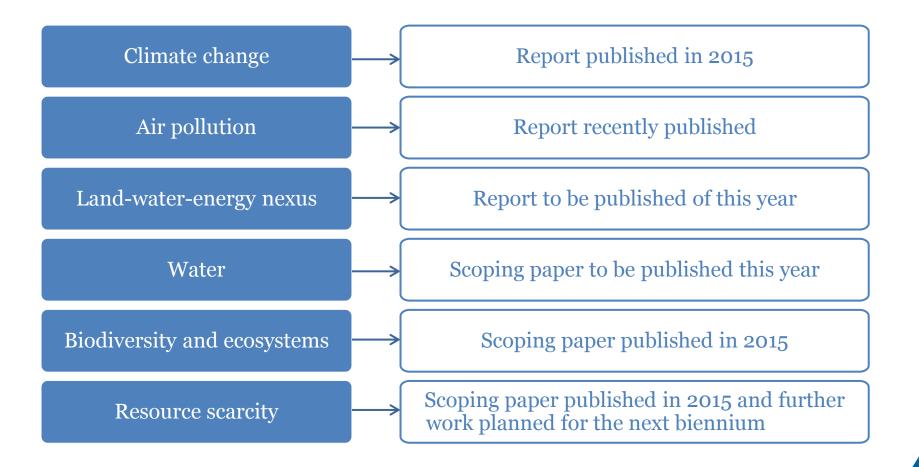


THE ECONOMIC CONSEQUENCES OF OUTDOOR AIR POLLUTION

Elisa Lanzi OECD Environment Directorate

FEEM Venice, September 1 2016

- OECD's CIRCLE project
- Overview of the air pollution report
- Methodology
- Main results
- Conclusions


THE OECD'S CIRCLE PROJECT

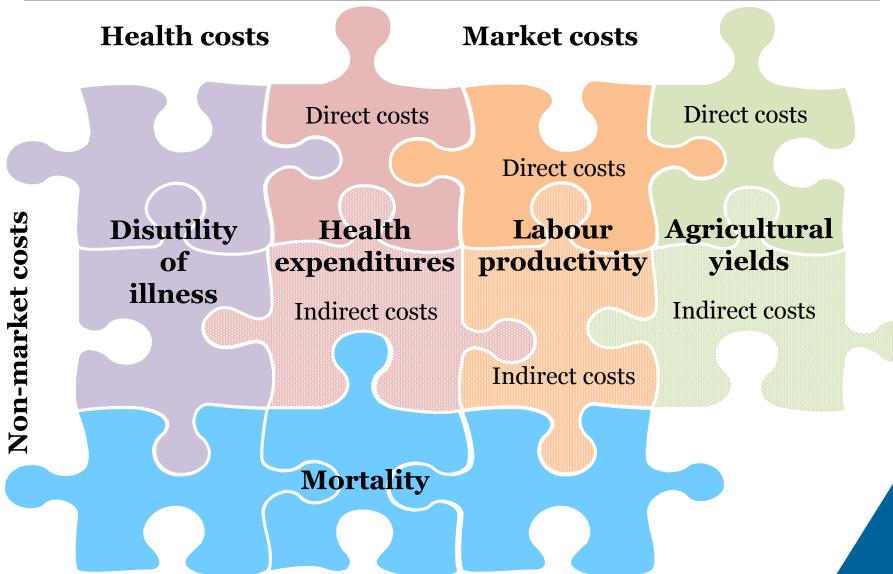
- Two key objectives:
 - Quantify how changes in environmental quality, climate change, degradation and scarcity of natural resources affect the economy, and prospects for long-term growth (costs of inaction)
 - Assess benefits, as well as trade-offs, associated with policy responses to these environmental challenges (benefits of policy action)
- Regional and sectoral quantitative approach where possible, coupled with more general insights where needed
 - Market impacts: production function approach
 - Non-market impacts: valuation approach

AIR POLLUTION REPORT

Impacts of air pollution

– Health impacts

- Mortality
- Morbidity: illness (especially respiratory and cardiovascular diseases)


Other impacts

- Agriculture
- Biodiversity and ecosystems
- Buildings and cultural heritage
- Visibility

- The impacts of air pollution on health and the environment have economic consequences (e.g. through labour productivity changes)
- Economic feedback effects best captured in a general equilibrium framework, which considers direct and indirect effects
- Some economic costs cannot be calculated in a general equilibrium framework (e.g. mortality)

- Mayers and van Regemorter (2008): air pollution feedbacks in Europe (GEM-E3 model)
 - Utility is derived from consumption, leisure and health status
- Vrontisi et al. (2016): benefits of air pollution policies in the EU (GEM-E3 model)
 - Simpler approach, similar to what done for climate change in PESETA

- Studies with the EPPA model
 - Health incorporated in the EPPA model as a consumption tradeoff between healthcare and leisure expenditures
 - Matus (2005; 2011): costs of air pollution impacts and benefits of policies in China
 - Matus et al. (2008): air pollution health effects in the US
 - Nam et al. (2009): welfare loss from air pollution in Europe

- Global study
- Calculate market costs in a general equilibrium framework
 - Following Vrontisi et al. (2008) and existing work on climate change
- Calculate non-market costs separately based on results from valuation studies

-> overview of both aspects and types of costs

METHODOLOGY

Effects of air pollution impacts on economic growth to 2060

Economic activity	• ENV-Linkages model
Emissions	 ENV-Linkages model Emission coefficients from IIASA's GAINS model
Concentrations	• EC-JRC's TM5-FASST model
Biophysical impacts	 Impacts on crop yields with TM5-FASST model Health impacts using functions based on GBD
Economic costs	 Economic feedbacks using ENV-Linkages model Non-market costs calculated based on results of valuation studies

- Computable General Equilibrium (CGE) model
 - Multi-regional, multi-sectoral
 - All economic activity is part of a closed, linked system
 - Simultaneous equilibrium on all markets
 - Structural trends, no business cycles
- Dynamics
 - Solved iteratively over time (recursive-dynamic)
 - Capital vintages

25 regions and 35 sectors

Agriculture	Manufacturing		
Paddy rice	Paper and paper products		
Wheat and meslin	Chemicals		
Other grains	Non-metallic minerals		
Vegetables and fruits	Metals n.e.s.		
Sugar cane and sugar beet	Fabricated metal products		
Oil seeds	Other manufacturing		
Plant fibres	Motor vehicles		
Other crops	Electronic equipment		
Livestock	Textiles		
Forestry			
Fisheries			

Natural resources and energy	Services
Coal	Land transport
Crude oil	Air transport
Gas extraction and distribution	Water transport
Other mining	Construction
Petroleum and coal products	Trade other services and dwellings
Electricity (5 technologies*)	Other services (government)

Emission projections

- Emissions linked to projections of economic activities in ENV-Linkages using data from GAINS
 - Emissions from combustion linked to fossil fuel inputs in relevant sectors (e.g. power generation)
 - Other emissions linked to output (e.g. chemicals)
- Pollutants
 - sulphur dioxide (SO2)
 - nitrogen oxides (NOx)
 - black carbon (BC)
 - organic carbon (OC)
 - carbon monoxide (CO)
 - volatile organic compounds (VOCs)
 - ammonia (NH3)

- Impacts of air pollution depend on the levels of concentrations of pollutants in the air
- Calculating concentrations needs
 - Downscaling from macro regions to local level
 - Data on regional emissions and geographical variables (e.g. presence of urban areas in a certain region)
- Concentrations of particulate matter (PM2.5) and ground level ozone (O3) calculated with the EC-JRC's TM5-FASST

- Concentrations are used to calculate impacts
 - increased mortality (premature deaths)
 - increased morbidity (number of sick days, hospital admissions...)
 - changes in crop yields
- Health impacts are calculated based on the Global Burden of Disease (GBD)
 - Uncertainty range reflects two specifications of the concentrationresponse function used
- Agricultural impacts are calculated using TM5-FASST

Valuation of health impacts

- Market impacts
 - Additional health costs
- Non-market impacts
 - Cost of premature deaths
 - Costs of pain and suffering

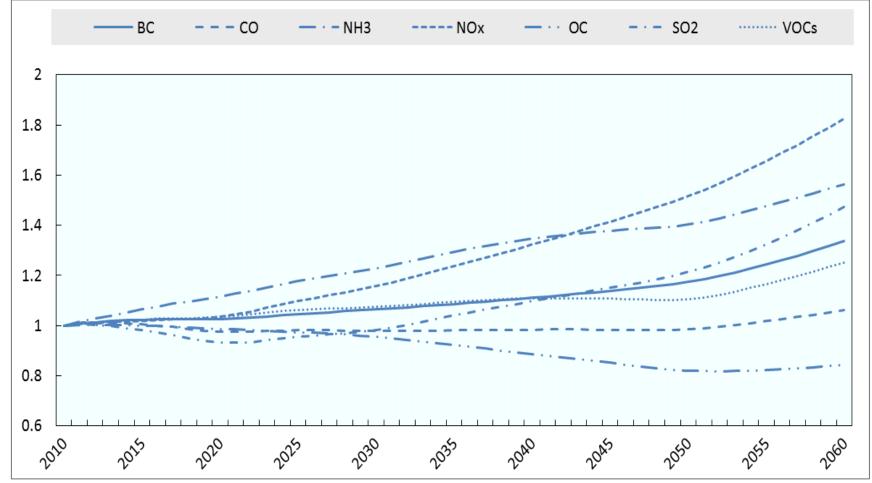
Baseline unit values (for OECD; USD, 2005 PPP exchange rates)

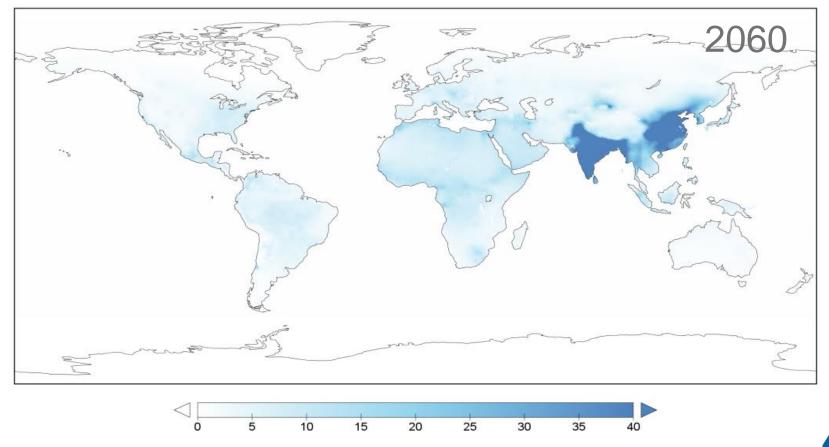
		0
Effect	Cost element	Value
Mortality, deaths	Welfare cost	3 million
Chronic bronchitis in adults (new cases)	Welfare cost	61,610
	Healthcare cost	13,070
	Productivity	0
Bronchitis in children (cases)	Welfare cost	680
	Healthcare cost	57
Equivalent hospital admissions	Welfare cost	575
	Healthcare cost	3,430
Restricted activity days	Welfare	106
Minor restricted activity days	Welfare	48
Restricted activity days	Welfare cost Healthcare cost Welfare	575 3,430 106

Source: OECD (2016) "The Economic Consequences of Outdoor Air Pollution". Based on Holland (2014)

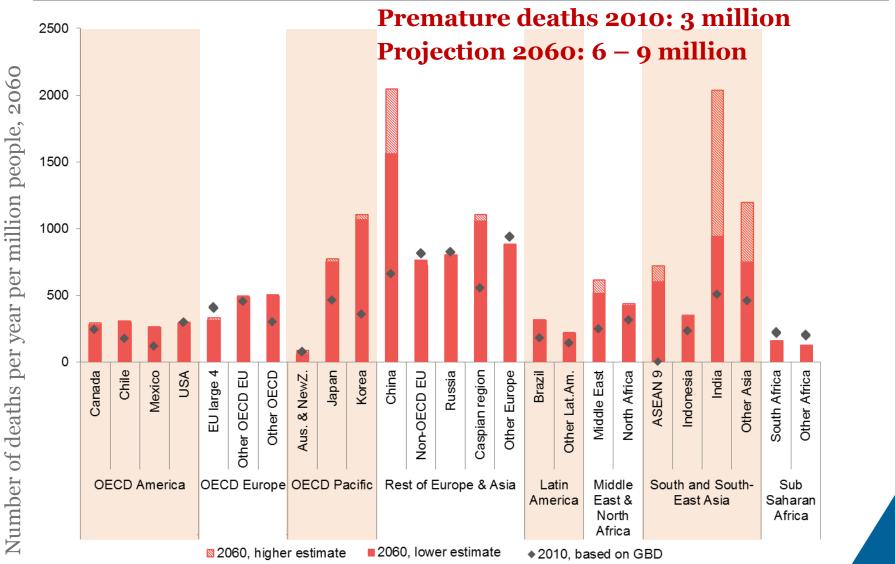
- Study economic feedbacks in ENV-Linkages (production function approach)
 - Health expenditures
 - Cases of bronchitis in children
 - Cases of chronic bronchitis in adults
 - Hospital admissions
 - Labour productivity
 - Linked to increasing number of work days lost
 - Agriculture
 - Reduced crop yields

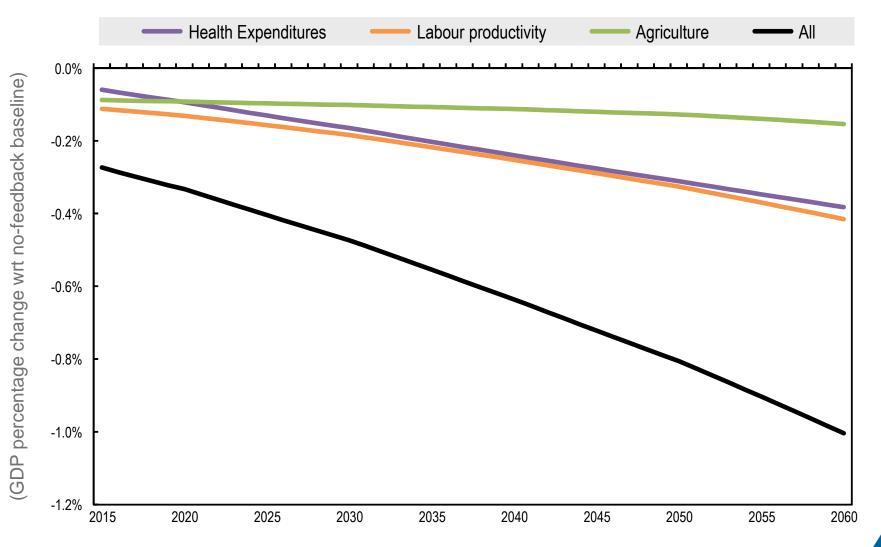
Non-market costs: the VSL

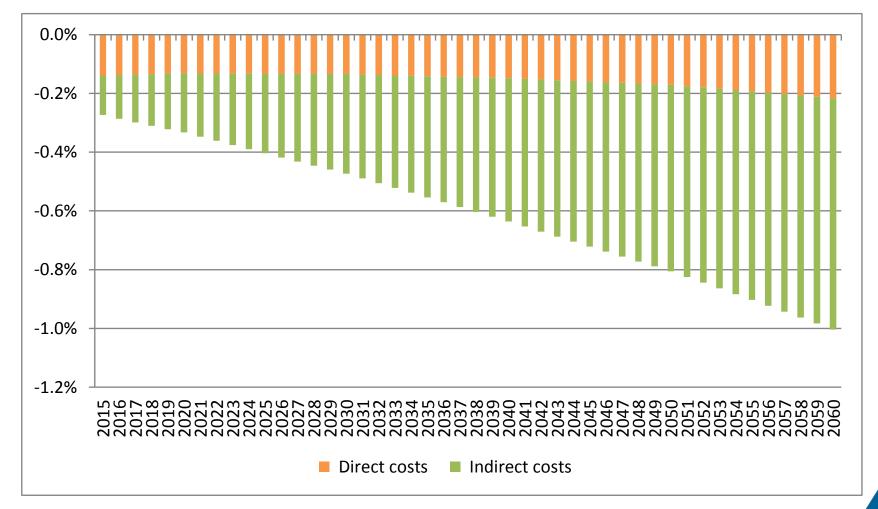

- The unit values for mortality, are based on the OECD VSL methodology
- The 2012 book *Mortality Risk Valuation in Environment, Health and Transport Policies* established a new method for calculating country-specific VSL based on income levels
- The 2014 book *The Costs of Air Pollution* combined estimates of mortalities caused by outdoor air pollution from the 2010 *GBD study* with VSL figures to find economic costs of almost USD 1.6 trillion in 2010 for OECD countries alone

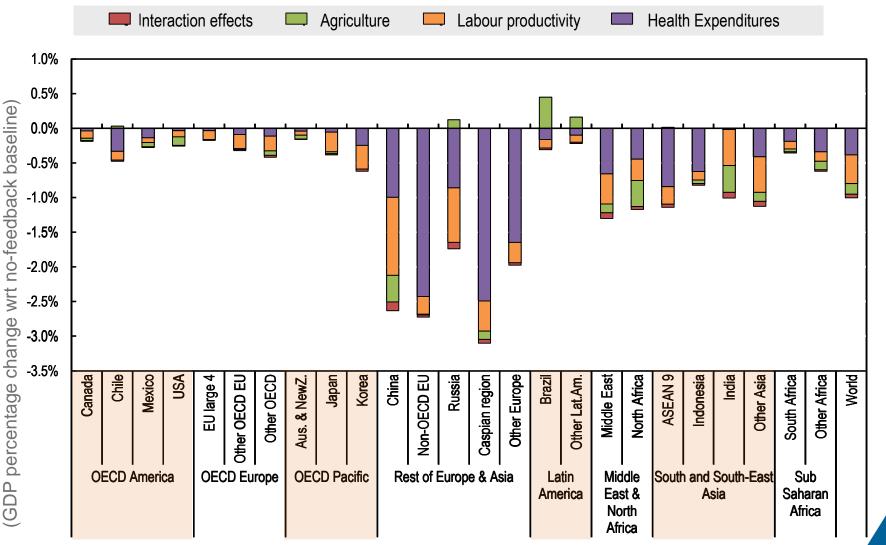

RESULTS

Projections of air pollutants emissions

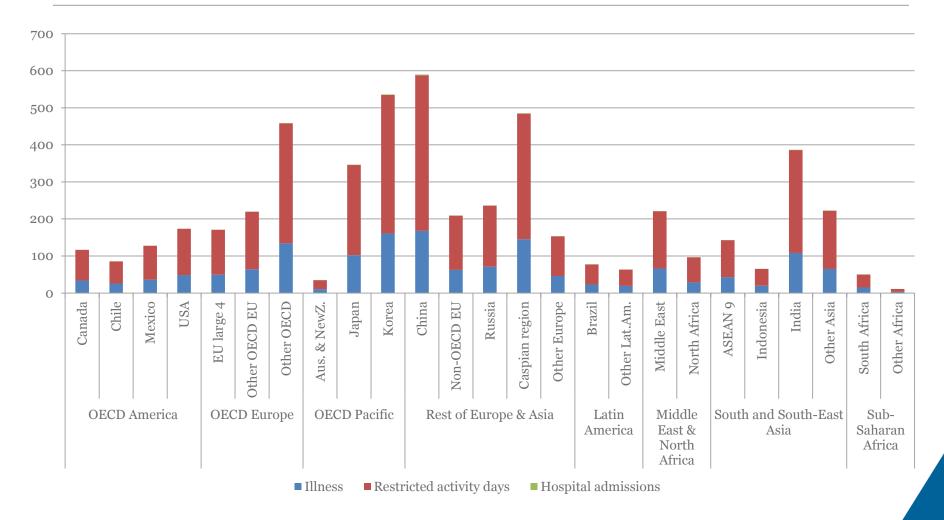



Annual average total anthropogenic PM2.5 (µg/m3)





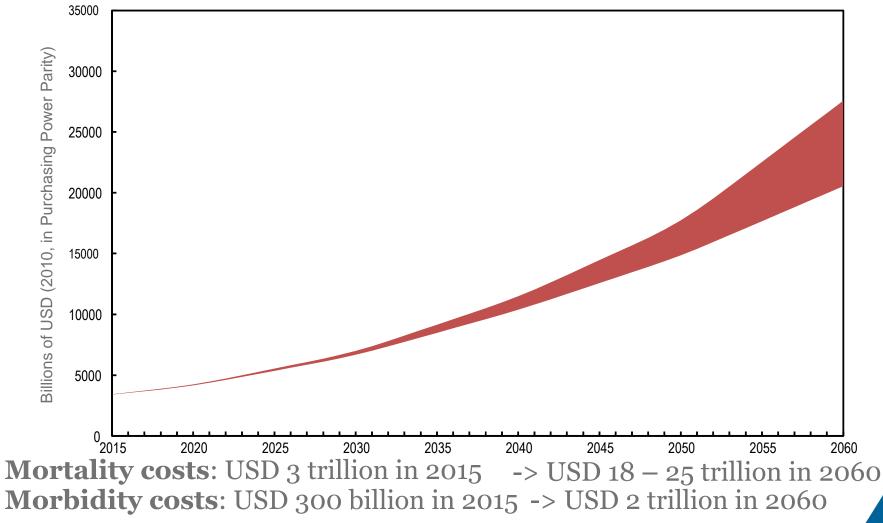
Market costs: direct and indirect costs



Non-market costs: mortality

	2015	2060
OECD America	440	1100 - 1140
OECD Europe	730	1660 - 1690
OECD Pacific	250	680 - 710
Rest of Europe & Asia	1130	7730 - 9850
Latin America	80	470
Middle East & North Africa	110	1030 - 1180
South and South-East Asia	380	5300 - 9950
Sub-Saharan Africa	40	330 - 340
World	3160	18300 - 25330
OECD	1420	3440 - 3540
Non-OECD	1740	14860 - 21790

(Billions of USD, 2010 PPP exchange rates)



(USD per capita, 2010 PPP exchange rates, 2060)

Non-market costs (mortality and morbidity)

32

CONCLUSIONS

- The potential market costs of outdoor air pollution could reach a yearly GDP loss of 1% by 2060
- Higher costs in China, Caspian region and South East Asia
- Most market costs are health related (health expenditures and labour productivity)
- Indirect economic consequences as induced by the market impacts play an important role, which dominates morbidity impacts in the long term

- The potential economic consequences of both market and non-market impacts are very large
- Specifically this report finds:
 - number of premature deaths (6-9 million by 2060)
 - market costs (a yearly GDP loss of 1% by 2060)
 - welfare costs (USD 18-25 trillion by 2060 for mortality impacts)
- Combined, the magnitude of the problem implies a strong call for policy action

THANK YOU!

For more information:

www.oecd.org/environment/CIRCLE www.oecd.org/environment/modelling

elisa.lanzi@oecd.org

