

# Water buyback in agriculture: what can we expect?

C. D. Pérez-Blanco, FEEM & CMCC

FEEM-IEFE Joint Seminar 24 March 2016, Venice

#### WHERE. The Segura River Basin in SE Spain



> Semi-arid basin

> Rainfall is uneven and unequally distributed

> Non-perennial rivers

> 1950s irrigation expansion(↑ productivity)

> Agriculture: 89% of total water use

Supply: 760 M m3;
Demand: 1,900 M m3; WEI:
2.5 (1.15 including TSWT & desalination)

> Water is gold



#### Water in SE Spain: Giving gold for free



# > Average water charge: 0.09 EUR/m3



#### WHY water buyback

> *De iure*, RBAs are entitled to limit/revoke water concessions that harm the environment, **without compensation** 

> *De facto*, concessions are renewed automatically

- > Transaction costs
- > Negative economic impact on rural areas
- > Water buyback aims at:
  - > restoring environmental flows;
  - > compensating farmers (& overcome resistance); and
  - > compensating other possible negative feedbacks

> Since 2006 government agencies can use *exchange centers* to buy water concessions

> This paper offers a <u>benchmark</u> to inform and assess water purchase tenders



> Water buyback aims at reducing withdrawals and restoring environmental flows

> Problem: *rent extraction* 

> Challenge: place bids consistent with the shadow price of the would-be seller

> Shadow price:

> foregone income resulting from strengthening the
water constraint

> foregone utility (compensating variation)

> **<u>Benchmark</u>**: capitalized value of the shadow price



#### **THE MODEL**

$$Max U(x) = U(z_1(x); z_2(x); z_3(x) \dots z_m(x))$$
  
s.t.:  $0 \le x_i \le 1$   
 $\sum_{i=1}^n x_i = 1$   
 $X \in F(x)$   
 $z = z(x) \in \mathbb{R}^m$ 

> Preferences are revealed in two stages (Agricultural Water Demand Units):

- > First, relevant attributes are obtained
- > Second, the utility function is calibrated



#### Revealing the attributes

Key concept: Possibility frontier - built based on feasible decisions using GAMS



#### Calibrating the Utility function

$$\beta_{kp} = MTR_{kp} = MSR_{kp} = -\frac{\partial U/\partial z_p}{\partial U/z_k}$$
; p, k  $\in (1,..l)$ ; p  $\neq$  k



$$\begin{split} U(\tau) &= \prod_{r=1}^{l} z_{r}^{\alpha_{r}}; \quad \sum_{r=1}^{l} \alpha_{r} = 1 \\ &- \frac{\partial U}{\partial z_{p}} = -\frac{\alpha_{p}}{\alpha_{k}} \frac{z_{k}}{z_{p}} \end{split}$$



#### **Calibration results**

| AWDU | a1   | a2   | a3   | a4   | a5   | e_x   | e_t    | e_av  | AWDU | a1   | a2   | a3   | a4   | a5   | e_x    | e_t    | e_av   |
|------|------|------|------|------|------|-------|--------|-------|------|------|------|------|------|------|--------|--------|--------|
| 1    | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 8.06% | 1.83%  | 4.94% | 39   | 0.95 | 0.02 | 0.00 | 0.03 | 0.00 | 1.42%  | 2.42%  | 1.92%  |
| 2    | 0.88 | 0.12 | 0.00 | 0.00 | 0.00 | 2.26% | 8.35%  | 5.30% | 40   | 0.88 | 0.12 | 0.00 | 0.00 | 0.00 | 0.89%  | 3.77%  | 2.33%  |
| 3    | 0.86 | 0.05 | 0.03 | 0.00 | 0.06 | 0.70% | 2.76%  | 1.73% | 41   | 0.81 | 0.19 | 0.00 | 0.00 | 0.00 | 3.24%  | 1.68%  | 2.46%  |
| 4    | 0.95 | 0.02 | 0.01 | 0.01 | 0.00 | 0.39% | 1.75%  | 1.07% | 42   | 0.91 | 0.09 | 0.00 | 0.00 | 0.00 | 1.83%  | 3.31%  | 2.57%  |
| 5    | 0.92 | 0.08 | 0.00 | 0.00 | 0.00 | 1.84% | 1.76%  | 1.80% | 43   | 0.90 | 0.08 | 0.00 | 0.00 | 0.02 | 1.29%  | 1.95%  | 1.62%  |
| 6    | 0.95 | 0.03 | 0.02 | 0.00 | 0.00 | 0.24% | 0.72%  | 0.48% | 44   | 0.92 | 0.02 | 0.04 | 0.00 | 0.01 | 1.34%  | 3.50%  | 2.42%  |
| 7    | 0.78 | 0.22 | 0.00 | 0.00 | 0.00 | 5.27% | 5.91%  | 5.59% | 45   | 0.74 | 0.07 | 0.00 | 0.18 | 0.00 | 1.52%  | 5.08%  | 3.30%  |
| 8    | 0.50 | 0.48 | 0.00 | 0.02 | 0.00 | 7.78% | 5.62%  | 6.70% | 46   | 0.98 | 0.02 | 0.00 | 0.01 | 0.00 | 1.03%  | 3.17%  | 2.10%  |
| 9    | 0.85 | 0.04 | 0.00 | 0.11 | 0.00 | 1.38% | 6.22%  | 3.80% | 48   | 0.38 | 0.12 | 0.00 | 0.36 | 0.14 | 4.27%  | 11.63% | 7.95%  |
| 10   | 0.92 | 0.08 | 0.00 | 0.00 | 0.00 | 3.69% | 3.49%  | 3.59% | 51   | 0.92 | 0.01 | 0.00 | 0.00 | 0.08 | 0.13%  | 0.39%  | 0.26%  |
| 12   | 0.80 | 0.20 | 0.00 | 0.00 | 0.00 | 4.07% | 9.07%  | 6.57% | 52   | 0.97 | 0.02 | 0.00 | 0.00 | 0.00 | 1.36%  | 4.10%  | 2.73%  |
| 13   | 0.88 | 0.01 | 0.00 | 0.00 | 0.11 | 2.25% | 5.39%  | 3.82% | 53   | 0.44 | 0.23 | 0.00 | 0.34 | 0.00 | 6.12%  | 13.98% | 10.05% |
| 14   | 0.63 | 0.37 | 0.00 | 0.00 | 0.00 | 3.02% | 2.26%  | 2.64% | 54   | 0.59 | 0.41 | 0.00 | 0.00 | 0.00 | 10.44% | 13.30% | 11.87% |
| 15   | 0.72 | 0.28 | 0.00 | 0.00 | 0.00 | 1.53% | 3.81%  | 2.67% | 55   | 0.95 | 0.05 | 0.00 | 0.00 | 0.00 | 0.20%  | 0.32%  | 0.26%  |
| 16   | 0.60 | 0.40 | 0.00 | 0.00 | 0.00 | 0.89% | 7.69%  | 4.29% | 56   | 0.73 | 0.27 | 0.00 | 0.00 | 0.00 | 1.63%  | 7.13%  | 4.38%  |
| 17   | 0.85 | 0.15 | 0.00 | 0.00 | 0.00 | 8.59% | 3.81%  | 6.20% | 57   | 0.10 | 0.90 | 0.00 | 0.00 | 0.00 | 9.50%  | 14.32% | 11.91% |
| 18   | 0.89 | 0.11 | 0.00 | 0.00 | 0.00 | 0.43% | 1.67%  | 1.05% | 58   | 0.48 | 0.52 | 0.00 | 0.00 | 0.00 | 10.58% | 11.74% | 11.16% |
| 20   | 0.83 | 0.17 | 0.00 | 0.00 | 0.00 | 4.30% | 2.96%  | 3.63% | 59   | 0.52 | 0.48 | 0.00 | 0.00 | 0.00 | 9.88%  | 13.88% | 11.88% |
| 21   | 0.88 | 0.12 | 0.00 | 0.00 | 0.00 | 1.45% | 9.21%  | 5.33% | 60   | 0.83 | 0.16 | 0.00 | 0.00 | 0.01 | 3.22%  | 13.64% | 8.43%  |
| 22   | 0.83 | 0.17 | 0.00 | 0.00 | 0.00 | 2.26% | 2.12%  | 2.19% | 61   | 0.28 | 0.72 | 0.00 | 0.00 | 0.00 | 8.61%  | 15.21% | 11.91% |
| 25   | 0.93 | 0.07 | 0.00 | 0.00 | 0.00 | 0.27% | 1.17%  | 0.72% | 63   | 0.43 | 0.40 | 0.17 | 0.00 | 0.00 | 1.94%  | 8.74%  | 5.34%  |
| 26   | 0.90 | 0.04 | 0.00 | 0.02 | 0.03 | 0.64% | 3.38%  | 2.01% | 64   | 0.53 | 0.47 | 0.00 | 0.00 | 0.00 | 0.82%  | 4.40%  | 2.61%  |
| 27   | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 4.47% | 9.33%  | 6.90% | 65   | 0.43 | 0.55 | 0.00 | 0.00 | 0.02 | 2.03%  | 3.75%  | 2.89%  |
| 28   | 0.94 | 0.06 | 0.00 | 0.00 | 0.00 | 1.83% | 6.91%  | 4.37% | 66   | 0.87 | 0.07 | 0.00 | 0.00 | 0.06 | 1.37%  | 3.29%  | 2.33%  |
| 29   | 0.79 | 0.13 | 0.09 | 0.00 | 0.00 | 1.49% | 3.83%  | 2.66% | 67   | 0.29 | 0.49 | 0.00 | 0.00 | 0.22 | 0.62%  | 9.90%  | 5.26%  |
| 30   | 0.49 | 0.51 | 0.00 | 0.00 | 0.00 | 3.16% | 7.22%  | 5.19% | 68   | 0.79 | 0.21 | 0.00 | 0.00 | 0.00 | 0.50%  | 3.38%  | 1.94%  |
| 31   | 0.83 | 0.17 | 0.00 | 0.00 | 0.00 | 6.74% | 4.96%  | 5.85% | 69   | 0.34 | 0.66 | 0.00 | 0.00 | 0.00 | 1.22%  | 6.44%  | 3.83%  |
| 32   | 0.51 | 0.49 | 0.00 | 0.00 | 0.00 | 4.48% | 13.04% | 8.76% | 70   | 0.67 | 0.26 | 0.00 | 0.00 | 0.07 | 1.40%  | 9.22%  | 5.31%  |
| 34   | 0.95 | 0.01 | 0.00 | 0.03 | 0.00 | 0.80% | 1.44%  | 1.12% | 71   | 0.98 | 0.02 | 0.00 | 0.01 | 0.00 | 1.34%  | 3.94%  | 2.64%  |
| 36   | 0.97 | 0.01 | 0.00 | 0.02 | 0.00 | 0.39% | 0.61%  | 0.50% | 72   | 0.40 | 0.21 | 0.00 | 0.00 | 0.39 | 2.51%  | 9.83%  | 6.17%  |
| 37   | 0.89 | 0.09 | 0.01 | 0.00 | 0.01 | 0.65% | 2.17%  | 1.41% | 73   | 0.99 | 0.01 | 0.00 | 0.00 | 0.00 | 2.03%  | 2.87%  | 2.45%  |

what can we expect?



8

#### Simulation

> Water constraint strengthened from 0 to 50% of the concession
> Gross variable margin and utility are estimated
> Foregone income and foregone utility obtained
> Capitalized using the 3-year average interest rate of the 30-year
Spanish Treasury Bond, 3.7% as of January 2016



#### Simulation results: shadow price





Water buyback in agriculture: what can we expect?

10

#### Simulation results: marginal buyback price





#### Simulation results: buyback scenarios

Marginal and average water purchase prices and investment costs for selected environmental targets (3.7% capitalization rate)

|   |       | -                  | Comp                  | ensating variatio     | n          | Foregone income       |                       |            |  |  |
|---|-------|--------------------|-----------------------|-----------------------|------------|-----------------------|-----------------------|------------|--|--|
| Т | arget | Balance            | Marginal price        | Average price         | Investment | Marginal price        | Average price         | Investment |  |  |
| ( | (hm³) | (hm <sup>3</sup> ) | (EUR/m <sup>3</sup> ) | (EUR/m <sup>3</sup> ) | (M EUR)    | (EUR/m <sup>3</sup> ) | (EUR/m <sup>3</sup> ) | (M EUR)    |  |  |
|   | 50    | -194               | 1.14                  | 0.58                  | 28.9       | 2.94                  | 1.33                  | 66.5       |  |  |
|   | 100   | -144               | 3.30                  | 1.37                  | 137.2      | 4.51                  | 2.65                  | 265.2      |  |  |
|   | 150   | -94                | 4.42                  | 2.22                  | 332.9      | 6.91                  | 3.67                  | 550.9      |  |  |
|   | 200   | -44                | 6.03                  | 2.89                  | 578.9      | 9.93                  | 4.73                  | 945.4      |  |  |
|   | 250   | 6                  | 8.81                  | 3.81                  | 952.8      | 13.90                 | 6.22                  | 1,554.20   |  |  |
|   | 300   | 56                 | 11.63                 | 4.91                  | 1,474.10   | 16.56                 | 7.78                  | 2,333.20   |  |  |
|   | 400   | 156                | 21.19                 | 7.87                  | 3,146.50   | 32.72                 | 11.02                 | 4,408.10   |  |  |
|   | 500   | 256                | 38.39                 | 11.56                 | 5,781.50   | 52.77                 | 18.08                 | 9,041.40   |  |  |

Source: Own elaboration



### Simulation results Average prices

> Buyback programs typically define ad hoc environmental targets for strategic points of the basin

> Market segmentation
> Average purchase price
in every AWDU in the
Segura River Basin for
selected buyback targets

Water buyback in agriculture: what can we expect?



Target: 50 hm<sup>3</sup> (2.7% of initial concession)



Euro/m3

20

0

Target: 100 hm<sup>3</sup> (5.5% of initial concession)



Target: 200 hm<sup>3</sup> (10.9% of initial concession)





Target: 250 hm<sup>3</sup> (13.7% of initial concession)

#### Conclusions

> Water buyback can help restore the balance
 > Average price about 3.8 EUR/m3

#### > A few caveats:

> Informal abstractions: track and ban, do not empower (not again!)

> Use water bought for environmental purposes

> not to maintain allotments during droughts (define ecological flows)

> Define priority areas for buyback (downstream vs upstream)

- > This is but a policy option –others may exist
  - > Charges
  - > Insurance
  - > etc.
- > Explore complementarities, sequencing
  - > Transaction costs are the key





# Thanks for your attention



This research is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 660608.



#### http://wateragora.eu/



## Error terms

The first metric for performance evaluation is based on the distance between the observed and calibrated portfolios:

$$e_{x} = \sqrt{\frac{1}{n}\sum_{i=1}^{n} \left(\frac{x_{i}^{o} - x_{i}^{*}}{x_{i}^{o}}\right)^{2}}$$

The second metric for performance evaluation assesses the distance between the observed attributes and the calibrated ones:

$$e_{\tau} = \sqrt{\frac{1}{m} \sum_{r=1}^{m} \left(\frac{z_r^0 - z_r^*}{z_r^0}\right)^2}$$

An average error is estimated as the ordinary arithmetic mean of the two metrics above:

$$e = \frac{e_x + e_\tau}{2}$$

