
MILANO 
15.06.2017 

FEEM 

Andrea Castelletti  
POLITECNICO DI MILANO 

ETH ZURICH 

Direct Policy Search: a flexible and robust 
approach to complex water operation problems 

Relatore
Note di presentazione
Thank you Massimo and thank FEEM and IEFE for the invitation that gives me the opportunity to share with you some of the research we are doing between Milano and Zurich.
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Note di presentazione
I’m originally an Environmental Engineer who ended up in a Control and Automation department as all most of the people in our groupOur core interest is water resources management in a very broad sense. We are not hydrologists, so our focus is not on processes bur rather on decision making and operation.  So behind this box we concentrate more than half of our energy and projects. Then we recently opened up some new research lines. But now let’s go back to the talk of today. 
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Note di presentazione
Today I will give you an overview of an approach to control water resources systems which is becoming very popular and to which we contributed with some new ideas partly in collaboration with Cornell University. As far as I understood from Massimo, this same approach can be used also for problem at a larger spatial scale.



Dams: An ancestral technology … 

Sadd-el-Kafara, Egypt   
2700-2600 BC 

Source: http://www.hydriaproject.net 
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Note di presentazione
As said our focus is on water and rivers. Damming rivers and dams is one of the oldest technologies we invented. Here you have a picture of the oldest known dam in Egypt dating 26 hundred BC. So a thousand years after Sumerians developed writing. And it is a technology still exstensively used by humankind. As many other  dimensions of our society also dams went through a big acceleration processNearly five thousand years ago masonry-faced earthen bout forty kilometres south of Cairo, close to the town of Helwan, lie the ruins of the Sadd-el-Kafara ( = “dam of the Pagans”), an embankment dam of great size built around 2700-2600 BC, discovered over 100 years ago in the old, deep and dry Garawi ravine. The masonry-faced earthen dam originally measured 14 m height and 113 m length along the crest and is considered today the oldest dam of such size known in the world.



... that recently accelerated  

Source: hydrolab.geog.mcgill.ca 
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Note di presentazione
As you will see in this movie which is showing the development of dams across more than once century from the end of the 18 hundredGlobal Reservoir and Dam (GRanD) Database






Dams: Spatiotemporal water shifters 
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Note di presentazione
Reservoirs are buffer against natural variability in discharge, filtering out temporal variability and ensuring steady supply.So they basically have two main functions, one is to filter the natural variability in the dischage and ensure a steady supply, possibly moving volume of water across time. The second is to store gavitational energy behing dma and so exploit hydraulic heads. Dams have two main functions. The first is to store water to compensate for fluctuations in river flow or in demand for water and energy. The second to raise the level of the water upstream to enable water to be diverted into a canal or to increase ’hydraulic head’ –– the difference in height between the surface of a reservoir and the river downstream. Water can store gravitational energy



Still worth research? 

Maass et al (1962), Design of 
water resources systems, 
Harvard University Press, 
Cambridge, Mass.  

Ripple, W. (1883) The capacity of storage reservoirs 
for water supply. Minutes of the Proceedings, 
Institution of Civil Engineers, Vol 71. Thimas Telfors 
270-278 

Loucks et al. (1981), 
Water resources systems 
planning and analysis, 
Prentice-Hall 
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Note di presentazione
Designing the operation of dam has been on the research agenda of many academics in the civil and environmental enegineering for more than one centuryRicordarne alcuniSo a ligitimate question, is whether does it still make sense to study reservoir operation and investing in developing new approaches, and algorithms and tools to support dam operators?Of course the world is running fast, a number of emerging research domains are progressing at an impressing rate, think about natotechnoclogies, genomics, robotics, material science, while water science and hydrology looks like we are already got to the asymptoth and only marginal improvements are possible. In this context, reservoir operation appears as a quite traditional and well established topic. 
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Note di presentazione
Not only well established but, somehow, also overestudied and analysed, looking at the number of publications in the last few decades. So the question: is it still worth studying reservoir operation? Let’s see some reason why we can reasonably reply yes, or more modestly why not



Maybe yes ...  
 

for 3 challenging reasons 
and 2 new opportunities  



The 1st challenge: peak vs untapped 

Despite for some analyst water supply 
expansion is constrained (PEAK WATER) …. 
P.H. Gleick & M. Palanniappan, PNAS, 107(25), 2010. 

source: Gleick, 2003 

… for others the untapped 
potential is still huge, especially 
in Africa and China  

source: Zerfl et al 2014 
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Note di presentazione
First reason, is the renewed interest in dam building. Up to few years ago analysts were quite convinced that we reached the maximum expansion capacity in terms of storing facilities, with only few site of lower marginal value left. Data were actually supporting evidence to this intuitions. So for example, the famous parallelilsm with oil by peter gleick who introduced the concept of peak water in a paper published six years ago on pnas. On the other hand, projections seems to provide another picture, with still high investments in Asia and especially in Africa, for example the Congo river, and the world bank  speaking of untepped potential.Menzionare il guardian 
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Note di presentazione
First reason, is the renewed interest in dam building. Up to few years ago analysts were quite convinced that we reached the maximum expansion capacity in terms of storing facilities, with only few site of lower marginal value left. Data were actually supporting evidence to this intuitions. So for example, the famous parallelilsm with oil by peter gleick who introduced the concept of peak water in a paper published six years ago on pnas. On the other hand, projections seems to provide another picture, with still high investments in Asia and especially in Africa, for example the Congo river, and the world bank  speaking of untepped potential.Menzionare il guardian 



The 2nd: increasing uncertainty 

CLIMATE CHANGE 

• More intense extremes  

• More variable extremes 

• Changes in water demand 
 

SOCIO-ECONOMIC CHANGE 

• Increased price variability 

• Change in energy demand 

• Change in energy markets 

 
 

Relatore
Note di presentazione
Second reason, climate change is impacting the water cycle, making everything more variable, faster and more extremes, so ecisting operational schemes needs to be revised and adapted, and something infrastructure upgraded.  SimilStorage can be a mena of adaptation



The 3rd:  expanding the purposes 

Source: Lehner, 2011 



Towards pervasive sensing of the water cycle 
more/better informed operation 

CITIZEN SCIENCE 

SMART SENSORS 

HUMAN SENSORS 

LABS ON CHIP 

ENVINODES 
SMART DUST 

VIRTUAL SENSORS 

REMOTE SENSING 

CYBERINFRASTRUCTURES 

CROWNSOURCING 

1st  opportunity: new and more data 
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Relatore
Note di presentazione
In the last two decades we assisted to an incredbile imrpovement in the earth obesrvation potential. From high technological devices to citizen science the amount of data available Completare spatial and temporal scale EnEnvironmental Sensor Networks: A revolution in the earth system science?
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Towards pervasive sensing of the water cycle 
more/better informed operation 

1st  opportunity: new and more data 

Relatore
Note di presentazione
In the last two decades we assisted to an incredbile imrpovement in the earth obesrvation potential. An unprecendented amount of data is becoming available to water managersFrom traditional ground measures, to high technological devices to prevasive sensor to model based estimataions, to citizen science we are now able to monitor a high number of variables  at very high temporal and spatial scale.  EnEnvironmental Sensor Networks: A revolution in the earth system science?



2nd  opportunity: computing power 



Dam operation design 
is an optimal control problem 



The problem: feedback control 

The long-term optimal operation of water resource systems can be 
formulated as a q-objective stochastic optimal control problem 

subject to 

 
delay 

reservoir water 
system 



The classic solution: Stochastic Dynamic Programming 

SDP provides an optimal solution under the following assumptions: 

1) Discrete variable domain 

2) Objectives and constraints must be time-separable  

3) Disturbance process is time-independent 

Richard Bellman  
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SDP and the 3 curses 

1) Curse of dimensionality: computational cost grows exponentially with 
state, control and disturbance dimension [Bellman, 1967]; 

Look-up table 
Q-function 

unknown  
Q-function 

computations are numerically 
performed on a discretized variable 
domain 

In practice,  SDP suffers from 3 major limitations 

Relatore
Note di presentazione
The first is the well known curse of dimensionality,  computational costs grow exponentially with the state, control and disturbance dimension. This is basically the effect of performing computations on a discretized variable domain. Practically, this curse makes nearly impossible to solve problems with more than 4 to 5 state variables.



SDP and the 3 curses 

1) Curse of dimensionality: computational cost grows exponentially with 
state, control and disturbance dimension [Bellman, 1967]; 

Look-up table 
Q-function 

unknown  
Q-function 

computations are numerically 
performed on a discretized variable 
domain 

2) Curse of modelling: any variable considered among the operating rule’s 
arguments has to be described by a dynamic model [Bertsekas and 
Tsitsiklis, 1996]; 

time t               t+1 

models are used in a multiple one-
step-ahead-simulation mode  

In practice,  SDP suffers from 3 major limitations 

Relatore
Note di presentazione
The second, probably less known curse,  is the one of modelling, first mentioned in 1996 by Betsrekas and Tsitsiklis. Within SDP models must be used in a one step simulation mode, exploring all the possible transitions from all the discrete values of the state. This is quite limiting in environmental problem for two reasons: the model are generally a big simolification of the real world so the state of the real world system is usually quite larger than its modelling conterpart, so we might want to use additional exogenous information but this need to be modelled so adding to the curse of dimensionalitySecond, on a more practical standpoint, most of the simulation models used for env, applications cannot be used, as they ussually requie long warming up to  adjust mis.initialization.



SDP and the 3 curses 

3) Curse of  multiple objectives: computational cost grows factorially with 
the number of objectives considered [Powell, 2011]. 

PARETO frontier 

multi-objective problems are solved 
by reiteratively solving single 
objective problems  (weighting 
method) 

In practice,  SDP suffers from 3 major limitations 

Relatore
Note di presentazione
Finally, the last shortcoming comes with multiobjective problem. SDP is inherently single objective and so in MO problem we need to launch an SDP run for each tradeoff we want to explore. Again, computational cost grow exponentially in the number of objectives, 
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3) Curse of  multiple objectives: computational cost grows factorially with 
the number of objectives considered [Powell, 2011]. 

PARETO frontier 

In practice,  SDP suffers from 3 major limitations 



Beyond SDP: ADP and RL 

Approximate Dynamic Programming and Reinforcement Learning 
provide a framework to overcome some or all the SDP’s  curses. 
[Powell, 2007; Busoniu et al. 2011] 

VALUE FUNCTION-BASED APPROCHES: 
• Approximate value iteration [Johnson et, 1993] 

• Approximate policy iteration 
Model-free or model-based // parametric or non-parametric 

POLICY SEARCH-BASED APPROACHES: 
• Direct policy search 
Simulation-based optimization // parametric 

ROLLING POLICIES 



Beyond SDP: ADP and RL 

Approximate Dynamic Programming and Reinforcement Learning 
provide a framework to overcome some or all the SDP’s  curses. 
[Powell, 2007; Busoniu et al. 2011] 

VALUE FUNCTION-BASED APPROCHES: 
• Approximate value iteration [Johnson et, 1993] 

• Approximate policy iteration 
Model-free or model-based // parametric or non-parametric 

POLICY SEARCH-BASED APPROACHES: 
• Direct policy search 
Simulation-based optimization // parametric 

ROLLING POLICIES 



Multi-objective Direct Policy Search (MODPS) 

Assume the operating rule belongs to a given family of functions and 
search the optimal solution in the policy’s parameter space 

[Oliveira and Loucks, 1999; Koutsoyiannis and Economou, 2003] 



Multi-objective Direct Policy Search (MODPS) 

Assume the operating rule belongs to a given family of functions and 
search the optimal solution in the policy’s parameter space 

subject to 

 
subject to 

 

ORIGINAL PROBLEM POLICY SEARCH  PROBLEM 

[Oliveira and Loucks, 1999; Koutsoyiannis and Economou, 2003] 

Relatore
Note di presentazione
What now matter is the choice of the family of functions and the associated dimensionality of the parameter vector. 



WHEN 
1. The system is already in operation     

 
 
 
 
 
 
 

 

Selecting the policy approximation: Ad hoc/Empirism 
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Identify existing regularities in a 
sample of the operator behaviour 
[Guariso et al, 1986] 

Relatore
Note di presentazione
If prior knowledge about a (near-)optimal policy is available, an ad-hoc policy  parametrization can be designed. For instance, parametrizations that are linear in the state variables can be used, if it is known that a (near-)optimal policy is a linear state feedback. 



WHEN 
1. The system is already in operation     

 
 
 
 
 
 
 
 

2. the system is simple (i.e. one reservoir) AND/OR the systems has 
one single objective (e.g. water supply) [Oliveira and Loucks, 1999] 

 

Selecting the policy approximation: Ad hoc/Empirism 
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• NEW York City rule [Clark, 1950] 

• Space rule [Clark, 1956] 

• Standard Operating Policy [Draper, 2004] 

• ….. 

Identify existing regularities in a 
sample of the operator behaviour 
[Guariso et al, 1986] 

Rules of thumb identified 
empirically  
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Note di presentazione




Selecting the policy approximation: Universal Approx. 

Provided that some conditions are met, an Universal Approximator is 
approximate arbitrarily closely every continuous function.  

ARTIFICIAL NEURAL NETWORKS  [Cybenko 1989, Funahashi 1989, Hornik et al. 1989] 
 
 
 
 
 
 
 
 

Parameter dimension 

Number of  NEURONS 

Relatore
Note di presentazione
When prior knowledge about the policy is not available, a richer policy parametrization has to be used. And one can resort to universal approximators.  Here are the two most commonly used with DPS. Approximating networks. In this work we compratively analyse these two families of approximators Exponential negativa che dà la campanaCon più uscite dovrebbero andare meglio, meno parametri. 
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ARTIFICIAL NEURAL NETWORKS  [Cybenko 1989, Funahashi 1989, Hornik et al. 1989] 
 
 
 
 
 
 
 

GAUSSIAN RADIAL BASIS FUNCTIONS [Busoniu et al. 2011] 
 

Parameter dimension 

Parameter dimension 

Number of  NEURONS 

Number of BASES 



Selecting the optimization algorithm  

Key problem features 
• High dimensional search spaces (rich parameterizations) 
• Complex search spaces (many local minima) 
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Note di presentazione
When prior knowledge about the policy is not available, a richer policy parametrization has to be used. And one can resort to universal approximators.  Here are the two most commonly used with DPS. Approximating networks. In this work we compratively analyse these two families of approximators Exponential negativa che dà la campanaCon più uscite dovrebbero andare meglio, meno parametri. 
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Selecting the optimization algorithm  

BORG is self-adaptive and employs  
• multiple search operators adaptively selected during the optimization  
• e-dominance archiving with internal operators to detect search stagnation 
• randomized restarts to escape local optima 
 

BORG  [Hadka and Reed 2012; Reed et al. 2013]  
a MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM 

Key problem features 
• High dimensional search spaces (rich parameterizations) 
• Complex search spaces (many local minima) 
• Sensitivity to parameter initialization (no-preconditioning) 
• Non differentiable objective functions 
• Multiple objectives 
• Sensitivity to noise 
 

Relatore
Note di presentazione
Gestire problemi con molte variabili di decisione e spazi di ricerca complessi in un contesto multiobiettivo con molto rumoreGLOBAL GRADIENT_FREE OPTIMIZATION METHODS
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Key problem features 
• High dimensional search spaces (rich parameterizations) 
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EMODPS : Evolutionary Multiobjective Direct Policy Search 
Giuliani et al. [2015]. Journal of Water Resources Planning and Management 

Relatore
Note di presentazione
We used the Borg MOEA [Hadka and Reed 2013]which has been shown to be highly robust across a diverse suite of challenging multi-objective problems.



From a more practical angle 



Red-Thai Binh River System - Vietnam 

Integrated Management of Red-Thai  Binh Rivers System (IMRR) funded by the Italian 
Ministry of Foreign Affairs http://www.imrr.info/ 
  



Hoa Binh reservoir - Vietnam 

Main characteristics 
• Catchment area 52,000 km2 

• Active capacity 6 x 109 m3 
• 8 penstocks 2,360 m3/s (240 MW) 
• 12 bottom gates 22,000 m3/s 
• 6 spillways 14,000 m3/s 
• 15% national energy (7,800 GWh) 
 

 

source: IWRP2008 

Operating objectives 
• Hydropower production 
• Flood control (Hanoi) 



Experimental Setting: ANN vs RBF 

STATE VECTOR (n_x=5) 
• 2 time indexes (sin, cosin) 
• Storage 
• Previous day inflow to reservoir 
• Previous day lateral inflow 

 
CONTROL VECTOR (n_u=1) 
• release from the reservoir 

ALGORITHM SETTING and RUNNING 
• Default Borg MOEA parameterization [Hadka and Reed 2013] 
• NFE = 500,000  per replication 
• 20 replications to avoid dependence on randomness (seeds) 
• Historical horizon 1962-1969, which comprises normal, wet and dry years 

Giuliani et al. [2015]. Journal of Water Resources Planning and Management 

Relatore
Note di presentazione
Since the Borg MOEA has been demonstrated to be relatively insensitive to the choice of parameters, we use the default algorithm parameterization suggested by Hadka and Reed (2013). Epsilon-dominance values equal to 5000 for Jhyd and 5 for Jflo are used to set the resolution of the two operating objectives (CHIARIRE)Each optimization was run for 500,000 function evaluations (further increased to 2 millions in the analysis of the runtime search dynamics in Section \ref{subsec:results_runtime}). To improve solution diversity and avoid dependence on randomness, the solution set from each formulation is the result of 20 random optimization trials. The optimization was run over the horizon 1962-1969, which has been selected as it comprises normal, wet, and dry years. The final set of Pareto-optimal policies for each experiment is defined as the set of non-dominated solutions from the results of all the optimization trials. In total, the comparative analysis comprises 220 million simulations and requires approximately 1,220 computing hours on a 2 processors Intel Xeon E5-2660 2.20 GHz with 96 GB Ram. Something about the ANN and RBF settin



Policy performance – operating objectives 
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Giuliani et al. [2015]. Journal of Water Resources Planning and Management 
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Note di presentazione
The first step has been to identify the best policy structure with the two approximation schemes. So we comparatively analysed the policy perfomance in terms of hydropower porduction and flood control for an increasing number of parameters…  Cocnlusion RBF is generally better but not isgnificant difference between the different parametrization within each class can be noticed. So we In order to better analyze the sensitivity of the policy performance to the ANN/RBF 349  structure, we computed the three metrics formulated in Section 3 for each optimization 350  run. These metrics are evaluated with respect to the best known approximation of the 351  Pareto front, obtained as the set of non-dominated solutions from the results of all the 352  280 optimization trials (i.e., 20 seeds, 7 structures, 2 approximators). Figures 2b-d report 353  the best (solid bars) and average (transparent bars) performance in terms of generational 354  distance IGD, additive "-indicator I", and hypervolume IH, respectively. In contrast with the 355  results in Figure 2a, the values of the metrics show substantial di↵erences between ANN and 356  RBF as well as their dependency on the number of neurons/basis. The average metrics of 357  RBF policies are consistently better than the ones of ANN policies, corresponding to lower 358  values of IGD and I", and higher values of IH. Moreover, the average performance of ANN 359  policies degrade when the number of neurons increases (except for n = 4, where the number 15 360  of ANN input is larger than the number of neurons), while the RBF policies seem to be less 361  sensitive to the number of basis. It is worth noting that the gap between RBF and ANN 362  decreases when looking at the best optimization run. This result suggests that the ANN 363  policy parameterization is very sensitive to the initialization and the sequence of random 364  operators employed during the Borg MOEA search. 



Policy performance – front approximation quality 
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Relatore
Note di presentazione
In this work, we adopt three formal metrics, namely generational distance, additive "-indicator and hypervolume, which respectively account for convergence, measured in term of best available consistency (existence of gap in tradeoffs)  and diversity  (TEO). Dark is the best over the 20 runs, the light is average across the 20 runsA good set of Pareto optimal policies is characterized by low values of the first  two metrics and a high value of the third one. This result suggests that the ANN policy parameterization is very sensitive to the initialization and the sequence of random operators employed during the Borg MOEA search. From this plot we can also conclude that 6 neurons or 6 basis are the best choice for both



ANN ( 6 neurons ) 
RBF (6 bases) 

Run time search dynamics (NFA = 2M) 

CONVERGENCE CONSISTENCY DIVERSITY 

NFA (x106) NFA (x106) NFA (x106) 

Relatore
Note di presentazione
In order to better understand the superiority of the RBF parameterization of the HoaBinh  operating policies discussed in the previous sections, we look at the runtime evolution of the Borg MOEA search. To guarantee that the algorithm’s search is at convergence, we run a longer optimization with 2 millions function evaluations for a 6 neurons ANN policy and a  6 basis RBF policy, with 20 optimization trials for each approximator.  In each run, we track the search progress by computing the values  every 1,000 function evaluations until the first 50,000 evaluations and, then, every 50,000  until 2 millions.  250,000 ok400, 000 ok rbf faster than ANN so less computationally requiring, but remember that ANN have more parameters. The runtime search performance are reported in Figure 4. The values 385  of IGD in Figure 4a show that few function evaluations (i.e., around 250,000) allows the 386  identification of solutions close to the reference set obtained from the results of 10 times 16 387  longer optimization runs. Moreover, the performance of both ANN and RBF policies in 388  terms of IGD are almost equivalent from 250,000 to 2 millions function evaluations. 389  A higher number of function evaluations is instead necessary to reach convergence in the 390  other two metrics, namely I" and IH illustrated in Figures 4b-c, respectively. These results 391  confirm the superiority of the RBF operating policies over the ANN ones, both in terms of 392  consistency (i.e., I") as well as convergence and diversity (i.e., IH ). Such a superiority of RBF 393  is evident from the beginning of the search and it is probably due the larger dimensionality 394  of the ANN parameters’ domain, which increases the probability of having a poor performing 395  initial population. However, the Borg MOEA successfully identifies improved solutions for 396  both ANN and RBF policies in few runs. The search progress stops around 400,000 function 397  evaluations, with the RBF policies that consistently outperform the ANN ones. Finally, 398  the limited improvements in the performance of each solution from 400,000 to 2 millions 399  guarantee the reliability of the results discussed in the previous sections, which were obtained 400  with 500,000 functions evaluations. 



Policy visual analytics 



Policy visual analytics 



EMODPS scalability: system dimensionality 

Problem complexity: 
• 4 reservoirs 
• 5 sub-catchments 
• 176 decision variables (policy 

parameters) 
• 3 competing objectives 

Giuliani et al. [2017]. IEEE Transactions on Control System Technology 



EMODPS scalability: system dimensionality 

Problem complexity: 
• 4 reservoirs 
• 5 sub-catchments 
• 176 decision variables (policy 

parameters) 
• 3 competing objectives 

Giuliani et al. [2016]. IEEE Transactions on Control System Technology 



EMODPS scalability: multiple scenarios 

Problem complexity: 
• 4 reservoirs 
• 5 sub-catchments 
• 176 decision variables (policy 

parameters) 
• 3 competing objectives 

Giuliani et al. [2016]. Environmental Research Letter 



EMODPS scalability: number of objectives 

Giuliani et al. [2015]. Water Resources Research 



EMODPS scalability: number of objectives 

Giuliani et al. [2015]. Water Resources Research 



EMODPS scalability: rival problem framings 

Quinn et al. [2017]. Water Resources Research (under review) 

No constraints on the objective shape = comparing many alternative 
problem formulations is possible 



EMODPS scalability: direct use of information 

Giuliani et al. [2015]. Water Resources Research Denaro et al. [2017]. Advances in Water Resources 



EMODPS scalability: direct use of information 

Giuliani et al. [2016]. in preparation 

Policy conditioned on ENSO indices 



EMODPS diagnostics 

Salazar et al. [2016]. Advances in Water Resources 

Relatore
Note di presentazione
Fig. 8. Hypervolume performance control maps capturing controllability and efficiency of each MOEA. The color scale represents the percent of the target (75th percentile hypervolume) captured by each local 30-seed approximation set from each tested MOEA parameterization. The control maps are subprojections of the Latin Hypercube samples for each MOEA’s full feasible parameter ranges, focusing on the number of function evaluations (NFEs) and population sizes. Ideal performance is shown as dark blue shading indicating that 100% of the target hypervolume is captured by the MOEA, while dark red designates full algorithmic failure.Fig. 9. Random seed average search dynamics that result when each MOEA solves the Lower Susquehanna test case using their default parameterizations. Each line represents the average hypervolume attained as a function of the number of function evaluations across 50 random seed runs of each MOEA’s default parameterizations.



Conclusions  

 MODPS framework is an interesting alternative to SDP familiy methods for a 

number of good reasons 

 1. No discretization required: NO curse of dimensionality; 

2. Does not require separability in time of constraints and objective 
functions (e.g. duration curves): NO curse of dimensionality; 

3. Can easily include any model-free information as long as this is control-
indipendent: NO curse of modelling; 

4. Can be combined with any simulation model (also high fidelity ones): 
NO curse of modelling;  

5. Can be easily combined with truly multi-objective optimization 
algorithms:  NO curse of the multiple objectives.  
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Ongoing projects using EMODPS  



 NRM 

Improve the quality of state-of-the-art hydro-climatic 
forecast capability by targeting the end-users’ needs 
(including hydropower) of decision support  EU H2020 
 

Other projects 
 

www.imprex.eu 
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Improve the quality of state-of-the-art hydro-climatic 
forecast capability by targeting the end-users’ needs 
(including hydropower) of decision support  EU H2020 
 

Other projects 
 

Anghileri et al [2016]. Water Resources Research 

www.imprex.eu 





 NRM 

Other projects 
 

A Decision-Analytic Framework to explore the water-
energy-food nexus in complex and transboundary water 
resources systems of fast growing developing countries   
EU H2020  

Giuliani & Castelletti [2016]. Climatic Changes 

Culley et al [2016]. Water Resources Research 



 NRM 

Other projects 
 

Giuliani & Castelletti [2016]. Climatic Changes 

SOft path WATer management adaptation to 
CHanging climate Fondazionecariplo 

Giuliani et al [2016]b. Water Resources Research 



 NRM 

Other projects 
 

Schmitt et al [2015]. Water Resources Research 

Dam 

Siltated Reservoir  

Siltated Reservoir, Da River Basin, PRC  

Adaptive Management of Barriers in 
European Rivers EU H2020 

www.amber.international 



www.nrm.deib.polimi.it 
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