w23346.

Ng, Y.-K. 1989. What should we do about future generations? impossibility of parfit's theory. Economics and Philosophy 5:235–253.

Nordhaus, W. D. 1994. Managing the global commons: the economics of climate change. MIT Press, Cambridge, Mass.

Ramsey, F. 1928. A mathematical theory of saving. The Economic Journal 38:543-559.

Reuveny, R. 2007. Climate change-induced migration and violent conflict. Political Geography 26:656–673.

Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walker, B. 2001. Catastrophic shifts in ecosystems. Nature 413:591–596.

Stern, N. H. 2007. The economics of climate change: the Stern review. Cambridge University Press, Cambridge, UK ; New York

Tsur, Y. and Zemel, A. 1996. Accounting for global warming risks: Resource management under event uncertainty. Journal of Economic Dynamics and Control 20:1289–1305.

Weitzman, M. L. 2009. On Modeling and Interpreting the Economics of Catastrophic Climate Change. Review of Economics and Statistics 91:1–19.