

THE UNIVERSITY OF CHICAGO

How Many Economists does it take to Change a Light Bulb? A Natural Field Experiment on Technology Adoption

Matilde Giaccherini (Tor Vergata) David H Herberich (UMaryland) David Jiménez (Alicante) John H List (UChicago & NBER) Giovanni Ponti (Alicante, UChicago & LUISS) Michael K Price (UAlabama)

FEEM - 11/10/2017

A NATURAL FIELD EXPERIMENT ON TECHNOLOGY ADOPTION - GIACCHERINI ET AL. (2017) - FEEM 11/10/2017

Motivation

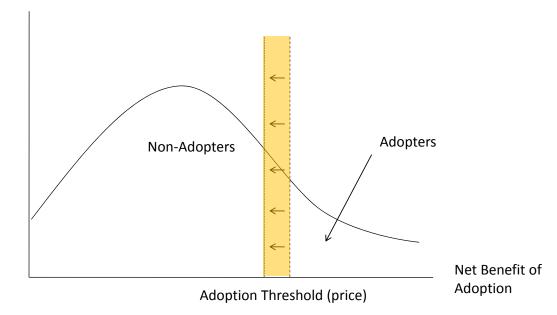
• The energy paradox:

- 1. Despite the fact that replacing 1 incandescent light bulb in every American household with a CFL would prevent the equivalent annual greenhouse gas emissions from 420,000 cars and save \$806 million in annual energy cost,
- 70% of residential households have 1 CFL but only 11% of potential sockets have CFLs
- How to **encourage adoption and diffusion** of energy saving technology?
- 1. What **discipline** (economics, psychology) provides the most effective means of motivating adoption?
- 2. What is the effect of a **price change**?
- 3. What is the effect of a **frame change** involving **social norms**?
- Our aim is to answer to these questions using a large scale natural field experiment selling CFLs door-to-door in the suburbs of Chicago

Sample of the previous literature

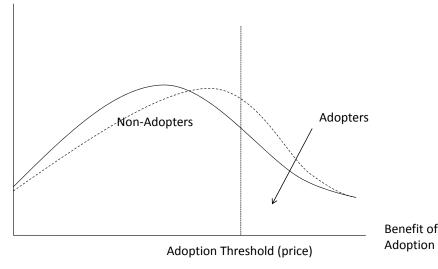
• Social Psychology:

- 1. Goldstein, Cialdini and Griskevicius (2008)
- 2. Schultz *et al.* (2007)


• Economics

- 1. Griliches (1957)
- 2. Jaffe and Stavins (1995)
- 3. Gallagher and Muehlegger (2008)
- 4. Hall (2004)

• Social norms


- 1. Allcott (2009)
- 2. Ferraro and Price (2010)
- 3. DellaVigna List and Malmendier (2012)

Technology adoption I: subsidy

- Assume there is a population of (heterogeneous) potential consumers whose WTP distributes according to some distribution, which depends upon:
- 1. **Observable** characteristics (location, income, gender, etc...)
- 2. Unobservable characteristics (social preferences, environmental concerns, discounting, ambiguity aversion, etc...)
- A **subsidy** on the purchasing price has the effect of increasing consumption, shifting the threshold that identifies the marginal buyer

Technology adoption II: nudges via social norms

- Nudges, instead, manipulate subjects' concerns (i.e., yield a structural break in subjects' preferences). This, in turn, modifies the shape of of the distribution of households' WTP.
- Folloving **DLM12**, we explore the impact of a nudge based on **social norms** built upon the **relative distance** with respect to the reference group:
- 1. **SNL:** *"For instance, did you know that 70% of US households owns at least one CFL?"*
- 2. SNH: "For instance, did you know that 70% of households we surveyed in this area owns at least one CFL?"


A NATURAL FIELD EXPERIMENT ON TECHNOLOGY ADOPTION – GIACCHERINI ET AL. (2017) – FEEM 11/10/2017

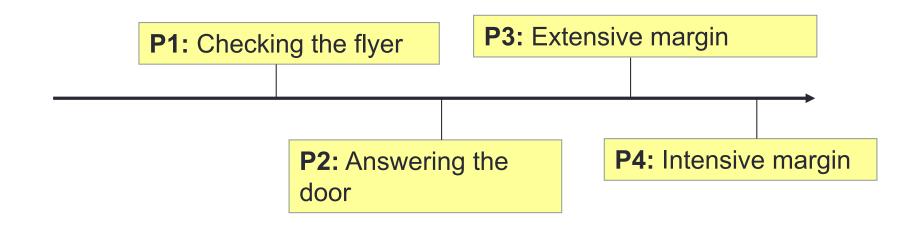
Experimental design: door-to-door layout

- Suburbs of Chicago (Libertyville, Lemont, Roselle, Arlington Heights, Glen Elyn)
- Mapped neighborhoods into treatment groups by street
- Hired students to approach households on week-ends to sell 1 or 2 packs (4 bulbs each) of CFLs
- Students approach approx. 25 households per hour
- Typically change to new treatment after each hour
- 4 hours of work: 10am-11am, 11am-noon, 1pm-2pm and 2pm-3pm

Experimental design: warning levels

• With the exception of the NW treatment, our team approached households the day prior to the experiment and hung door-hangers on doors announcing arrival the following day

Experimental design: implementation


Table 1: Treatment Sample Size

Price per Pack	Social Norm	No Warning	Warning	Opt-Out
	No	480	474	473
\$1	Low	447	508	535
	High	454	469	481
	No	435	546	501
\$5	Low	493	544	491
	High	431	511	542
Total		2740	3052	3023

Each cell gives the number of households approached for each treatment group

- We approached a total of 8,815 households involved under 3x3x2=18 randomized treatment conditions.
- Two price levels: \$ 1 and \$ 5
- Three social pressure levels (N, L, H)

Experimental design: timing

- We model subjects' decisions as a **sequence of 4 binary choices**
- Social norms and prices are revealed in Phase 3, after answering the door

Descriptive stats I: answering the door

	Check Answered	Answer Door	Purchased	Purchased Answered	Q=2 Purchased
No Warning		0.367	0.0321	0.087	0.443
		(0.482)	(0.176)	(0.283)	(0.500)
		2740	2740	1006	88
Warning		0.332	0.038	0.115	0.564
		(0.471)	(0.192)	(0.320)	(0.498)
		3052	3052	1014	117
Opt-Out	0.116	0.274	0.028	0.103	0.529
	(0.321)	(0.446)	(0.165)	(0.307)	(0.502)
	3023	3023	3023	828	85
Total	0.116	0.323	0.033	0.102	0.517
	(0.321)	(0.468)	(0.178)	(0.302)	(0.500)
	3023	8815	8815	2848	290

Table 2: The Decision to Answer to Door in Warning Treatments

Households that chose to "Opt Out" oare 352 households of the 3023 and are included as doors knocked on but not answered.

- Checking rate (OO) of **11%** overall
- Answer rate of **32%** overall.
- Extensive margin: a purchase rate of (3%) (10%) (un)conditional on answering the door.
- In this respect, our evidence is in line with the literature on the energy paradox.

A NATURAL FIELD EXPERIMENT ON TECHNOLOGY ADOPTION – GIACCHERINI ET AL. (2017) – FEEM 11/10/2017

Reduced form: answering the door

• We employ a simple linear probability model to estimate (social pressure) treatment effects on the probability of opening the door.

	(1)	(2)	(3)
Warning	-0.035**	-0.038**	-0.026*
warming	(0.017)	(0.016)	(0.015)
Opt-Out	-0.093***	-0.087***	-0.077***
000-000	(0.017)	(0.017)	(0.017)
Constant	0.367^{***}	0.400^{***}	0.351^{***}
Olistant	(0.013)	(0.024)	(0.027)
Surveyor Effects	No	Yes	Yes
City Effects	No	No	Yes
Ν	8815	8815	8815

Table 3: The Decision to Answer the Door: OLS.

p < .1; **p < .05; ***p < .01

- Main results:
- 1. **Social pressure:** Warning (W/OO) reduce the likelihood of answering:
- 2. Sorting: the OO treatment reduces the likelihood compared to W (p < 1%)

Descriptive stats: purchase decisions

	Purchased			Purch	Purchased Answered			Q = 2 Purchased		
Social Norm	p = 1	p = 5	Total	p=1	p = 5	Total	p=1	p = 5	Total	
	0.040	0.015	0.027	0.110	0.046	0.079	0.631	0.182	0.506	
Neutral Frame	(0.196)	(0.121)	(0.163)	(0.313)	(0.210)	0.270	(0.487)	(0.395)	(0.503)	
	1427	1482	2909	520	475	995	57	22	79	
	0.048	0.016	0.032	0.174	0.055	0.112	0.667	0.320	0.577	
Social Norm Low	(0.215)	(0.127)	(0.176)	(0.379)	(0.230)	(0.316)	(0.475)	(0.476)	(0.496)	
	1490	1528	3018	414	451	865	72	25	97	
	0.055	0.024	0.039	0.158	0.073	0.115	0.538	0.333	0.474	
Social Norm High	(0.230)	(0.154)	(0.195)	(0.366)	(0.260)	(0.320)	(0.502)	(0.478)	(0.501)	
_	1404	1484	2888	492	496	988	78	36	114	
	0.0480	0.018	0.033	0.145	0.058	0.102	0.609	0.289	0.517	
Total	(0.214)	(0.135)	(0.178)	(0.352)	(0.234)	(0.302)	(0.489)	(0.456)	(0.501)	
	4321	4494	8815	1426	1422	2848	207	83	290	

Table 4: The Decision to Purchase Un/conditional on Answering Door

• A purchase rate of (3%) (10%) (un)conditional on answering the door

- Conditional on answering, the **extensive margin** corresponds to 15% (6%) of total observations when p=1 (p=5), respectively.
- Conditional on purchasing, the intensive margin corresponds to 60% (29%) of total observations when *p*=1 (*p*=5), respectively.

Reduced form: extensive margin

• We employ a simple linear probability model to estimate treatment effects on the likelihood to purchase conditional on answering the door.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Warning	0.028	0.046^{***}					0.031*	0.047***	0.030*	0.047^{***}
	(0.017)	(0.017)					(0.017)	(0.016)	(0.017)	(0.016)
Opt Out	0.015	0.021					0.013	0.017	0.012	0.017
	(0.018)	(0.015)					(0.017)	(0.015)	(0.017)	(0.015)
Social Norm Low			0.033^{*}	-0.003			0.036**	0.005	0.063**	0.023
			(0.017)	(0.020)			(0.016)	(0.018)	(0.028)	(0.028)
Social Norm High			0.036^{**}	0.030^{**}			0.039**	0.038^{**}	0.050^{*}	0.053^{**}
			(0.017)	(0.015)			(0.017)	(0.015)	(0.027)	(0.025)
Price					-0.087***	-0.083***	-0.089***	-0.085***	-0.065***	-0.064^{***}
					(0.014)	(0.013)	(0.014)	(0.013)	(0.019)	(0.018)
Price*SNL									-0.053	-0.034
									(0.032)	(0.031)
Price*SNH									-0.022	-0.030
									(0.031)	(0.030)
Constant	0.087^{***}	0.064^{***}	0.079^{***}	0.084^{***}	0.145^{***}	0.126^{***}	0.107^{***}	0.084^{***}	0.096***	0.07***
	(0.012)	(0.028)	(0.010)	(0.030)	(0.012)	(0.026)	(0.016)	(0.029)	(0.018)	(0.032)
Surveyor Effects	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
City Effects	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
N	2848	2848	2848	2848	2848	2848	2848	2848	2848	2848

Table 5: The Decision to Purchase Conditional on Answering Door: Linear Probability Model

 $*p < .1; \, **p < .05; \, ***p < .01$

- Main results:
- 1. **Sorting:** Warning increases the likelihood of purchasing.
- 2. Social norms: the effect is positive, but there is no difference between H/L

Reduced form: intensive margin

• We employ a simple linear probability model to estimate treatment effects on the likelihood to purchase 2 packs against 1

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Warning	0.121	0.092					0.121	0.072	0.125^{*}	0.079
	(0.076)	(0.082)					(0.074)	(0.082)	(0.076)	(0.084)
Opt Out	0.086	0.137					0.112	0.173^{**}	0.107	0.175^{**}
	(0.085)	(0.093)					(0.082)	(0.086)	(0.082)	(0.086)
Social Norm Low			0.071	-0.052			0.073	-0.061	0.051	-0.068
			(0.082)	(0.104)			(0.074)	(0.095)	(0.088)	(0.106)
Social Norm High			-0.033	-0.080			-0.025	-0.081	-0.096	-0.155^{*}
			(0.083)	(0.090)			(0.079)	(0.081)	(0.097)	(0.094)
Price					-0.320***	-0.322***	-0.314***	-0.328***	-0.437***	-0.420***
					(0.067)	(0.063)	(0.067)	(0.063)	(0.113)	(0.119)
Price*SNL									0.075	0.027
									(0.155)	(0.167)
Price*SNH									0.239	0.211
									(0.164)	(0.165)
Constant	0.443^{***}	0.286^{***}	0.506^{***}	0.417^{***}	0.609^{***}	0.453^{***}	0.511^{***}	0.465^{***}	0.545^{***}	0.485^{***}
	(0.055)	(0.168)	(0.062)	(0.197)	(0.038)	(0.150)	(0.082)	(0.189)	(0.089)	(0.195)
Surveyor Effects	No	Yes								
City Effects	No	Yes								
N	290	290	290	290	290	290	290	290	290	290

Table 9: Decision to Purchase 2 Packages of CFLs Conditional on Purchasing: Linear Probability Model

*p < .1; **p < .05; ***p < .01

- Main results:
- 1. **Price** is highly significant while ...
- 2. ...Social norms are not.

Structural estimation: timing

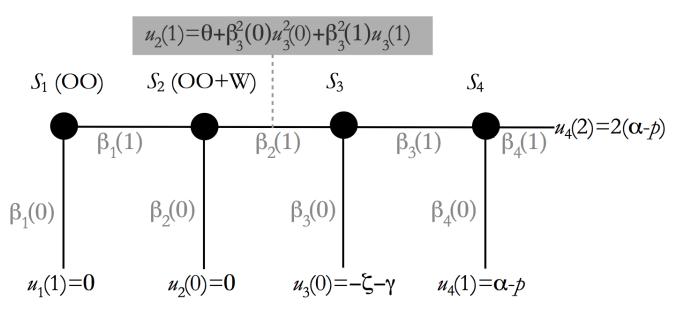


Figure 2: Timeline of the structural model

- **Stage 1**: checking the opt-out box (00).
- Stage 2: answering the door (OO+W)
- **Stage 3**: extensive margin decision (ALL)
- **Stage 4**: intensive margin (ALL)

Structural estimation: parameters

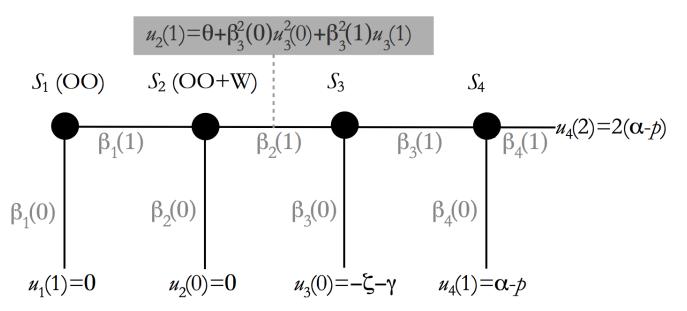


Figure 2: Timeline of the structural model

- The model is solved backward:
- Stage 4: \alpha measures (linear) WTP (efficiency, warm glow, ...)
- Stage 3: \zeta and \gamma measure social pressure and social norms
- Stage 2: \theta measures curiosity
- We allow for the possibility of \theta and \zeta to be correlated

Structural estimation I: estimated parameters

- We estimate three different versions of the model, depending on whether we condition the estimation of \theta and \gamma to the extensive/intensive margin decision
- Main results:
- 1. **\alpha** is around \$ 2
- 2. \zeta is negative, but not significant
- **\theta** is negative and highly significant
- 4. Social norms matter, with H=L
- 5. \zeta and \theta are highly (negatively) correlated

	()		(-)
	(1)	(2)	(3)
μ_{lpha}	2.327***	2.006***	1.381**
r*α	(0.416)	(0.619)	(0.690)
β_L		0.799	
PL		(0.498)	
β_H		0.147	
РП		(0.732)	
β_W			1.362
ρ_W			(0.882)
11 *	-0.746	-0.318	0.623
μ_{ζ}	(0.702)	(0.808)	(0.997)
0/1	0.214^{**}	-0.916	0.216**
γ_L	(0.101)	(0.702)	(1.208)
0/11	0.214^{**}	0.014	0.209**
γ_H	(0.109)	(1.169)	(0.119)
0/111			-1.97*
γ_W			(1.208)
110	-1.195^{*}	-1.195^{*}	-1.782^{*}
$\mu_{ heta}$	(0.694)	(0.691)	(0.915)
h_0	0.351^{***}	0.349***	0.351^{***}
n_0	(0.011)	(0.008)	(0.011)
r	0.207^{***}	0.207^{***}	0.207^{***}
1	(0.019)	(0.019)	(0.019)
σ	4.810***	4.831***	4.774***
σ_{lpha}	(1.101)	(1.113)	(1.107)
σ	0.893^{***}	0.901^{***}	0.852^{***}
σ_{ζ}	(0.222)	(0.232)	(0.262)
0	-0.9	-0.9	-0.9
ρ	(-)	(-)	(-)
Obs.	8815	8815	8815
Log lik.	-7585.7101	-7584.158	-7583.371

Clustered standard errors. * = p < .1; ** = p < .05; *** = p < .01

 Table 6: Structural estimations

Structural estimation II: heterogeneity

• Our structural model is such that the only stochastic components are attributed to subjects' heterogeneity in the distribution of the behavioral parameters.

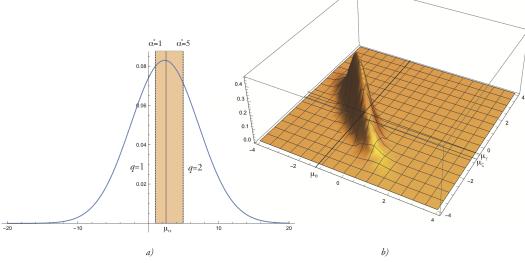


Figure 3: Estimated distributions of $\alpha,\,\varsigma$ and θ (Model II).

- The correlation between curiosity and social pressure capture the sorting effect:
- 1. subjects with low curiosity sort out;
- 2. subjects with high curiosity sort in and are less sensitive to social pressure.

Structural estimation III: welfare analysis

- Our structural estimation allows to conduct welfare analysis.
- Welfare is measured as the variation in expected utility of the representative agent due to the policy intervention.
- The **cost** of the intervention and the **benefits** on the electricity bill are not taken into account

Warning	Social Norms	Price	(1)	(2)	(3)
No	No	1	0.719^{***}	0.103	0.172
NO	No	5	0.261	-0.306	-0.219
No	Yes	1	0.728***	0.4***	0.181
NO	Yes	5	0.186	-0.149	-0.293
Yes	No	1	0.650***	0.468	0.251
Ies	No	5	0.241	0.102	-0.111
Yes	Yes	1	0.662^{***}	0.732***	0.234
res	Yes	5	0.171	0.249	-0.183

Table 7: Welfare analysi	is	
--------------------------	----	--

Clustered standard errors. * = p < .1; ** = p < .05; *** = p < .01

- Main results:
- 1. Welfare effects are small [...] and
- 2. significant only when the price is small

Concluding remarks

- Heterogeneity is important and can be exploit to make environmental policies more efficient
- In our structural model heterogeneity is entirely **unobservable** (debriefing quest data were too scarce to be useful).
- Additional relevant dimensions for future research:
- 1. Beliefs about energy savings
- 2. (Altruistic) discounting
- 3. Risk/ambiguity aversion

The End

A NATURAL FIELD EXPERIMENT ON TECHNOLOGY ADOPTION – GIACCHERINI ET AL. (2017) – FEEM 11/10/2017