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Note di presentazione
Thank you Massimo and thank FEEM and IEFE for the invitation that gives me the opportunity to share with you some of the research we are doing between Milano and Zurich.
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Note di presentazione
I’m originally an Environmental Engineer who ended up in a Control and Automation department as all most of the people in our group

Our core interest is water resources management in a very broad sense. We are not hydrologists, so our focus is not on processes bur rather on decision making and operation.  So behind this box we concentrate more than half of our energy and projects. Then we recently opened up some new research lines. 

But now let’s go back to the talk of today. 
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Note di presentazione
Today I will give you an overview of an approach to control water resources systems which is becoming very popular and to which we contributed with some new ideas partly in collaboration with Cornell University. As far as I understood from Massimo, this same approach can be used also for problem at a larger spatial scale.



Dams: An ancestral technology ...

Sadd-el-Kafara, Egypt
2700-2600 BC

X . R ™ Lo -
Source: http://www.hydriaproject.net
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As said our focus is on water and rivers. 

Damming rivers and dams is one of the oldest technologies we invented. Here you have a picture of the oldest known dam in Egypt dating 26 hundred BC. So a thousand years after Sumerians developed writing. 

And it is a technology still exstensively used by humankind. As many other  dimensions of our society also dams went through a big acceleration process






Nearly five thousand years ago 
masonry-faced earthen 
bout forty kilometres south of Cairo, close to the town of Helwan, lie the ruins of the Sadd-el-Kafara ( = “dam of the Pagans”), an embankment dam of great size built around 2700-2600 BC, discovered over 100 years ago in the old, deep and dry Garawi ravine. The masonry-faced earthen dam originally measured 14 m height and 113 m length along the crest and is considered today the oldest dam of such size known in the world.



®
... that recently accelerated

Source: hydrolab.geog.mcgill.ca
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As you will see in this movie which is showing the development of dams across more than once century from the end of the 18 hundred

Global Reservoir and Dam (GRanD) Database
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Note di presentazione
Reservoirs are buffer against natural variability in discharge, filtering out temporal variability and ensuring steady supply.

So they basically have two main functions, one is to filter the natural variability in the dischage and ensure a steady supply, possibly moving volume of water across time. The second is to store gavitational energy behing dma and so exploit hydraulic heads. 






Dams have two main functions. 
The first is to store water to compensate for fluctuations in river flow or in demand for water and energy. The second to raise the level of the water upstream to enable water to be diverted into a canal or to increase ’hydraulic head’ –– the difference in height between the surface of a reservoir and the river downstream. Water can store gravitational energy



Still worth research?

(Paper No. 1864.) Ripple, W. (1883) The capacity of storage reservoirs
for water supply. Minutes of the Proceedings,
By W. Rurri, Doosat at the Royal Techuical High School Institution of Civil Engineers, Vol 71. Thimas Telfors

at Gratz (Styria). 270-278

1. ISTRODUCTION,

“The Capacity of Storage-Reserveirs for Water-Supply.”

[5 the English system for the water-supply of towns, by collecting
the drainage of large catchment-bhasins, one of the mest important
problema is the determination of the eapacity for storage, which

should be provided in the reservoirs, Maass et al (1962), Design of
In the earlier works designed on this plan this point did not water resources Systems,

receive sufficient attention, because at that time the dats required . .

wire not available, Honce reservoirs wers constructed of insuffi- Harvard UnlvefSIty Press,

cient size, cousing a sonsible deficiency in the water-supply in dry Cam bridge’ Mass.

peasons.  As the dams of the storage-reservoirs could not be raised _—

in height without endangering their stability, new reservoirs and
new gathoring-grounds had to bo added—a proceeding sometimes
difficult and always costly.

For a long time engineers were obliged to apply the results of
expericnce gainod in existing waterworks to the design of new
systems, by giving to the reservoirs & fixed capacity for a given
area of gathoring-ground. If, for example, in an existing systom
of water-supply, o storage-capacity of 2,500 cubie metres (88,288
cubio feet) was found adequate for 1,000 hectares (2,471 acres) of
gathering-ground, the rescrvoir of & new systom was designed to
afford & proportionate storage-capacity. DBut as the amount of
storage necessary depends on circumstances which vary in different
localities, it is clear that in reservoirs thos designed, it is ouly by
aceident that o deficiency of water-supply, in a series of years, is

prevontad,
2. Twe onmxary ForuuLa.

The purpose of the storage-reservoir is to egualise the Suctua- WATER
tions of supply and demand during an indefinitely long period RESOURCE
of time. Tho circumstances of an average year are therefore SYSTEMS
not sufficient to determine the quantity to be stored. Hence PLANNING

empirical rule has been adduced, based on the conditions which

AND ANALYSIS
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Designing the operation of dam has been on the research agenda of many academics in the civil and environmental enegineering for more than one century

Ricordarne alcuni

So a ligitimate question, is whether does it still make sense to study reservoir operation and investing in developing new approaches, and algorithms and tools to support dam operators?

Of course the world is running fast, a number of emerging research domains are progressing at an impressing rate, think about natotechnoclogies, genomics, robotics, material science, while water science and hydrology looks like we are already got to the asymptoth and only marginal improvements are possible. In this context, reservoir operation appears as a quite traditional and well established topic. 


Still worth research?

® & < £l & scholar.google.it &

GOL ’8['@ optimal water reservoir operations - “

Scholar About 186,000 results [ll.17 sec)
Articles Optimal operation of multireservoir systems: state-of-the-art review
JW Labadie - Journal of water resources planning and management, 2004 - ascelibrary.org
Case law ... Kumphon, B. (2013). "Genetic Algorithms for Multi-objective Optimization: Application to a
Multi-reservoir System in the Chi River Basin, Thailand.” Water Resources Management. ... "Adaptive
My library Genetic Algorithm for Daily Optimal Operation of Cascade Reservoirs and its ...
Cited by 852 Related articles All 12 versions Cite Save More
Any time Evaluation of genetic algorithms for optimal reservoir system operation
Since 2015 R Wardlaw, M Sharif - Journal of water resources planning and ..., 1999 - ascelibrary.org
Since 2014 Several alternative formulations of a genetic algorithm for reservoir systems are evaluated

i using the four-reservoir, deterministic, finite-horizon problem. This has been done with a
Since 2011 view to presenting fundamental guidelines for implementation of the approach to practical ...
Custom range... Cited by 416 Related articles All 9 versions Web of Science: 194 Cite Save More

Design of optimal water distribution systems

Sort by relevance E Alperovits, U Shamir - Water resources research, 1977 - Wiley Online Library

Sort by date ... If this is done, the design will not be optimal. ... When storage reservoirs are to be designed by using
a linear program, their cost has to be approximated by a linear func- tion of the water level in the

) reservoir. The reservoir is consid- ered a source with a fixed head. ...

¥ include patents  citaq by 671 Related articles Al 8 versions Web of Science: 283 Cite Save More

' include citations
mTML) Tree-based reinforcement learning for optimal water reservoir operation
A Castelletti, S Galelli, M Restelli... - Water Resources ..., 2010 - Wiley Online Library

& Create alert [2] Despite the great progress made in the last decades, optimal operation of water reservoir
systems still remains a very active research area (see the recent review by Labadie [2004]).
The combination of multiple, conflicting water uses, non-linearities in the model and the ...
Cited by 41 Related articles All 4 versions Web of Science: 25 Cite Save More

Reservoir-system simulation and optimization models

RA Wurbs - Joumnal of water resources planning and management, 1993 - ascelibrary.org

... Online publication date: 1-Nov-2012. Rieker, J. and Labadie, J. (2012). "An intelligent agent
for optimal river-reservoir system management.” Water Resources Research,
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Not only well established but, somehow, also overestudied and analysed, looking at the number of publications in the last few decades. So the question: is it still worth studying reservoir operation? Let’s see some reason why we can reasonably reply yes, or more modestly why not


Maybe yes ...

for 3 challenging reasons
and 2 new opportunities
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The 1%t challenge: peak vs untapped
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First reason, is the renewed interest in dam building. Up to few years ago analysts were quite convinced that we reached the maximum expansion capacity in terms of storing facilities, with only few site of lower marginal value left. Data were actually supporting evidence to this intuitions. So for example, the famous parallelilsm with oil by peter gleick who introduced the concept of peak water in a paper published six years ago on pnas. On the other hand, projections seems to provide another picture, with still high investments in Asia and especially in Africa, for example the Congo river, and the world bank  speaking of untepped potential.Menzionare il guardian
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First reason, is the renewed interest in dam building. Up to few years ago analysts were quite convinced that we reached the maximum expansion capacity in terms of storing facilities, with only few site of lower marginal value left. Data were actually supporting evidence to this intuitions. So for example, the famous parallelilsm with oil by peter gleick who introduced the concept of peak water in a paper published six years ago on pnas. On the other hand, projections seems to provide another picture, with still high investments in Asia and especially in Africa, for example the Congo river, and the world bank  speaking of untepped potential.Menzionare il guardian
 


The 2"9: increasing uncertainty

CLIMATE CHANGE
e More intense extremes
e More variable extremes

« Changes in water demand

river flow with return period of 20 years between future period and 1961-1990 (SRES A1B)
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© 2012 JRC, European Commission
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Source: http://ec.evropa.eu/eurostat/
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Second reason, climate change is impacting the water cycle, making everything more variable, faster and more extremes, so ecisting operational schemes needs to be revised and adapted, and something infrastructure upgraded.  Simil

Storage can be a mena of adaptation


The 3'9: expanding the purposes

Source: Lehner, 2011




15t opportunity: new and more data

Towards pervasive sensing of the water cycle
more/better informed operation
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Towards pervasive sensing of the water cycle
more/better informed operation

@ ground sensors
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In the last two decades we assisted to an incredbile imrpovement in the earth obesrvation potential. From high technological devices to citizen science the amount of data available 

Completare spatial and temporal scale


 EnEnvironmental Sensor Networks: A revolution in the earth system science?
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In the last two decades we assisted to an incredbile imrpovement in the earth obesrvation potential. An unprecendented amount of data is becoming available to water managers

From traditional ground measures, to high technological devices to prevasive sensor to model based estimataions, to citizen science we are now able to monitor a high number of variables  at very high temporal and spatial scale. 

 EnEnvironmental Sensor Networks: A revolution in the earth system science?


2hd opportunity: computing power

High-Performance Computing Milestones (1960-2019)
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Dam operation design
Is an optimal control problem



The problem: feedback control

The long-term optimal operation of water resource systems can be
formulated as a g-objective stochastic optimal control problem

m%r;J = |J! J2...J9 letﬂ

Kt

_ t () Ut T water | Xt+1
subject to K system

Xt+1 = ft(Xta ut75t+1)

uy = g (%)

Etv1 ~ ¢(+)

delay




The classic solution: Stochastic Dynamic Programming

value function

Richard Bellman

SDP provides an optimal solution under the following assumptions:
1) Discrete variable domain
2) Objectives and constraints must be time-separable

3) Disturbance process is time-independent



SDP and the 3 curses

In practice, SDP suffers from 3 major limitations

1) Curse of dimensionality: computational cost grows exponentially with
state, control and disturbance dimension [Bellman, 1967];

Qt

unknown
Q-function Look-up table n n n
'—\\i/ Q-function O(Nxx X Nuu X ]\fg6 X T
\ — .. R computations are numerically
\*—-{ u; performed on a discretized variable
X —> domain

k
u,


Relatore
Note di presentazione
The first is the well known curse of dimensionality,  computational costs grow exponentially with the state, control and disturbance dimension. This is basically the effect of performing computations on a discretized variable domain. Practically, this curse makes nearly impossible to solve problems with more than 4 to 5 state variables.
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In practice, SDP suffers from 3 major limitations

1) Curse of dimensionality: computational cost grows exponentially with
state, control and disturbance dimension [Bellman, 1967];

Cgt unknown
_—Q-function Look-up table
.—\‘\g {/’/’”ﬂ_ﬂ Q-function
\ — .. R computations are numerically
\*—-{ u; performed on a discretized variable
Xt —> . domain
Uy

2) Curse of modelling: any variable considered among the operating rule’s
arguments has to be described by a dynamic model [Bertsekas and
Tsitsiklis, 1996];

U, E¢41

i "\\ i
Xt¢/g models are used in a multiple one-

\Q ~ step-ahead-simulation mode

t t+1 time ™
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The second, probably less known curse,  is the one of modelling, first mentioned in 1996 by Betsrekas and Tsitsiklis. Within SDP models must be used in a one step simulation mode, exploring all the possible transitions from all the discrete values of the state. 

This is quite limiting in environmental problem for two reasons: 
the model are generally a big simolification of the real world so the state of the real world system is usually quite larger than its modelling conterpart, so we might want to use additional exogenous information but this need to be modelled so adding to the curse of dimensionality
Second, on a more practical standpoint, most of the simulation models used for env, applications cannot be used, as they ussually requie long warming up to  adjust mis.initialization.





B
SDP and the 3 curses

In practice, SDP suffers from 3 major limitations

3) Curse of multiple objectives: computational cost grows factorially with
the number of objectives considered [Powell, 2011].
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Finally, the last shortcoming comes with multiobjective problem. SDP is inherently single objective and so in MO problem we need to launch an SDP run for each tradeoff we want to explore. Again, computational cost grow exponentially in the number of objectives, 
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3) Curse of multiple objectives: computational cost grows factorially with
the number of objectives considered [Powell, 2011].
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Beyond SDP: ADP and RL

Approximate Dynamic Programming and Reinforcement Learning
provide a framework to overcome some or all the SDP’s curses.

[Powell, 2007; Busoniu et al. 2011]

VALUE FUNCTION-BASED APPROCHES:

« Approximate value iteration [Johnson et, 1993]

« Approximate policy iteration

Model-free or model-based // parametric or non-parametric

POLICY SEARCH-BASED APPROACHES:
« Direct policy search
Simulation-based optimization // parametric

ROLLING POLICIES
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Multi-objective Direct Policy Search (MODPS)

Assume the operating rule belongs to a given family of functions and
search the optimal solution in the policy’s parameter space

Uy = [ (Xt7 Ht)

[Oliveira and Loucks, 1999; Koutsoyiannis and Economou, 2003]
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Multi-objective Direct Policy Search (MODPS)

Assume the operating rule belongs to a given family of functions and
search the optimal solution in the policy’s parameter space

Uy = [ (Xt7 Ht)

ORIGINAL PROBLEM
minJ = [J' J2...JY

POLICY SEARCH PROBLEM

minJ = [J' J%...JY
pe () 0,
subject to subject to
X¢11 = fe(Xe, W, €¢41) X¢11 = fe(Xe, 0y, €¢41)

u = g (Xy) uy = fut(xt,0;)
Et+1 ~ O(°) Et+1 ~ O(°)

x; € R"» x; € R"»

u; € R" u; € R"

g € R g € R

0, € O, € R"

[Oliveira and Loucks, 1999; Koutsoyiannis and Economou, 2003]
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What now matter is the choice of the family of functions and the associated dimensionality of the parameter vector. 



>
Selecting the policy approximation: Ad hoc/Empirism
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If prior knowledge about a (near-)optimal policy is available, an ad-hoc policy  parametrization can be designed. For instance, parametrizations that are linear in the state variables can be used, if it is known that a (near-)optimal policy is a linear state feedback. 
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2. the system is simple (i.e. one reservoir) AND/OR the systems has
one single objective (e.g. water supply) [Oliveira and Loucks, 1999]

NEW York City rule [Clark, 1950]
Space rule [Clark, 1956]
Standard Operating Policy [Draper, 2004]

Rules of thumb identified
empirically
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®
Selecting the policy approximation: Universal Approx.

Provided that some conditions are met, an Universal Approximator is
approximate arbitrarily closely every continuous function.

ARTIFICIAL NEURAL NETWORKS [Cybenko 1989, Funahashi 1989, Hornik et al. 1989]

\ Parameter dimension

—®—(w) ng = ny(N(ng +2) + 1)

[ I / \
Number of NEURONS
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When prior knowledge about the policy is not available, a richer policy parametrization has to be used. And one can resort to universal approximators.  Here are the two most commonly used with DPS. Approximating networks. In this work we compratively analyse these two families of approximators 

Exponential negativa che dà la campana


Con più uscite dovrebbero andare meglio, meno parametri. 
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Selecting the optimization algorithm

Key problem features
 High dimensional search spaces (rich parameterizations)
« Complex search spaces (many local minima)
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When prior knowledge about the policy is not available, a richer policy parametrization has to be used. And one can resort to universal approximators.  Here are the two most commonly used with DPS. Approximating networks. In this work we compratively analyse these two families of approximators 

Exponential negativa che dà la campana
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Selecting the optimization algorithm

Key problem features

 High dimensional search spaces (rich parameterizations)

« Complex search spaces (many local minima)

e Sensitivity to parameter initialization (no-preconditioning)
 Non differentiable objective functions

* Multiple objectives o

e Sensitivity to noise +

BORG [Hadka and Reed 2012; Reed et al. 2013] .

a MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM [

BORG is self-adaptive and employs

« multiple search operators adaptively selected during the optimization

« e-dominance archiving with internal operators to detect search stagnation
 randomized restarts to escape local optima


Relatore
Note di presentazione
Gestire problemi con molte variabili di decisione e spazi di ricerca complessi in un contesto multiobiettivo con molto rumore

GLOBAL GRADIENT_FREE OPTIMIZATION METHODS


>
Selecting the optimization algorithm

Key problem features

 High dimensional search spaces (rich parameterizations)
« Complex search spaces (many local minima)

e Sensitivity to parameter initialization (no-preconditioning)
 Non differentiable objective functions

 Multiple objectives

« Sensitivity to noise + o+

BORG [Hadka and Reed 2012; Reed et al. 2013] %
a MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM ’
* b

BORG is self-adaptive and employs

« multiple search operators adaptively selected during the optimization

« e-dominance archiving with internal operators to detect search stagnation
 randomized restarts to escape local optima

EMODPS : Evolutionary Multiobjective Direct Policy Search

Giuliani et al. [2015]. Journal of Water Resources Planning and Management
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We used the Borg MOEA [Hadka and Reed 2013]
which has been shown to be highly robust across a diverse suite of challenging multi-objective problems.



From a more practical angle



Red-Thai Binh River System - Vietham

CHINA

%1 PTHAILAND -

AN -CA,_‘!:{/IBODIA

Integrated Management of Red-Thai Binh Rivers System (IMRR) funded by the Italian
Ministry of Foreign Affairs http://www.imrr.info/



Hoa Binh reservoir - Vietham

DA
RESERVOIR
\ CATCHMENT

HOA @ POWERPLANT
BINH
@ DIVERSION DAM

THAO —L COMSUMPTIVE USE

LO
VIET TRI

SON TAY

HANOI Y

Main characteristics

« Catchment area 52,000 km?
 Active capacity 6 x 10° m3

* 8 penstocks 2,360 m3/s (240 MW)
* 12 bottom gates 22,000 m3/s

* 6 spillways 14,000 m3/s

* 15% national energy (7,800 GWh)

Operating objectives
* Hydropower production

* Flood control (Hanoi)

source: IWRP2008



>
Experimental Setting: ANN vs RBF

DA A
HOA O\ oo STATE VECTOR (n_x=5)
BINH @ POWERPLANT ) ) - ) )
THag | @ DNONOM « 2 time indexes (sin, cosin)
- e Storage
A/LO * Previous day inflow to reservoir
VIET TRI  Previous day lateral inflow
SON TAY
= CONTROL VECTOR (n_u=1)
HANOI Y « release from the reservoir

ALGORITHM SETTING and RUNNING

 Default Borg MOEA parameterization [Hadka and Reed 2013]

« NFE =500,000 perreplication

» 20 replications to avoid dependence on randomness (seeds)

e Historical horizon 1962-1969, which comprises normal, wet and dry years

Giuliani et al. [2015]. Journal of Water Resources Planning and Management
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Since the Borg MOEA has been demonstrated to be relatively insensitive to the choice of parameters, we use the default algorithm parameterization suggested by Hadka and Reed (2013). 

Epsilon-dominance values equal to 5000 for Jhyd and 5 for Jflo are used to set the resolution of the two operating objectives (CHIARIRE)

Each optimization was run for 500,000 function evaluations (further increased to 2 millions in the analysis of the runtime search dynamics in Section \ref{subsec:results_runtime}). 

To improve solution diversity and avoid dependence on randomness, the solution set from each formulation is the result of 20 random optimization trials. The optimization was run over the horizon 1962-1969, which has been selected as it comprises normal, wet, and dry years. 

The final set of Pareto-optimal policies for each experiment is defined as the set of non-dominated solutions from the results of all the optimization trials. 

In total, the comparative analysis comprises 220 million simulations and requires approximately 1,220 computing hours on a 2 processors Intel Xeon E5-2660 2.20 GHz with 96 GB Ram. 
Something about the ANN and RBF settin




®
Policy performance - operating objectives

ANN
RBF

Hydropower - kWh/d

Floods — cm?/d

Giuliani et al. [2015]. Journal of Water Resources Planning and Management
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The first step has been to identify the best policy structure with the two approximation schemes. So we comparatively analysed the policy perfomance in terms of hydropower porduction and flood control for an increasing number of parameters…  
Cocnlusion RBF is generally better but not isgnificant difference between the different parametrization within each class can be noticed. So we 


In order to better analyze the sensitivity of the policy performance to the ANN/RBF 
349  structure, we computed the three metrics formulated in Section 3 for each optimization 
350  run. These metrics are evaluated with respect to the best known approximation of the 
351  Pareto front, obtained as the set of non-dominated solutions from the results of all the 
352  280 optimization trials (i.e., 20 seeds, 7 structures, 2 approximators). Figures 2b-d report 
353  the best (solid bars) and average (transparent bars) performance in terms of generational 
354  distance IGD, additive "-indicator I", and hypervolume IH, respectively. In contrast with the 
355  results in Figure 2a, the values of the metrics show substantial di↵erences between ANN and 
356  RBF as well as their dependency on the number of neurons/basis. The average metrics of 
357  RBF policies are consistently better than the ones of ANN policies, corresponding to lower 
358  values of IGD and I", and higher values of IH. Moreover, the average performance of ANN 
359  policies degrade when the number of neurons increases (except for n = 4, where the number 
15 
360  of ANN input is larger than the number of neurons), while the RBF policies seem to be less 
361  sensitive to the number of basis. It is worth noting that the gap between RBF and ANN 
362  decreases when looking at the best optimization run. This result suggests that the ANN 
363  policy parameterization is very sensitive to the initialization and the sequence of random 
364  operators employed during the Borg MOEA search. 
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Relatore
Note di presentazione
In this work, we adopt three formal metrics, namely generational distance, additive "-indicator and hypervolume, which respectively account for convergence, measured in term of best available
 consistency (existence of gap in tradeoffs)  and diversity  (TEO). Dark is the best over the 20 runs, the light is average across the 20 runs

A good set of Pareto optimal policies is characterized by low values of the first  two metrics and a high value of the third one. 

This result suggests that the ANN policy parameterization is very sensitive to the initialization and the sequence of random operators employed during the Borg MOEA search. 
From this plot we can also conclude that 6 neurons or 6 basis are the best choice for both



Run time search dynamics (NFA = 2M)
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Relatore
Note di presentazione
In order to better understand the superiority of the RBF parameterization of the HoaBinh  operating policies discussed in the previous sections, we look at the runtime evolution of the 
Borg MOEA search. To guarantee that the algorithm’s search is at convergence, we run a longer optimization with 2 millions function evaluations for a 6 neurons ANN policy and a  6 basis RBF policy, with 20 optimization trials for each approximator.  In each run, we track the search progress by computing the values  every 1,000 function evaluations until the first 50,000 evaluations and, then, every 50,000  until 2 millions. 

 250,000 ok

400, 000 ok rbf faster than ANN so less computationally requiring, but remember that ANN have more parameters. 

The runtime search performance are reported in Figure 4. The values 
385  of IGD in Figure 4a show that few function evaluations (i.e., around 250,000) allows the 
386  identification of solutions close to the reference set obtained from the results of 10 times 
16 
387  longer optimization runs. Moreover, the performance of both ANN and RBF policies in 
388  terms of IGD are almost equivalent from 250,000 to 2 millions function evaluations. 
389  A higher number of function evaluations is instead necessary to reach convergence in the 
390  other two metrics, namely I" and IH illustrated in Figures 4b-c, respectively. These results 
391  confirm the superiority of the RBF operating policies over the ANN ones, both in terms of 
392  consistency (i.e., I") as well as convergence and diversity (i.e., IH ). Such a superiority of RBF 
393  is evident from the beginning of the search and it is probably due the larger dimensionality 
394  of the ANN parameters’ domain, which increases the probability of having a poor performing 
395  initial population. However, the Borg MOEA successfully identifies improved solutions for 
396  both ANN and RBF policies in few runs. The search progress stops around 400,000 function 
397  evaluations, with the RBF policies that consistently outperform the ANN ones. Finally, 
398  the limited improvements in the performance of each solution from 400,000 to 2 millions 
399  guarantee the reliability of the results discussed in the previous sections, which were obtained 
400  with 500,000 functions evaluations. 
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EMODPS scalabillity: system dimensionality
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EMODPS scalabillity: system dimensionality
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EMODPS scalabillity: multiple scenarios
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EMODPS scalability: number of objectives
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EMODPS scalability: number of objectives
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EMODPS scalabillity: rival problem framings

No constraints on the objective shape = comparing many alternative
problem formulations is possible

Worst Case (WC) Worst 1st Percentile (WP1)
50.9 2180 86100 29.2 2520 2.14 39.0

14285 425 0.0 8.2
WC Hydro WC Deficit? WC Flood WP1 Hydro WP1 Deficit? WP1 Flood WP1 Recovery
(Gwh/day) (ms 15)2 Damages (-) (Gwh/day) (ms ;5)2 (m above 11.25 m) (days)

Quinn et al. [2017]. Water Resources Research (under review)



EMODPS scalabillity: direct use of information
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EMODPS scalabillity: direct use of information
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EMODPS diagnostics
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Relatore
Note di presentazione
Fig. 8. Hypervolume performance control maps capturing controllability and efficiency of each MOEA. The color scale represents the percent of the target (75th percentile hypervolume) captured by each local 30-seed approximation set from each tested MOEA parameterization. The control maps are subprojections of the Latin Hypercube samples for each MOEA’s full feasible parameter ranges, focusing on the number of function evaluations (NFEs) and population sizes. Ideal performance is shown as dark blue shading indicating that 100% of the target hypervolume is captured by the MOEA, while dark red designates full algorithmic failure.


Fig. 9. Random seed average search dynamics that result when each MOEA solves the Lower Susquehanna test case using their default parameterizations. Each line represents the average hypervolume attained as a function of the number of function evaluations across 50 random seed runs of each MOEA’s default parameterizations.



Conclusions

= MODPS framework is an interesting alternative to SDP familiy methods for a

number of good reasons

1. No discretization required: NO curse of dimensionality;

2. Does not require separability in time of constraints and objective
functions (e.g. duration curves): NO curse of dimensionality;

3. Can easily include any model-free information as long as this is control-
indipendent: NO curse of modelling;

4. Can be combined with any simulation model (also high fidelity ones):
NO curse of modelling;

5. Can be easily combined with truly multi-objective optimization
algorithms: NO curse of the multiple objectives.



M3O: a toolbox for reservoir operation design

*0® < I moxgiulianiQ.github.ic

M30: Multi-Objective
Optimal Operations

|13 Download .zip '@ Download .tar.gz 2 View on GitHub

M30: Multi-Objective Optimal Operations
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Ongoing projects using EMODPS
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' (including hydropower) of decision support EU H2020
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a research project supported by the European Commission under the Horizon 2020
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All answers will be treated confidentially and anonymaously.
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Thank you in advance, hydrological forecasts

The IMPREX WP8 group
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Improve the quality of state-of-the-art hydro-climatic

X &l forecast capability by targeting the end-users’ needs
(including hydropower) of decision support EU H2020
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Anghileri et al [2016]. Water Resources Research
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A Decision-Analytic Framework to explore the water-
energy-food nexus in complex and transboundary water

resources systems of fast growing developing countries
EU H2020

Zambezi River

Culley et al [2016]. Water Resources Research

Giuliani & Castelletti [2016]. Climatic Changes



Other projects

SOft path WATer management adaptation to
CHanging climate Fondazionecariplo

RCP4.5-CCLM4-CNRM
RCP4.5-RCA4-CNRM
RCP4.5-CCLM4-ICHEC F P,
RCP4.5-HIRHAMS-ICHEC F 14
RCP4.5-RACMO22E-ICHEC |
RCP4.5-RCA4-ICHEC |
RCP4.5-CCLM4-MPI
RCP4.5-REMO2009-MPI
RCP4.5-RCA4-CCCma
RCP4.5-RCA4-IPSL
RCP4.5-RCA4-MIROC |
ACP4.5-RCA4-NCC

_ _ ACP4.5-ACA4NOAA
RCP8.5-CCLM4-CNRM
RCP8.5-RCA4-CNRM
RCP8.5-CCLM4-ICHEC
RCP8.5-HIRHAMS-ICHEC
RCP8.5-RACMO22E-ICHEC
RCPS8.5-RCA4-ICHEC
RCP8.5-RCA4-MP| |
RCPS.5-RCA4-CCCma i1l
RACP8.5-ACA4-IPSL
RCP8.5-RCA4-MIROC
RCP8.5-RCA4-NCC ]
RCP8.5-RCA4-NOAA |© il
RCP8.5-CCLM4-MPI | '
RCP8.5-REMO2009-MPI

I Tomato [ ]Maize [_]Rice
I Soybean [ Pasture [ | N/A

5

J F M A M

historical variabilili'

-200 -150 -100 -50 0 50 100 150

Giuliani & Castelletti [2016]. Climatic Changes Giuliani et al [2016]b. Water Resources Research



't POLITECNICO
1/ MILANO 1863

AMBER

www.amber.international
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