Olkaria III Geothermal power plant, Kenya

FEEM Seminar Valerio Micale Leonardo Boni

4th June 2015

Overview of presentation

- Global overview of geothermal energy
- Project background and finance
- Project's private returns, risk mitigation, and public benefits
- Scaling up geothermal in Kenya and East Africa
- Key takewaways

Global overview of geothermal energy

Benefits of geothermal

- Ability to provide the power grid with a reliable source of electricity
- A **low-cost** source of power in some countries
- A low-carbon source of power depending on the technology used and the nature of the geothermal resource

O CLIMATE POLICY INITIATIVE

Geothermal is not meeting its potential

CUMULATIVE GEOTHERMAL CAPACITY GROWTH

15 GWe

Rate of geothermal deployment **lower** than **deployment needs** and other **renewables**.

Wind and Solar now stand at **308** and **145 GW** capacity respectively Vs **13.5 GW** of geothermal power.

Development timeline longer than renewable alternatives

- Development of a geothermal project requires **5.5 years** on average.
- 2-3 years of the development time is dedicated to resource identification and exploratory drilling

Resource risks high during the exploration phase and still relevant in the development phase

How Kenya has driven deployment

- Geothermal energy deployment long been sluggish
- Deployment rates increased following the introduction of incentives

Olkaria III - project background and finance

Why Olkaria III?

- First and only privately funded and developed geothermal project in Africa
- Mix of private financing and long-term public support from DFIs and Government

Olkaria III stakeholders

Mapping Olkaria III stakeholders and their contributions to the project

Source: Ormat Technologies (2014); OPIC (2011). Ormat operates the plant through its wholly owned subsidiary Orpower 4 Inc. More details on the stakeholders of the project can be found in Annex I of this paper.

Project took 16 years to reach full capacity

- Generation expanded in three phases
- Refinancing of equity and financing of subsequent project development dependent on public guarantee

	FINANCIAL SOURCES PHASE OF EXPANSION (MW ADDED)				TOTAL FINANCIAL INPUTS				
				PHASE I		PHASE II	PHASE III		PROJECT
ACTORS	TYPE	INSTRUMENT	YEARS DISBURSMENT	12 MW	+36 MW	+36 MW	+16 MW (OPTIMIZED TO 26 MW)	FINANCE MOBILIZED	COSTS (EXCLUDING REFINANCING)
ORMAT	PRIVATE	EQUITY	1998 - 2014	40	110	43	27	220	220
DEG AND CO-LENDERS	PUBLIC	SENIOR (/ SUBORDI- NATED) LOAN (REFINANCING)	2009	105				105	
OPIC	PUBLIC	SENIOR LOAN (REFINANCING)	2012	85				85	
OPIC	PUBLIC	SENIOR LOAN	2012 - 2013			180	45	225	225
TOTAL								635	445

Source: CPI elaborations

Olkaria III – private returns, risk mitigation and public benefits

Returns for the Private Sector - Project Cash Flow

Source: CPI elaboration. Planned investments for which financing structure is not known is here represented in grey.

Olkaria III Geothermal power plant

Returns for the Private Sector – Public Financial support and Internal Rate of Return (IRR)

16% IRR meets investments expectations in the country, generally ranging from 15% to 23% for geothermal projects

Risk Allocation and Mitigation

In Olkaria III, the private party benefit from the **mitigation of credit risk and typical geothermal risk**, in particular exploration and early stage

Outcomes for the Public Sector – Levelized Cost of Energy (LCOE) and electricity tariffs

Olkaria III is contributing to meet growing energy demand, lowering end-user tariffs, while improving the reliability of Kenya's power system.

Scaling up geothermal in Kenya and East Africa

New models for developing geothermal in Kenya are emerging

Olkaria III was the first project to demonstrate a **private-led** geothermal development model

Geothermal Development Company

With the creation of **GDC** (2008), a company dedicated to geothermal exploration and drilling for steam, the GoK has encouraged private investment by **assuming the upfront risks associated with resource assessment**.

New models for developing geothermal in Kenya are emerging

Project implementation and steam supply agreement (PISSA) and joint development agreements (JDA) are increasing private involvement

POWER PLANTS	YEARS COMMISSIONED	PRELIMINARY SURVEY	EXPLORATION	TEST DRILLING	FIELD DEVELOPMENT	POWER PLANT CONSTRUCTION	O&M	TECHNOLOGY
OLKARIA I & II (45 & 105 MW)	1981-2010							FLASH STEAM
OLKARIA III (110 MW)	2000-'14				KENGEN 8MW/110MW			BINARY
OLKARIA IV (140 MW)	2014							FLASH STEAM
OLKARIA I (UNIT 4 & 5) (140 MW)	2015-'17							WELL HEAD
MENENGAI PHASE I (105 MW)	2015-'17		GD	с ———		PISSA - PRIVATE DEVELOPERS (35 MW EACH)		WELL HEAD
EBURRU (200 MW)	2010							FLASH STEAM
ARUS-BOGORIA (200 MW)	TBD							N.A.
BARINGO-SILALI (200 MW)	2017		GDC —		JOINT DEVELOPM	IENT AGREEMENT		FLASH STEAM*
SUSWA (150 MW)	2016				JOINT DEVELOPM	IENT AGREEMENT		FLASH STEAM*
LONGONOT (140 MW)	2017-2019	KENGEN/GDC	GRMF	GRANT				FLASH STEAM (TBC)
AKIIRA (70 MW PHASE 1)	2017		GRMF & OF	PIC GRANT				FLASH STEAM

What are the benefits of involving private sector in scaling up geothermal?

- Private involvement in geothermal development is accelerating deployment
- Private involvement in geothermal development and construction has the potential to reduce the cost of electricity
- The success of Olkaria III was also down to other factors not found in all East African countries (skills in-country, etc.)

Key takeways

♥ CLIMATE POLICY INITIATIVE

Thank you!

Back-up slides

♥ CLIMATE POLICY INITIATIVE

Olkaria III Geothermal power plant

Selection of projects – criteria and short-list

	Country	Financing	CIF	Pro	Con
Sarulla 351MW	Indonesi a	ADB 250m Ioan; JBIC 533.6m Ioan; CTF 80m; Canada 20m; Comm. banks 255.7m	Y	public-private finance leverage	Recent financing closure
Olkaria III 110MW	Kenya	MIGA PRI 88m; OPIC loans 310m; WB PRG 26m	Ν	Mix of risk instruments; public- owned Olkaria sites I/II/IV to compare	Limited priv. finance leverage on debt side
Gumuskoy GPP 13.2 MW	Turkey	EBRD MidSEFF \$24.9m loan; a \$9.6m lease finance loan; and \$15m equity (70:30% debt to equity ratio)	Ν	Local private developer and significant private investment	Small scale project.

Our selection approach in brief

We identified over 50 projects in emerging or developing countries and compiled the list of candidates based on the following selection criteria:

- A geographical balance between potential candidates
- >50 MW approximately for utility scale
- Full lifecycle: projects should cover all stages of development and implementation if possible
- Prospects of **substantial lessons** through different use of instruments and presence of private finance

♥ CLIMATE POLICY INITIATIVE

Geothermal important for low-carbon transition

- Ability to provide power reliably and flexibly to both meet base load energy demand and respond to fluctuating supply.
- In addition geothermal is costcompetitive when compared to other renewable energies and – in many cases - fossilfuelled generation, mostly due to its capacity factor.

Overview of geothermal markets

- Only a select few countries endowed with high temperature geothermal resources, are actively seeking to exploit the potential it may play in their national energy mix
- The U.S. hosts the largest share of global installed capacity and transferred their early experience to the Philippines. Indonesia is the leading growth market.
- Contraction in mature markets is being compensated by developing countries, starting to develop their geothermal potential

Trends in geothermal costs

 Observed data on geothermal projects in different market across the world show that the levelized investment costs of projects are broadly stable

Geothermal technologies

- 25% of global installed capacity is in **dry steam** plants mostly due to the technology's early application in the 70s and 80s.
- **Binary** plants while being a small part of installed capacity they currently represent the fastest growing form of geothermal electricity technology.
- **Flash steam** plants are the most common form of geothermal electricity utilization due to their efficiency

Public sector plays key role in investment

PROJECT FINANCE STRUCTURES USED BY NATIONS (SOURCE OF EQUITY / SOURCE OF DEBT)

(SOURCE OF EQUITE / SOURCE OF DEBT)

• 37% of projects are purely public.

- **Public sector** plays a role in **76-90%** of investments
- Little appetite for **private sector** where resource risk is high.

• Financing structures are highly dependent on the location

Timeline

POWER PURCHASE AGREEMENTS & FINANCING