The Influence of Climate Variability on Internal Migration Flows in South Africa

Marina Mastrorillo, Rachel Licker, Pratikshya Bohra-Mishra, Giorgio Fagiolo, Lyndon Estes and Michael Oppenheimer

July, 6th 2016

FEEM Seminar

Environmental Migration in SA

Introduction

Background

- Migration: One possible response to climate change
 - Internal vs international
 - (Henry et al, 2003; Bohra-Mishra et al, 2014; Cai et al, 2014)
 - Rural to urban
 - Immobility (Gray and Mueller, 2012)
- Possible effects of climate on migration (Marchiori et al, 2012)
 - Direct: well-being, health
 - Indirect: agriculture, income, other economic channels
- Consequences on:
 - Migrants
 - Sending & receiving regions (Licker and Oppenheimer, 2013)

・ 同 ト ・ ヨ ト ・ ヨ ト

Research questions

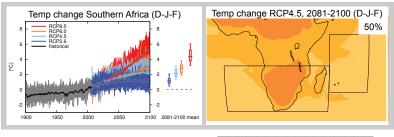
- Did climate variability influence internal migration flows in South Africa in recent history?
- If so, is agriculture one of the possible channels through which adverse climate conditions enhance out-migration?
- Ooes the effect of climate on migration vary by migrant characteristics?

E 5 4

• High internal migration rates

3

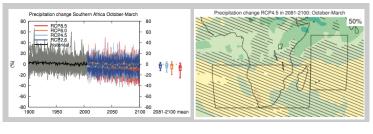
イロト イヨト イヨト イヨト


- High internal migration rates
 - 2007-2011: 12% of SA population moved (\sim 6m people)
 - 0.3% international, 11.7% internal, 5% across districts (StatsSA, 2011)

- High internal migration rates
- High inter-racial inequality and poverty ratio
 - Share of population below national poverty line: 53.8% (in 2010)
 - Income Gini coefficient: 63.4% (in 2011)

• • = • • =

- High internal migration rates
- High inter-racial inequality and poverty ratio
- Widespread and significant climate change projected


- High internal migration rates
- High inter-racial inequality and poverty ratio
- Widespread and significant climate change projected

∃ >

- High internal migration rates
- High inter-racial inequality and poverty ratio
- Widespread and significant climate change projected

IPCC WGI AR5, 2013

- High internal migration rates
- High inter-racial inequality and poverty ratio
- Widespread and significant climate change projected
- Relevance of agricultural sector

- High internal migration rates
- High inter-racial inequality and poverty ratio
- Widespread and significant climate change projected
- Relevance of agricultural sector
 - 5-10% of formal employment; 20% of hh involved (2.9 m)
 - SA among top 10 world producers of maize and cereals
 - Large share of arid land, strong impact of climate change

b) a = b) a =

- High internal migration rates
- High inter-racial inequality and poverty ratio
- Widespread and significant climate change projected
- Relevance of agricultural sector
- No studies considering the effect of climate on migration in SA

Data

Population Censuses

- SA Census 1996, 2001, 2011; Community Survey 2007
- Information on : demographics, health, education, employment, households and services, migration (previous residence – year of move)

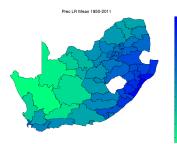
э

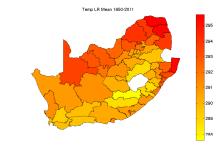
• • = • • =

Data

Population Censuses

- SA Census 1996, 2001, 2011; Community Survey 2007
- Information on : demographics, health, education, employment, households and services, migration (previous residence – year of move)


Climate Data


- Gridded data at 0.25 degree resolution
- Monthly, annual data on precipitation, T_{min}, T_{max}, soil moisture (Sheffield et al, 2014)

http://hydrology.princeton.edu/monitor

Precipitation and temperature

 Long run average precipitation per km² (1950–2011)

 Long run average temperature in K degrees (1950–2011)

x 10⁻⁴

3.5

2.5

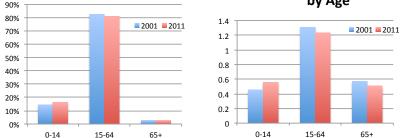
1.5

• Bilateral (origin-destination) flows

< 行い

- Bilateral (origin-destination) flows
- Inter-district migration
 - 52 districts (either metropolitan or district municipalities)

- Bilateral (origin-destination) flows
- Inter-district migration
- Migrant: an individual (15-64) who in year t = 2001, 2011 was living in district j and moved there from district i ≠ j within the 5 years before t (included)

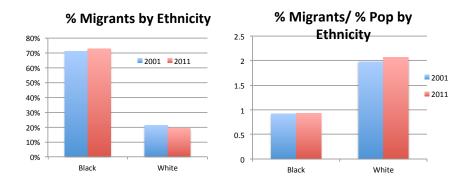

3

• • = • • =

- Bilateral (origin-destination) flows
- Inter-district migration
- Migrant: an individual (15-64) who in year t = 2001, 2011 was living in district j and moved there from district i ≠ j within the 5 years before t (included)
- Bilateral migration flows: number of people (15-64) moving from district *i* (*i* = 1...52) to district *j* ≠ *i* during the 5 years before the Census year *t* (included)

< □ > < □ > < □ > < □ > < □ > < □ >

Characteristics of migrants: age

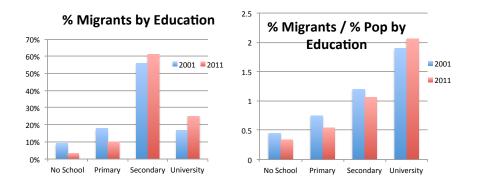


% Migrants by Age

% Migrants / % Population by Age

People among 15-64 years old cover 80% of migrants and are over-represented among migrants as compared to population

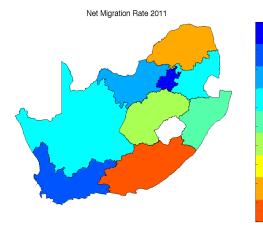
Characteristics of migrants: ethnicity

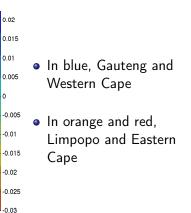


Although black migrants are the majority, white migrants are largely over-represented as compared to population

IVI:	arina	las	roi	711	0

Characteristics of migrants: education


Marina M



Highly educated migrants are the majority and are over-represented among migrants as compared to population

1astrorillo	Environmental Migration in SA	July, 6th 2016	10 / 26

Net migration rates 2007-2011

Econometric framework: Gravity model

$$m_{ij}^{t} = \kappa \cdot \exp\{\varphi_{i} + \phi_{j}^{t} + \beta \mathbf{Z}_{ij} + \mu \mathbf{C}_{i}^{t-5,t} + \theta \mathbf{X}_{i}^{\tau}\} \cdot \varepsilon_{ij}^{t}$$

i : origin district; *j* : destination district; t : 2001, 2011

$$m_{ii}^t$$
: bilateral migration flows

 φ_i, ϕ_i^t : origin and time-destination fixed effects

 Z_{ij} : bilateral variables (log of distance and contiguity dummy)

 $C_i^{t-5,t}$: climate variables at origin (pos. max and neg. min temperature anomalies, pos. and neg. precipitation anomalies, soil moisture)

 \mathbf{X}_{i}^{τ} : origin controls (e.g., population, ethnicity, education, unemployment rate); $\tau = 1996$, 2007

Estimation technique: PPML vs OLS

Determinants of migration flows

Variables		Sign
Demographic :	 Population Share of white individuals	+ +
Geographic (bilateral variables):	Origin-destination distanceContiguity	- +
Socio – economic :	 Unemployment rate Share of population with at most primary education 	+ -
Climatic :	 Pos max temperature anomalies (Abs) neg min temperature anomalies Pos precipitation anomalies (Abs) neg precipitation anomalies Soil moisture 	+ NS + +

July, 6th 2016

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

13 / 26

3

Main results

- Results on climate are robust to:
 - Alternative definition of migration flows (1 year flows)
 - Lagged climatic variables (92-96 for 2001 and 02-06 for 2011)
 - Alternative specifications of climatic variables
 - Alternative setups as to the way **push** and **pull** factors are modeled
 - Positive maximum temperature anomalies and soil moisture are not significant pull factors
 - Increase in rainfall anomalies at destination reduces migration towards those areas

3

米田 とくほと くほと

Conditioning flows to migrant characteristics

Does climate affect unevenly South African migrants?

- By age (0-14; 15-30; 31-45; 46-64; 65+)
 - Inverse U-shaped relationship between age and the climate-migration coefficient
- By gender
 - No significant differences
- By marital status
 - No significant differences
- By ethnicity (black vs white)
 - Smaller impact on white migrants
- By income (below vs above median income)
 - Much smaller impact on richest migrants

Interactions with agriculture

Is the impact of climate on migration stronger in more agriculture-dependent districts?

 $m_{ij}^{t} = \kappa \cdot \exp\{\psi_{i} + \phi_{j}^{t} + \beta \mathbf{Z}_{ij} + \theta \mathbf{X}_{i}^{\tau} + \mu \mathbf{C}_{i}^{t-5,t} + \alpha A_{i}^{\tau} + \gamma A_{i}^{\tau} \cdot \mathbf{C}_{i}^{t-5,t}\} \cdot \varepsilon_{ij}^{t}.$ $A_{i}^{\tau}: \text{ Agriculture employment rate}$

Interactions with agriculture

Is the impact of climate on migration stronger in more agriculture-dependent districts?

$$\boldsymbol{m}_{ij}^{t} = \kappa \cdot \exp\{\psi_{i} + \phi_{j}^{t} + \beta \boldsymbol{\mathsf{Z}}_{ij} + \boldsymbol{\theta} \boldsymbol{\mathsf{X}}_{i}^{\tau} + \mu \boldsymbol{\mathsf{C}}_{i}^{t-5,t} + \alpha \boldsymbol{A}_{i}^{\tau} + \gamma \boldsymbol{A}_{i}^{\tau} \cdot \boldsymbol{\mathsf{C}}_{i}^{t-5,t}\} \cdot \boldsymbol{\varepsilon}_{ij}^{t}.$$

 A_i^{τ} : Agriculture employment rate

- Increases in max temp anomalies and reduction in soil moisture enhance migration **more strongly** in agriculture-dependent districts (significant interaction terms)
- The relationship between employment in agriculture and the effect of precipitation on migration is less clearcut
- Positive effect of agriculture on migration (holding climate constant)

(人間) トイヨト イヨト

Indirect effects

Is agriculture a channel through which climate impacts migration?

• We regress the agricultural var A_i^{τ} against climate

$$A_i^{\tau} = \kappa + \varphi_i + \zeta_{\tau} + \mu \mathbf{C}_i^{\tau^*} + \epsilon_i^{\tau}$$

• \uparrow pos temp anom / \uparrow prec anom / \downarrow soil moist $\Rightarrow \downarrow A_i^{\tau}$

(人間) トイヨト イヨト 三日

Indirect effects

Is agriculture a channel through which climate impacts migration?

() We regress the agricultural var A_i^{τ} against climate

$$A_i^{\tau} = \kappa + \varphi_i + \zeta_{\tau} + \mu \mathbf{C}_i^{\tau^*} + \epsilon_i^{\tau}$$

• \uparrow pos temp anom / \uparrow prec anom / \downarrow soil moist $\Rightarrow \downarrow A_i^{\tau}$

2 We regress migration against the predicted agricultural var $\hat{A_i}^{\tau}$

$$\mathbf{m}_{ij}^{t} = \kappa \cdot \exp\{\psi_{i} + \phi_{j}^{t} + \beta \mathbf{Z}_{ij} + \boldsymbol{\theta} \mathbf{X}_{i}^{\tau} + \alpha \hat{A}_{i}^{\tau}\} \cdot \varepsilon_{ij}^{t}$$

•
$$\downarrow \hat{A}_i^{\tau} \Rightarrow \uparrow m_{ij}^t$$

▲日▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー つくつ

• First study on climate as a determinant of internal migration in SA

э

イロト イポト イヨト イヨト

- First study on climate as a determinant of internal migration in SA
- Consistent impact of climate on migration

э

・ 伺 ト ・ ヨ ト ・ ヨ ト

- First study on climate as a determinant of internal migration in SA
- Consistent impact of climate on migration
- Strong impact of climate on black and low-income South African migrants; weak impact on white and high-income migrants

ヨトィヨト

- First study on climate as a determinant of internal migration in SA
- Consistent impact of climate on migration
- Strong impact of climate on black and low-income South African migrants; weak impact on white and high-income migrants
- The effect of temperature anomalies and soil moisture is stronger in more agriculture-dependent districts

ヨトィヨト

- First study on climate as a determinant of internal migration in SA
- Consistent impact of climate on migration
- Strong impact of climate on black and low-income South African migrants; weak impact on white and high-income migrants
- The effect of temperature anomalies and soil moisture is stronger in more agriculture-dependent districts
- Adverse climatic conditions seem to affect migration through agriculture

・ 伺 ト ・ ヨ ト ・ ヨ ト

Future work

- Providing consistent estimates of the climate/migration relationship at a global scale
 - Harmonization of definitions of migration, of socio-economic and demographic controls and of climatic variables
 - Identification of a family of micro- and macro-econometric models

э

• = • • = •

Future work

- Providing consistent estimates of the climate/migration relationship at a global scale
 - Harmonization of definitions of migration, of socio-economic and demographic controls and of climatic variables
 - Identification of a family of micro- and macro-econometric models
- **2** Modeling migration behavior through an Agent-based Model (ABM)
 - Agents are provided with a utility function, a set of network linkages and some knowledge of opportunities in other areas
 - Decision is some bounded-rational expected utility maximization scheme
 - Income diversification and migration might compete as strategies

3

イロト 不得下 イヨト イヨト

THANK YOU!

イロト イポト イヨト イヨト

20 / 26

3

Climatic Variables

- **Positive maximum temperature anomalies**: Positive values of maximum temperature in the 5 years before the Census minus long-run mean divided by long-run standard deviation (long run = 1950-2011)
- Positive precipitation anomalies in the rainy season: Positive values of average precipitation in the 5 years before the Census (rainy season) minus long-run mean divided by long-run standard deviation
- Negative precipitation anomalies in the rainy season: Negative values of average precipitation in the 5 years before the Census (rainy season) minus long-run mean divided by long-run standard deviation
- Soil Moisture: Relative soil moisture of the top layer (0-10 cm) calculated from the land surface model output (average over the 5 years before the Census) Sheffield et al. (2004)

21 / 26

Table :	Gravity	model	estimation
---------	---------	-------	------------

(1)	(2)	(3)	(4)	(5)
		• • •	()	(3)
-0.9395***	-0.9403***	-0.9395***	-0.9399***	-0.9387***
0.5321***	0.5318***	0.5317***	0.5315***	0.5328***
0.5451***	0.3927***	0.5612***	0.4000***	0.3541***
-8.1961***	-8.5314***	-6.7194***	-7.1336***	-6.7911***
3.4994***	0.9692	4.9012***	2.1328**	0.7318
1.0105***	0.4826*	0.4097*	0.0475	-0.0875
0.5212***		0.4975***		
0.6274***	0.5667***			
	-0.1678		-0.0624	
		0.1341*	0.0557	
				-0.1055***
5050	5050	5050	5050	5050
0.8395	0.8385	0.8388	0.8378	0.8386
	0.5451*** -8.1961*** 3.4994*** 1.0105*** 0.5212*** 0.6274***	0.5321*** 0.5318*** 0.5451*** 0.3927*** -8.1961*** -8.5314*** 3.4994*** 0.9692 1.0105*** 0.4826* 0.5212*** 0.5667*** 0.6274*** 0.5667*** -0.1678 5050	0.5321*** 0.5318*** 0.5317*** 0.5451*** 0.3927*** 0.5612*** -8.1961*** -8.5314*** -6.7194*** 3.4994*** 0.9692 4.9012*** 1.0105*** 0.4826* 0.4097* 0.5212*** 0.5667*** -0.1678 0.6274*** 0.5667*** -0.1341* 5050 5050 5050	0.5321*** 0.5318*** 0.5317*** 0.5315*** 0.5451*** 0.3927*** 0.5612*** 0.4000*** -8.1961*** -8.5314*** -6.7194*** -7.1336*** 3.4994*** 0.9692 4.9012*** 2.1328** 1.0105*** 0.4826* 0.4097* 0.0475 0.5212*** 0.5667*** -0.1678 -0.0624 0.6274*** 0.5667*** -0.1341* 0.0557 5050 5050 5050 5050

Poisson Pseudo Maximum-Likelihood (PPML) estimates.

Dependent variable: 5-year district-to-district migration flows of 15-64 year-old people. Constant, time-invariant origin and time-destination fixed effects included.

э

Image: A matrix

Effects of climate on migration

$$d\%$$
 increase in $C_0 \Rightarrow \frac{(m_1-m_0)}{m_0} = \exp(\beta dC_0) - 1$

		% chan	ge in migra	tion flows,	C ₀ =mean	of distr.
Variables	d%	(1)	(11)	(111)	(IV)	(V)
Pos max temp anomalies	10%	1.87		1.79		
(Abs) neg prec anomalies	10%	2.23	2.02			
(Abs) neg min temp anomalies	10%		-0.67		-0.25	
Pos prec anomalies	10%			0.97	0.39	
Soil moisture	1%					-5.20

July, 6th 2016

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

23 / 26

(1) (2) (3)						
	(1)		((2)		
	Pos T _{max}	Neg Precip	Pos T _{max}	Pos Precip	Soil	
	anom	anom	anom	anom	moisture	
Age						
0-14	0.490***	0.433***	0.587***	0.338***	-0.075**	
15-30	0.610***	0.661***	0.603***	0.143*	-0.128***	
31-45	0.433***	0.597***	0.366***	0.077	-0.098***	
46-64	0.377***	0.612***	0.355***	0.192**	-0.028	
65+	0.201*	0.110	0.289***	0.221***	-0.019	
Ethnicit	v					
Black	0.685***	0.841***	0.666***	0.146*	-0.135***	
White	0.213*	0.081	0.287*	0.179*	-0.033	
Income						
Low	0.553***	0.663***	0.522***	0.123	-0.113***	
High	0.217*	0.004	0.181	-0.070	-0.095**	

Table : Conditioning bilateral flows to migrant characteristics

Marina Mastrorillo

Ju

Table : Interaction effects between climate and agriculture

	(1)	(2)	(3)	(4)
Pos T _{max} anom	0.378***			
Pos T_{max} anom $ imes A$	3.915**			
Neg Precip anom		0.316		
Neg Precip anom $ imes A$		3.132		
Pos Precip anom			0.234**	
Pos Precip anom $ imes$ A			-6.554***	
Soil moisture				-0.093***
Soil moisture $ imes$ A				-0.209**
A	4.643***	4.545***	11.444***	15.720***
Pseudo R ²	0.839	0.838	0.840	0.840

3

イロト イポト イヨト イヨト

25 / 26

Table : Links between climate, agriculture, and migration						
	(1)	(2)	(3)			
Dependent Variable: A						
Pos T _{max} anom Neg Precip anom	-0.027*** -0.005***	-0.027***				
Pos Precip anom		0.003				
Soil moisture			0.002***			
R^2	0.836	0.835	0.820			
Dependent Variable: Migration						
Predicted A	-13.448***	-15.307***	-23.371***			
Pseudo R ²	0.838	0.839	0.838			
		←□→ <				
rina Mastrorillo	Environmental Migr	ation in SA	July, 6th 2016			