

The National and International Impacts of Coal-to-Gas Switching in the Chinese Power Sector

Yiyong Cai CSIRO Oceans & Atmosphere Flagship

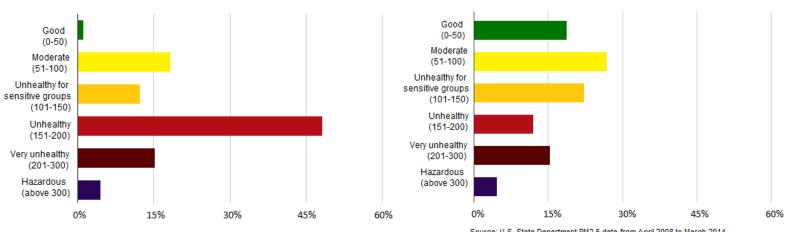
FEEM, Venice, June 2015

INTEGRATED GLOBAL MODELLING AND ANALYSIS www.csiro.au

Outline of the talk

- 1. Policy Background
- 2. Methodology
- 3. Scenarios
- 4. Results
- 5. Implications

China sees more and more hazy days



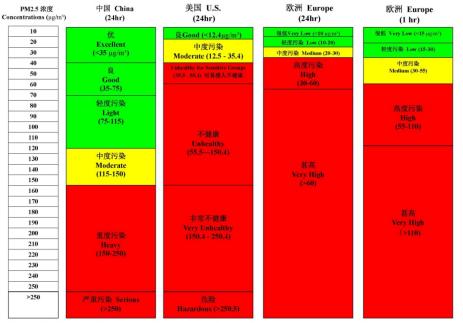
How many hazy days?

The U.S. View

How Many Bad Air Days in Beijing?

Daily average air-quality index readings from 2008-14, U.S. standards

The Chinese View


Source: U.S. State Department PM2.5 data from April 2008 to March 2014. Note: Data missing for 163 days within the period.

Daily average air-quality index readings from 2008-14, Chinese standards

Source: http://blogs.wsj.com/chinarealtime/2014/04/14/beijings-bad-air-days-finally-counted/

How is it measured?

颗粒物 (PM2.5)空气质量评估 Air Quality Assessments Based on PM2.5 Concentrations (µg/m³)

Please note the China, US and Europe all have different color schemes for each grade of air quality and the above color scheme is a simplification designed by the author. 注: 中国,美国, 欧洲都用不同的颜色来区分空气质量级别。以上的颜色为作者自己简化性地选用。

Source: https://www.chinadialogue.net/article/show/single/en/6856-China-s-air-pollution-reporting-is-misleading

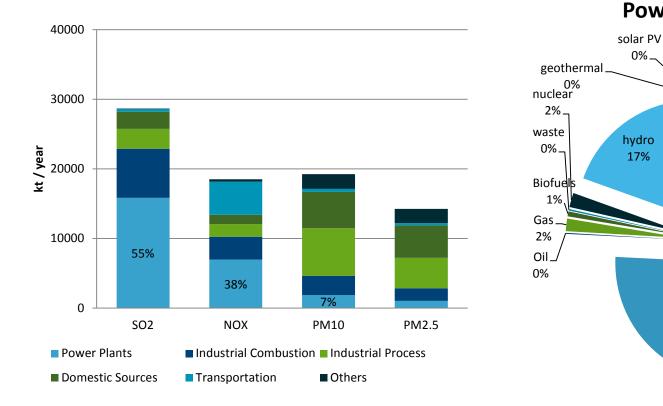
The Chinese people are getting concerned

A report by Peking Univ. and Greenpeace (2015) warns that a quarter million of Chinese people could die of pre-mature death in the next decade, if smog is left uncontrolled.

Source: http://www.greenpeace.org/eastasia/press/releases/climateenergy/2015/dangerous-breathing-2/

The concerns are escalating

Documentary by former CCTV host and reporter Jing Chai was released on 28 Feb 2015, the day after the appointment of China's new environment minister. It attracted 200+ million hits in the first week, before it disappeared...


The Chinese government is getting serious about it

- The Action Plan for Air Pollution Prevention and Control was announced on 10 September 2013.
 - The Plan mandates reduction in PM2.5 in three regions: Beijing-Tianjin-Hebei 25%, the Yangtze River Delta 20%, and the Pearl River Delta 15%.
 - It bans the construction of new coal-fired power plants in these regions (roughly 30% of national total).

Source: http://english.mep.gov.cn/News_service/infocus/201309/t20130924_260707.htm

The role of coal power in Chinese air pollution

Power Generation

solar

thermal

0%

0%_

hydro

17%

wind

_2%

tide

0%

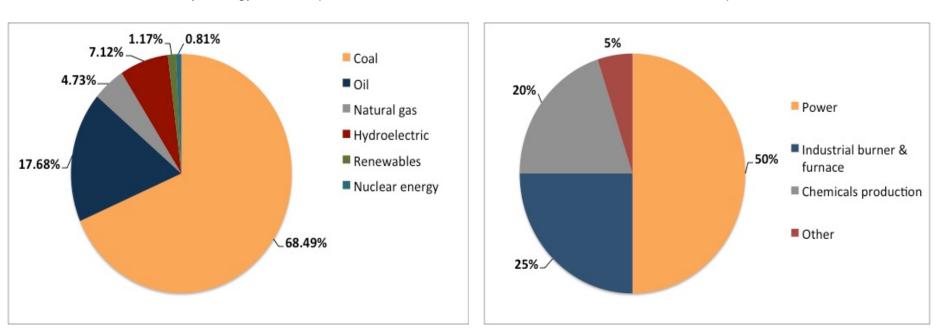
Coal 76%

Source: Wang et al., Atmospheric Environment, 2011, 45: 6347-6358.

Source: US EIA.

What are the consequences of reducing coal power?

- The government plans to stimulate the development of coal power in the inner West.
 - But this takes time to build.
 - There are ongoing concerns about water shortage in West China.
- Therefore, the government's action plan is anticipated to contain the growth of China's coal power generation.
- The energy gap needs to be filled up by something else.



What can replace Chinese coal power?

Technology	Online Year ¹	Size (MW)	Lead time (years)	Base Overnight Cost in 2013 (2012 \$/kW)	Project Contingency Factor ²	Technological Optimism Factor ³	Total Overnight Cost in 2013 ⁻ (2012 \$/kW)	Variable O&M ⁻ (2012 \$/MWh)	Fixed 0&M (2012\$/kW)	Heatrate ⁶ In 2013 (Btu/kWh)	nth-of-a-kind Heatrate (Btu/kWh)
Scrubbed Coal New	2017	1300	4	2,734	1.07	1.00	2,925	4.47	31.18	8,800	8,740
Integrated Coal-Gasification Comb Cycle (IGCC)	2017	1200	4	3,525	1.07	1.00	3,771	7.22	51.39	8,700	7,450
IGCC with carbon sequestration	2017	520	4	5,958	1.07	1.03	6,567	8.45	72.84	10,700	8,307
Conv Gas/Oil Comb Cycle	2016	620	3	871	1.05	1.00	915	3.60	13.17	7,050	6,800
Adv Gas/Oil Comb Cycle (CC)	2016	400	3	945	1.08	1.00	1,021	3.27	15.37	6,430	6,333
Adv CC with carbon sequestration	2017	340	3	1,856	1.08	1.04	2,084	6.78	31.79	7,525	7,493
Conv Comb Turbine	2015	85	2	924	1.05	1.00	971	15.45	7.34	10,817	10,450
Adv Comb Turbine	2015	210	2	641	1.05	1.00	673	10.37	7.04	9,750	8,550
Fuel Cells	2016	10	3	6,099	1.05	1.10	7,044	42.99	0.00	9,500	6,960
Adv Nuclear	2019	2234	6	4,763	1.10	1.05	5,501	2.14	93.28	10,464	10,464
Distributed Generation - Base	2016	2	3	1,414	1.05	1.00	1,485	7.76	17.45	9,027	8,900
Distributed Generation - Peak	2015	1	2	1,698	1.05	1.00	1,783	7.76	17.45	10,029	9,880
Biomass	2017	50	4	3,590	1.07	1.02	3,919	5.26	105.64	13,500	13,500
Geothermal ^{7,9}	2016	50	4	2,375	1.05	1.00	2,494	0.00	112.92	9,716	9,716
Municipal Solid Waste	2014	50	3	7,751	1.07	1.00	8,294	8.75	392.81	18,000	18,000
Conventional Hydropower ⁹	2017	500	4	2,213	1.10	1.00	2,435	2.65	14.83	9,716	9,716
Wind	2014	100	3	2,061	1.07	1.00	2,205	0.00	39.55	9,716	9,716
Wind Offshore	2017	400	4	4,503	1.10	1.25	6,192	0.00	74.00	9,716	9,716
Solar Thermal ⁷	2016	100	3	4,715	1.07	1.00	5,045	0.00	67.26	9,716	9,716
Photovoltaic ^{7,10}	2015	150	2	3,394	1.05	1.00	3,564	0.00	24.69	9,716	9,716

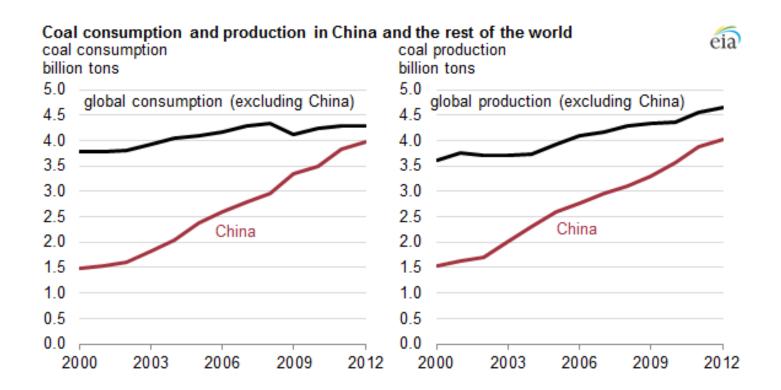
Source: US EIA.

The role of coal in national energy markets

China's Primary Energy Consumption, 2012

China's Coal Consumption, 2012

Source: http://www.worldcoal.org



So the questions to ask

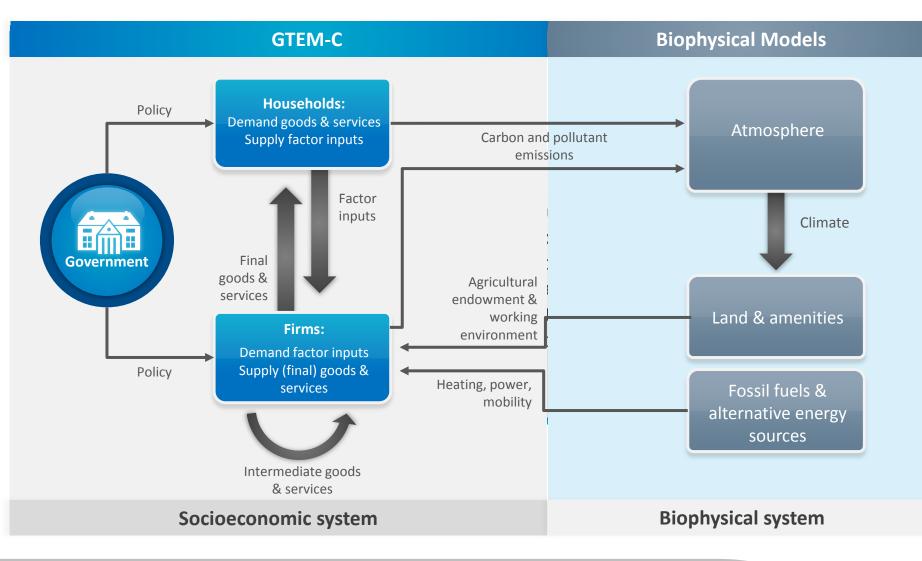
- What would be the environmental impacts of coal-to-gas switching?
- What would be the co-benefit of carbon mitigation?
- What does it mean for the Chinese energy markets and economy?
- What does it mean for other countries?

The role of coal in global energy markets

And coal provides 30% of global primary energy needs.

Modelling Approach

GTEM-C is a global-scale multi-sector dynamic CGE model designed to analyze economic tradeoffs associated with production and use of fossil fuels and GHG emissions.


GTEM-C features careful representation of major geographic regions and economic activities that are most relevant to climate change, carbon mitigation and energy transformation.

GTEM-C has detailed accounting of commodityembedded energy flows and carbon emissions from various sources.

Source: Cai et al. (2015).

Theoretical structure of GTEM-C

GTEM-C Electricity Technologies

Nuclear

Wind

Waste

Coal with Carbon Capture and Storage

Oil

Hydro & Geothermal

Solar

Other Renewable

Oil with Carbon Capture and Storage

Gas with Carbon Capture and Storage

Gas

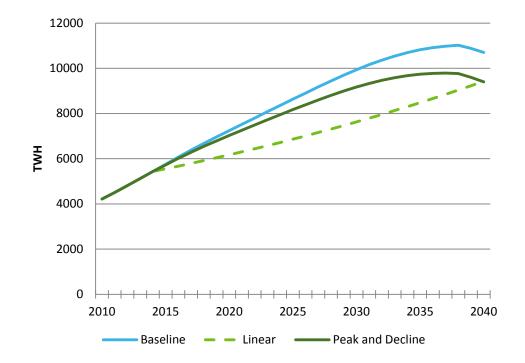
Biomass

Source: Cai and Arora (2015).

Accounting for air pollutants from industrial combustion

	Kt / Mtoe	Electricity	Transportation	Other Industries	Coking	Household
Coal emission	SO2	22.0 ^b	19.8	19.8ª	1.5	25.2ª
factors	NOx	9.6ª	11.0 ^c	11.0 ^c	1.0 ^c	4.0 ^c
1001015	PM10	1.9 ^e	1.9	1.9	1.1 ^e	3.8 ^e
	PM2.5	1.7 ^b	1.7	1.7	0.7 ^e	3.4
	Kt / Mtoe	Electricity	Transportation	Other Industries	Conversion	Household
Gas emission	SO2	0.04 ^d	0.04	0.04	0.04	0.04
	NOx	2.0ª	22.0 ^c	3.0 ^c	0.3 ^c	1.0 ^c
factors	PM10	0.004 ^e	0.004 ^e	0.004 ^e	0.004 ^e	0.004 ^e
	PM2.5	0.004 ^e	0.004 ^e 0.004 ^e		0.004 ^e	0.004 ^e
	Kt / Mtoe	Electricity	Transportation	Other Industries	Refining	Household
Oil emission	SO2	11.0ª	1.1ª	11.0ª	0.7	1.0 ^a
	NOx	10.0ª	23.0 ^c	4.0 ^a	0.3 ^c	17.0ª
factors	PM10	0.1 ^e	2.5 ^e	0.05 ^e	1.0 ^e	0.04 ^e
	PM2.5	0.03 ^e	2.10 ^e	0.01 ^e	1.0 ^e	0.04 ^a

Source: a. Klimont et al. (2009); b. Zhang et al. (2009); c. Wang et al. (2011); d. de Gouw et al. (2013); e. IIASA, <u>http://www.iiasa.ac.at/~rains/PM/docs/documentation.html</u>.


Note: Household includes private transportation.

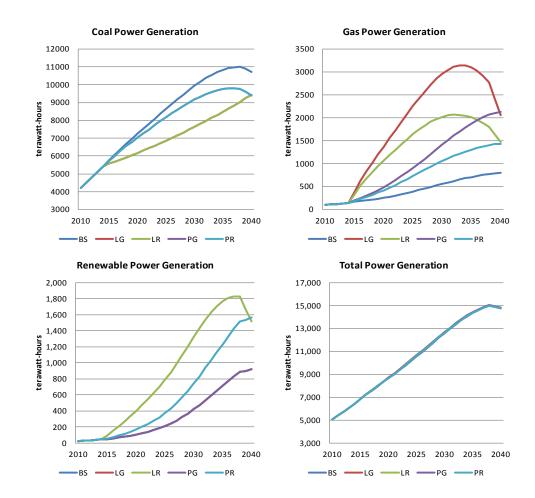
Baseline assumptions

	Benchmark
Population Growth	IEO 2013
GDP	IEO 2013
Fossil Fuel Supply	IEO 2013
Energy Efficiency Improvement	Coal: 0.5-1% Oil: 2.5-3% in transport, 0.5% in others Gas: 0.5-1% Electricity: 1%
Carbon/Environment Policy	Business as usual

Counter-factual experiment

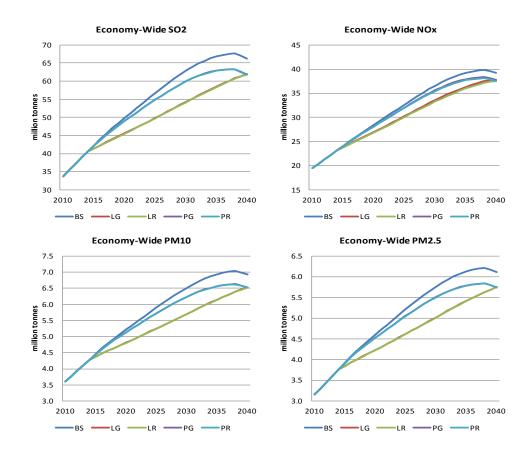
Baseline: Chinese coal power generation increases by 2.5% per annum on average.

Policy: Chinese government has recently announced a cap on the growth of coal use by 18% between 2013 and 2020, which implies an annual growth rate of 2% over the period.

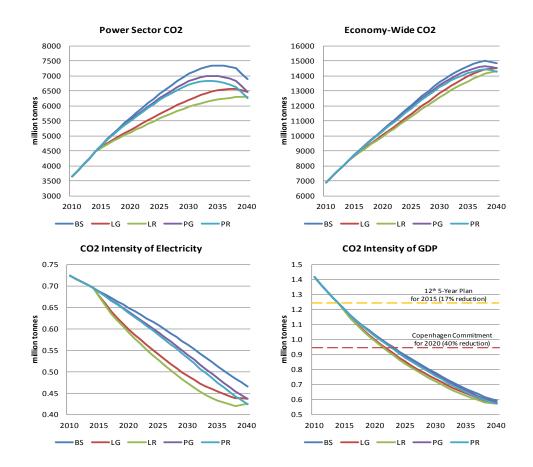


A two-by-two matrix scenarios

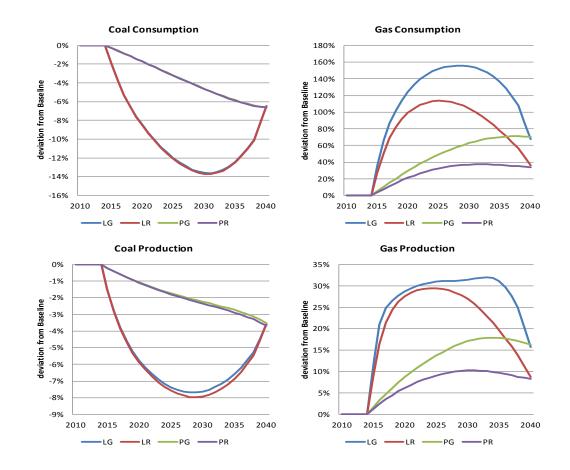
		Catalyst				
		Gas Only	Gas and Renewable			
D.4	Linear	LG	LR			
Pathways	Peak-and-Decline	PG	PR			



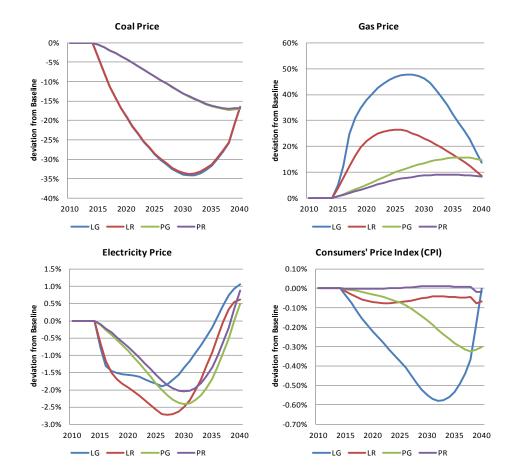
Power generation under alternative scenarios


Share of coal power falls down to 63%, i.e., by 10 percent points.

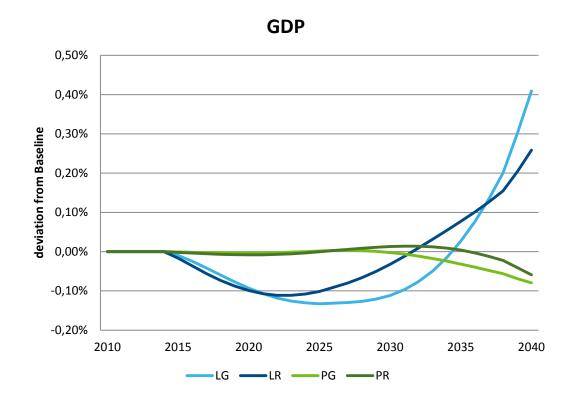
Pollutant emissions under alternative scenarios


Cumulative emissions of SO2, NOx, PM10, and PM2.5 in China are projected to drop by 160 MT (9.5%), 60 MT (6.0%), 15 MT (8.5%) and 14 MT (9.0%).

Carbon footprints under alternative scenarios


The LR scenario is superior, because cumulative CO2 emissions between 2015 and 2040 are projected to be 18000 MT, or 5% lower than under the baseline scenario, and China is closer to achieving the Copenhagen Commitment.

Impacts on energy markets under alternative scenarios


Chinese gas production will not be able to keep up with the increased demand for gas power generation. The gap needs to be filled up by more imports.

Impacts on prices under alternative scenarios

Having more renewable has the potential to reduce the increase in gas price, by half. Electricity price could be lower in the early stage of switching due to lower coal price. Learning by doing of the renewable technologies is most significant under LR.

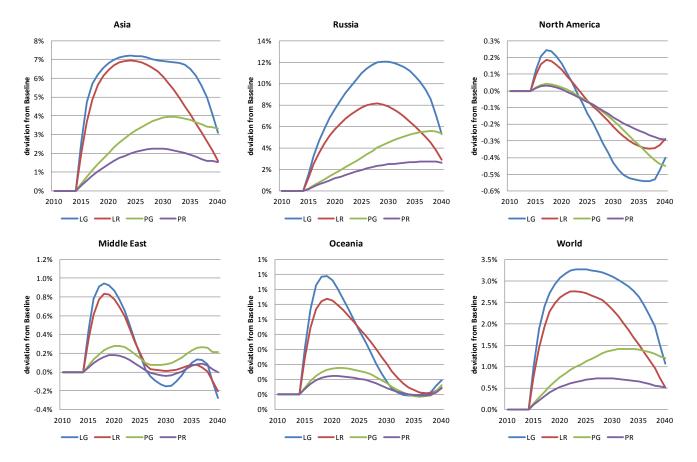
Impacts on macro-economy under alternative scenarios

Which could be a better scenario for China?

			Discount Rate									
		0%	1%	2%	3%	4%	5%	6%	7%	8%	9%	10%
	LG	33.5	0.6	-22.4	-38.0	-48.3	-54.7	-58.2	-59.6	-59.6	-58.6	-57.0
	LR	90.6	53.4	25.8	5.6	-9.2	-19.8	-27.3	-32.4	-35.7	-37.6	-38.6
Scenario	PG	-90.5	-71.9	-57.4	-45.9	-36.9	-29.7	-24.1	-19.5	-15.9	-13.1	-10.8
urio	PR	-22.7	-17.5	-13.6	-10.7	-8.6	-6.9	-5.7	-4.7	-4.0	-3.5	-3.1

Net Present Value of China's GDP Change under Alternative Scenarios (Unit = billion 2007 US\$)

With a discount rate of 3-5%, the "Linear" pathway with development of renewable energies (LR) can result in net GDP gains, or at least reasonably low (although not necessarily the lowest) GDP loss.


And we haven't accounted from the potential benefit on environment and human health by mitigation air pollutants from coal combustion.

So the LR scenario could be the way ahead.

But what would be the impacts on global production?

Global gas production

And global consumption?

Asia Russia North America 30% 0% 0.0% -1% 25% -0.5% -2% eviation from Baseline -3% -4% -2% -5% -9% -9% Baseline ine 20% -1.0% Basel deviation from 15% 10% from -1.5% viation f é ġ -7% 5% -2.5% -8% 0% -9% -3.0% 2010 2015 2020 2025 2030 2035 2040 2010 2015 2020 2025 2030 2035 2040 2010 2015 2020 2025 2030 2035 2040 ____LG ____LR ____PG ____PR ____LG ____LR ____PG ____PR ____LG ____LR ____PG ____PR Middle East Oceania World 0.5% 0% 3.5% 0.0% 3.0% -1% -0.5% deviation deviat deviation from Baseline -3% -4% ine 2.5% Ba 2.0% B Ť 1.5% A 1.0% -3.5% -5% 0.5% -4.0% -4.5% -6% 0.0% 2010 2015 2020 2025 2030 2035 2040 2010 2015 2020 2025 2030 2035 2040 2010 2015 2020 2025 2030 2035 2040 -----LG ------PG -----PR -----LG ------PG -----PR ____LG ____LR ____PG ____PR

Global gas consumption

What about GDP?

	2015	2020	2025 2	2030 2	2035 2	2040
USA	0.00%	6 0.00%	0.01%	0.01%	0.01%	0.00%
Rest of North America	0.00%	6 0.00%	-0.01%	-0.03%	-0.05%	-0.08%
South America	0.00%	6 0.00%	-0.01%	-0.01%	-0.01%	0.00%
Europe	0.00%	6 0.00%	-0.01%	-0.01%	0.00%	0.00%
China	0.00%	6 0.00%	0.00%	0.00%	-0.03%	-0.08%
Northeast Asia	0.00%	6 0.03%	0.05%	0.07%	0.09%	0.08%
India	0.00%	6 0.00%	0.00%	0.03%	0.05%	0.06%
Rest of Asia	0.00%	6 -0.04%	-0.11%	-0.21%	-0.34%	-0.40%
Russia	0.01%	6 0.04%	-0.09%	-0.03%	0.17%	0.36%
Oceania	0.00%	6 0.02%	0.07%	0.13%	0.22%	0.27%
Middle East	0.00%	-0.06%	-0.15%	-0.30%	-0.56%	-0.80%
Africa	0.00%	6 -0.03%	-0.10%	-0.19%	-0.31%	-0.42%
world	0.00%	6 0.00%	-0.01%	-0.02%	-0.04%	-0.07%

Implications

- To tackle air pollution, China will need to reduce its coal power generation in the near future.
- This environmental policy can have co-benefit of CO2 reduction.
- This will potentially push up the demand for natural gas, but allowing the development of more renewable could reduce the impacts.
- Due to the sheer size of the China, the national environmental policy can have far reaching impacts on the rest of the world.
- Russia and Oceania (gas exporters), and Japan and India (coal importers) could become the winners of the increased gas demand from China, but at the cost of higher global gas price, which could lead to lower global GDP.

Future directions

- To develop a global model that has regional details of China (collaborating with Gabriele at FEEM and Yingying at Shanghai University).
- To further investigate the interaction between China's environmental and carbon policies.

Thank you

Yiyong Cai E: <u>yiyong.cai@csiro.au</u> T: +61262818259

INTEGRATED GLOBAL MODELLING AND ANALYSIS www.csiro.au

